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Abstract. Carbon dioxide (CO2) and air pollutants such as carbon monoxide (CO) are co-emitted by many combustion sources.

Previous efforts have combined satellite-based observations of multiple tracers to calculate their emission ratio (ER) for infer-

ring combustion efficiency at regional to city scale. Very few studies have focused on burning efficiency at the sub-city scale

or related it to emission sectors using space-based observations. Several factors are important for deriving spatially-resolved

ERs from asynchronous satellite measurements including 1) variations in meteorological conditions induced by different over-5

pass times, 2) differences in vertical sensitivity of the retrievals (i.e., averaging kernel profiles), and 3) interferences from

the biosphere and biomass burning. In this study, we extended an established emission estimate approach to arrive at spatially-

resolved ERs based on retrieved column-averaged CO2 (XCO2) from the Snapshot Area Mapping (SAM) mode of the Orbiting

Carbon Observatory-3 (OCO-3) and column-averaged CO from the TROPOspheric Monitoring Instrument (TROPOMI). To

evaluate the influence of the confounding factors listed above and further explain the intra-urban variations in ERs, we lever-10

aged a Lagrangian atmospheric transport model and an urban land cover classification dataset and reported ERCO from the

sounding-level to the overpass- and city- levels. We found that the difference in the overpass times and averaging kernels

between OCO and TROPOMI strongly affect the estimated spatially-resolved ERCO. Specifically, a time difference of > 3

hours typically led to dramatic changes in the wind direction and shape of urban plumes and thereby making the calculation

of accurate sounding-specific ERCO difficult. After removing those cases from consideration and applying a simple plume15

shift method when necessary, we discovered significant contrasts in combustion efficiencies between 1) two megacities versus

two industry-oriented cities and 2) different regions within a city, based on six to seven nearly-coincident overpasses per city.

Results suggest that the combustion efficiency for heavy industry in Los Angeles is slightly lower than its overall city-wide

value (< 10 ppb-CO / ppm-CO2). In contrast, ERs related to the heavy industry in Shanghai are found to be much higher than

Shanghai’s city-mean and more aligned with city-means of the two industry-oriented Chinese cities (approaching 20 ppb-CO20

/ ppm-CO2). Although investigations based on a larger number of satellite overpasses are needed, our first analysis provides

guidance for estimating intra-city gradients in combustion efficiency from future missions, such as those that will map column

CO2 and CO concentration simultaneously with high spatiotemporal resolutions.
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1 Introduction

Home to more than half of the total global population, urban areas have been expanding, especially for Asia and Africa with an25

urbanization rate of 1.3% and 1.1% yr−1 between 2015 and 2020 (World Urbanization Prospects 2018). Urban regions are also

responsible for a significant amount of anthropogenic emissions of greenhouse gases and air pollutants into the atmosphere

including carbon dioxide (CO2), methane, carbon monoxide (CO), and nitrogen oxides (Duncan et al., 2016; Lin et al., 2018;

Super et al., 2017; Plant et al., 2019). To monitor the abundance of a number of atmospheric species in a globally-consistent

manner, satellite observations have become indispensable in past years (Yokota et al., 2009; Crisp et al., 2012; Veefkind et al.,30

2012). For example, carbon-monitoring satellites such as the Orbiting Carbon Observatory-2 (OCO-2, Crisp et al., 2012) have

made the quantification of city-scale CO2 emissions and emission trends possible (e.g., Hedelius et al., 2018; Ye et al., 2020;

Wu et al., 2020; Shekhar et al., 2020; Lei et al., 2021). Quantifying the spatial gradient of atmospheric concentrations and

relating the gradient to emissions within the city domain becomes the next critical yet challenging task. Understanding such

spatial heterogeneity in emissions and the environmental consequences can support better decisions in urban planning and35

pinpointing hotspots for emission mitigation.

To reduce emissions of greenhouse gases and air pollutants, targeting the efficiency during combustion activities is the key.

Such efficiency is linked to the underlying combustion processes and conditions (e.g., oxygen-to-fuel ratio and temperature).

For example, the amount of CO2 emitted from coal-fired power plants varies with thermal and pressure conditions, the type

of fuel consumed, the technology deployed, and the service duration of power plants (Yuan and Smith, 2011). Modern power40

generation with distinct scrubbing technology are often regarded as “clean” emitters leading to minimal CO and NOx enhance-

ments (Lindenmaier et al., 2014). The commonly-used approach in estimating combustion efficiency is to combine atmospheric

observations of multiple trace gases. Benefit from the cancellation of the errors in describing the atmospheric transport that

carries tracers to the measurement site, the ratio of the total or excess measured concentrations (above a defined background

value) between tracers are reported (Silva and Arellano, 2017; Reuter et al., 2019; Park et al., 2021). A few notable studies45

further utilized their derived emission ratios (ERs) from ground or airborne measurements to infer sector-specific emission

signals (Wennberg et al., 2012; Lindenmaier et al., 2014; Nathan et al., 2018; Tang et al., 2020).

CO and NOx often serve as tracers for anthropogenic CO2 due to their overlapping sources of combustion (e.g., Palmer

et al., 2006; Wunch et al., 2009; Hedelius et al., 2018). Analyzing remotely-sensed NOx plumes with relatively short lifetime

can help identify local fossil fuel CO2 (FFCO2) sources that would otherwise be difficult (Reuter et al., 2019; Fujinawa et al.,50

2021). While at the same time, such reactivity raises the requirement of accurately accounting for chemical transformation and

complicates the interpretation of emission signals or ERs from NOx observations (Lama et al., 2020; Hakkarainen et al., 2021).

CO with a much longer lifetime, on the other hand, is much easier to interpret and more likely to be found during incomplete

combustion. The emission ratio of CO to CO2 (ERCO) is usually estimated from sparse ground-based measurements within a

city (Bares et al., 2018; Chandra et al., 2016; Lindenmaier et al., 2014) and from satellites at the city scale (Park et al., 2021;55

Silva and Arellano, 2017). Sector-specific activities and ERCO such as from the traffic sector have been diagnosed by limited,

but valuable, tunnel studies (Ammoura et al., 2014; Bradley et al., 2000; Popa et al., 2014).
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We performed a literature search on ERCO derived from observations (Appendix A) and summarize their values in Fig. 1.

Combustion efficiency fluctuates 1) over time (e.g., Turnbull et al., 2011b), likely explained by technological improvements and

2) between sub-sectors, e.g., gasoline vs. diesel vehicles or moving vs. congestion traffic (Westerdahl et al., 2009; Popa et al.,60

2014). Despite differences in measurement platforms and analyzing approaches, the observed urban-integrated ERCO values,

especially for those in Europe and the United States, are well constrained within the range of 4 to 15 ppb ppm−1(Fig. 1b).

ERCO for biomass burning and shipping sectors are estimated based on fuel-specific emission factors, i.e., ERCO (= EFCO /

EFCO2) with proper unit conversions, where EFX indicates the emission of gas X per kg of fuel burned.

Figure 1. ERCO [ppb ppm−1] associated with specific processes (a) and ERCO integrated over the entire city/region (b) summarized from previous studies.

X-axis indicates the time these estimates were made except for Akagi et al. (2011). 2011 was simply chosen for x-axis since the paper was published in 2011.

The error bars represent the uncertainties in estimated ERs and transparent rectangle indicates the range of ERs over multiple years. Paper citations are omitted

from the figure and included in Appendix A. ERs related to biomass burning and the shipping sectors are derived using emission factors of CO and CO2 . The

range of the overpass-specific ERCO estimates for Shanghai, LA, Baotou, and Zibo derived from this work are also added to the figure (dashed black box).

The variability in observation-derived ERs among different combustion processes and sectors (Fig. 1a) hinders the gener-65

alization and representation of gridded ERs. Many bottom-up emission inventories simulate FFCO2 emissions using activity

data for spatially allocating sector-based EFs (Gurney et al., 2019; Solazzo et al., 2021). One notable example is Hestia, a
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high-resolution inventory for the US, which estimates CO2 emissions of non-point sources based upon CO emissions from the

National Emission Inventory, EFCO , and EFCO2 and carefully evaluates their adopted EFs (Gurney et al., 2019). However, con-

structing inventories for the entire globe is data-demanding and challenging because accurate bottom-up estimates require ac-70

tivity data and EFX that vary with combustion conditions (e.g., temperature, fuel load, oxygen level) and are generally not well

known, especially over data-scarce regions. To our knowledge, only a few global inventories, such as the Emissions Database

for Global Atmospheric Research (EDGAR, Solazzo et al., 2021), offer global anthropogenic CO and CO2 emissions. Consid-

ering the challenge in approximating ERs, the knowledge derived from observations may 1) complement inventory-based ERs

(e.g., CO:NOx ratio in Lama et al., 2020) and 2) facilitate the emission constraint for a desired species, usually with relatively75

large uncertainties (Wunch et al., 2009; Palmer et al., 2006; Wang et al., 2009; Brioude et al., 2012; Nathan et al., 2018). Such

prior success motivates us to derive ERs from satellite observations of multiple tracers.

Most previous studies have focused on quantifying an integrated ER for the whole city or region. As a step forward, we zoom

into an urban area and leverage spatially-resolved satellite observations. Intra-city variations in the satellite-based concentration

of a specific air pollutant like NOx have been examined and linked to societal inequality such as of income and educational80

attainment (Demetillo et al., 2021; Kerr et al., 2021). Yet, no one has attempted to study the intra-urban gradient in combustion

efficiency from space and connect such gradient to a specific combustion process. This is now possible by virtue of the Orbiting

Carbon Observatory-3 (OCO-3) mounted on the International Space Station (ISS) that can sample a city-landscape during its

Snapshot Area Mapping (SAM) mode (Eldering et al., 2019; Taylor et al., 2020; Kiel et al., 2021). In this effort to arrive at

spatially-varying ERs from sensors with asynchronous orbits, we must account for several factors that have not been thoroughly85

investigated. These include 1) variations in meteorological conditions during different overpass times, 2) discrepancies in

vertical sensitivity of the retrievals (i.e., averaging kernel or AK profiles), and 3) interference from non-anthropogenic sources

and sinks.

Motivated by the gaps in prior literature, we conducted an analysis to explore the spatial distribution of ERCO within

four urban areas mainly using XCO2 observations from OCO-3 and XCO observations from the TROPOspheric Monitoring90

Instrument on board the Sentinel-5 Precursor (TROPOMI, Veefkind et al., 2012). To avoid relying on prior sectoral information

on ERCO from emission inventories, we adopt urban land cover data from the high-resolution World Urban Database and

Access Portal Tools (WUDAPT, Ching et al., 2018). WUDAPT offers the so-called Local Climate Zone (LCZ) that takes

into account building structures/spacing and vegetation coverage (Stewart and Oke, 2012), which can shed light on localized

infrastructure within the city.95

Our work seeks to answer the following two questions.

1. Is it possible to quantify accurate spatially-resolved ERCO from asynchronous satellite measurements?

2. Can the combustion efficiency for a given sector be determined without using prior emission inventories?

In Section 2, we describe the satellite data and methodology for obtaining emissions, ERCO, and associated uncertainties. In

Section 3, we present the results on intra-city variations in ERCO (including ERCO tied to heavy industry areas in a megacity)100

and its sensitivity to several interference factors. In Section 4, we discuss the implication and limitation of this analysis.
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2 Data and methodology

We targeted two types of cities: 1) industry- and energy- oriented cities (Baotou, China and Zibo, China), and 2) megacities with

more diverse emission sectors (Shanghai, China and Los Angeles, US). The four cities are selected considering the amount

and quality of XCO2 data from OCO-3 SAMs and TROPOMI XCO data. The two industry- and energy- oriented cities in105

China are selected given their considerable amount of metal production plants for aluminum or iron and steel (Global Energy

Infrastructure Emission Database, GID; Wang et al., 2019) and surrounded coal-fired power plants (Global Energy Monitor,

GEM; and the Global Power Plant Dataset; World Resources Institute, 2018) that support the nearby industries.

Our goal is to calculate ERCO from every satellite sounding within an urban plume that is the spatial extent affected by

urban emissions (Sect. 2.2). Sounding-dependent ERCO are calculated as ratios of CO emissions over CO2 emissions (Eq.110

3) that estimated from the satellite-derived FF enhancements and further refined with a “scaling factor” in Eq. 1. This scaling

factor is obtained from an atmospheric transport model (Sect. 2.2.1), which accounts for several mismatches between OCO-2/3

and TROPOMI (Sect. 2.1). Determination of FF enhancements requires estimate of the background values (Sect. 2.2.2) and

“second-order” correction terms for biogenic and pyrogenic sources (see explanations in Sect. 2.2.3). The sounding-specific

ERs and their uncertainties (Sect. 2.2.4) are aggregated to yield ER per overpass and per city. After determining the intra-city115

variations in ER, we illustrate how much ERs associated with heavy industry in Los Angeles and Shanghai can be extracted

with the assistance of the urban land cover classification dataset (WUDAPT, Sect. 2.3).

2.1 Satellite observations and data pre-processing

We screened available data for overpass coincidences between OCO-3 SAM XCO2 and TROPOMI XCO observations with

relatively small differences in overpass times. Considering the limited number of the coincidences between sensors, two non-120

SAM overpasses from OCO-3 and one OCO-2 overpass are added to the analysis. In the end, six to seven OCO-TROPOMI

coincidences with higher data quality from Oct 2019 to June 2021 were integrated into the final result for each city. Only two

of the total 25 overpasses (both in June 2021) fall within the north hemispheric summer months between June and August.

2.1.1 OCO-2/3 XCO2

The column-averaged dry-air mole fraction of CO2 (XCO2) is retrieved from reflected sunlight over two CO2 bands centered125

on 1.6 and 2.0 µm and the oxygen-A band for obtaining surface pressure obtained by OCO-3 (Eldering et al., 2019; Taylor

et al., 2020). In addition to the standard Nadir, Glint, and Target modes, OCO-3 performs SAMs that collect several adjacent

swaths of XCO2 observations over a spatial area of approximately 80 km by 80 km, e.g., four individual swaths in an overpass

over LA on Feb 24, 2020 (Fig. 2a). Similar to OCO-2, each swath is comprised of eight spatial footprints/soundings and each

sounding has an area of ∼1.6×2.2 km2 at nadir (Fig. 2a). Our analysis only used screened OCO-3 B10r data (Eldering, 2021)130

with an XCO2 quality flag of zero (QF = 0). It is worth highlighting that the B10r product is superior to the Early version for

OCO-3 (Taylor et al., 2020) including improved geolocation, advanced radiometric calibration, improved quality filters and
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customized post processing bias correction. Because OCO-3 is mounted on the ISS that is in a precessing orbit, its overpass

time varies, for example, from 07 to 15 local time for the overpasses we examined.

2.1.2 TROPOMI XCO135

The column density of CO molecules [mole cm−2] is retrieved via the measured radiation from the shortwave infrared wave-

bands on TROPOMI, centered at ∼2.3 µm (Veefkind et al., 2012). We only selected data with quality assurance ≥ 0.5 rec-

ommended by the TROPOMI readme document (Landgraf et al., 2020) and converted the column density to the total column-

averaged dry-air mole fraction of CO [ppb] using dry-air column density [mole cm−2] estimated from retrieved surface pres-

sure and total column water vapor. TROPOMI CO is retrieved at a larger pixel area of ∼7×7 km2 at Nadir and reduced to140

5.5×7 km2 after Oct 6, 2019 (Fig. 2c). The overpass time of TROPOMI is ∼13:30 local time of equatorial overpass for nadir

measurements with a time span of 1–2 hours for soundings on the edge of its wide swath (i.e., ∼2600 km).

2.1.3 Differences between two sensors/species

Four mismatches between OCO-3 XCO2 and TROPOMI XCO pose challenges in extracting FF enhancements and ERCO from

atmospheric observations, which we attempt to account for and assess:145

1. Satellite pixel area: We searched for OCO-2/3 soundings falling within each TROPOMI polygon and averaged the cor-

responding XCO2 enhancements to the TROPOMI scale (Fig. 2a vs. b). For simplicity, we used the centered lat/lon

coordinate of an OCO-3 sounding to determine its corresponding TROPOMI polygon. Retrieval uncertainties and ob-

servation noise (defined as the XCO2 variability within each TROPOMI polygon) are estimated at the TROPOMI pixel

scale and propagated as part of the total observed uncertainty (Sect. 2.2.4).150

2. Averaging kernel profile: Within the planetary boundary layer where most emissions occur, TROPOMI XCO retrieval is

affected by cloud height/fractions, which yields lower-than-unity AK (Supplementary Fig. S1). OCO-2/3 XCO2 under

cloudy conditions are typically omitted from Lite files and when QF = 0 is applied; thus, its AK normally approaches

one near the surface for cloud-free scenes. The mismatch in AKs between sensors must be accounted for as it can affect

the interpretation of ERs. In this work, we accounted for AK within an atmospheric transport model (Sect. 2.2.1).155

3. Overpass time and upwind meteorological condition: As result of the sometimes large time difference, meteorological

conditions including the wind direction and speed can change significantly, leading to changes in urban plume shapes

detected by the two sensors as they pass by. We dealt with changes in wind speed and wind direction separately. The

former is resolved by the “scaling factor” generated from the atmospheric transport model and the latter undergoes

manual evaluations (Sect. 3.1).160

4. Non-fossil fuel sources/sinks: The influence from the biosphere and biomass burning may affect the calculation of ERCO.

Given our definition of background regions, the contrast in non-FF anomalies between the urban and background region

may interfere the calculation of FF enhancements and ERCO (more explanations in Sect. 2.2.3).
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Figure 2. FF XCO2 enhancements at the native OCO-3 soundings (a, ppm) and aggregated to the TROPOMI scale (b, ppm), and XCO enhancements (c,

ppb) over Los Angeles on Feb 24, 2020. Power stations with different primary fuel types are displayed in different white symbols based on the Global Power

Plant Dataset (World Resources Institute, 2018). The X-STILT column footprint [ppm / (µmol m−2 s−1)] from all soundings are drawn in light grey (see

explanations for column footprint in Sect. 2.2.1). The underlying hybrid maps were created using ggmap library in R that adopted the Google Maps (copyright:

Map data ©2021 Imagery ©2021 TerraMetrics).

2.2 Estimates of Egas , ERCO and uncertainties

Previous studies (Mitchell et al., 2018; Wu et al., 2020; Lin et al., 2021) proposed an approach to calculate the overall CO2 or165

CH4 fluxes using atmospheric measurements and atmospheric transport model without prior information from emission in-

ventories. Here we briefly describe this approach to obtain the overall emission of either CO2 (Eq. 1) or CO (Eq. 2) for each

sounding S, modified from Wu et al. (2020):

〈ECO2,s〉=
XffCO2,s

〈XFCO2,s〉
=

XobsCO2,s−XbgCO2 − δXbioCO2,s− δXbbCO2,s∫∫
XFCO2,s(x,y)dxdy

. (1)

〈ECO,s〉=
XffCO,s

〈XFCO,s〉
=

XobsCO,s−XbgCO− δXbbCO,s∫∫
XFCO,s(x,y)dxdy

. (2)170

All X terms in the numerator contribute to FF enhancements (Xff, Fig. 2). In theory, Xff at a downwind satellite sounding

S is the sum of its corresponding FF sources over its corresponding source region (x,y). To describe and attribute this source

region to each satellite sounding, we adopted the column version of the Stochastic Time-Inverted Lagrangian Transport (X-

STILT) model (Lin et al., 2003; Fasoli et al., 2018; Wu et al., 2018). Using X-STILT, we can obtain a “scaling factor” 〈XFgas〉
that accounts for sounding-specific AK profile and meteorology (Sect. 2.2.1).175
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Within the calculation of FF enhancements of either XCO2 or XCO, Xbg represents the background values calculated from

observations uncontaminated by the urban plume, which are normally constant for a group of observations (i.e., not sounding-

specific, Sect. 2.2.2). The air parcels arriving at the sounding in the city center can have different origins and pathways from

the air parcels tied to a rural sounding. These two soundings may be influenced differently by biospheric fluxes and biomass

burning emisions. Hence, two background correction δ-terms are attached to correct for the urban-background gradient in180

column anomalies from the net ecosystem exchange (NEE) and biomass burning (Sect. 2.2.3 and Eq. 4).

Similar to Xff , the resultant flux 〈Egas〉 with unit of µmol m−2 s−1 is tied to each sounding. These fluxes represent the

total emissions in the source region with respect to a given TROPOMI sounding and should not be confused with the direct

emission at that sounding location. The ERCO for a given sounding S is then derived from Eqs. 1 and 2 as follows:

ERCO =
〈ECO〉
〈ECO2〉

=
XffCO

XffCO2

〈XFCO2〉
〈XFCO〉

=
XffCO

XffCO2

γfoot. (3)185

XffCO
XffCO2

is the enhancement ratio and γfoot informs how enhancement ratios without accounting for AKs and meteorology differ

from emission ratios. We simply use ppb-CO/ppm-CO2 for units of ERCO (same as mmol-CO/mol-CO2).

2.2.1 The X-STILT model

The X-STILT model is adopted for three purposes: to 1) provide the scaling factor 〈XFgas〉 that resolves the influences from

differences in AK and wind fields between sensors; 2) identify the overpass-specific urban plume for background determination190

(Sect. 2.2.2), and to; 3) estimate the sounding-level biogenic and pyrogenic contributions to the background (Sect. 2.2.3).

STILT releases an ensemble of air parcels from target observations (known as the STILT “receptor”) and tracks the movement

of those air parcels backward in time. The source region corresponding for each sounding is informed by the “source-receptor

relation” or the STILT “footprint” (Lin et al., 2003; Fasoli et al., 2018). The STILT footprint [ppm / (µmol m−2 s−1)] describes

the change in atmospheric concentration [ppm] at a downwind location due to possible upwind sources/sinks [µmol m−2 s−1].195

The magnitude of STILT footprints tend to be higher close to the target observations or under steadier wind condition, as air

parcels within the boundary layer can interact more with fluxes from the surface.

To accommodate the use of satellite-based column data, X-STILT incorporates the retrieval-specific AK and pressure weight-

ing (PW) profiles in the footprint calculation (Wu et al., 2018), such that the influence of air parcels originating from various

altitudes of an atmospheric column are weighted by sounding- and sensor- specific AK profile (Supplementary Fig. S2). The200

“column footprint”, XFgas, becomes the sensitivity of the total column concentration to upwind fluxes. Because AK profile

is specific to the retrieval, XFgas for TROPOMI XCO differs from that for OCO-2/3 XCO2 even for concurrent observations

(Eqs. 2, 1). Because the air flow arriving at each satellite observation is unique, the magnitude and spatial distribution of col-

umn footprints vary from one sounding to another (Supplementary Fig. S3). If taking an average of these sounding-dependent

column footprints, as shown in Supplementary Fig. S3, we can identify the source region for all soundings in a SAM as indi-205

cated by the light gray area in Fig. 2b,c. In this work, we only traced air parcels for 12 hours backward in time for calculating

column footprints, which is sufficient to capture the near-field influence from the target city.
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In summary, the spatial summation of column footprints 〈XFgas〉 is regarded as a scaling factor in addressing the sensor-

specific meteorological condition and AK profile. The deviation of the term γfoot in Eq. 3 from 1 reveals the difference between

a simple concentration enhancement ratio and a more robust, model-corrected emission ratio.210

2.2.2 Background definition Xbg

Defining accurate background levels to extract urban FF enhancements has always been a challenge in top-down analysis,

especially when dealing with column measurements with small signal-to-noise ratio. Wu et al. (2018) compared several ap-

proaches to determine the localized XCO2 background for extracting urban signals from OCO-2, including approaches that 1)

solely use satellite observations with statistics like percentile or median; 2) solely use atmospheric transport models (e.g., cur-215

tain method and global concentration fields); and 3) combines observations and model. The latter two methods do not involve

prior information on emissions. Here, we expand the third approach to arrive at swath-dependent XCO and XCO2 background

values. The broader spatial coverage and multiple swaths of stretching out of the city domain of OCO-3 SAMs improve the

determination of the background terms by introducing spatial variations in the background. Accurately describing the spatial

gradients in background XCO2 have been emphasized previously (Ye et al., 2020; Schuh et al., 2021).220

The process of background determination used in this work involves a first step of identifying the urban plume and dif-

ferentiating soundings within or outside of the plume. Here we used the forward mode of STILT with the inclusion of wind

uncertainty to atmospheric dispersion. Specifically, 1000 air parcels were released continuously from a rectangle representing

the urban extent (dashed black box in Fig. 3) every 30 minutes starting from 10 hours ahead of the overpass time. All air

parcels are allowed to travel forward in time for 12 hours from their initial release time. A random wind component typifying225

model-data wind errors is added to the parcel dispersion (Lin and Gerbig, 2005). We subset the air parcels during the overpass

time and applied a 2-dimensional kernel density estimate (KDE) based on the parcels’ spatial distribution (blue to purple con-

tours in Fig. 3). KDE is carried out using the kde2d function provided by the MASS library in R (Venables and Ripley, 2002).

These normalized KDE contours then denote the likelihood and shape of an urban plume when the satellite scans through.

The extent of the urban plume is finalized using a normalized KDE contour of 0.15 (black curve in Fig. 3), which is proper230

to 1) include soundings with possible influence from the target city and 2) exclude observations elevated by another city (e.g.,

the red polygons centered at around 32◦N and 120◦E in Fig. 3c). This procedure is carried out separately for OCO-2/3 and

TROPOMI to address differences in the urban plume at different overpass times (see Sect. 3.1). It worth stressing that only

enhancements within the urban plume are selected to yield ERCO.

Next, the background value is calculated as the median value of observed Xgas per swath over the background region. For235

example, the background region is the area to the east outside the urban plume since southeasterly wind dominates (Fig. 3b,c).

Background values vary with swaths if an OCO-3 SAM is examined. We chose the median instead of the mean to minimize

the impact of any “outliers” that may be from a second FF source (other than our target cities) in the background region. When

analyzing data from OCO-2’s narrow swath (Fig. 3a), the latitude range outside the plume serves as the background region and

can be sensitive to the modeled wind bias and number of valid soundings (Wu et al., 2018). Fortunately, modeled wind bias240
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is generally less of an issue when analyzing SAMs, because the broader coverage of valid SAM observations helps evaluate

model-based urban plumes. Background uncertainties are estimated and propagated into the ER uncertainty (Sect. 2.2.4).

a) OCO-2, Feb 4th, 2020, 05:11 UTC b) OCO-3 SAM, Feb 20th, 2020, 06:06 UTC c) TROPOMI, Feb 20th, 2020, 04:44 UTC

Figure 3. Demonstrations of background determination from OCO-2 XCO2 on Feb 4, 2020 (a), OCO-3 SAM XCO2 [ppm] and TROPOMI XCO [ppb]

on Feb 20, 2020 (b, c) over Shanghai. The model-based urban plume (solid black curve) is determined by the normalized 2-D kernel density of the air

parcels’ distribution during the overpass time (blue-purple contours). On Feb 20, 2020, measurements to the east outside modeled plumes are identified as

the “background measurements”. The underlying maps were created using ggmap library in R that adopted the Google Maps (copyright: Map data ©2021

Imagery ©2021 TerraMetrics).

2.2.3 Background correction terms for non-FF sources/sinks

The swath-dependent background approach described above explicitly assumes equal contributions from non-FF sources and

sinks for soundings in the background versus soundings in the urban plume. We further estimated urban-background gradients245

in Xgas resulting from biogenic and pyrogenic fluxes.

As initially proposed in Wu et al. (2021), rather than the absolute biogenic or pyrogenic concentration anomalies, it is the

contrast in these anomalies between the background versus urban region that is required, given our background definition.

Specifically, hourly column footprints from X-STILT are convolved respectively with hourly mean NEE from a biogenic

model representation and the daily mean wildfire emissions from the Global Fire Assimilation System (GFAS, Kaiser et al.,250

2012) to estimate the absolute column anomalies Xbio and Xbb for every sounding. The Solar-Induced Fluorescence (SIF) for

Modeling Urban biogenic Fluxes (SMUrF, Wu et al., 2021) model estimates gross primary production (GPP) from a Contiguous

SIF product (CSIF trained based on OCO-2 SIF, Zhang et al., 2018) and respiration based on modeled SIF-based GPP, air and

soil temperatures.

Next, the urban-background gradient in the anomalies are calculated as the difference between the sounding-specific anoma-255

lies and the average anomalies over the background region.

δXbioCO2(s) = XbioCO2(s)−XbioCO2(sbg) (4)
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where s or sbg represents all the soundings or selected soundings in the background region, respectively. Let us imagine a

north hemispheric summer day at noon, when the urban core is normally associated with a weaker biospheric uptake than the

surrounding rural region, biogenic signals XbioCO2(s) for soundings in the city are less negative than the mean biogenic signal260

over the rural background XbioCO2(sbg). Hence, the urban-background biogenic gradient δXbioCO2(s) is normally positive

and should be subtracted from the observed column to yield the FF enhancement (Eq. 1). Modeled sounding-specific Xbio ,

the urban-background gradient δXbio , and their impacts on ERCO are discussed in Sect. 3.1.

Flux exchanges from the ocean and chemical transformation (e.g., CO sink via hydroxyl radical (OH) and source from

oxidation of volatile organic compounds, VOCs) are not considered. The average lifetime of CO against OH lasts for a few265

weeks to several months depending on the season, much longer than the few-hour timescale we care about. Yet, CO can be

generated from the oxidation of CH4 and non-methane VOCs at various rates, which are discussed in Sect. 4.3.

2.2.4 ERCO uncertainty

The uncertainty related to Xgas emissions should contain uncertainties from 1) atmospheric transport (i.e., column footprints),

2) the retrieval and measurement, 3) background, and 4) non-FF gradients. However, we neglect uncertainties from column270

footprints by assuming no systematic transport bias associated with the X-STILT simulations during OCO and TROPOMI

overpass times. The urban-background gradient in non-FF fluxes remains very small compared to FF enhancements.

Observed uncertainty of XCO2 are comprised of retrieval errors and measurement noise (or XCO2 variability) as the standard

deviation of XCO2 observations within a TROPOMI polygon. Depending on the TROPOMI sounding size (nadir or not) and

the amount of screened OCO-3 soundings, there could be 5 to 28 OCO-3 soundings per TROPOMI polygon. Background275

uncertainty contains the retrieval error and the measurement noise of observations over background regions. Retrieval errors

associated with each OCO-3 sounding are aggregated to the TROPOMI spatial scale in a standard-deviation-of-mean manner.

Hence, the fewer OCO-3 soundings in a given TROPOMI polygon, the larger the observed uncertainties will be, which accounts

for the unequal OCO-3 sampling in a TROPOMI polygon.

2.3 Identifying ERCO for heavy industry within a city280

One key objective of our study is to explain the intra-city variability of ERCO by exploring the sector-specific or sector-

dominant burning activities. While certain combustion processes and sectors tend to have higher ERs than others, the sectoral-

dependent ER are likely variable within and across cities. Moreover, the ERs determined from atmospheric observations com-

prise a mixed effect of different sectoral activities. Previous attempts include reducing the number of sectors and relying on

prior knowledge of sector-specific ERs in a (joint) Bayesian inversion (Nathan et al., 2018; Brioude et al., 2012).285

Here, we propose to identify ERs associated with heavy industry within a city. Instead of relying on prior emission inventories

that can sometimes be erroneous regarding the magnitude and location of sectoral activities (see discussions in Sect. 4.3), we

utilize a urban land cover classification dataset. The World Urban Database and Access Portal Tools (WUDAPT, Fig. 4a, d)

project provides Local Climate Zone (LCZ) classifications at a grid spacing of 120 m (Ching et al., 2018). Example LCZ

categories include street canyons (e.g., compact/open/lightweight, high-/mid-/low-rise), building spacing (e.g., sparsely built,290
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a) b)

d)
e)

f)

Figure 4. Map of Local Climate Zone (LCZ) from WUDAPT at a grid spacing of 120 m (a and d with zoomed-in images on b and e) and interpolated areal

coverage of heavy industry [%] at 1 km around Shanghai and Los Angeles (c, f). LCZ classifications centered on Wuxi and Shanghai are combined. Power

stations based on the Global Power Plant Dataset (World Resources Institute, 2018) are drawn on the map as different symbols. The lightgray and white dashed

rectangles in the first and third columns indicate the zoomed-in region of the second column.

heavy industry), and tree spacing (e.g., e.g., dense/scattered trees, low plants, rocks, etc) (Stewart and Oke, 2012). Each LCZ

is unique in its thermal, radiative, and metabolic properties. For instance, compact high-rise (LCZ 1) and heavy industry (LCZ

10) categories have the highest anthropogenic heat output of 50–300 W m−2 and > 300 W m−2, respectively (Stewart and

Oke, 2012). Heavy industry is defined as low-rise and mid-rise industrial structures (towers, tanks, stacks) and mostly paved

or hard-packed metal with steel and concrete construction materials with few or no trees (Ching et al., 2018), which differs295

from the industry-relevant sectors (e.g., from the Intergovernmental Panel on Climate Change). Some industries are also found

within the WUDAPT-based heavy industry region (Figure 4). We clarify that we are not trying to tackle individual industrial

processes, but treat some as an entity according to land cover data. Note that WUDAPT LCZ maps are only available for a

limited number of cities across the globe including Shanghai and Los Angeles.

12

https://doi.org/10.5194/acp-2021-1029
Preprint. Discussion started: 4 January 2022
c© Author(s) 2022. CC BY 4.0 License.



To relate ERCO to heavy industry, the percentage of heavy industry is first interpolated at 1 km grid spacing from WUDAPT300

LZC maps (%, Fig. 4c,f). Those industry coverage are then convolved with the X-STILT column footprint (Supplementary

Fig. S3) to quantify the industrial influence on each TROPOMI polygon Pind(x,y), which is defined as the column footprint-

normalized industry fraction (Supplementary Fig. S4). For example, soundings in the city center farther away from the heavy

industry are related to smaller influences. Lastly, we sum Pind(x,y) across the space to arrive at 〈Pind〉 , serving as a metric of

how much the FF enhancement at a given sounding is affected by heavy industry. Soundings with 〈Pind〉 larger than the 75th or305

90th percentiles are marked as locations “impacted” or “strongly impacted” by heavy industry within the city. Sensitivity and

significance analyses are conducted and presented in Sect. 3.2.2 to test if: 1) the results are subject to the percentile threshold

for defining industry-dominant soundings, and; 2) ERs over industry-dominant soundings are statistically significantly different

from the remaining soundings.

3 Results310

ERCO values and uncertainties are reported at multiple spatial scales, originating from the spatially-explicit sounding-level

(Eq. 3) to the overall overpass- and city- level. Again, only ERs at soundings within the urban plume are selected. Overpasses

with too low valid soundings are also removed from the results. Before presenting ERs at different spatial scales, we assess the

few factors that may influence the derived ERCO.

3.1 Interference factors that modify ERCO315

We examine the impacts on ERCO from the following interference factors: 1) differences in AKs between OCO-2/3 XCO2 and

TROPOMI XCO; 2) shifts in wind fields induced by asynchronous overpass times; and, 3) urban-background contrast in

biogenic and pyrogenic contributions. In summary, we found that difference in AKs and wind directions between sensors can

significantly affect the spatially-resolved ERCO. After removing the overpasses substantially interfered by wind shift from

consideration, biogenic and pyrogenic contributions play a minor role in the overall overpass- or city-level ERs.320

The sensor-specific AKs and wind speed were incorporated into the calculation of species-specific column footprint in X-

STILT as introduced in Sect. 2.2. By looking at the γfoot = 〈XFCO2 〉
〈XFCO〉 (Supplementary Fig. S5d), one can tell the impact on

ERCO due to mismatches in AKs and wind fields between sensors. For instance, γfoot spans from 1.20 to 1.54 over Los Angeles

and from 1.02 to 1.38 over Shanghai across different overpasses (printed in Fig. 7). γfoot is generally larger than 1 because the

TROPOMI XCO AKs near the surface are less than 1 and smaller than OCO-2/3. Simply using enhancement ratios without325

accounting for mismatches in AK and wind speed between sensors will likely lead to an underestimation of the emission ratios

(Eq. 3). On average, overpass-level ERCO can be about 20% higher than the enhancement ratio for the examined cases.

The second factor is the changes in wind directions between two overpass times (∆t), which is evaluated using the same

approach for identifying the urban plumes in Sect. 2.2.2. Again, these colored contours and curves in Fig. 5 do not indicate the

intensity of concentration nor flux fields (as no prior emission is used), but the likelihood of urban plumes solely determined330

by atmospheric dispersion. Matching between OCO-3 soundings and TROPOMI polygons as described earlier would be fine
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for concurrent observations (e.g., “good cases” with almost identical plumes at two times in Fig. 5a,b); but problematic if ∆t is

large (e.g., “outliers” with significant changes in urban plumes in Fig. 5e,f). Since no simple wind or plume rotation would

improve the ER estimates, cases with ∆t > 3 hours are removed from this analysis. The cases between the “good cases” and the

“outliers” are cases to be used with caution (Fig. 5c,d). By comparing the overlap of plumes at the two times, we then shifted335

the OCO-3 soundings to better align with the TROPOMI polygons. For example, on Feb 20, 2020, because the modeled plume

at the OCO-3 overpass time (06:06 UTC) appears northward compared to the plume at the TROPOMI overpass time (04:44

UTC), soundings at the OCO-3 overpass time were shifted southward by 0 to 2 grids (Supplementary Fig. S6). In other words,

by shifting the observed FF XCO2 enhancements, we better align the urban plume at OCO-3 time with the plume at TROPOMI

time. Every OCO-TROPOMI coincidence has been manually examined and assigned to one of the three categories, which are340

further summarized in Sect. 4.1.

“Outliers”: Los Angeles, Mar 3, 2020

e) 16:52 UTC (OCO-3) f) 21:13 UTC (TROPOMI)

c) 06:05 UTC (OCO-3) d) 04:43 UTC (TROPOMI)

Cases used with cautions: Shanghai, Feb 20, 2020“Good cases”: Baotou, Oct 8, 2019 

b) 05:17 UTC (TROPOMI)a) 05:09 UTC (OCO-3)

Figure 5. Examples of modeled urban plumes during OCO-3 (red curve) and TROPOMI (blue curve) overpass times (in UTC labelled on the

bottom of each panel). The likelihood of these meteorology-only urban plumes (no emission involved) is quantified by the normalized KDE

(10 intervals in the color legend) of modeled air parcel distribution (yellow-green-purple contours). Three types of overpasses are shown as

follows: 1) “good cases” with almost identical urban plumes at two times, e.g., Baotou on Oct 8, 2019 with ∆t of 8 mins (a, b); 2) cases to

be used with caution where the urban plume shifts from one time to another and requires a simple plume rotation, e.g., Shanghai on Feb 20,

2020 with ∆t of 1.5 hours (c, d); 3) outliers where the urban plumes change significantly, e.g., for Los Angeles on March 3rd, 2020 with

∆t of over 4 hours (e, f). Outliers with ∆t of over 3 hours are removed from the final results.

The last factor is the urban-background contrast due to non-FF sources/sinks. Although LA is surrounded by occasional

intense wildfire activities, column anomalies due to biomass burning suggested by the coupling of GFAS and X-STILT are

minimal for the dates we examined. However, since fire-related ERCO are mostly higher than FF-related ERCO (Fig. 1),
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properly accounting for pyrogenic contributions and gradients in the enhancement is important for cities in mountainous and345

forested areas during the fire season (e.g., Mexico City and LA). The sounding-specific modeled biogenic XCO2 anomalies

using SMUrF and X-STILT ranges from -0.7 to 0.3 ppm depending on the season and the wind direction (Supplementary

Fig. S7) and are further aggregated to the TROPOMI scale. As explained above, strong urban-background gradients in these

biogenic anomalies (i.e., δXbio) may alter the FF enhancement and ERCO , so such gradients were used to correct the constant

background Xbg. Take the two overpasses with the largest urban-background contrast as examples: as biospheric uptake is350

normally weaker in urban areas than surrounding rural areas (often as background regions), the urban-rural gradient for loca-

tions in the plume region becomes more positive (Supplementary Fig. S8b). Nonetheless, even for the one summertime SAM

over Zibo on June 21, 2020, sounding-level δXbio ranges from 0 to 0.4 ppm, which remains small compared to sounding-level

FFCO2 enhancements of 2 to 7 ppm (Supplementary Fig. S9a,b). For most other overpasses, urban-background δXbio re-

mains < 0.2 ppm. Even with a bias in the resultant δXbio (resulting from uncertainties in prior NEE), the effect on derived FF355

enhancements and ERCO would be small.

3.2 Intra-city ERCO variations and signal from heavy industry

The measured concentration enhancements are the net consequence of associated sources/sinks from source regions. That is,

high atmospheric content of CO2 or CO at the sounding location does not necessarily indicate a high emission rate at this

location (Kiel et al., 2021). Our derived emissions and ERs, although reported for each sounding, indicate the overall emission360

and combustion efficiency over its source region.

In the following subsections, we present ERs from sounding-level to the overpass- and city-level. Since aggregating spatially-

explicit sounding-level ERs to a single value per overpass or city is sensitive to the adopted method/statistics and the overpass-

specific atmospheric movement, we bootstrapped ECO and ECO2 based on sounding-level emissions and uncertainties 5,000

times and applied linear regression fits (e.g., light grey lines in Fig. 6). Specifically, 5,000 random sets of ECO and ECO2 were365

generated following assumed normal distributions, where sounding-level emissions denote the mean statistic with observed

and background uncertainties as the standard deviation (SD) statistic. We used the standardized major axis (SMA) solution for

linear regression to minimize the deviation of the data point from the regression line for both axes. Eventually, we obtained

5,000 bootstrapped slopes and only selected slopes with positive values, of which mean values and SDs yield the overpass-level

ERCO values and uncertainties (colored dashed lines and text in Fig. 6). Sounding-level ERCO values from all overpasses are370

also presented in histograms, which generally follow a log-normal distribution (Figs. 7b, 7d).

3.2.1 Baotou and Zibo

Combustion efficiencies are generally poor for these two industry-oriented cities. The overpass-specific ERs span from 8.1±1.3

to 26.7±3.8 mmol mol−1with an integrated city-level estimate of 18.4±0.6 mmol mol−1for Baotou (Fig. 6a). According to

GID, the Baotou iron and steel group is located in the city and contributes to an annual capacity of crude iron of 12,618.91 kt375

with estimated CO2 emissions of 20,462 kt per year. The relative low ERCO and FF enhancements in Feb 2021 coincides with

the timing of the Spring Festival in 2021. SDs of the bootstrapped slopes are higher for overpasses with fewer high-quality
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satellite soundings, e.g., 3.8 mmol mol−1for overpasses with 7 available urban TROPOMI polygons over Baotou on May 31,

2020, which helps minimize the impact of low sounding numbers on overall city-level ER estimates.

a) Bootstrapped slopes based on sounding-level emissions and uncertainties for Baotou: 18.38 ± 0.59 mmol mol-1

b) Bootstrapped slopes based on sounding-level emissions and uncertainties for Zibo: 10.04 ± 0.44 mmol mol-1

OCO-3 Nadir OCO-3 Nadir

Figure 6. Scatter plot of CO and CO2 fluxes [µmol m−2 s−1] and their uncertainties (error bars) for Baotou (a) and Zibo (b). Data for all

overpasses are from OCO-3 SAMs, except for the first two overpasses for Zibo (OCO-3 Nadir). Linear regressions using the standardized

major axis (SMA) method are applied for the data from each overpass (dashed colored lines) and all overpasses (dashed black line). Only

bootstrapped regression lines with positive slopes were chosen from the Monte Carlo experiment (dashed gray lines). TROPOMI overpass

time in UTC, total TROPOMI sounding numbers, discrepancies in overpass time between OCO and TROPOMI (∆t ), impacts from AK and

atmospheric transport between sensors (γfoot ) and urban-rural biogenic gradient (γbio) are labelled on each panel. XCO2 on Dec 6 and Dec

28, 2019 over Zibo are the Nadir OCO-3 observations. Feb to May in 2020 is the time frame for the initial phase of the COVID-19 lockdown

in China.

Interestingly, the ER for Zibo first dropped from 11.0±1.3 mmol mol−1to 6.3±0.5 mmol mol−1during Feb 2020 and then380

gradually rose back to 20.4±1.3 mmol mol−1by June 2020 (Fig. 6b). In addition to low ERCO in Feb and May 2020, their

FF enhancements remain low. Such temporal variations in both ERCO and enhancements agree nicely with the timing of the

initial phase of COVID-19 lockdown in China (e.g., Laughner et al., 2021).
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3.2.2 Los Angeles and Shanghai

Although OCO-3 has sampled the Los Angeles basin several times to date, unfortunately, a few of them did not pass the quality385

check and were removed from the final result due to their dramatic change in wind direction (e.g., > 3 hours time difference

on March 3, April 15, and May 5, 2020 for LA, see discussion in Sect. 4.1). The overpass-level ER ranges from 7.2±0.8 to

12.4±1.3 mmol-CO/mol-CO2 with a city-level value of either 9.7±0.5 mmol mol−1informed by the regression approach (Fig.

7a) or 9.9 mmol mol−1by the histogram approach (Fig. 7b). Our space-based ERCO values for LA fall within the range of 7.1

to 12.4 mmol mol−1inferred from several prior studies (Wennberg et al., 2012; Brioude et al., 2013; Hedelius et al., 2016; Silva390

and Arellano, 2017), despite the time difference. Small discrepancies in ERCO between studies may be attributed to discrepan-

cies in time of interest, sampling strategies, and techniques for calculating ERCO (e.g., exact background locations). In contrast

to LA, where urban plumes are usually well-constrained with the basin, the wind speeds and directions change dramatically

among different overpasses over Shanghai —i.e., southeasterly wind on Feb 4 and Feb 20, 2020, southwesterly wind on Feb

24, 2020 and Feb 19, 2021 and northerly wind on April 23 and Dec 30, 2020. Such changes in the wind regimes between395

overpasses over Shanghai suggest that observations per overpass reflect fluxes over different source regions, which empha-

sizes the importance of integrating atmospheric transport in interpreting temporal variations in observation-based ERs. The

overpass-specific ER ranges from 4.7±1.2 to 20.1±7.3 mmol mol−1with a city-level average of 10.5±0.4 mmol mol−1based

on the linear regression approach (Fig. 7c).

Histograms for the sounding-level ERs within the LA basin and the greater Shanghai area are shown in Fig. 7b,d, respec-400

tively. As described earlier, to address the overpass-specific meteorology, we coupled the LZC-based industrial coverage with

X-STILT column footprints to locate the soundings affected or strongly affected by heavy industry in a city. For example, on

Feb 20, 2020 the few soundings with 〈Pind〉 of > 75th percentiles (outlined in black in Supplementary Fig. S5) are identified

as soundings affected by industry.

Heavy industrial regions within the LA basin are concentrated to the south (e.g., the Port of LA) and to the west of downtown405

(Fig. 4e). The distribution of ERs for industry-dominant soundings tend to shift slightly towards the lower end (blue or red bars

in Fig. 7b) compared to the distribution for all soundings (black bars in Fig. 7b). Specifically, ERs > 20 ppb ppm−1are less

frequently found for industry-dominant soundings (red bars in Fig. 7b). It is worth noting that the industry-oriented soundings

have slightly lower CO but higher CO2 enhancements (Supplementary Fig. S5a,b), compared to all soundings within the

valley, resulting in slightly lower ERCO (Supplementary Fig. S5c). No iron and steel facilities or coal-fired power plants are410

found over the heavy industry area in LA according to GID and GEM. We hypothesize that the slight shift of ERCO towards

the lower end may be explained by the heavy-duty diesel engines and natural gas power plants occupying the Port of LA versus

the predominately gasoline vehicles across the city, because ERCO for heavy-duty diesel vehicles and non-coal-fired power

plants are generally lower than that for light-duty gasoline vehicles. For example, by splitting observations for daytime versus

nighttime, a field campaign in 2007 in Beijing suggested that the ER linked to nighttime diesel transportation is much lower415

than the gasoline sub-sector (Westerdahl et al., 2009, Fig. 1a). Similar to LA, higher fuel efficiency has been found over the

ship channel of Houston (ER of ∼4 ppb ppm−1) compared to downtown Houston (ER of ∼10 ppb ppm−1) (Brioude et al.,
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a) Bootstrapped slopes based on sounding-level emissions and uncertainties for Los Angeles: 9.66 ± 0.49 mmol mol-1
b)

d)
c) Bootstrapped slopes based on sounding-level emissions and uncertainties for Shanghai: 10.47 ± 0.40 mmol mol-1

OCO-2 Nadir

Figure 7. a, c) Same as Fig. 6 but for LA and Shanghai. Only bootstrapped regression lines with positive slopes are presented as light grey lines. b, d)

Histogram of ERCO for all soundings (black bars); soundings impacted or strongly impacted by heavy industry are defined using 〈Pind〉 larger than their

75th or 90th percentiles (blue or red bars) with corresponding median ERs (vertical dashed lines). The industrial impact is quantified using column footprints

from X-STILT (to inform atmospheric transport) together with localized information from the urban land cover data WUDAPT.

2012, Fig. 1b). Unfortunately, only two good SAMs are available near Houston from late 2019 to June 2021, but future work

can further validate the urban-industry contrast in ERs from space.

For Shanghai, the heavy industry is concentrated to the north of the city center (Fig. 4a). Interestingly, in contrast to LA, ERs420

strongly concentrated with heavy industry are skewed towards the higher end with medians of 16.8 or 18.4 ppb ppm−1(blue or

red bars in Fig. 7d), compared against the city-level median of 12.7 ppb ppm−1(black bars in Fig. 7d). FFCO and FFCO2 en-

hancements and ERCO are all higher for industry-oriented soundings than those for all soundings combined. Such spatial

divergence in enhancements and ERs may be attributed to substantial CO emissions from iron and steel production. During

such production processes, iron ores are reduced to crude iron and steel where CO is involved. According to the plant level es-425

timate in 2019 from GID, Baoshan Iron & Steel Co., Ltd. located to the north of downtown Shanghai has an annual crude steel

capacity of 25,099.4 kt yr−1 and a total CO2 emission of 32,148.0 kt yr−1 for all coke, sinter, iron, and crude steel combined.

Finally, to validate the ER shifts related to heavy industry within an urban area, we tested different percentile thresholds other

than the default 75th and 95th for determining industry-dominant soundings (Sect. 2.3). The above statements on industry-
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impacted ERCO hold if using alternative thresholds including the 50th, 60th, 80th percentiles. Additional Welch two-sample430

t-test confirms that ERs from industry-dominant soundings significantly differ from the remaining soundings (i.e., less affected

by industry). When the adopted percentile threshold increases from 50th to 95th, divergence in ERs between industrial vs.

non-industrial soundings becomes more apparent and the p-value for statistical significance in such difference becomes smaller

(p-values < 0.05). Also, the average number of OCO-3 soundings in a TROPOMI polygon is roughly the same for industry-

affected soundings versus the rest (e.g., 11.8 vs. 10.3 for LA and 7.3 vs. 8.7 for Shanghai).435

We note that it is difficult to separate individual sectoral signals purely from observations (without prior assumptions on sec-

toral contributions), since atmospheric concentration at a given location is comprised of various underlying burning processes

spread over the source region. Even using additional co-emitted species, it would be risky to assume that a co-emitted species

(e.g., NOx ) solely comes from one individual emission sector.

4 Discussion440

This study is one of the first to analyze intra-city variations of emission ratios between CO and CO2 using two asynchronous

satellite sensors. We describe 1) complications induced by discrepancies between satellite sensors and retrievals and 2) demon-

strate methods to mitigate these complications by accounting for species-specific averaging kernels and urban-background

contrast in non-FF sources/sinks using an atmospheric transport model.

4.1 Influence from non-FF components and atmospheric transport445

The pyrogenic anomalies are minimal for the overpasses we examined, but should be considered for certain cities considering

the high ERCO from forest wildfires of 35 to 80 ppb ppm−1(Fig. 1a). Most overpasses we analyzed fall within the dormant

seasons. For the three overpasses during the growing season, modeled biogenic anomalies using the SMUrF model for a given

OCO-2/3 sounding may reach up to 0.5 ppm (Supplementary Fig. S7). Even though modeled NEE and resultant biogenic

contributions/gradient can be uncertain, we stress again it is the urban-background biogenic contrast (δXbio in Eq. 1) that450

should be considered for when estimating FFCO2 enhancements given our setup for background value. Satellite missions such

as TROPOMI and the upcoming Geostationary Carbon Cycle Observatory (GeoCarb) will also provide the Solar-Induced

Fluorescence (SIF), which may help improve spatially-explicit SIF-based GPP and NEE estimates (Turner et al., 2020; Wu

et al., 2021), specifically by reducing the dependence on other remote sensing products and the assumption of model parameters

for each plant function type.455

The biggest challenge interfering the robust spatially-resolved ER estimates is the wind directional shift induced by the lack

of concurrence between sensors. Substantial changes in the wind direction and resultant urban plumes (e.g., the “outlier” case

in Fig. 5e,f) were mostly found for overpasses when absolute time differences |∆t | were > 2 hours (implied by the bars with

white strips and asterisk on top in Fig. 8). However, if TROPOMI pixel sizes are relatively large (i.e., non-nadir observations)

or the wind is steadier, this |∆t | constraint can be relaxed. For instance, TROPOMI polygon sizes for Baotou on May 31, 2020460

are sufficiently large compared to the shift in urban plumes despite its |∆t | of 3 hours (Fig. 8). Because of this, we decided to
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exclude overpasses with |∆t | > 3 hours. In addition, we manually re-positioned the OCO-3 soundings to TROPOMI polygons

for a few cases (bars with non-zero numbers on top in Fig. 8) using a simple wind/plume shift demonstrated in Sect. 3.1.

Fortunately, future geostationary satellite will be capable of mapping XCO and XCO2 spontaneously at a higher temporal

frequency, which will eliminate this issue.465

Non-Nadir TROPOMI polygons 
with larger footprint size 

“Outliers” - Large 
differences in urban plumes *

Mean modeled surface wind speed 
provided by OCO-2/3 lite files 

Figure 8. A summary figure of the investigation on the wind directional shift between OCO-2/3 versus TROPOMI overpass times. The y-axis denotes

the absolute time difference (∆t in hours) for multiple overpasses. The colors of the bars represent the instantaneous modeled surface wind speed [m s−1]

provided by OCO-2/3 Lite files. Bars labelled with an asterisk indicate the urban plumes between two times differ significantly that a simple plume rotation

fails to fix. The number on each bar denotes the number of TROPOMI polygons needed to be shifted to align the urban plumes at two times. “Good Cases” do

not require a manual plume shift (bars with zero labelling). Bars outlined in white indicate that the sampled TROPOMI soundings on that date are non-nadir

with larger pixel size.

4.2 ERs per sounding, per overpass, and per city

Contrary to previous work relying on inventory-based sector-based ERs, we attribute the intra-urban gradient to heavy industry

using a urban land cover classification dataset. Such high-resolution localized maps help guide the identification of observations

strongly influenced by heavy industry. Based on a limited sample size, the heavy industry within the greater Shanghai area is

tied to an ERCO higher than the city average reflecting a poor combustion efficiency (Fig. 7d). Industry-oriented cities like470

Baotou and Zibo are less efficient in their burning activities. In particular, industry-dominant ERs over Shanghai (20.9 mmol

mol−1as indicated by the red bars in Fig. 7d) align better with the overall city-scale ER over Baotou or Zibo (24.1 or 20 mmol

mol−1, Fig. 6). The previously reported urban-integrated ERCO values are mostly constrained within the range of 5 to 20 ppb

ppm−1with a few exceptions over 30 ppb ppm−1in east Asia before 2010 (Fig. 1). The order of magnitude of our city-level

estimates from space agree well with that of previously reported ERs.475
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Reporting one city-scale ERCO from spatially-explicit ERs can be subjective to 1) the adopted statistics, 2) the overpasses

and their associated wind regimes, and 3) estimated uncertainties in ERCO. For example, overall ER based on all soundings

within the urban plume differs from ERs from a selection of soundings. ERs between overpasses over Shanghai can vary due

to changes in the wind fields and source-receptor geometry. Even though we begun with all available OCO-2/3 observations

in a SAM, only soundings located within the urban plumes (black curve in Fig. 3) are selected for ER estimates, which is an480

unbiased way to assess different overpasses with different meteorological conditions. The mean or median value of sounding-

level ERCO (e.g., 13.4 or 9.6 ppb ppm−1for LA in Supplementary Fig. S10) differs from the city-average when using the

regression slope method that take observational uncertainties into account (e.g., 10.59 ppb ppm−1for LA in Fig. 7a). Apart from

these bulk quantities, intra-city distributions of ERs are negatively-skewed in the linear space and roughly follow the normal

distribution in natural log-space (Supplementary Fig. S10), where a few observations with higher ERCO are influenced by485

point sources with poorer combustion efficiency. More observations with finer satellite pixels across the city would improve

the robustness in both the spatial distribution and the bulk estimates of ERs.

4.3 Limitation and implications

The main limitation of this work is the relatively low sample size. When more satellite data become accessible, intra-city ERs

can be used to more robustly re-assess the temporal variations in sector-oriented combustion efficiency, including across differ-490

ent seasons and business-as-usual scenarios versus pandemic-disturbed time frames. Beyond the sheer number of soundings,

uncertainty arises due to the aggregation of CO2 enhancements from the finer resolution OCO-3 grid to coarser TROPOMI

spatial scale. The centered lat/lon coordinates of OCO-2/3 soundings are used to decide which corresponding TROPOMI poly-

gon they fall into, while a very few OCO soundings may locate right on the boundary of TROPOMI polygons. Nevertheless,

we find no significant bias associated with the number of OCO soundings per TROPOMI polygon. The XCO2 variability from495

different OCO soundings within a given TROPOMI polygon serves as the “observational noise” in the uncertainty analysis.

We then discuss the impact on our results given the lack of consideration of the secondary CO source from both anthro-

pogenic and biogenic VOCs (AVOCs, BVOCs). Under a cascade of reactions in favorable conditions, VOCs can be oxidized to

CO at various rates, relying on the amount, speciation, and reactivity of VOCs. The lifetimes of CH4 and certain VOCs species

against OH radical are long enough compared to our time of interests, i.e., a few hours before overpass time to render their500

impact negligible in this analysis. BVOCs (e.g., isoprene) and a subset of the anthropogenic VOCs (e.g. alkenes) react quickly

and often generate HCHO (e.g., Surl et al., 2018) which subsequently can be photochemically converted to CO in a few hours.

For example, isoprene contributed to 21.2% of the total CO sources from June to August, but negligible amount from March

to April over Alaska (Miller et al., 2008). Most of our overpasses fall within the non-growing season, the CO produced by

BVOCs may likely be encapsulated in the background XCO and yield a small impact on our results. Regarding industrial areas505

with possible higher AVOCs than urban cores, e.g., over Houston in Aug 2000 (Czader et al., 2008), whether AVOCs produce

significantly more CO over industrial areas than urban cores within the time period of interest remains unclear. Owing to the

lack of observations for the VOC composition and species-specific emissions in the air mixture over different cities and parts
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of a city, it is challenging to accurately quantify the intra-city variation in secondary CO production and isolate such variation

from the observed XCO variability.510

This work also provides some insights towards estimating emission ratios from future satellite sensors, as ERs help pinpoint

hotspots with poor combustion efficiency can help inform sub-city emission/pollution control efforts.

Satellite-based ER may help evaluate sectoral emission factors and source locations adopted in bottom-up emission inven-

tory. Substantial contrast in both the magnitude and spatial distribution of enhancement ratios can be found between the obser-

vations and forward simulations based on X-STILT column footprint and sectoral emissions from EDGARv5. Over Shanghai,515

for example, enhancement ratios simulated using the industry emissions from EDGAR are located far south (Supplementary

Fig. S11c), compared to the observed enhancement ratio in Supplementary Fig. S11a. Additionally, the simulated enhance-

ment ratios (Supplementary Fig. S11b) are generally too high (e.g., > 50 ppb ppm−1) compared to observed ratios (mostly <

30 ppb ppm−1). Such model-data mismatch may result from inaccurate activity data and emission factors when constructing

the bottom-up flux estimates as well as from uncertainties in the atmospheric transport. The simple example illustrates that520

satellite observations of trace gases could be used to evaluate emission factors used in bottom up emission inventory. More

sophisticated approaches such as flux inversion (Hedelius et al., 2018; Brioude et al., 2011, 2012; Palmer et al., 2006) may

facilitate the constraint of sector-specific CO and CO2 emissions.

Spatial proxies including nightlight data from the Black Marble (https://blackmarble.gsfc.nasa.gov/) and detailed urban

land cover data can not only support the development of emission inventories but also sector-orientated investigations with525

mapped atmospheric concentrations of CO2 and co-emitted pollutants from space. This work demonstrates the benefit of using

high-resolution urban land cover datasets like WUDAPT in informing locations of various anthropogenic activities, building

structures, and vegetation coverage. Yet, such high-resolution urban datasets (like WUDAPT and NLCD) are currently only

available for a limited number of cities across the globe.

5 Conclusion530

We investigated fossil fuel combustion efficiency by quantifying the emission ratio of CO and CO2 across Los Angeles, Shang-

hai, Baotou, and Zibo, using nearly coincident observations of TROPOMI XCO and OCO-2/3 XCO2. The multiple swaths of

observations collected by OCO-3 SAMs cover a much broader area relative to OCO-2 swaths, facilitating the determination of

background values. We incorporate spatial gradients in the background values by calculating the background for each swath

and correcting for the urban-background gradient due to non-anthropogenic sources and sinks. Sensor-specific averaging ker-535

nel profiles and meteorological conditions were accounted for using an atmospheric transport model (X-STILT). The ratio

between XCO and XCO2 enhancements without considering such sensor-specific factors is normally lower than the emission

ratio. Cases with severe asynchronicity, specifically overpass time differences over 3 hours, are excluded from the final result.

Temporal variations in the wind fields may result in different source regions with respect to the satellite soundings. Therefore,

properly accounting for the meteorology or the source-receptor relation and identifying the soundings affected by the urban540
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emissions is important, which is the main reason that an atmospheric transport model is used to identify soundings strongly

affected by heavy industry.

The overall city-level ERCO for Shanghai (10.5±0.4 mmol mol−1) is slightly larger than the city-level ERCO for Los

Angeles (9.7±0.5 mmol mol−1). Looking at the sub-city scale, industry-related ERCO are much larger than the city-level

ERCO for Shanghai; whereas industry-related ERCO slightly lower than the city-level ERCO for LA. This divergence in ERs545

is likely driven by the distinct industrial processes between the two megacities. ERs tied to heavy industry regions in Shanghai

(18.4 mmol mol−1) are approximately equal to the city-level ERCO for the industry-orientated city of Baotou (18.4±0.6

mmol mol−1). High ERs highlight the poor burning efficiency tied to industrial activities, e.g., high CO emissions from metal

production.

With future satellites providing better spatial and temporal coverage of XCO2, XCO, and other relevant co-located observa-550

tions, it may be possible to monitor and verify temporal trend or variations in combustion efficiencies for hotspots within an

urban area, which has significant implications for urban planning and emission control.

Code and data availability. OCO-3 L2 B10r XCO2 data and TROPOMI XCO data were accessed from https://doi.org/10.22002/D1.2046

and 10.5270/S5P-1hkp7rp, respectively. X-STILT code has been modified to work with TROPOMI data archived on github branch at

https://github.com/uataq/X-STILT. We kindly ask the users to follow the code policy in utilizing and acknowledging the X-STILT code555

for interpreting TROPOMI column data. Hourly NEE fluxes from SMUrF are archived on Oak Ridge National Lab DAAC at

https://doi.org/10.3334/ORNLDAAC/1899.

Appendix A: List of prior studies collected in Figure 1

Sector in Fig. 1a Location Years Reference Additional notes

Traffic Denver, US 1997 Bradley et al. (2000)

Traffic Switzerland 2004 Vollmer et al. (2007), Table 2 Gubrist Tunnel

Traffic CONUS 2005-2007 Bishop and Stedman (2008) Chicago, Denver, Los Angeles, Phoenix

Traffic Paris 2012 Ammoura et al. (2014), Table 2 Tunnel (congestion vs. moving)

Traffic Switzerland 2011 Popa et al. (2014), Table 1 Islisberg Tunnel (moving)

Traffic Beijing, China 2007 Westerdahl et al. (2009) diesel heavy-duty vs. gasoline light-duty

Shipping China 2011 Zhang et al. (2016), Table 3 Diesel engines; Estimated from EFs

Shipping Western Europe 2007 Moldanová et al. (2009), Table 5 Diesel engine; Estimated from EFs

Shipping Texas 2006 Williams et al. (2009), Figure 2 Diesel engines; Estimated from EFs

Biofuel + FF SE Asia 2007 Lai et al. (2010), Table 2

Biofuel + FF Asia 2000 Russo et al. (2003), Table 9 Central, Coastal, SE and WSW Asia

Biomass burning Global NA Akagi et al. (2011), Table 1-2 Estimated from EFs

560
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Urban areas in Fig. 1b Observation years Reference

Los Angeles (LA) 2002 and 2010 Brioude et al. (2013)

LA 2007-2008 Djuricin et al. (2010)

LA 2008 and 2010 Wennberg et al. (2012)

LA 2010 Silva et al. (2013); Silva and Arellano (2017)

LA 2013-2016 Hedelius et al. (2016)

LA 2019-2021 This study, Figure 7

Pasadena 2007 Wennberg et al. (2012), Table 2

Sacramento 2009 Turnbull et al. (2011a), Sect. 3.2

Indianapolis (Indy) 2012-2014 Turnbull et al. (2015)

Salt Lake City (SLC) 2015-2016 Bares et al. (2018), Table 2

Edinburgh 2005 Famulari et al. (2010), Table 1

Paris 2010 Lopez et al. (2013)

Paris 2010-2014 Ammoura et al. (2016), Table 1

London 2006 Harrison et al. (2012), Figure 27

London 2012 O’Shea et al. (2014), Table 3

London 2016 Pitt et al. (2019), Table 2

Rotterdam 2011 Super et al. (2017)

Germany Alps 2012-2013 Ghasemifard et al. (2019)

Hungary 2017 Haszpra et al. (2019), Table 1

St. Petersburg 2019 Makarova et al. (2021)

Miyun 2004-2008 Wang et al. (2010), Table 2

Beijing 2006 Han et al. (2009), Figure 11

Shangdianzi 2009-2010 Turnbull et al. (2011b)

Nanjing 2011 Huang et al. (2015), Sect. 3.4.2

Seoul 2016 Tang et al. (2018), Table 3

Seoul 2019 Sim et al. (2020), Table 2

Jingdezhen 2017-2018 Xia et al. (2020), Table 3

Zibo, Baotou, Shanghai 2019-2021 This study, Figures 6-7
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