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First of all, we want to thank the referee 2 for the detailed analysis of our paper. 

For the details, please look into the paper with keeping track of changes. 

 

Anonymous Referee #2 

 

General comments: This is an important and valuable data to assess temporal and spatial variations 

of CO2 in North China. However, this data must be further discussed in order to support the main 

reasons of those CO2 variations. Comparisons with other megacities will be a good approach to 

improve the discussions. 

Thanks for your suggestions.  

 

In the revised paper, we add the CO2 measurements at five urban sites in USA with a similar latitude 

of BJ. All these five sites belong to the CO2 Urban Synthesis and Analysis (CO2-USA) Data 

Synthesis Network (Feng et al., 2016). The site locations, elevations, inlet heights, and references 

are listed in Table 1. As the CO2 measurements at these five sites do not cover the period between 

October 2018 and September 2019, we use the latest 1-year available CO2 measurements. 

 

Figure 1. (a) Monthly means of CO2 at BJ (L1), XH (L1), XL between October 2018 and 

September 2019, at BU, CRA, COM, IMC and SF during the latest 1 year and (b) the diurnal 

cycles of CO2. 

 

The monthly means and diurnal cycles of CO2 at BJ (L1), XH (L1), XL, and 5 American urban sites 

are shown in Figure 1. It is found that the phases of the seasonal CO2 cycles at BU, CRA, COM, 

IMC and SF are consistent with the observations at BJ (L1), XH (L1) and XL, with a high value in 

autumn-winter and a low value in summer. Among the five American sites, the highest CO2 

concentration is observed at IMC. The IMC site is inside a commercial zone and the CO2 

measurements over there are more strongly influenced by local emissions over there (Bares et al., 

2019). The CO2 concentration is also high at COM, because the Los Angeles megacity 

is one of the largest fossil fuel CO2 emitters in the world (Matthäus et al., 2021). Figure 1 (a) shows 

that the CO2 concentrations at COM and IMC are in the same level with the one at XH, but are less 

than the CO2 concentration at BJ. The CO2 concentrations at SF, BU and CRA are much lower as 

compared to BJ, because of lower anthropogenic emissions at these sites (McKain et al., 2015; 

Lauvaux et al., 2016; Shusterman et al., 2016). 



Figure 1 (b) shows the diurnal variations of CO2, with the amplitudes of 22.4, 19.4, 6.6, 16.3, 14.8, 

41.5, 41.1 and 37.2 ppm at BJ (L1), XH (L1), XL, BU, CRA, COM, IMC and SF, respectively. The 

amplitudes of the diurnal variation at COM, IMC and SF are higher than that at BJ, although the 

yearly mean CO2 levels at these sites are smaller than that at BJ. As the sampling heights at these 

sites and BJ are similar, the large amplitudes of the diurnal variation indicate that stronger variation 

in the local emissions and/or sinks exists at these three American sites as compared to BJ. 

 

Table 1. Site characteristics of BJ, XH and XL in North China, BU, CRA, COM, IMC and SF in 

USA from the CO2 Urban Synthesis and Analysis (CO2-USA) Data Synthesis Network. 

Site 

Code 

Site  

Name 

Lat 

(°N) 

Lon 

(°E) 

Elevation  

(m a.s.l.) 

Inlet 

Height 

(m a.g.l.) 

City Reference 

BJ Beijing 39.96 116.36 49 80/280 Beijing Cheng et al., 2018 

XH Xianghe 39.75 116.96 30 60/80 Xianghe Yang et al., 2020 

XL Xinglong 40.40 117.50 940 10 Xinglong Yang et al.,2019 

BU Boston 

University 

42.35 -71.10 4 29 Boston Sargent et al., 2018 

McKain et al., 2015 

CRA Crawfordsville 39.99 -86.74 264 76 Indianapolis Lauvaux et al., 2016 

Richardson et al., 2017  

COM Compton 33.87 -118.28 9 45 Los Angeles Verhulst et al., 2017 

IMC Intermountain 

Medical Center 

40.67 -111.89 1316 66 Salt Lake 

City 

Mitchell et al., 2018 

Bares et al., 2019 

SF SF Hospital 

Bldg 5 

37.76 -122.41 23.9 52 San 

Francisco 

Shusterman et al., 2016 

 

Specific comments: 

Section 2.2.2: Further description of calibration and data processing: 

1) How CRDS stability was checked over time, before and after malfunctions? 

Thanks for your suggestions. More information is added in the revised paper.  

 

The intake system is connected to an 8-position valve, which is used to choose the air coming from 

the sample air, the target gas, or the calibration gas. The target and calibration gases are pressurized 

in 29.5 L treated aluminum alloy cylinders, which are scaled to the WMO X2007 standard by the 

China Meteorological Administration, Meteorological Observation Centre. The same calibration 

procedure is operated at these three sites: 1) 3-hours sample air; 2) 5-minutes calibration gas; 3) 3-

hours sample air; 4) 5-minutes target gas. This process repeats every 6 hours and 10 minutes. Note 

that, the airs coming from two levels at XH and BJ are switched every 5 minutes during the 3-hours 

sample air period. As the remaining volume in the tubes needs time for flushing, the response of the 

analyzer turns to be stable about 1 minute after each switching. In order to reduce the uncertainty, 

we do not consider the first 3-minutes measurements after each switching. 

The calibration gas is to calculate the calibration factor (cf), 

𝑐𝑓 = 𝐶𝑂2,𝑚𝑐𝑎𝑙/𝐶𝑂2,𝑐𝑎𝑙                            (1) 

where CO2,mcal is the CO2 mole fraction measured by the Picarro analyzer from the calibration gas 

and CO2,cal is the standard CO2 mole fraction of the calibration cylinder. 



The target gas is used to check the precision and stability of the system. The T value are calculated 

as follows, 

𝑇 = 𝑐𝑓 × 𝐶𝑂2,𝑚𝑡𝑎𝑟 − 𝐶𝑂2,𝑡𝑎𝑟                                                          (2) 

where 𝐶𝑂2,𝑡𝑎𝑟 is the standard CO2 mole fraction of the target gas cylinder, 𝐶𝑂2,𝑚𝑡𝑎𝑟 is the CO2 

mole fraction measured by the Picarro analyzer from the target gas, 𝑐𝑓 is calculated from the CO2  

mole fraction measured by the Picarro analyzer from the calibration gas.  

To keep the CRDS stable over time, only the periods with T value within ±0.1 ppm are selected. 

The measurement uncertainties of the Picarro instrument at the three sites are calculated as the 

standard deviation (std) of T, which are 0.01, 0.06, and 0.02 ppm at BJ, XH, and XL respectively. 

 

2) Describe the steps used during data processing; what kind of filters were used? 

Besides the calibration procedure, we also do auto and manual flagging of the raw data. In each 1-

hour CO2 measurement window, auto-flags are assigned when deviations from CO2 mean are found 

larger than 2-times hourly CO2 std. Furthermore, manual flags are assigned by technicians at each 

site according to the logbook to exclude no-valid data resulted from the inlet filter, pump, and 

extreme weather issues. In addition, as the CRDS measurement system records CO2 and CH4 

simultaneously, the variations of these two gases are checked together to manually flag CO2/CH4 

outliers.  

 

All these information has been added in the revised version. 

 

P5 – lines 101-102: Data filtering were not used to reduce uncertainties but to exclude no-valid data. 

Review this sentence. 

Thanks for the suggestion. The sentence is rewritten now as: “Furthermore, manual flags are 

assigned by technicians at each site according to the logbook to exclude no-valid data resulted from 

the inlet filter, pump, and extreme weather issues.” 

 

Results and discussion 

Section 3.1 time series: Strategies/methods to selection of background mole fractions must be 

further presented and discussed in order to show low influence of anthropogenic sources. 

Thanks for your suggestions. 

 

In this study, we treat the CO2 measurements at XL as the background of BJ and XH. In the revised 

paper, we use the CarbonTracker model, version CT-NRT.v2021-3 (Peters et al., 2005) to evaluate 

the influence of anthropogenic, biogenic, oceanic and fire sources at these three sites. The 

CarbonTracker is a data assimilation system developed by the National Oceanic and Atmospheric 

Administration (NOAA) to keep track of sources and sinks of atmospheric CO2 around the world. 

Four tracers (biosphere, ocean, fire and fossil fuel) are treated separately to simulate atmospheric 

CO2 mole fractions. Mustafa et al. (2020) evaluated the CarbonTracker model in Asia by comparing 

with satellite measurements, and they found that the CarbonTracker model captures the variation of 

CO2 well. The model provides 3-hourly CO2 data at 25 levels from surface to ~ 123 km, and the 

spatial resolution of the global CarbonTracker CO2 simulation is 3°×2° (longitude x latitude). As BJ 

and XH are in the same model grid, we note the CO2 simulations in the BJ/XH grid as BJ.  

 



   

Figure 2. The time series of CO2 simulations from fossil fuel (CO2,ff), biosphere (CO2,bio), fire 

(CO2,fire) and ocean (CO2,oce) modules at BJ/XH and XL. 

 

Figure 2 shows the time series of CO2 simulations from fossil fuel (CO2,ff), biosphere (CO2,bio), fire 

(CO2,fire) and ocean (CO2,oce) modules at BJ/XH and XL between October 2018 and September 2019. 

It is found that the fire and ocean CO2 at BJ/XH and XL are close to each other throughout the whole 

year. The biogenic CO2 at BJ/XH and XL have a similar level between October 2018 and June 2019, 

and become slightly different in summer 2019. However the difference in biogenic CO2 is much 

less than that of the anthropogenic CO2 differences. The variation of the fossil fuel CO2 at XL is 

much less than that at BJ/XH. Therefore, by using the CO2 measurements at XL as the background, 

we can significantly reduce the influence from fire, biosphere and ocean, and extract the signal of 

the anthropogenic CO2 differences. 

 

P7 - lines 138-144: Please add mean (std) concentrations related to higher and low CO2 levels. 

Done.  

The mean ∆ CO2 at BJ and XH are 26.2±20.6 ppm and 15.2±13.6 ppm, respectively. 

 

P7 – lines 149-150: Contribution of main sources (fossil fuel and heating) must be further discussed. 

Other sources as biomass burning from wildfires are important? If possible, trace gases/species 

would be used to identify activity of specific sources. 

Thanks for the suggestions. More discussions are added now. 

 

The ∆ CO2 has a maximum in winter and a minimum in summer at both BJ and XH. According to 

the CarbonTraker simulation, the high CO2 concentrations at BJ and XH in winter are dominated 



by the enhancement of fossil fuel. According to the Global Fire Assimilation System (GFAS) 

(https://www.ecmwf.int/en/forecasts/dataset/global-fire-assimilation-system) wildfire emissions, 

there is almost no biomass burning CO2 emissions at BJ, XH and XL sites. The CarbonTraker model 

simulations confirm that fire CO2 concentrations in this region are almost the same, and the 

simulated fire CO2 at these sites are transported by the wildfire emissions at other places. What’s 

more, the CarbonTraker model suggests that the fire CO2 at these sites only take up a small 

proportion of the observed CO2 (less than 5%). 

 

P9 – lines 166-167: Discuss the reasons of higher amplitudes in BJ. 

Thanks for the suggestions. More discussions are added now. 

 

The amplitudes of the seasonal variation of CO2 at BJ, XH and XL are 41.2 ppm, 36.1 ppm and 29.3 

ppm, respectively. According to the CarbonTracker simulation, the CO2 seasonal cycle in this region 

is mainly driven by the biogenic and anthropogenic CO2. At XL, the anthropogenic CO2 is almost 

constant through the whole year, while the biogenic CO2 is low in summer and high in winter. For 

BJ/XH, apart from the similar biogenic CO2 seasonal variation, the anthropogenic CO2 is also high 

in winter and lower in summer. Therefore, combining the effect from the biosphere and human 

activities, the amplitude of CO2 seasonal variation at BJ/XH is larger than that at XL. What’s more, 

as the anthropogenic emission at BJ is much larger than that at XH, indicated by the EDGAR 

emission dataset, we thus observe the largest amplitude of the seasonal variation at BJ. 

 

P9 – lines 216-217: References must be added to support the assumption. 

Thanks for the suggestions. References are added now. 

 

“The solar radiation is strongest at noon which leads to the largest photosynthesis removing CO2 

(Mohotti and Lawlor, 2002). The diurnal variation of CO2 at daytime is then strongly affected by 

the plants in spring and summer, due to the large diurnal variation of the biogenic flux (high LAI) 

in these two seasons at XL (see Figure 3). However, in autumn and winter, the minimum of the CO2  

mole fraction occurs close to the maximum of the BLH, indicating that the diurnal variation is then 

dominated by the BLH (Newman et al., 2013), and the influence of the diurnal variation of the 

biogenic flux becomes less because of the low LAI in these two seasons.” 

   



 

Figure 3. The daily variations of biological CO2 surface flux in spring, summer, autumn and 

winter at XL estimated from CarbonTracker. 

 

 

Section 3.5: Reasons to CO2 mole fractions variations in L1 and L2 altitudes must be discussed. 

Thanks for the suggestions, more discussions are added now. 

 

Figure 10 in the ACPD shows the CO2 hourly means observed at two levels at BJ and XH between 

October 2018 and September 2019. Note that, we select measurements when the hourly means are 

available at both levels.  

At BJ, CO2 mole fractions at L1 are generally higher than L2 as L1 is closer to near-ground human 

emissions. At BJ L1 (80 m a.g.l.), we can observe a peak in the early morning, which is 

corresponding to the transportation rush hour. The valley of CO2 at BJ L1 occurs at 16:00-17:00 

because of the maximum PBL resulting from the unstable atmosphere. After that, the atmosphere 

changes from unstable to stable during the night, leading to the CO2 peak again. At BJ L2 (280 m 

a.g.l.), the diurnal variation of CO2 generally follows that at L1. Note that the peak of the CO2 at L2 

occurs in the early morning later than that at L1 as the CO2 at the ground level moved upward with 

the increase in convective PBL, with a large difference in winter and a small difference in summer. 

The CO2 diurnal variations from two-layers Picarro measurements in 2018 and 2019 in our study 

are consistent with the seven open-path infrared gas analyzers (Model LI-7500A; at 8, 16, 47, 80, 

140, 200 and 280 m a.g.l.) measurements between 2013 and 2016 at the same site (Cheng et al., 

2018). In summer, the temperature is high due to a larger solar irradiance, the atmosphere becomes 

unstable quickly accelerating the uplifting of the PBL. In winter, the uplifting of the PBL is slow 

because of the stable atmosphere. 

At XH, the CO2 mole fractions at L1 and L2 are closer to each other as compared to the two-layers 

measurements at BJ, because the difference in the vertical distance of two layers at XH is only 20 

m. Nevertheless, we can still observe that the peak of the CO2 at L2 occurs in the early morning 

later than that at L1 as the CO2 at the ground level moved upward with the increase in convective 

PBL, with a large difference in winter and a small difference in summer. 

To compare the vertical distribution of CO2 at BJ and XH, we calculate the CO2 gradient (δCO2 = 



(CO2,L1−CO2,L2)/(AltL2−AltL1)) (Figure 10c). The diurnal variations of δCO2 at BJ and XH have a 

similar pattern: close-zero during the day and positive at night. The maximum δCO2 can reach to 

0.6 ppm/m at XH in 2018 August and 0.2 ppm/m at BJ in 2018 November. The larger height 

difference at BJ (120 m) as compared to XH (20 m) may contribute to the smaller δCO2. 

 

Section 3.6: This section must be further assessed using different approaches. One of these strategies 

would be investigate seasonal differences during weekday-weekend.  

P13 – line 255: Assumption of lowest anthropogenic emissions on Tuesday must be proven. 

Thanks for your suggestions.  

 

From the Figure 11 in the ACPD, we see a low CO2 concentration as compared to other days. 

Therefore, we wrote “we find that the CO2 mole fractions have a minimum on Tuesday at BJ and 

XH. It is indicated that the anthropogenic emission is lowest on Tuesday.” The most three important 

CO2 anthropogenic emissions in BJ are energy conversion, transport and industry (Yu et al., 2014, 

Crippa et al., 2020). Among these three, only transport emission has a strong day-to-day variation. 

According to the TomTom report (https://www.tomtom.com/en_gb/traffic-index/beijing-traffic/), 

we can recognize a decrease in the transport during the weekend but not in Tuesday. Therefore, in 

the revised version, we removed the original Figure 11, but add the plots to compare the CO2 during 

weekdays and weekends. 

 

 

https://www.tomtom.com/en_gb/traffic-index/beijing-traffic/


 

Figure 4. The traffic in Beijing within one week reported from TomTom. 

 



、    

Figure 5. The average hourly means of CO2 on weekday, weekend and all days at (a) BJ (L1), (b) 

XH (L1), (c) XL and (d) BU (Boston) between October 2018 and September 2019. The light gray 

shaded area represents one standard deviation from the mean for all days.  

 

Figure 5 shows the average hourly means of CO2 on weekday, weekend and all days at BJ (L1), XH 

(L1), XL between October 2018 and September 2019, and BU (Boston) between April 2018 and 

April 2019. At BJ (L1), the nighttime CO2 measurements on weekend from 20 pm to 6 am next 

morning are generally ~5 ppm larger than those on weekday. XH (L1) and XL CO2 measurements 

on weekend are ~2 ppm than those on weekday throughout the whole day respectively. On the 

contrary, BU CO2 measurements on weekday are ~8 ppm larger than those on weekend between 4 

and 6 am. The CO2 differences on weekday and weekend at BU turn smaller after sunrise. The mean 

CO2 at BJ (L1), XH (L1), XL and BU is 447.6, 436.2, 420.3 and 429.8 ppm respectively on weekday, 

and 449.2, 437.6, 421.4 and 427.5 ppm respectively on weekend. The weekday-weekend variations 

at BJ and XH are similar to that at Nanjing China (Gao et al., 2018), where CO2 mole fractions are 

higher on weekends, but different from Boston USA, London UK and Tamil Nadu India, where the 

CO2 mole fractions are higher on weekdays (Hernández-Paniagua et al., 2015; Kumar and Nagendra, 

2015; Briber et al., 2013).     
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