

1 **Fluorescence lidar observations of wildfire smoke inside cirrus: A contribution to smoke-**
2 **cirrus - interaction research**

3 Igor Veselovskii¹, Qiaoyun Hu², Albert Ansmann³, Philippe Goloub², Thierry Podvin², Mikhail
4 Korenskiy¹

5 *¹Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia.*

6 *²Univ. Lille, CNRS, UMR 8518 - LOA - Laboratoire d'Optique Atmosphérique, Lille, 59000,*
7 *France*

8 *³Leibniz Institute for Tropospheric Research, Leipzig, Germany*

9 **Correspondence:** Igor Veselovskii (iveselov@hotmail.com)

10 **Abstract**

11 A remote sensing method, based on fluorescence lidar measurements, that allows to detect and to
12 quantify the smoke content in upper troposphere and lower stratosphere (UTLS) is presented.
13 The unique point of this approach is that, smoke and cirrus properties are observed in the same
14 air volume simultaneously. In the article, we provide results of fluorescence and
15 multiwavelength Mie-Raman lidar measurements performed at ATOLL observatory from
16 Laboratoire d'Optique Atmosphérique, University of Lille, during strong smoke episodes in the
17 summer and autumn seasons of 2020. The aerosol fluorescence was induced by 355 nm laser
18 radiation and the fluorescence backscattering was measured in a single spectral channel, centered
19 at 466 nm ~~at 474 nm width~~. To estimate smoke properties, such as number, surface area and
20 volume concentration, the conversion factors, which link the fluorescence backscattering and the
21 smoke microphysical properties, are derived from the synergy of multiwavelength Mie-Raman
22 and fluorescence lidar observations. Based on two case studies, we demonstrate that the
23 fluorescence lidar technique provides possibility to estimate the smoke surface area
24 concentration within freshly formed cirrus layers. This value was used in smoke INP
25 parameterization scheme to predict ice crystal number concentrations in cirrus generation cells.

26 **Introduction**

27 Aerosol particles in the upper tropospheric and lower stratospheric (UTLS) height regime
28 play an important role in processes of heterogeneous ice formation, however our current
29 understanding of these processes is insufficient for a trustworthy implementation in numerical

weather and climate prediction models. The ability of aerosol particles to act as ice nucleating particles (INP) depends on meteorological factors such as temperature and ice supersaturation (as a function of vertical velocity) as well as on the aerosol type in the layer in which cirrus developed (Kanji et al., 2017). Heterogeneous ice nucleation initiated by insoluble inorganic materials such as mineral dust has been studied since a long time (e.g., DeMott et al 2010, 2015; Hoose and Möhler, 2012; Murray et al., 2012; Boose et al., 2016; Schrod et al., 2017; Ansmann et al. 2019b), while the potential of omnipresent organic particles, especially of frequently occurring aged, long-range-transported wildfire smoke particles, to act as INP is less well explored and thus not well understood (Knopf et al., 2018). Wildfire smoke can reach the lower stratosphere via pyro-cumulonimbus (pyroCb) convection (Fromm et al., 2010; Peterson et al., 2018, 2021; Hu et al., 2019; Khaykin et al., 2020) or via self-lifting processes (Boers et al., 2010, Ohneiser et al., 2021). It is widely assumed that the ability of smoke particles to serve as INP mainly depends on the organic material (OM) in the shell of the coated smoke particles (Knopf et al., 2018), but may also depend on mineral components in the smoke particles (Jahl et al., 2021). The ice nucleation efficiency may increase with increasing duration of the long-range transport as Jahl et al. (2021) suggested. Disregarding the progress made in this atmospheric research field during the last years, the link between ice nucleation efficiency and the smoke particle chemical and morphological properties is still largely unresolved (China et al., 2017; Knopf et al., 2018).

To contribute to the field of smoke-cirrus-interaction research, we present a sensing method that allows us simultaneously to detect and quantify the amount inside of cirrus layers together with cirrus properties and to provide INP estimates in regions close to cloud top where ice formation usually begins. The unique point of our approach is that, for the first time, smoke and cirrus properties are observed in the same air volume simultaneously. Recently, a first attempt (closure study) was performed to investigate the smoke impact on High Arctic cirrus formation (Engelmann et al. 2021). However, the aerosol measurements had to be performed outside the clouds layers, and then the assumption was needed that the aerosol (and estimated INP) concentration levels also hold inside the cirrus layers. ~~Now we are able~~ to directly determine INP-relevant smoke parameters inside the cirrus layer during ice nucleation events. This also offers the opportunity to illuminate whether an INP reservoir can be depleted in

62 cirrus evolution processes or not. Furthermore, this new lidar detection method permits a clear
63 discrimination between, e.g., smoke and mineral dust INPs.

64 Multiwavelength Mie-Raman lidars or High Spectral Resolution lidars (HSRL) are
65 ~~favorable~~ instruments to profile the physical properties of ~~aerosol~~ particles in troposphere. In
66 particular, the inversion of ~~3~~-called $3\beta+2\alpha$ lidar observations, based on the measurement of
67 height profiles of three aerosol backscatter coefficients at 355, 532, and 1064 nm and two
68 extinction coefficients at 355 and 532 nm, allows us to estimate smoke microphysical properties
69 (Müller et al., 1999, 2005; Veselovskii et al., 2002, 2015). However, the aerosol content in
70 UTLS height range can be low, so that particle extinction coefficients cannot be determined with
71 sufficient accuracy and are thus not available in the lidar inversion data analysis. To resolve this
72 issue Ansmann et al. (2019a, 2021) used the synergy of polarization lidar measurements and
73 Aerosol Robotic Network (AERONET) sunphotometer observations (Holben et al., 1998) to
74 derived conversion factors (to convert backscatter coefficients into microphysical particle
75 properties) and to estimate INP concentrations for dust and smoke aerosols with the retrieved
76 aerosol surface area concentration as aerosol input.

77 Dust particles are very efficient ice nuclei in contrast to wildfire smoke particles. In this
78 context, the question arises: How can we unambiguously discriminate smoke from dust
79 particles? This is realized by integrating a fluorescence channel into a multiwavelength aerosol
80 lidar (Reichardt et al., 2017; Veselovskii et al., 2020; 2021). The fluorescence capacity of smoke
81 (ratio of fluorescence backscattering to the overall aerosol backscattering), significantly exceeds
82 corresponding values for other types of aerosol, such as dust or anthropogenic particles
83 (Veselovskii et al., 2020; 2021), and thus allows us to discriminate smoke from other aerosol
84 types. The fluorescence technique provides therefore the unique opportunity to monitor ice
85 formation in well identified wildfire smoke layers, and thus to create a good basis for long-term
86 investigations of smoke cirrus interaction.

87 In this article, we present results of fluorescence and multiwavelength Mie-Raman lidar
88 measurements performed at the ATOLL (ATmospheric Observation at lILLE) Laboratoire
89 d'Optique Atmosphérique, University of Lille, during strong smoke episodes in the summer and
90 autumn seasons of 2020. The results demonstrate that the fluorescence lidar is capable to monitor
91 the smoke in the UTLS height range and inside the cirrus clouds formed at or below the
92 tropopause. We start with a brief description of the experimental setup in Sect.2. In the first part

93 of the result section (Sect.3.1 and 3.2), it is explained how smoke optical properties can be
94 quantified by using fluorescence backscattering information and how we can estimate smoke
95 microphysical properties (volume, surface area, and number concentration) from measured
96 fluorescence backscatter coefficients. In this approach, multiwavelength Mie-Raman aerosol
97 lidar observations are used in addition. of the smoke particle surface area concentration
98 are then the aerosol input in the smoke INP estimation. A case study is discussed in Sect.3.2.
99 Two case studies are then presented in Sect.3.3 to demonstrate the capability of a fluorescence
100 lidar to ~~monitor ice formation~~ in extended smoke layers and to provide detailed information on
101 aerosol microphysical properties and smoke-relate INP concentration levels.

102

103 **2. Experimental setup**

104 The multiwavelength Mie-Raman lidar LILAS (LIlle Lidar AtmosphereS) is based on a
105 tripled Nd:YAG laser with a 20 Hz repetition rate and pulse energy of 70 mJ at 355 nm.
106 Backscattered light is collected by a 40 cm aperture Newtonian telescope and the lidar signals
107 are digitized with Licel transient recorders of 7.5 m range resolution, allowing simultaneous
108 detection in the analog and photon counting mode. The system is designed for simultaneous
109 detection of elastic and Raman backscattering, allowing the so called $3\beta+2\alpha+3\delta$ data
110 configuration, including three particle backscattering ($\beta_{355}, \beta_{532}, \beta_{1064}$), two extinction ($\alpha_{355}, \alpha_{532}$)
111 coefficients along with three particle depolarization ratios ($\delta_{355}, \delta_{532}, \delta_{1064}$). The particle
112 depolarization ratio, determined as a ratio of cross- and co-polarized components of the particle
113 backscattering coefficient, was calculated and calibrated in the same way as described in
114 Freudenthaler et al. (2009). The aerosol extinction and backscattering coefficients at 355 and 532
115 nm were calculated from Mie-Raman observations (Ansmann et al., 1992), while β_{1064} was
116 derived by the Klett method (Fernald, 1984; Klett, 1985). Additional information about
117 atmospheric parameters was available from radiosonde measurements performed at
118 Herstmonceux (UK) and Beauvechain (Belgium) stations, located 160 km and 80 km away
119 from the observation site respectively.

120 lidar system is also capable to perform aerosol fluorescence measurements. A part of
121 the fluorescence spectrum is selected by a wideband interference filter of 44 nm width centered
122 at 466 nm (Veselovskii et al., 2020; 2021). The strong sunlight background at daytime restricts
123 the fluorescence observations to nighttime hours. To characterize the fluorescence properties of

124 aerosol, the fluorescence backscattering coefficient β_F is calculated from the ratio of
125 fluorescence and nitrogen Raman backscatters, as described in Veselovskii et al. (2020). This
126 approach allows to evaluate the absolute values of β_F , if the relative sensitivity of the channels is
127 calibrated and the nitrogen Raman scattering differential cross section σ_R is known. In our
128 research we used $\sigma_R=2.744*10^{-30}$ cm²sr⁻¹ at 355 nm from Venable et al. (2011). All β_F profiles
129 presented in this work were smoothed with the Savitzky – Golay method, using second order
130 polynomial with 21 points in the window. The efficiency of fluorescence backscattering with
131 respect to elastic backscattering β_{532} is characterized by the fluorescence capacity $G_F = \frac{\beta_F}{\beta_{532}}$.

132 For most of atmospheric particles β_F is proportional to the volume of dry matter, while
133 dependence of β_{532} on particle size is more complicated. As a result, G_F depends not only on
134 aerosol type, but also on particle size and the relative humidity RH. We recall also, that only a
135 part of the fluorescence spectra was selected by the interference filter in the receiver, so provided
136 values of β_F and G_F are specific for the filter used. Analyzing the fluorescence measurements we
137 should keep in mind, that the sensitivity of this technique can be limited by the fluorescence of
138 optics in the lidar receiver. The minimal value of G_F , which we measured during observation in
139 cloudy conditions in the lower troposphere was about 2×10^{-8} . Thus, at least, in the measurements
140 with G_F above this value, the contribution of optics fluorescence can be ignored.

141

142 **3. Results of the measurements**

143 ***3.1. Observation of smoke particles in UTLS***

144 Smoke particles produced by intensive fires and transported across the Atlantic are
145 regularly observed in the UTLS height range over Europe (Müller et al., 2005; Hu et al., 2019;
146 Baars et al., 2019, 2021). One of such events, observed over Lille in the night of 4-5 November
147 2020, is shown in Fig.1. The figure provides height – time displays of the range corrected lidar
148 signal and the volume depolarization ratio at 1064 nm together with the fluorescence
149 backscattering coefficient. A narrow smoke layer occurred in the upper troposphere in the period
150 from 23:00 – 06:00 UTC. The smoke was detected at heights above 12 km after midnight. The
151 particles caused a low volume depolarization ratio (<5%) at 1064 nm and strong fluorescence
152 backscattering ($\beta_F>1.2\times10^{-4}$ Mm⁻¹sr⁻¹). The backward trajectory analysis indicated that the

153 aerosol layer was transported over the Atlantic and contained products of North American wild
154 fires.

155 Vertical profiles of aerosol β_{532} and fluorescence β_F backscattering coefficients for the
156 period from 02:00 - 05:30 UTC are shown in Fig.2a. The fluorescence capacity G_F in the center
157 of smoke layer (not shown) was about 4.5×10^{-4} . The depolarization ratio of aged smoke in the
158 UTLS height range usually shows a strong spectral dependence (Haarig et al., 2018; Hu et al.,
159 2019). For the case presented in Fig.2a the particle depolarization ratio in the center of the smoke
160 layer decreased from $16 \pm 4\%$ at 355 nm (δ_{355}) to $4 \pm 1\%$ at 1064 (δ_{1064}). The tropopause height H_{tr}
161 was at about 13000 m, thus the main part of the smoke layer was below the tropopause. By the
162 end of day the smoke layer became weaker ($\beta_F < 0.3 \times 10^{-4} \text{ Mm}^{-1} \text{sr}^{-1}$) and ascended up to 14500 m,
163 which is above the tropopause. Corresponding vertical profiles of β_{532} and β_F are shown in
164 Fig.2b. The fluorescence capacity in the center of the layer is about 4.5×10^{-4} , which is close to
165 the value observed during 02:00 - 05:30 UTC period.

166 An important advantage of the fluorescence lidar technique is the ability to monitor
167 smoke particles inside cirrus clouds. The results of smoke observations in the presence of ice
168 clouds are shown in Fig.3. Cirrus clouds occurred during the whole night in the height range
169 from 6.0 km – 10.0 km. To quantify the fluorescence backscattering inside the cloud (which was
170 rather weak in this case), the lidar signals were averaged over the full 18:00 – 06:00 UTC time
171 interval in Fig.3a. The fluorescence backscatter coefficient shown in Fig.3c decreased from
172 $\beta_F = 0.015 \times 10^{-4} \text{ Mm}^{-1} \text{sr}^{-1}$ at 5000 m (near the cloud base) to a minimum value of $0.01 \times 10^{-4} \text{ Mm}^{-1}$
173 sr^{-1} at 7000 m inside the cirrus layer. Above the tropopause the fluorescence backscattering
174 increased strongly and reached the maximum (about $0.3 \times 10^{-4} \text{ Mm}^{-1} \text{sr}^{-1}$) in 11000 m -13000 m
175 height.

176 The analysis of fluorescence measurements performed during strong smoke episodes in
177 the summer and autumn of 2020, when smoke layers from North American fires frequently
178 reached Europe, demonstrates that the fluorescence capacity varied within the range of 2.8×10^{-4}
179 to 4.5×10^{-4} . The variations are a function of smoke composition, relative humidity and particle
180 size. However, in the upper troposphere, where relative humidity is low, G_F was normally close
181 to 4.5×10^{-4} . This relatively low range of G_F variations allows the estimation of the backscattering
182 coefficient attributed to the smoke particles from fluorescence measurements as:

183
$$\beta_{532}^s = \frac{\beta_F}{G_F}. \quad (1)$$

184 Fig.3d shows the smoke backscattering coefficient β_{532}^s , calculated from β_F for
 185 $G_F=4.5\times10^{-4}$, together with β_{532} . The dynamical range of β_{532} variations is high. To make smoke
 186 backscattering visible above H_{Tr} , β_{532} is plotted in expanded scale in Fig.3d. The β_{532}^s values,
 187 though being strongly oscillating above the tropopause, match the β_{532} indicating that the smoke
 188 contribution to backscattering was predominant.

189

190 **3.2. Estimation of smoke particles content based on fluorescence measurements**

191 The possibility to detect fluorescence backscattering inside the cirrus clouds reveals also
 192 the opportunity for a quantitative characterization of the smoke content. This can be realized by a
 193 synergistic use of fluorescence and multiwavelength Mie – Raman lidar observations. For the
 194 smoke layers with sufficient optical depth, the number N , surface area S and volume V
 195 concentrations can be evaluated, by inverting the $3\beta+2\alpha$ observations consisting of three
 196 backscatter coefficients (355, 532, 1064 nm) and two extinction coefficients (355, 532 nm)
 197 (Müller et al., 1999; Veselovskii et al., 2002). The conversion factors C_N , C_S , C_V , introduced as

198
$$C_N = \frac{N}{\beta_F}, \quad C_S = \frac{S}{\beta_F}, \quad C_V = \frac{V}{\beta_F}, \quad (3)$$

199 allow the estimation of N , S , and V from fluorescence backscattering.

200 On 23-24 June 2020, a strong smoke layer was observed in 4500 – 5500 m height during
 201 the whole night (Fig.4). The vertical profiles of the aerosol backscattering and extinction
 202 coefficients ($3\beta+2\alpha$) are shown in Fig.5a, while the particle depolarization ratios δ_{355} , δ_{532} , δ_{1064}
 203 and the lidar ratios at 355 nm and 532 nm (LR_{355} , LR_{532}) are presented in Fig.5b. The
 204 depolarization ratio decreases with wavelength from $9\pm1.5\%$ at 355 nm to $1.5\pm0.3\%$ at 1064 nm
 205 and the lidar ratio at 532 nm significantly exceeds corresponding value at 355 nm (80 ± 12 sr and
 206 50 ± 7.5 sr respectively), which is typical for aged smoke (Müller et al., 2005). The
 207 multiwavelength observations were inverted to determine the particle effective radius r_{eff} ,
 208 number, surface area and volume concentrations for seven height bins inside the smoke layer.
 209 The effective radius r_{eff} in Fig.5c increases through the layer from $0.15 \mu\text{m}$ to $0.2 \mu\text{m}$
 210 simultaneously with the increase of the fluorescence capacity G_F from 2.8×10^{-4} to 3.6×10^{-4} .

211 Retrieved values of N , S , V were used for calculation of conversion factors (Eq. 3) for each
 212 height bin. In the center of the smoke layer (at 4.9 km) the factors are: $C_N=88\times10^4 \frac{cm^{-3}}{Mm^{-1}sr^{-1}}$,
 213 $C_S=35\times10^4 \frac{\mu m^2cm^{-3}}{Mm^{-1}sr^{-1}}$, and $C_V=2.4\times10^4 \frac{\mu m^3cm^{-3}}{Mm^{-1}sr^{-1}}$. Thus, when β_F is given in $Mm^{-1}sr^{-1}$, the
 214 calculated values of N , S , and V are given in cm^{-3} , μm^2cm^{-3} and μm^3cm^{-3} respectively.
 215 Fluorescence backscattering is proportional to the particle volume concentration, so C_V is not
 216 sensitive to the effective radius variation. The conversion factors C_N and C_S , on the contrary,
 217 depend on the particle size. Fig.5d shows the profiles of N , S , V obtained by inversion of $3\beta+2\alpha$
 218 observations (symbols) together with corresponding values (N_F , S_F , V_F) obtained from β_F , using
 219 the mean conversion factors for seven height bins considered. The volume concentrations V and
 220 V_F agree well for all seven height bins. For the surface area concentrations the agreement is still
 221 good, but for N and N_F the difference is up to 30%. We need to emphasize, that the conversion
 222 factors presented are specific for our lidar system (for the interference filter installed in
 223 fluorescence channel). It is worthwhile to mention that the ratio V/α_{532} of the volume
 224 concentration V in Fig.5d to the extinction coefficient α at 532 nm in Fig.5a, as well as the ratio
 225 S/α_{532} , are very close to respective extinction-to-volume and extinction-to-surface-area-
 226 concentration conversion factors presented for aged wildfire smoke by Ansmann et al. (2021).

227 The conversion factors depend on the smoke composition. To estimate the variation range
 228 of C_N , C_S , C_V , several smoke episodes were analyzed and corresponding results are presented in
 229 Table 1. The table provides the fluorescence capacity G_F and the conversion factors at the
 230 heights, where $3\beta+2\alpha$ data could be calculated. Mean values of C_N , C_S , C_V derived for these
 231 episodes and corresponding standard deviations are:

$$232 C_N=(61\pm32)\times10^4 \frac{cm^{-3}}{Mm^{-1}sr^{-1}}; \quad C_S=(28\pm6.4)\times10^4 \frac{\mu m^2cm^{-3}}{Mm^{-1}sr^{-1}}; \quad C_V=(2.2\pm0.2)\times10^4 \frac{\mu m^3cm^{-3}}{Mm^{-1}sr^{-1}} \quad (4)$$

233 Thus, the expected uncertainties in the N , S and V estimations from fluorescence measurements
 234 are of 50%, 25%, and 10% respectively, which is comparable with uncertainty of inversion of
 235 $3\beta+2\alpha$ observations (Veselovskii et al., 2002; Pérez-Ramírez et al., 2013). Table 1 shows also
 236 the volume and surface area concentrations of the smoke particles obtained from the inversion of
 237 $3\beta+2\alpha$ observations (V , S) and calculated from β_F (V_F , S_F) using the conversion factors in Eq.

238 (4). Standard deviations of V_F and S_F from corresponding values of $V_{3\beta+2\alpha}$ and $S_{3\beta+2\alpha}$ are 10% and
239 25% respectively.

240 The conversion factors in Eq. (4) are now used to estimate the smoke microphysical
241 properties inside the cloud, assuming in addition that the predominant contribution to the
242 fluorescence is provided by the smoke. Table 2 summarizes the number, surface area, and
243 volume concentrations of smoke particles inside the ice clouds, estimated from fluorescence
244 measurements for four episodes considered in this paper. On September 12-13, 2020, the smoke
245 layer with high fluorescence and low depolarization ratio at 1064 nm (below 4%) was observed
246 during the whole night inside the 2.0 km – 5.0 km height range. The cirrus cloud occurred above
247 11000 m also during the whole night. Fig.6a presents vertical profiles of the aerosol β_{532} and
248 fluorescence β_F backscattering coefficients. Fluorescence backscattering shows a maximum at
249 3.5 km, but it is detected even inside the cloud. The smoke backscattering coefficient β_{532}^s ,
250 computed from β_F for $G_F=3.6\times10^{-4}$ agrees well with β_{532} inside the 2.0 – 10.0 km height range
251 (Fig.6b). The height profile of the surface area concentration of the smoke particles, calculated
252 from β_F using the respective conversion factor in Eq. (4), is shown in Fig.6c. In the smoke layer,
253 S is up to $60 \mu\text{m}^2/\text{cm}^3$, while in the center of the cloud in 12 km – 13 km height the average value
254 of S is $1.6\pm0.4 \mu\text{m}^2/\text{cm}^3$. Corresponding values of number and volume concentrations in the
255 cloud center are $3.5\pm1.8 \text{ cm}^{-3}$ and $0.13\pm0.013 \mu\text{m}^3/\text{cm}^3$.

256 The temperature in the cloud ranged from about -50°C to almost -70°C and was -68°C at
257 cirrus top in Fig.6b where ice nucleation usually starts. We applied the immersion freezing INP
258 parameterization of Knopf and Alpert (2013) for Leonardite (a standard humic acid surrogate
259 material) and assume that this humic compound represents the amorphous organic coating of
260 smoke particles. The INP parameterization for smoke particles is summarized for lidar
261 applications in Ansmann et al. (2021). The selected parameterization allows the estimation of the
262 INP concentration as a function of ambient air temperature (freezing temperature), ice
263 supersaturation, particle surface area, and time period for which a certain level of ice
264 supersaturation is given. We simply assume a constant ice supersaturation of around 1.45 during
265 a time period of 600 s (upwind phase of a typical gravity wave in the upper troposphere). The
266 temperature at cirrus top height is set to -68°C and the aerosol surface area concentration to $2.0 \mu\text{m}^2/\text{cm}^3$
267 as indicated in Fig.6c. The obtained INP concentrations of $1\text{--}10 \text{ L}^{-1}$ for these
268 meteorological and aerosol environmental conditions can be regarded as the predicted number

269 concentration of ice crystals nucleated in the cirrus top region. **Ice crystal number concentration**
270 **of $1-10 \text{ L}^{-1}$ are typical values in cirrus layers when heterogeneous ice nucleation dominates.** It
271 should be mentioned that the required very high ice supersaturation levels of close to 1.5 (ice
272 supersaturation of 1.1-1.2 is sufficient in case of mineral dust particles) are still lower than the
273 threshold supersaturation level of >1.5 at which homogeneous freezing starts to dominate. At
274 low updraft velocities around 10-25 cm/s, as usually given in gravity waves in the upper
275 troposphere (Barahona et al., 2017), heterogeneous ice nucleation very likely dominates the ice
276 production when cirrus evolves in detected aerosol layers.

277

278 **3.3. Ice formation inside the smoke layers.**

279 During September 2020 we observed several episodes with ice cloud formation inside of
280 smoke layers. One of such episodes occurred on 11-12 September 2020 and is shown in Fig.7.
281 The height – time display of the fluorescence backscattering coefficient reveals the smoke layer
282 in the 5.0 - 10.0 km height range. Inside this layer, we can observe a short time interval of 15
283 minutes with a strongly increased depolarization ratio around 10.5 km height (red spots),
284 indicating ice cloud formation. Fig.8 shows vertical profiles of the aerosol backscattering
285 coefficients β_{355} , β_{532} , and β_{1064} as well the particle depolarization ratios δ_{355} , δ_{532} , and δ_{1064} for
286 two temporal intervals. The first interval (23:00 – 00:30 UTC) is prior to ice cloud formation and
287 the second one (01:20 – 01:45 UTC) covers ice occurrence period. The depolarization ratios at
288 all three wavelengths were $< 5\%$ below 6 km height. Above that height δ_{355} significantly
289 increased reaching the value of 10% at 7 km (Fig.8b), which is indicative of a change of the
290 particle shape (from spherical to irregular shape). The fluorescence capacity also changed with
291 height, being about $G_F=4.5\times10^{-4}$ at 5.5 km and it decreases to 3.5×10^{-4} by 8 km. The profile of
292 β_{532}^s shown in Fig.8c is calculated assuming $G_F=4.0\times10^{-4}$ and it matches well the profile of β_{532}
293 for the whole height range. The aerosol layer at 10.5 km is thus a pure smoke layer. Ice
294 formation at 10.5 km (Fig.8d-f) leads to a significant increase of β_{532} while β_{532}^s (or the
295 respective fluorescence backscatter coefficient β_F) remains low and at the same level as observed
296 below the cirrus layer, i.e., below 10 km height. The depolarization ratios at all three
297 wavelengths increases to typical cirrus values around 40%. The temperature at 10.5 km is about -
298 50 °C, and the surface area concentration of the smoke particles inside the cloud, estimated from

299 β_F , is about $10 \mu\text{m}^2/\text{cm}^3$ (see Fig.8f, thin blue line). For these temperature and aerosol conditions
300 we yield smoke INP concentrations of $1\text{-}10 \text{ L}^{-1}$ for ice supersaturation values even below 1.4
301 (1.38-1.4) and updraft duration of 600 s. When comparing Fig.8c and 8f at cirrus level it seems
302 to be that ice nucleation on the smoke particles widely depleted the smoke INP reservoir.

303 Another case of ice formation in the smoke layer was observed on 17-18 September
304 2020. Strong smoke layers occurred in the 5.0 km – 9.0 km height range as shown in Fig.9.
305 During the period from 22:30 – 00:00 UTC, the depolarization increased at 8.5 km height,
306 indicating ice formation. Vertical profiles of the particle parameters prior and during ice
307 formation are shown in Fig.10. The β_{532}^s calculated for $G_F=3.5\times10^{-4}$ matches well with β_{532}
308 below 6.9 km and above 8.0 km (Fig.10c), but inside the 7.0 km – 8.0 km height range
309 $\beta_{532} > \beta_{532}^s$, meaning that G_F was decreased. The depolarization ratio in the 7.0 km – 8.0 km
310 height range shows some enhancement (Fig.10b): in particular, δ_{532} increased from 10% to 12%.
311 Cloud formation at 8.5 km (Fig.10d) led to a significantly smaller increase of the depolarization
312 ratio, compared to the case on 11-12 September. Prior to the cloud formation the values of δ_{1064} ,
313 δ_{532} , and δ_{355} at 8.5 km were of 3%, 10%, and 13% respectively (Fig.10b) and in the cloud
314 corresponding depolarization ratios increase up to 9%, 15%, 20%. The reason is probably that
315 the signal averaging period from 22:45 to 23:45 UTC includes cloud-free section. Three gravity
316 waves obviously crossed the lidar field site and triggered ice nucleation just before 23 UTC, 15-
317 30 minutes after 23 UTC, and around mid night (00:00 UTC). The temperature at cloud top at
318 about 8.5-8.6 km height was close to -35°C . For this high temperature and the high particle
319 surface area concentration of $200 \mu\text{m}^2/\text{cm}^3$ (see Fig.10d, thin blue line) we yield smoke INP
320 concentrations of $1\text{-}10 \text{ L}^{-1}$ for a relatively low ice supersaturation of 1.30-1.33 and an updraft
321 period of 600 s. Again, a depletion of the INP reservoir is visible after formation of the cirrus
322 layer (see Figs.6c and 6d around and above 8.5 km height).

323

324 Conclusion

325 The operation of a fluorescence channel in the LILAS lidar during strong smoke events in
326 the summer and autumn seasons of 2020 has demonstrated the ability of the fluorescence lidar
327 technique to ~~monitor~~ smoke layers in the UTLS height range in large detail. The fluorescence
328 capacity G_F of smoke particles during this period varied within a relatively small range: 2.8-

329 4.5×10^{-4} , thus the use of the mean value of G_F allows to estimate the contribution of smoke to the
330 total particle backscattering coefficient. The fluorescence lidar technique makes it possible to
331 estimate smoke parameters, such as number, surface area and volume concentration in UTLS
332 height range in a quantitative way by applying conversion factors (C_N , C_S , C_V) which link the
333 fluorescence backscattering and the smoke microphysical properties. These factors, derived from
334 the synergy of multiwavelength Mie-Raman and fluorescence lidar observations, show some
335 variation from episode to episode, however, the use of mean values of C_N , C_S , C_V allow
336 estimation of smoke properties in UTLS height regime with reasonable accuracy. Based on two
337 case studies, we demonstrated that the fluorescence lidar technique provides the unique
338 possibility to characterize the smoke particles and their amount inside cirrus cloud layers. The
339 smoke input parameter (surface area concentration) in smoke INP parameterization schemes that
340 are used to predict ice crystal number concentrations in cirrus generation cells, can now be
341 estimated within freshly formed cirrus layers.

342 The smoke parameters such as fluorescence capacity and conversion factors were derived
343 from observations of aged wildfire smoke, transported over Atlantic in 2020. However, smoke
344 composition, depends on many factors, such as burning materials type, flame temperature and
345 environmental conditions, thus the smoke fluorescence properties may also vary. Hence, it is
346 important to perform the measurements for different locations and seasons. The fluorescence
347 backscattering in UTLS height range is quite weak, so to perform measurements with higher
348 temporal resolution more powerful lidar systems are needed. A dedicated high power Lidar,
349 LIFE (Laser Induced Fluorescence Explorer), will be designed and operated at ATOLL, in the
350 frame of OBS4CLIM/ACTRIS-France .

351

352

353 **Acknowledgement**

354 We acknowledge funding from the CaPPA project funded by the ANR through the PIA under
355 contract ANR-11-LABX-0005-01, the “Hauts de France” Regional Council (project CLIMIBIO)
356 and the European Regional Development Fund (FEDER). ~~The “Réseau National de Surveillance~~
357 ~~Aérobiologique” (RNSA) and the “Association pour la Prévention de la Pollution~~
358 ~~Atmosphérique” (APPA) are gratefully acknowledged for providing Hirst-collected pollen grains~~

359 ~~identification and for assistance with the pollen data handling.~~ Development of algorithm for
360 analysis of fluorescence observations was supported by Russian Science Foundation (project 21-
361 17-00114). ESA/QA4EO program is greatly acknowledged for his support to the observation
362 activity at LOA.

363

364 **References**

365 Ansmann, A., Riebesell, M., Wandinger, U., Weitkamp, C., Voss, E., Lahmann, W., and
366 Michaelis, W.: Combined Raman elastic-backscatter lidar for vertical profiling of moisture,
367 aerosols extinction, backscatter, and lidar ratio, *Appl.Phys.B*, 55, 18-28, 1992.

368 Ansmann, A., Baars, H., Chudnovsky, A., Mattis, I., Veselovskii, I., Haarig, M., Seifert, P.,
369 Engelmann, R., and Wandinger, U.: Extreme levels of Canadian wildfire smoke in the
370 stratosphere over central Europe on 21–22 August 2017, *Atmos. Chem. Phys.*, 18, 11831–
371 11845, 2018. <https://doi.org/10.5194/acp-18-11831-2018>.

372 Ansmann, A., Mamouri, R.-E., Hofer, J., Baars, H., Althausen, D., and Abdullaev, S. F.: Dust
373 mass, cloud condensation nuclei, and ice-nucleating particle profiling with polarization lidar:
374 updated POLIPHON conversion factors from global AERONET analysis, *Atmos. Meas.
375 Tech.*, 12, 4849–4865, <https://doi.org/10.5194/amt-12-4849-2019>, 2019a.

376 Ansmann, A., Mamouri, R.-E., Bühl, J., Seifert, P., Engelmann, R., Hofer, J., Nisantzi, A.,
377 Atkinson, J. D., Kanji, Z. A., Sierau, B., Vrekoussis, M., and Sciare, J.: Ice-nucleating particle
378 versus ice crystal number concentrationin altocumulus and cirrus layers embedded in Saharan
379 dust:a closure study, *Atmos. Chem. Phys.*, 19, 15087–15115, <https://doi.org/10.5194/acp-19-15087-2019>, 2019b.

380 Ansmann, A., Ohneiser, K., Mamouri, R.-E., Veselovskii, I., Knopf, D. A., Baars, H.,
381 Engelmann, R., Foth, A., Jimenez, C., Seifert, P., and Barja, B.: Tropospheric and
382 stratospheric wildfire smoke profiling with lidar: Mass, surface area, CCN and INP retrieval,
383 *Atmos. Chem. Phys.*, 21, 9779–9807, 2021. <https://doi.org/10.5194/acp-21-9779-2021>.

384 Baars, H., Ansmann, A., Ohneiser, K., Haarig, M., Engelmann, R., Althausen, D., Hanssen, I.,
385 Gausa, M., Pietruczuk, A., Szkop, A., Stachlewska, I. S., Wang, D., Reichardt, J., Skupin, A.,
386 Mattis, I., Trickl, T., Vogelmann, H., Navas-Guzmán, F., Haefele, A., Acheson, K., Ruth, A.
387 A., Tatarov, B., Müller, D., Hu, Q., Podvin, T., Goloub, P., Veselovskii, I., Pietras, C.,

389 Haeffelin, M., Fréville, P., Sicard, M., Comerón, A., Fernández García, A. J., Molero
390 Menéndez, F., Córdoba-Jabonero, C., Guerrero-Rascado, J. L., Alados-Arboledas, L., Bortoli,
391 D., Costa, M. J., Dionisi, D., Liberti, G. L., Wang, X., Sannino, A., Papagiannopoulos, N.,
392 Boselli, A., Mona, L., D'Amico, G., Romano, S., Perrone, M. R., Belegante, L., Nicolae, D.,
393 Grigorov, I., Gialitaki, A., Amiridis, V., Soupiona, O., Papayannis, A., Mamouri, R.-E.,
394 Nisantzi, A., Heese, B., Hofer, J., Schechner, Y. Y., Wandinger, U., and Pappalardo, G.: The
395 unprecedented 2017–2018 stratospheric smoke event: decay phase and aerosol properties
396 observed with the EARLINET, *Atmos. Chem. Phys.*, 19, 15183–15198,
397 <https://doi.org/10.5194/acp-19-15183-2019>, 2019.

398 Baars, H., Radenz, M., Floutsi, A. A., Engelmann, R., Althausen, D., Heese, B., Ansmann, A.,
399 Flament, T., Dabas, A., Trapon, D., Reitebuch, O., Bley, S., and Wandinger, U.: Californian
400 wildfire smoke over Europe: A first example of the aerosol observing capabilities of Aeolus
401 compared to ground-based lidar. *Geophysical Research Letters*, 48, e2020GL092194.
402 <https://doi.org/10.1029/2020GL092194>, 2021.

403 Barahona, D., Molod, A., and Kalesse, H.: Direct estimation of the global distribution of vertical
404 velocity within cirrus clouds, *Sci. Rep.*, 7, 20 6840, <https://doi.org/10.1038/s41598-017-07038-6>, 2017.

406 Boose, Y., Sierau, B., Garcia, M. I., Rodriguez, S., Alastuey, A., Linke, C., Schnaiter, M.,
407 Kupiszewski, P., Kanji, Z. A., and Lohmann, U.: Ice nucleating particles in the Saharan Air
408 Layer, *Atmos. Chem. Phys.*, 16, 9067-9087, <https://doi.org/10.5194/acp-16-9067-2016>, 2016.

409 China, S., Alpert, P. A., Zhang, B., Schum, S., Dzepina, K., Wright, K., Owen, R. C., Fialho, P.,
410 Mazzoleni, L. R., Mazzoleni, C., and Knopf, D. A.: Ice cloud formation potential by free
411 tropospheric particles from long-range transport over the Northern Atlantic Ocean, *J. Geophys. Res.-Atmos.*, 122, 3065–3079, <https://doi.org/10.1002/2016JD025817>, 2017.

413 DeMott, P. J., Prenni, A. J., Liu, X., Kreidenweis, S. M., Petters, M. D., Twohy, C. H.,
414 Richardson, M. S., Eidhammer, T., and Rogers, D. C.: Predicting global atmospheric ice
415 nuclei distributions and their impacts on climate, *Proc. Natl. Acad. Sci. USA*, 107, 11217–
416 11222, doi:10.1073/pnas.0910818107, 2010.

417 DeMott, P. J., Prenni, A. J., McMeeking, G. R., Sullivan, R. C., Petters, M. D., Tobe, Y.,
418 Niemand, M., Möhler, O., Snider, J. R., Wang, Z., and Kreidenweis, S. M.: Integrating

419 laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral
420 dust particles, *Atmos. Chem. Phys.*, 15, 393–409, doi:10.5194/acp-15-393-2015, 2015.

421 Fernald, F. G.: Analysis of atmospheric lidar observations: some comments, *Appl. Opt.*, 23, 652–
422 653, doi.org/10.1364/AO.23.000652, 1984.

423 Freudenthaler, V., Esselborn, M., Wiegner, M., Heese, B., Tesche, M. and co-authors:
424 Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM
425 2006, *Tellus* 61B, 165–179, 2009.

426 Fromm, M., Lindsey, D. T., Servranckx, R., Yue, G., Trickl, T., Sica, R., Doucet, P., and Godin-
427 Beekmann, S. E.: The untold story of pyrocumulonimbus, *B. Am. Meteorol. Soc.*, 91, 1193–
428 1209, <https://doi.org/10.1175/2010bams3004.1>, 2010.

429 Grawe, S., Augustin-Bauditz, S., Hartmann, S., Hellner, L., Pettersson, J. B. C., Prager, A.,
430 Stratmann, F., and Wex, H.: The immersion freezing behavior of ash particles from wood and
431 brown coal burning, *Atmospheric Chemistry and Physics*, 16, 13 911–13 928, 2016.
432 <https://doi.org/10.5194/acp-16-13911-2016>.

433 Haarig, M., Ansmann, A., Baars, H., Jimenez, C., Veselovskii, I., Engelmann, R., and Althausen,
434 D.: Depolarization and lidar ratios at 355, 532, and 1064 nm and microphysical properties of
435 aged tropospheric and stratospheric Canadian wildfire smoke, *Atmos. Chem. Phys.*, 18,
436 11847–11861, <https://doi.org/10.5194/acp-18-11847-2018>, 2018.

437 Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J.
438 A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., and Smirnov, A.: AERONET – a
439 federated instrument network and data archive for aerosol characterization, *Remote Sens.*
440 *Environ.*, 66, 1–16, 1998.

441 Hoose, C. and Möhler, O.: Heterogeneous ice nucleation on atmospheric aerosols: a review of
442 results from laboratory experiments. *Atmos. Chem. Phys.*, 12, 9817–9854, 2012.
443 doi:10.5194/acp-12-9817-2012

444 Hu, Q., Goloub, P., Veselovskii, I., Bravo-Aranda, J.-A., Popovici, I. E., Podvin, T., Haeffelin,
445 M., Lopatin, A., Dubovik, O., Pietras, C., Huang, X., Torres, B., and Chen, C.: Long-range-
446 transported Canadian smoke plumes in the lower stratosphere over northern France, *Atmos.*
447 *Chem. Phys.*, 19, 1173–1193, 2019. <https://doi.org/10.5194/acp-19-1173-2019>.

448 Jahl, L. G., Brubaker, T. A., Polen, M. J., Jahn, L. G., Cain, K. P., Bowers, B. B., Fahy, W. D.,
449 Graves, S., and Sullivan, R. C.: Atmospheric aging enhances the ice nucleation ability of
450 biomass-burning aerosol, *Science Advances*, 7, eabd3440, 2021.

451 Kanji, Z. A., Ladino, L. A., Wex, H., Boose, Y., Burkert-Kohn, M., Cziczo, D. J., and Krämer,
452 M.: Chapter 1: Overview of ice nucleating particles, *Meteor Monogr.*, Am. Meteorol. Soc.,
453 58, 1.1-1.33, <https://doi.org/10.1175/amsmonographs-d-16-0006.1>, 2017.

454 Khaykin, S., Legras, B., Bucci, S., Sellitto, P., Isaksen, L., Tencé, F., Bekki, S., Bourassa, A.,
455 Rieger, L., Tawada, D., Jumelet, J., and Godin-Beekmann, S.: The 2019/20 Australian
456 wildfires generated a persistent smoke-charged vortex rising up to 35 km altitude, *Commun.*
457 *Earth Environ.*, 1, 22, <https://doi.org/10.1038/s43247-020-00022-5>, 2020.

458 Klett J.D., “Lidar inversion with variable backscatter/extinction ratios”, *Appl.Opt.* 24, 1638-
459 1643, 1985.

460 Knopf, D. A., Alpert, P. A., and Wang, B.: The role of organic aerosol in atmospheric ice
461 nucleation: a review, *ACS Earth and Space Chemistry*, 2, 168–202, 2018.

462 Müller, D., Wandinger, U., and Ansmann, A.: Microphysical particle parameters from extinction
463 and backscatter lidar data by inversion with regularization: theory, *Appl. Opt.* 38, 2346-2357,
464 1999.

465 Müller, D., Mattis, I., Wandinger, U., Ansmann, A., Althausen, A., and Stohl, A.: Raman lidar
466 observations of aged Siberian and Canadian forest fire smoke in the free troposphere over
467 Germany in 2003: Microphysical particle characterization, *J. Geophys. Res.*, 110, D17201,
468 doi:10.1029/2004JD005756, 2005.

469 Murray, B. J., O’Sullivan, D., Atkinson, J. D., and Webb, M. E.: Ice nucleation by particles
470 immersed in supercooled cloud droplets, *Chem. Soc. Rev.*, 41, 6519–6554,
471 <https://doi.org/10.1039/c2cs35200a>, 2012.

472 Ohneiser, K., Ansmann, A., Engelmann, R., Ritter, C., Chudnovsky, A., Veselovskii, I., Baars,
473 H., Gebauer, H., Griesche, H., Radenz, M., Hofer, J., Althausen, D., Dahlke, S., and Maturilli,
474 M.: Siberian fire smoke in the High-Arctic winter stratosphere observed during MOSAiC
475 2019–2020, *Atmos. Chem. Phys. Discuss. [preprint]*, <https://doi.org/10.5194/acp-2021-117>, in
476 review, 2021.

477 Peterson, D. A., Campbell, J. R., Hyer, E. J., Fromm, M. D., Kablick, G. P., Cossuth, J. H., and
478 DeLand, M. T.: Wildfire-driven thunderstorms cause a volcano-like stratospheric injection of
479 smoke, *npj Clim. Atmos. Sci.*, 1, 30, <https://doi.org/10.1038/s41612-018-0039-3>, 2018

480 Pérez-Ramírez, D., Whiteman, D. N., Veselovskii, I., Kolgotin, A., Korenskiy, M., and
481 Alados-Arboledas, L.: Effects of systematic and random errors on the retrieval of particle
482 microphysical properties from multiwavelength lidar measurements using inversion with
483 regularization, *Atmos. Meas. Tech.*, 6, 3039-3054, 2013.

484 Prata, A.T., Young, S.A., Siems S.T., and Manton, M.J.: Lidar ratios of stratospheric volcanic
485 ash and sulfate aerosols retrieved from CALIOP measurements *Atmos. Chem. Phys.*, 17,
486 8599–8618, 2017. <https://doi.org/10.5194/acp-17-8599-2017>

487 Reichardt, J., Leinweber, R., Schwebe, A.: Fluorescing aerosols and clouds: investigations of co-
488 existence, *Proceedings of the 28th ILRC*, Bucharest, Romania, 25-30 June, 2017.

489 Schrod, J., Weber, D., Drücke, J., Keleshis, C., Pikridas, 5 M., Ebert, M., Cvetkovic', B.,
490 Nickovic, S., Marinou, E., Baars, H., Ansmann, A., Vrekoussis, M., Mihalopoulos, N., Sciare,
491 J., Curtius, J., and Bingemer, H. G.: Ice nucleating particles over the Eastern Mediterranean
492 measured by unmanned aircraft systems, *Atmos. Chem. Phys.*, 17, 4817-4835,
493 <https://doi.org/10.5194/acp-17-4817-2017>, 2017.

494 Umo, N. S., Murray, B. J., Baeza-Romero, M. T., Jones, J. M., Lea-Langton, A. R., Malkin, T.
495 L., O'Sullivan, D., Neve, L., Plane, J. M. C., and Williams, A.: Ice nucleation by combustion
496 ash particles at conditions relevant to mixed-phase clouds, *Atmospheric Chemistry and*
497 *Physics*, 15, 5195–5210, <https://doi.org/10.5194/acp-15-5195-2015>,

498 Venable, D. D., Whiteman, D. N., Calhoun, M. N., Dirisu, A.O., Connell, R. M., Landulfo, E.:
499 Lamp mapping technique for independent determination of the water vapor mixing ratio
500 calibration factor for a Raman lidar system, *Appl. Opt.*, 50, 4622 - 4632, 2011.

501 Veselovskii I., Kolgotin, A., Griaznov, V., Müller, D., Wandinger, U., Whiteman, D.:
502 Inversion with regularization for the retrieval of tropospheric aerosol parameters from multi-
503 wavelength lidar sounding, *Appl.Opt.* 41, 3685-3699, 2002.

504 Veselovskii, I., Whiteman, D. N., Korenskiy, M., Suvorina, A., Kolgotin, A., Lyapustin, A.,
505 Wang, Y., Chin, M., Bian, H., Kucsma, T. L., Pérez-Ramírez, D., and Holben, B.:
506 Characterization of forest fire smoke event near Washington, DC in summer 2013 with

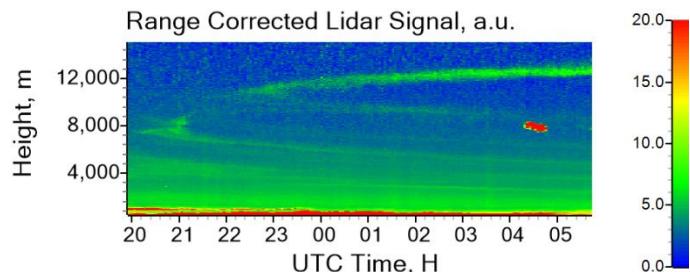
507 multiwavelength lidar, *Atmos. Chem. Phys.*, 15, 1647–1660, <https://doi.org/10.5194/acp-15-1647-2015>, 2015.

509 Veselovskii, I., Hu, Q., Goloub, P., Podvin, T., Korenskiy, M., Pujol, O., Dubovik, O., Lopatin,
510 A.: Combined use of Mie-Raman and fluorescence lidar observations for improving aerosol
511 characterization: feasibility experiment, *Atm. Meas. Tech.*, 13, 6691–6701, 2020.
512 doi.org/10.5194/amt-13-6691-2020.

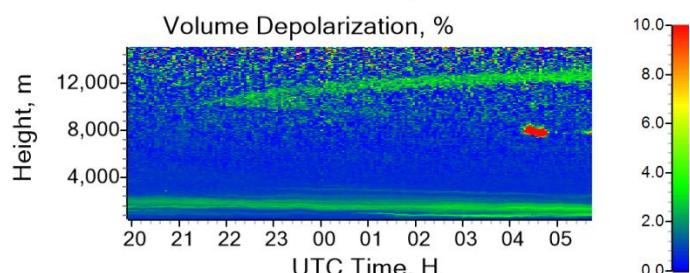
513 Veselovskii, I., Hu, Q., Goloub, P., Podvin, T., Choël, M., Visez, N., and Korenskiy, M.: Mie–
514 Raman–fluorescence lidar observations of aerosols during pollen season in the north of
515 France, *Atm. Meas. Tech.*, 14, 4773–4786, 2021. doi.org/10.5194/amt-14-4773-2021

516

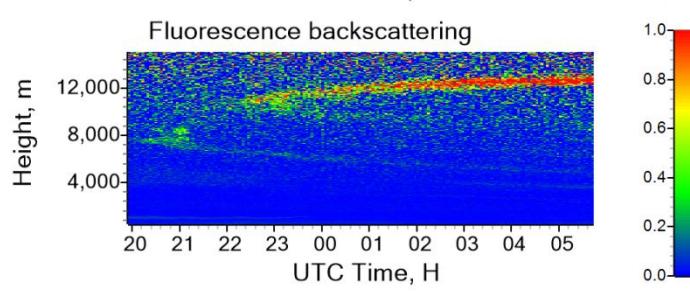
517 Table 1. Conversion factors C_N , C_S , and C_V , and fluorescence capacity G_F at height H for five
 518 smoke episodes. Volume and surface area concentration of smoke particles, obtained by the
 519 inversion of $3\beta+2\alpha$ lidar observations (V , S), are given together with values calculated from
 520 fluorescence measurements (V_F , S_F) and using conversion factors (Eq. 4).


Date dd/mm/yy	H , km	C_N , $10^4 \frac{cm^{-3}}{Mm^{-1}sr^{-1}}$	C_S , $10^4 \frac{\mu m^2 cm^{-3}}{Mm^{-1}sr^{-1}}$	C_V , $10^4 \frac{\mu m^3 cm^{-3}}{Mm^{-1}sr^{-1}}$	G_F , 10^{-4}	V , $\mu m^3/cm^3$		S , $\mu m^2/cm^3$	
						V	V_F	S	S_F
23/06/20	4.9	88	35	2.4	3.5	21	19	306	237
11/09/20	7.5	75	28	2.0	3.9	7.6	8.7	111	111
14/09/20	6.0	90	34	2.3	3.7	6.4	6.1	94	78
17/09/20	6.8	21	21	2.3	2.9	8.0	7.8	73	100
20/09/20	4.9	33	22	2.0	4.3	2.7	2.9	31	37

521
 522
 523
 524
 525
 526 Table 2. Number N , surface area S , and volume V concentrations of smoke particles inside the
 527 ice cloud at height H estimated from fluorescence measurements by applying the conversion
 528 factors in Eq. (4) for four measurement sessions.

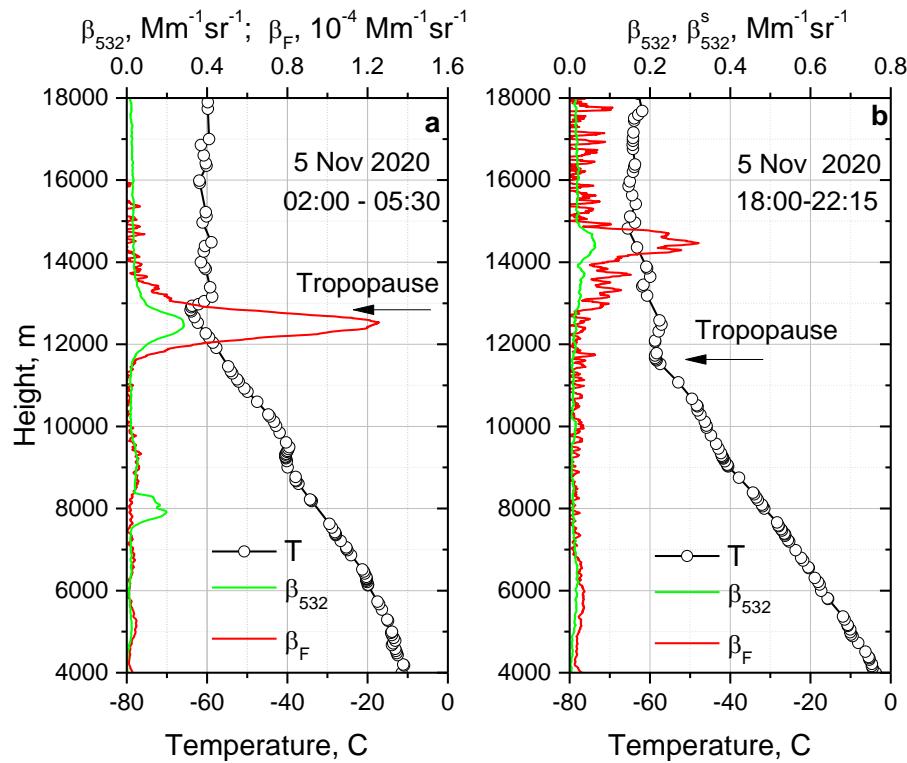

Date dd/mm/yy	Time UTC	H , km	β_F , $10^{-4} Mm^{-1}sr^{-1}$	N , cm^{-3}	S , $\mu m^2/cm^3$	V , $\mu m^3/cm^3$
12/09/20	01:20-01:45	10.5	0.32	20 ± 10	9 ± 2.3	0.7 ± 0.07
12-13/09/20	21:00-03:00	12.5	0.06	3.5 ± 1.8	1.6 ± 0.4	0.13 ± 0.013
17/09/20	22:45-23:45	8.5	6.5	400 ± 200	180 ± 45	14 ± 1.4
24-25/11/20	18:00-06:00	8.0	0.013	0.8 ± 0.4	0.36 ± 0.09	0.03 ± 0.003

529
 530
 531


532

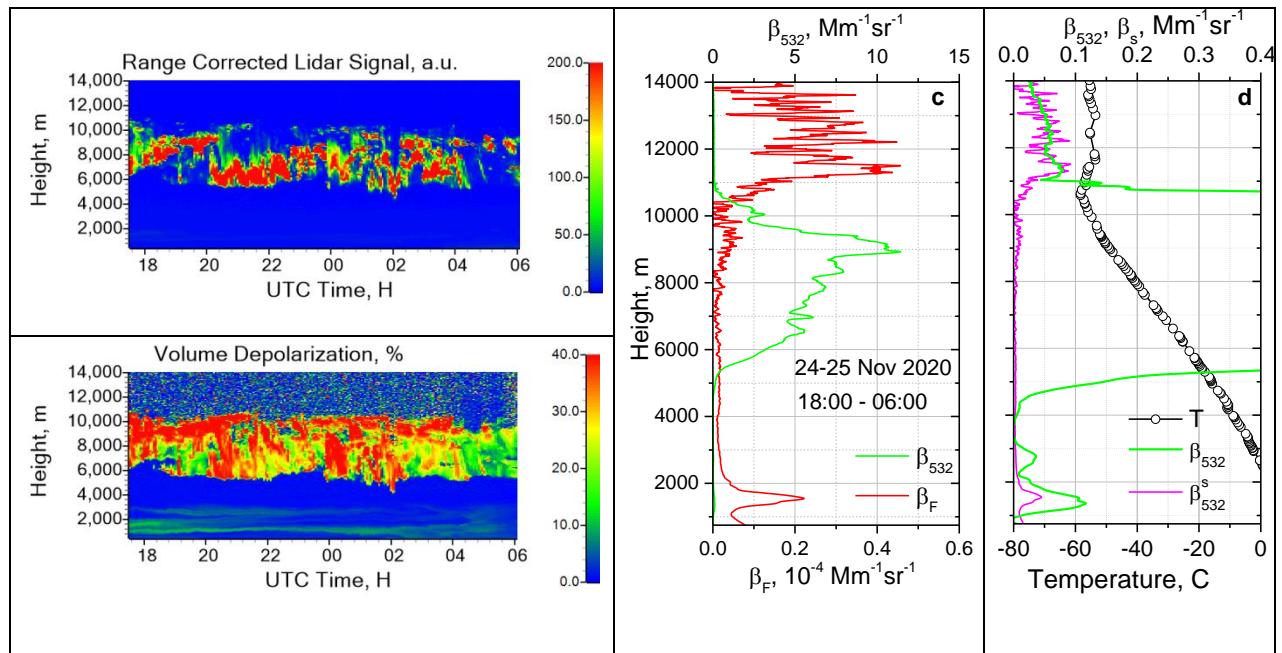
533

534

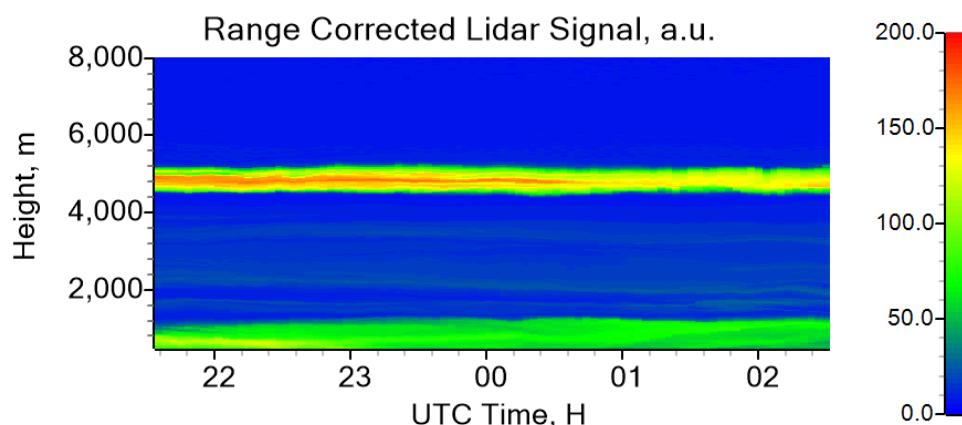


535

Fig.1. Range corrected lidar signal at 1064 nm, volume depolarization ratio at 1064 nm and fluorescence backscattering coefficient (in $10^{-4} \text{ Mm}^{-1} \text{sr}^{-1}$) on 4-5 November 2020.

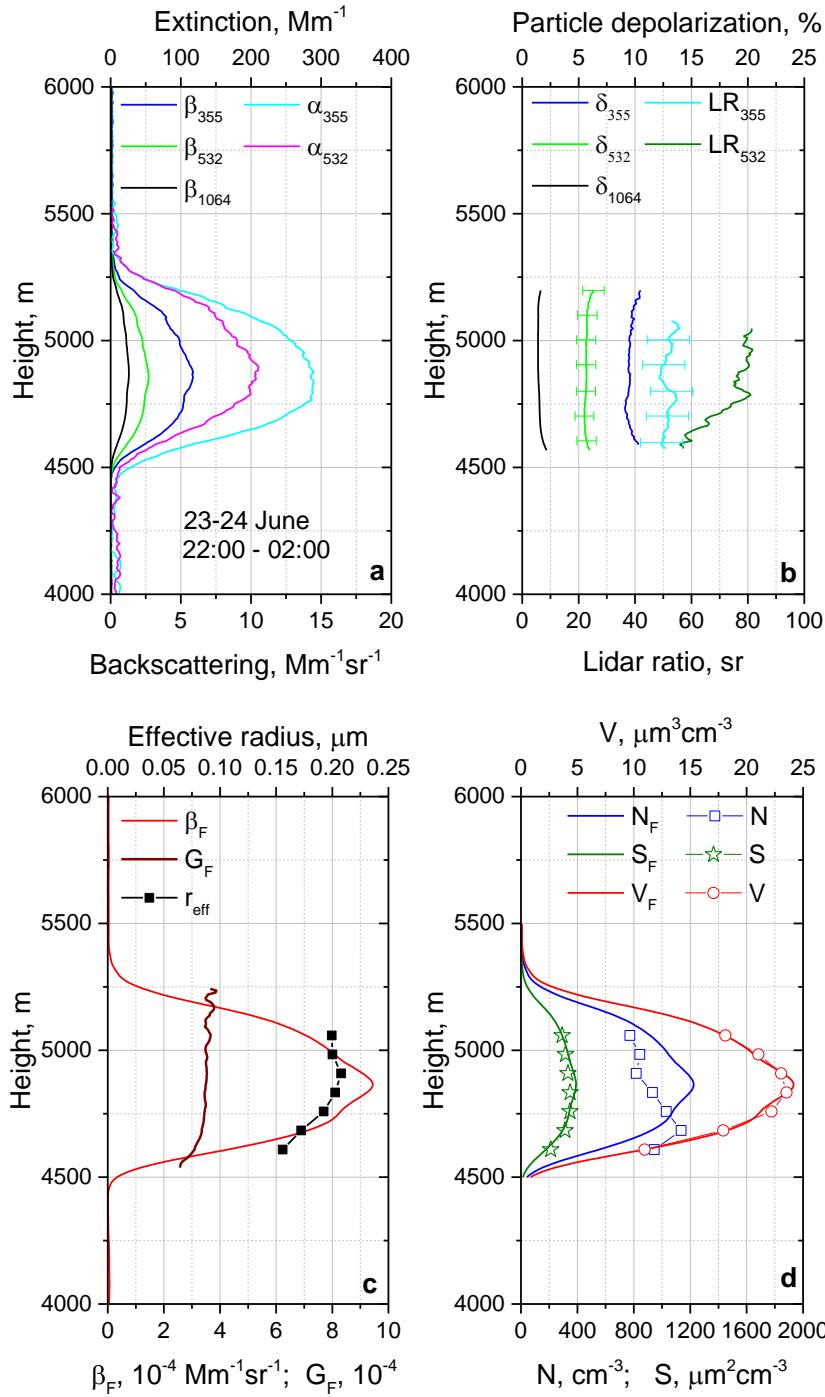

536

537


538
539 Fig.2. Vertical profiles of aerosol backscattering β_{532} and fluorescence backscattering β_F
540 coefficients on 5 November 2020 for the periods (a) 02:00 - 05:30 UTC and (b) 18:00 – 22:15
541 UTC. Open symbols show the temperature profile measured by the radiosonde launched at
542 Herstmonceux (UK).

543
544

547 Fig.3. Smoke fluorescence in the presence of clouds on 24 – 25 November 2020. (a, b) Height –
 548 temporal distribution of the range corrected lidar signal and volume depolarization at 1064 nm.
 549 (c) Vertical profiles of the aerosol β_{532} and fluorescence β_F backscattering coefficients. (d)
 550 Aerosol backscattering β_{532} together with smoke backscattering β_{532}^s coefficient, computed from
 551 β_F for $G_F=4.5\times 10^{-4}$. Open symbols show temperature profile measured by the radiosonde at
 552 Herstmonceux.


555

556

557 Fig.4. Range corrected lidar signal at 1064 nm on 23-24 June 2020, indicating a thick smoke
558 layer between 4500 and 5200 m height.

559

560

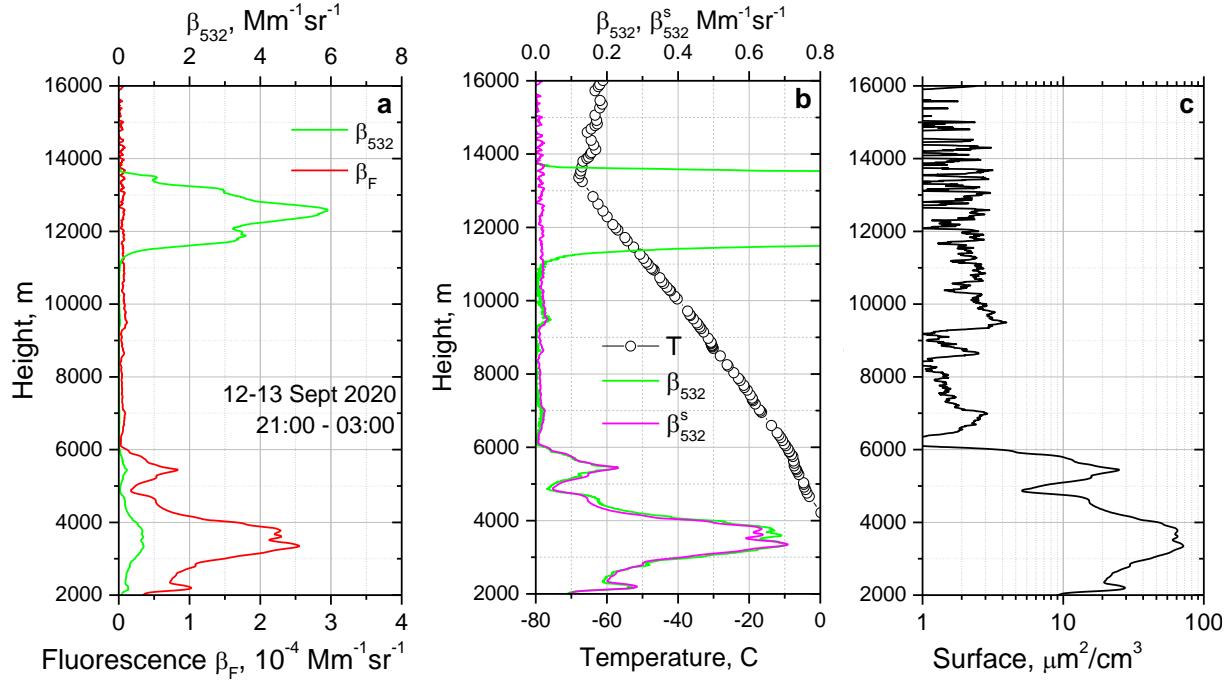
561

562

563

564

565


566

567

568

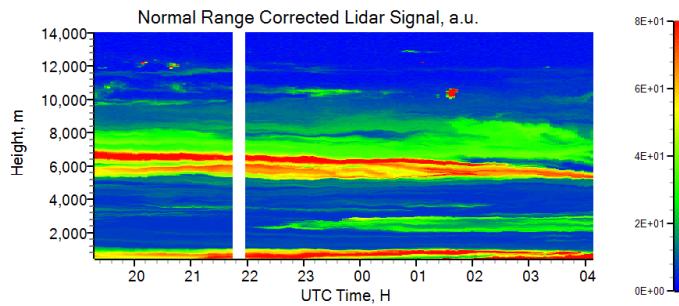
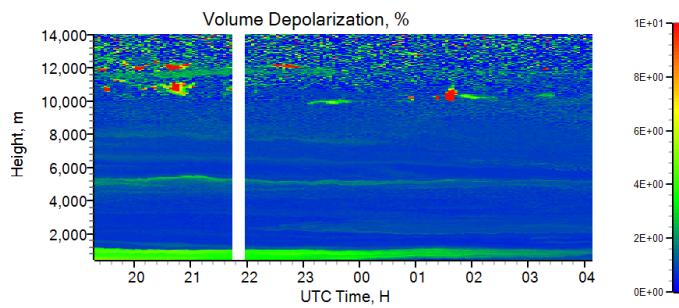
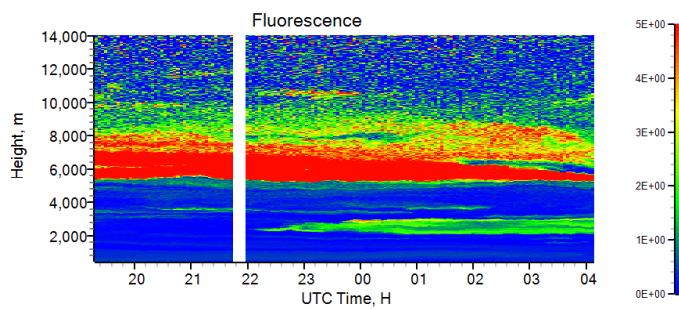

569

Fig.5. Smoke layer on 23-24 June 2020. (a) Vertical profiles of backscattering (β_{355} , β_{532} , β_{1064}) and extinction (α_{355} , α_{532}) coefficients. (b) Particle depolarization ratios (δ_{355} , δ_{532} , δ_{1064}) and lidar ratios (LR_{355} , LR_{532}). (c) Fluorescence backscattering (β_F), fluorescence capacity (G_F) and the particle effective radius (r_{eff}). (d) Number (N , N_F), surface area (S , S_F) and volume (V , V_F) concentrations obtained by inversion of $3\beta+2\alpha$ observations (symbols) and calculated from the fluorescence backscattering (lines) by using the mean conversion factors defined in Eq. (3).



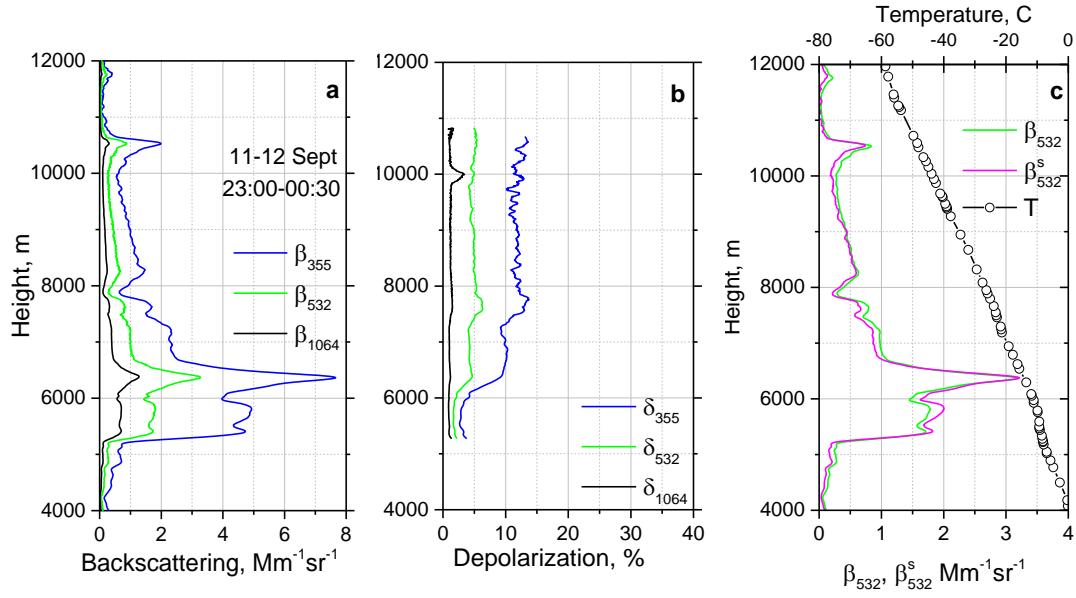
570
571 Fig.6. Observation of smoke fluorescence on 12-13 September 2020, 21:00 – 03:00 UTC. (a)
572 Vertical profiles of the aerosol backscattering β_{532} and fluorescence backscattering β_F
573 coefficients. (b) Aerosol backscattering β_{532} together with smoke backscattering β_{532}^s coefficient
574 computed from β_F for $G_F=3.6\times 10^{-4}$. (c) Surface area concentration of the smoke particles
575 calculated from β_F by using the respective conversion factor in Eq. (4). Open symbols show the
576 temperature profile measured by the radiosonde at Herstmonceux.
577
578
579


580

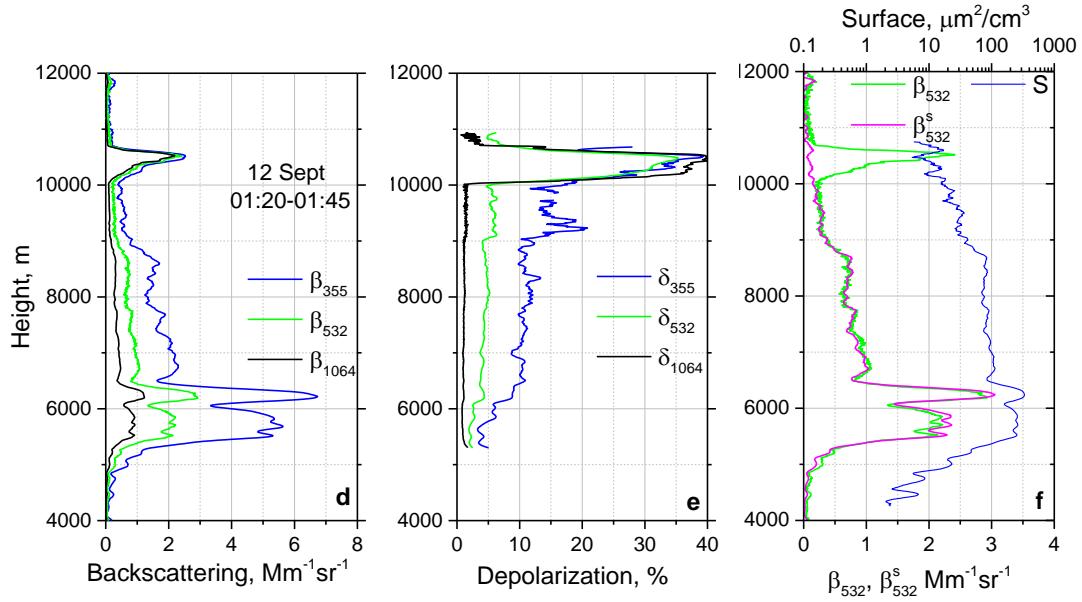
581

582

583

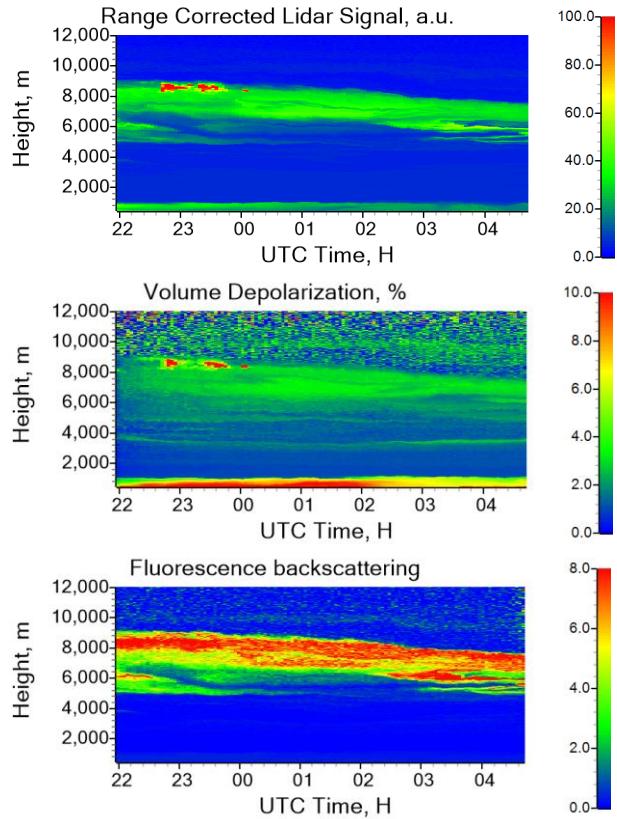

584 Fig.7. Formation of ice particles at heights above 10 km inside a smoke layer on 11-12 September 2020.

585

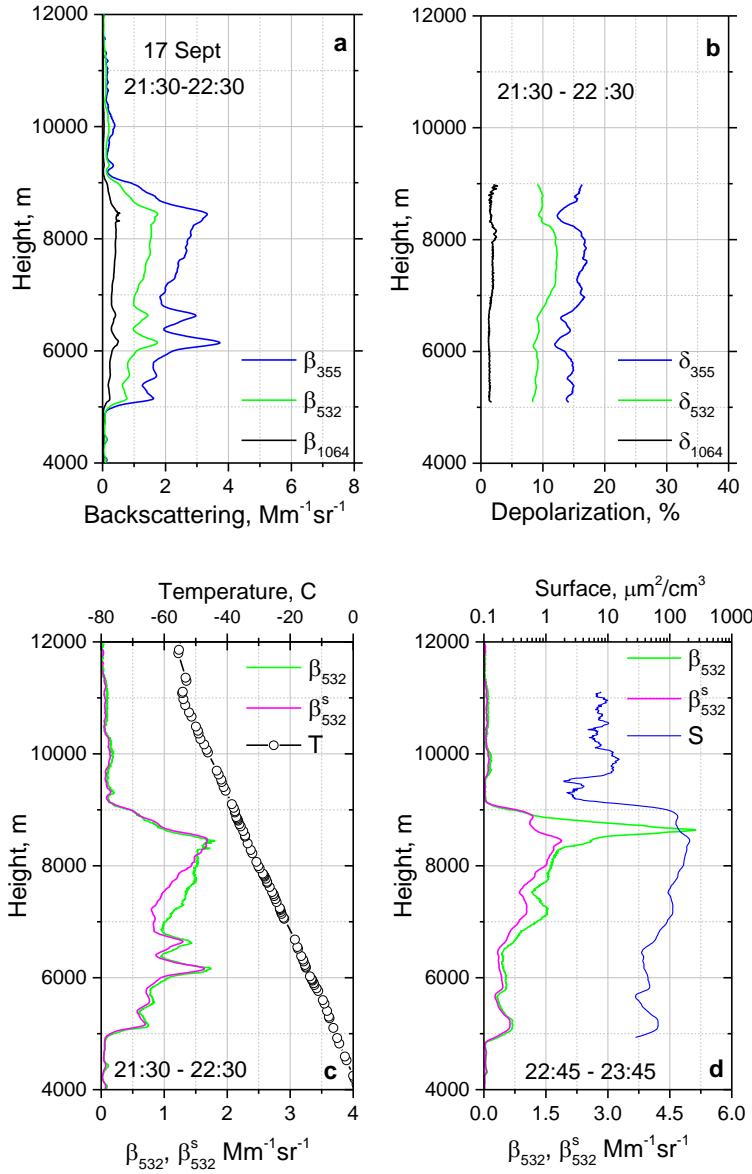

586 (a) Range corrected lidar signal at 1064 nm, (b) volume depolarization ratio at 1064 nm and (c)

587

588 fluorescence backscattering coefficient (in $10^{-4} \text{ Mm}^{-1} \text{sr}^{-1}$).



589



590
591
592
593
594
595
596
597
598
599

Fig.8. Formation of ice particles at 10-11 km height inside a smoke layer on 11-12 September 2020. Vertical profiles (a, d) of aerosol backscattering coefficients β_{355} , β_{532} , β_{1064} ; (b, e) the particle depolarization ratios δ_{355} , δ_{532} , δ_{1064} ; (c, f) backscattering coefficient β_{532} together with backscattering coefficient of smoke β_{532}^s , calculated from fluorescence backscattering β_F assuming $G_F=4.0\times 10^{-4}$. Plot (f) shows also the surface area concentration S of the smoke particles calculated from β_F by applying the respective conversion factor in Eq. (4). Results are given for the time intervals 23:00 – 00:30 UTC and 01:20 – 01:45 UTC: prior and during ice cloud formation at 10.5 km height. The temperature profile measured by the radiosonde at Herstmonceux is shown with open symbols in panel (c).

600
601
602
603 Fig.9. Formation of ice particles at heights above 8 km inside the smoke layer on 17-18 September
604 2020. (a) Range corrected lidar signal at 1064 nm, (b) volume depolarization ratio at 1064 nm
605 and (c) fluorescence backscattering coefficient (in $10^{-4} \text{ Mm}^{-1} \text{sr}^{-1}$).

613 Fig.10. Formation of ice particles at 8.5-8.6 km height inside a smoke layer on 17 September
 614 2020. Vertical profiles of (a) aerosol backscattering coefficients β_{355} , β_{532} , β_{1064} ; (b) the particle
 615 depolarization ratios δ_{355} , δ_{532} , δ_{1064} ; (c, d) backscattering coefficient β_{532} together with
 616 backscattering coefficient of smoke β_{532}^s , calculated from fluorescence backscattering β_F
 617 assuming $G_F=3.5\times 10^{-4}$. Results are given for the time intervals (a-c) 21:30 – 22:30 UTC and (d)
 618 22:45 – 23:45 UTC: prior and during ice formation at 8.5 km height. Plot (d) shows also the
 619 surface area concentration of the smoke particles calculated from β_F and by applying the
 620 respective conversion factor in Eq. (4). The temperature profile measured by the radiosonde at
 621 Herstmonceux is shown with open symbols in panel (c).
 622