

1 **Measurement report: Intra/interannual variability and source apportionment of**
2 **VOCs during 2018–2020 in Zhengzhou, Central China**

3 Shijie Yu ^{a,b}, Shenbo Wang^{b,c}, Ruixin Xu ^{b,c}, Dong Zhang ^{a,b}, Meng Zhang ^e, Fangcheng Su^{b,c},
4 Xuan Lu^{a,b}, Xiao Li^{b,c}, Ruiqin Zhang ^{b,c*}, Lingling Wang ^{d*}

5 *a. College of Chemistry, Zhengzhou University, Zhengzhou 450001, China*

6 *b. Institute of Environmental Sciences, Zhengzhou University, Zhengzhou*
7 *450001, China*

8 *c. School of Ecology and Environment, Zhengzhou University, Zhengzhou*
9 *450001, China*

10 *d. Environmental Monitoring Center of Henan Province, Zhengzhou 450000*

11 *e. Pingdingshan Ecological Environment Monitoring Center of Henan Province,*
12 *Pingdingshan 467000, China*

13

14 *Correspondence author. Research Institute of Environmental Science, College of
15 Environment and Ecology, Zhengzhou University High-tech Development Zone,
16 Zhengzhou, Henan, PR China, 450001

17 E-mail address: rqzhang@zzu.edu.cn

19 **Abstract:**

20 Ambient volatile organic compounds (VOCs) were measured continuously from
21 January 2018 to December 2020 at an urban site in Zhengzhou (China) to investigate
22 their characteristics, sources, atmospheric oxidation capacity (AOC), and chemical
23 reactivity. During the sampling period, the total concentration of observed VOCs was
24 $94.3 \pm 53.1 \mu\text{g/m}^3$ ppbv and alkanes were the major VOC species, accounting for 58%
25 of the total. During the sampling period, the interannual variation of VOCs gradually
26 reduced from $113.2 \pm 65.2 \mu\text{g/m}^3$ in 2018, $90.7 \pm 52.5 \mu\text{g/m}^3$ in 2019, and 79.1 ± 41.7
27 $\mu\text{g/m}^3$ in 2020. Ethane and propane were the top two most abundant species during
28 the three-year observation period. Results showed that the total AOC, dominated by
29 OH radical reactions, was $7.4 \times 10^7 \text{ molecules cm}^{-3} \text{ s}^{-1}$. Total OH reactivity was 45.3
30 s^{-1} and it was mainly contributed by NOx. The AOC and $\cdot\text{OH}$ reactivity both
31 exhibited well-defined seasonal and interannual patterns. Therefore, control strategies
32 should focus on the key species given their interannual and seasonal variations.
33 Meanwhile, diagnostic ratios of VOC species indicated that VOCs in Zhengzhou were
34 greatly affected by vehicle emissions and liquid petroleum gas/natural gas (LPG/NG).
35 Positive matrix factorization analysis identified six sources: industrial sources, solvent
36 use, vehicle emissions, LPG/NG, fuel burning, and biogenic sources. Vehicle
37 emissions and industrial sources made the largest contributions to VOC emission in
38 each of the three years. The proportion of the contributions of vehicle emissions and
39 LPG/NG increased with each passing year. However, the proportion of industrial and
40 solvent sources presented a decreasing trend, which reflects the remarkable effect of
41 control policies. The effect of VOCs on O₃ formation suggests that vehicle emissions
42 and solvent use remain key sources. Therefore, it is necessary to formulate effective
43 strategies for reducing ground-level O₃, and those sources mentioned above should be
44 strictly controlled by the regulatory authorities.

45 **1. Introduction**

46 In recent years, regional atmospheric pollution events have occurred frequently

47 around the world, with many areas suffering severe haze episodes in autumn and
48 winter, and O₃ pollution in summer (Uttamang et al., 2020; Li et al., 2019; Sadeghi et
49 al., 2021; Yan et al., 2018; Yadav et al., 2019; Zhang et al., 2018). Volatile organic
50 compounds (VOCs) are important precursors of secondary pollutants such as O₃ and
51 secondary organic aerosols, and the study of VOCs is a primary focus among the
52 scientific community and relevant governing bodies (Liu et al., 2019a; Song. et al.,
53 2019c; Xu et al., 2017).

54 VOCs encompass a large variety of species, and the chemical reactivity of each
55 species varies greatly. Thus, elucidation of VOC characteristics and active substance
56 identification represent research priorities. In many regions, alkanes represent the
57 dominant VOC species, while studies which do not report OVOCs usually identify
58 aromatics and alkenes as better contributors of ozone formation potential (OFP) (Li et
59 al., 2019b; Yan et al., 2017). Following a study in Wuhan (China), Yang et al. (2019)
60 suggested that alkanes were the dominant group, accounting for 42% of the total VOC
61 concentration, and that C₂-C₃ hydrocarbons were the dominant active substance.
62 Huang and Hsieh (2019) studied the maximum incremental reactivity (MIR) and
63 propylene-equivalent (PE) concentration, reporting that toluene was the largest
64 potential contributor to the OFP and that industrial emissions contributed nearly 60%
65 to the OFP. Given the complex composition of VOCs in the atmosphere, it is difficult
66 to determine the sources of VOCs. To apportion the source contributions of VOCs, it
67 is common practice to use receptor models that include positive matrix factorization
68 (PMF), chemical mass balance, and principal component analysis. In China, traffic
69 emissions are often the main source of VOCs, particularly in major metropolitan areas
70 (Li et al., 2019; Liu et al., 2019; Song, et al., 2019b). Moreover, industrial processes
71 and solvent use have remarkable influence on VOC emissions (Hui et al., 2019; Mo et
72 al., 2017). Biogenic sources also cannot be ignored owing to their high reactivity,
73 which can contribute 5%–20% of VOC emissions (Wu et al., 2016). In addition to the
74 study of VOC characteristics and source apportionment, analysis of atmospheric
75 oxidation characteristics is another area of hot topic. Variations in the atmospheric
76 oxidation capacity (AOC) not only affect the O₃ level in summer but also greatly

77 impact the generation of secondary particles throughout the entire year (Prinn, 2003).
78 However, most previous related studies in China focused on metropolitan areas such
79 as the Beijing–Tianjin–Hebei region (Gu et al., 2019b), Pearl River Delta region
80 (Zhang et al., 2015), and Yangtze River Delta region (Xu et al., 2017; Zheng et al.,
81 2020), while less research has been conducted in heavily polluted areas of the central
82 plains. Moreover, previous studies frequently used short-term monitoring data that
83 cannot fully reflect the comprehensive VOC pollution characteristics within a region.
84 Therefore, it is an urgent requirement that large-scale investigations be conducted on
85 the central plains of China.

86 As the political and cultural center of Henan Province, Zhengzhou had more than
87 10 million permanent residents and 4.0 million private vehicles in 2019 (Gu et al.,
88 2019a). This area is often confronted with severe haze episodes and photochemical
89 pollution due to emission of huge amounts of air pollutants (Li et al., 2020b).
90 Consequently, much research has been conducted on air pollution in Zhengzhou, but
91 many of the earlier studies focused only on particulate matter (Jiang et al., 2018;
92 Wang et al., 2019). Few studies have addressed VOCs in Zhengzhou, especially in
93 relation to longer sampling periods and seasonal measurements. Following adjustment
94 of control policies and optimization of the energy structure, recent mitigation
95 measures might have affected the characteristics and sources of VOCs. Therefore, it is
96 necessary to identify local VOC pollution characteristics on the basis of a long time
97 series of monitoring data, which could provide a reference for formulation of local air
98 pollution control measures.

99 To deepen the understanding of VOC pollution characteristics, chemical
100 reactivity, and source contribution, VOC data were measured in Zhengzhou using
101 online instruments from 2018–2020. The aims of this research were as follows: (1)
102 analyze the characteristics of VOC variation in Zhengzhou, including diurnal,
103 seasonal, and annual changes; (2) quantify the contribution of sources among
104 intra/interannual variations and identify the locations of VOC sources; (3)
105 parameterize the AOC and speciate OH reactivity; and (4) assess O₃ formation by
106 MIR and PE analysis.

107 **2. Methodology**

108 **2.1 Study site and measurements**

109 The observation period of this study was from January 2018 to December 2020.
110 The VOC samples were collected at an urban site (34°45'N, 113°41'E) by the
111 Department of Environmental Protection of Henan Province. The surrounding
112 environment represents a typical urban environment in Zhengzhou, comprising
113 commercial and residential districts with traffic sources (Fig. 1).

114 The VOC species were monitored continuously using an auto-GC system with a
115 1-h time resolution (AMA Instruments GmbH, Germany). Specific information
116 regarding this system is described in Zou et al. (2015). The 57 VOC species
117 (comprising 29 alkanes, 10 alkenes, 1 alkyne, and 17 aromatics) were calibrated using
118 the VOC Standards of the U.S. EPA PAMS mixture (Spectra Gases, USA) before
119 monitoring. During the observation period, zero and span gas checks (PAMS
120 calibration gases) were conducted monthly using the 5-point method, together with
121 adjustment of the retention time. Data quality control of this instrument is detailed in
122 our previous study (Ren et al., 2020). Overall, the correlation coefficient varied from
123 0.990–0.999, and the detection limits were in the range of 0.02–0.12 ppbv, as shown
124 in Table S1.

125 Meteorological data comprising atmospheric temperature (T), relative humidity,
126 ultraviolet (UV) radiation, precipitation (Pr), planetary boundary layer height, wind
127 speed (WS), and wind direction (WD) were obtained from the surface meteorological
128 station of the Henan monitoring center. Datasets of trace gases such as the hourly
129 concentrations of NO, NO₂, CO, O₃, SO₂, and fine particles (PM_{2.5}) were obtained
130 from the ambient air quality observation station of Yanchang, which is located
131 approximately 2 km from the VOC monitoring station.

132 **2.2 Positive matrix factorization (PMF) model**

133 In this study, analysis of the source of the VOCs was performed using the EPA

134 PMF 5.0 model, which is a receptor model used widely for source apportionment
135 (Gao et al., 2018; Yadav et al., 2019). Detailed information regarding this method is
136 available in the user manual (Norris et al., 2014) and other related literature (Song et
137 al., 2019a, 2019b). Two input files are required for PMF: the concentration values and
138 the uncertainty values of the individual VOC species. The uncertainty is calculated
139 using Eq. (1) when the species concentration value is higher than its method detection
140 limit (MDL), or using Eq. (2) when the concentration is less than or equal to the
141 MDL:

142
$$\text{Unc} = \sqrt{(\text{EF} \times c)^2 + (0.5 \times \text{MDL})^2}, \quad (1)$$

143
$$\text{Unc} = \frac{5}{6} \times \text{MDL}, \quad (2)$$

144 where c is the concentration of the individual VOC species, and EF is the error
145 fraction, which was set to 10% of the VOC concentration (Yuan et al., 2012).

146 Owing to the complexity of the chemical reactions, not all of the VOC species
147 were used in the PMF analysis. Based on previous work, this study adopted the
148 following principles for selection of the VOC species. (1) Species with more than
149 25% of data missing or below the MDLs were rejected, which follows the
150 methodology of previous studies (Zhou et al., 2019). (2) Species with short
151 atmospheric lifetimes were excluded because they rapidly react away in the
152 atmosphere. (3) Species that represent source tracers of emission sources were
153 retained (e.g., in the case of isoprene). Eventually, 26 VOC species were selected for
154 source apportionment analysis. VOC species were grouped into strong, weak and bad
155 according to their signal/noise ratio (S/N), and there were 22 and 4 species grouped
156 into strong and weak, respectively. It should be noted that the volumetric
157 concentration (ppbv) of the individual VOC species was converted to mass
158 concentration ($\mu\text{g m}^{-3}$) before being input into the PMF model.

159 Choosing the optimal number of factors in the model is important. The number
160 of factors depends on $Q_{\text{ture}}/Q_{\text{robust}}$ and $Q_{\text{ture}}/Q_{\text{expected}}$ (Q_{exp}). In theory, $Q_{\text{ture}}/Q_{\text{robust}} < 1.5$ and a value close to 1 is considered reasonable (Ulbrich et al.,
161 2009), and the rate of change of $Q_{\text{ture}}/Q_{\text{exp}}$ should be stable and the ratio should be close

163 to 1 (Baudic et al., 2016; Hui et al., 2019). In this study, the numbers of factors used
164 for the PMF analysis were tested from three to eight, and the optimum six-factor
165 solution with $Q/Q_{\text{exp}} = 0.94$, $(Q \text{ (ture)}/Q \text{ (robust)}) = 1.0$ was selected. Additionally,
166 Fpeak values from -1 to 1 with 0.1 intervals were used in the model, and Fpeak = -0.2
167 was established as the best solution (as shown in Fig. S1).

168 **2.3 Relative reactivity of VOCs**

169 To better understand the role of VOCs in the formation of tropospheric O_3 , the
170 OFP and the PE concentration were investigated to analyze the chemical reactivity of
171 the VOC species (Carter, 1994; Atkinson and Arey, 2003), and the detailed operation
172 is described in the supplementary materials (Text S1).

173 **2.4 Atmospheric oxidation capacity (AOC) and speciated oxidant reactivity**

174 The AOC is defined as the sum of the respective oxidation rates of the primary
175 pollutants (e.g., CO, CH_4 , and VOCs) by the oxidants (e.g., OH, NO_3 , and O_3), and it
176 can be calculated using Eq. (3) (Elshorbany et al., 2009; Xue et al., 2016):

177
$$AOC = \sum_i k_{Yi}[X][Y_i], \quad (3)$$

178 where $[X]$ and $[Y_i]$ are the number concentrations of molecule oxidant X and Y_i ,
179 respectively, and k_{Yi} is the bimolecular rate constant of molecule Y_i with oxidant X
180 (Zhu et al., 2020). In this study, the reduced substances only included 57 PAMS
181 (provided by Spectra Gases Inc., USA) and CO. The oxidants only included $\cdot OH$,
182 NO_3 , and O_3 radicals. The concentration OH and NO_3 radicals was estimated from
183 parameterization methods via Eqs. (4) and (5) (Carter, 1994; Warneke, 2004):

184
$$[OH] = a \times (J_{O1D})^\alpha \times (J_{NO2})^\beta \times \frac{b \times [NO_2] + 1}{c \times [NO_2]^2 + d \times [NO_2] + 1}, \quad (4)$$

185 where J_{O1D} and J_{NO2} are the measured photolysis frequency (s^{-1}) of O_3 and NO_2 ,
186 respectively. The values of a, b, c, α , and β are 4.1×10^9 , 140, 0.41, 1.7, 0.83, and 0.19,
187 respectively (Yang et al., 2019).

188 NO_3 concentration in the atmosphere is based on the steady-state assumption
189 (Liebmann et al., 2018):

190
$$[\text{NO}_3] = \frac{k_{\text{NO}_2} \times [\text{NO}_2] \times [\text{O}_3]}{J_{\text{NO}_3} + J_{\text{NO}+\text{NO}_3} \times [\text{NO}] + \sum_i k_{\text{NO}_3+\text{VOC}_i} \times [\text{VOC}_i]}, \quad (5)$$

191 where J_{NO_3} is the measured photolysis frequency (s^{-1}) of NO_3 . The rate coefficients for
 192 $\text{NO}_2\text{-O}_3$ ($k_{\text{NO}_2+\text{O}_3}$) and $\text{NO}\text{-NO}_3$ ($k_{\text{NO}+\text{NO}_3}$) were obtained from Atkinson et al. (2004).
 193 Detailed descriptions of the calculation processes of OH and NO_3 are available in
 194 Yang et al. (2021).

195 Additionally, OH reactivity is another indicator of atmospheric oxidation. It is
 196 the inverse of the OH lifetime, and it can be defined as the product of the rate
 197 coefficients and the concentrations of the reactants with OH. Thus, OH reactivity can
 198 be calculated using Eq. (6) (Mao et al., 2010):

199
$$\text{OH reactivity} = \sum k_{\text{OH}+\text{VOC}_i} \times [\text{VOC}_i] + k_{\text{OH}+\text{CO}} \times [\text{CO}] + k_{\text{OH}+\text{NO}} \times [\text{NO}] +$$

 200
$$k_{\text{OH}+\text{NO}_2} \times [\text{NO}_2] + k_{\text{OH}+\text{SO}_2} \times [\text{SO}_2] + k_{\text{OH}+\text{O}_3} \times [\text{O}_3] + k_{\text{OH}+\text{other}} \times$$

 201 [other], $\quad (6)$

202 where $[X_i]$ is the concentration of the species (e.g., CO, NOx, SO_2 , and VOCs), and
 203 the rate coefficient k_{OH} (unit: $\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$) represents the corresponding
 204 reaction rate coefficient.

205 **2.5 Conditional probability function (CPF) analysis**

206 The conditional probability function (CPF) was developed to identify potential
 207 source contributions using the PMF source contribution solution, coupled with WD
 208 (Guo et al., 2011; Hsu et al., 2018; Wu et al., 2016). The CPF is defined as follows:

209
$$CPF = \frac{m_{\Delta\theta}}{n_{\Delta\theta}}, \quad (7)$$

210 where $m_{\Delta\theta}$ is the number of appearances from wind sector $\Delta\theta$ (each sector is 22.5°)
 211 that exceed the concentration threshold (75th percentile of each source contribution),
 212 and $n_{\Delta\theta}$ is the total number of occurrences in the same wind sector. Weak winds (WS
 213 $< 1.5 \text{ m s}^{-1}$) were excluded from the calculation because of the difficulty in defining
 214 WD (Zheng et al., 2018).

215 **3. Results and discussion**

216 **3.1 Characteristics of VOCs in Zhengzhou**

217 **3.1.1 Concentrations and compositions of VOCs**

218 The average ambient VOC concentrations and chemical species measured in
219 Zhengzhou during the study period are shown in Table S2. And Table S3 presented
220 the comparison of VOCs between this study and other studies. The annual average
221 concentration of VOCs was $94.3 \pm 53.1 \text{ } \mu\text{g/m}^3$ ($38.2 \pm 15.6 \text{ ppbv}$), i.e., close to the
222 concentration reported in Langfang (33.4 ppbv) (Song et al., 2019a) and Nanjing
223 (34.4 ppbv) (Shao, et al. 2016), lower than that found in Chengdu (41.8 ppbv) (Song
224 et al. 2018), Guangzhou (42.7 ppbv) (Zou et al., 2015), and higher than that reported
225 in Tianjin (28.7 ppbv) (Liu et al. 2016). Among the observed species, alkanes were
226 the major component of the VOCs with mean concentration of $54.7 \pm 37.9 \text{ } \mu\text{g/m}^3$,
227 accounting for 58% of the total, followed by aromatics (25%), alkenes (13%) and
228 alkynes (3%). Many previous related studies also reported that alkanes represent the
229 dominant group (Fu et al., 2020; Gu et al., 2020), similar to the situation found in
230 Zhengzhou. For the record, OVOCs were not simultaneously measured in this study
231 due to the limitations on available instrumentation. Thus, those investigations apply
232 only to studies which failed to measure OVOCs.

233 To clarify the characteristics of VOC emission sources, the concentrations of the
234 20 most abundant species, accounting for 83% of the compound classes monitored in
235 the present study, are listed in Table 1. During the sampling period (2018–2020), the
236 most important VOC species in Zhengzhou were ethane ($11.7 \pm 6.8 \text{ } \mu\text{g/m}^3$), propane
237 ($8.2 \pm 4.9 \text{ } \mu\text{g/m}^3$), toluene ($6.5 \pm 4.5 \text{ } \mu\text{g/m}^3$), i-pentane ($6.1 \pm 10.4 \text{ } \mu\text{g/m}^3$),
238 n-butane ($5.8 \pm 4.1 \text{ } \mu\text{g/m}^3$) and ethene ($5.6 \pm 5.3 \text{ } \mu\text{g/m}^3$). Generally, C₂-C₅ species are
239 closely related to vehicular emissions, coal burning, and liquid petroleum gas (LPG)
240 (Hui et al., 2021; Zhang, et al. 2020). Among the most abundant 20 VOC species, half
241 were alkanes, accounting for 79% of the total alkanes measured. The C₂-C₃ alkanes
242 mainly originate from LPG, while C₄-C₅ alkanes are considered tracers of vehicle

243 emissions (Fan et al., 2021). The most abundant alkene species were ethylene,
244 propene, isoprene, and propene, representing 72% of the total alkanes. The C₂-C₃
245 alkenes are mainly derived from vehicle emissions and LPG (Zhang et al., 2015),
246 whereas isoprene is a typical biogenic tracer (Maji et al., 2020). And isoprene
247 emissions have also been reported from biomass burning e.g. from smouldering rice
248 straw fires (Kumar et al., 2021). In the 20 most abundant VOC species, there were 6
249 aromatics: toluene, m p-xylene, benzene, ethylbenzene, o-xylene and
250 p-diethylbenzene. These aromatics are the most frequently observed aromatic
251 compounds in urban areas, originating from vehicle emissions, industrial processes,
252 solvent use, and combustion sources (Hui et al., 2019).

253 **3.1.2 Interannual variation of VOCs**

254 The interannual average concentrations and contributions of VOCs during
255 2018–2020 are presented in Table S2. The interannual variation of the VOCs declined
256 gradually as follows: 113.2±65.2 $\mu\text{g}/\text{m}^3$ in 2018, 90.7±52.5 $\mu\text{g}/\text{m}^3$ in 2019, and
257 79.1±41.7 $\mu\text{g}/\text{m}^3$ in 2020. It should be mentioned is the differences in these yearly
258 averages are statistically significant considering the large standard deviations
259 indicated. The trend of decrease of VOCs could be attributed to increasingly stringent
260 policies regarding emission reduction and the influence of the COVID-19 lockdown
261 on air quality in 2020 (Wang et al., 2021a).

262 The concentrations of the 20 most abundant species are listed in Table 1. Ethane
263 and propane were the top two most abundant species in each of the three years,
264 indicating that LPG and vehicular emissions had substantial impact on the area
265 surrounding the sampling site (Yadav et al., 2019). The C₄-C₅ alkanes and some
266 aromatics represent the main tracers of motor vehicle emissions (Fan et al., 2021).
267 However, the quantities of those species were diminished in 2020, which might
268 represent a consequence of the COVID-19 epidemic. As a tracer of coal burning,
269 acetylene decreased gradually from 4.8±4.9 $\mu\text{g}/\text{m}^3$ in 2018 to 0.9±1 $\mu\text{g}/\text{m}^3$ in 2020.

270 **3.1.3 Seasonal variations**

271 As plotted in Fig. S2 and listed in Table S4, the monthly mean mixing ratios of
272 the VOCs and compounds were investigated. The VOCs showed clear seasonal
273 dependence with highest concentration in winter ($116.5 \mu\text{g}/\text{m}^3$) followed by spring
274 ($86.4 \mu\text{g}/\text{m}^3$), autumn ($86.1 \mu\text{g}/\text{m}^3$), and summer ($74.2 \mu\text{g}/\text{m}^3$). Meanwhile, the
275 seasonal variation of the group of alkanes, alkenes, alkynes, and aromatics was
276 similar to that of the VOCs. Additionally, the monthly mean mixing ratios of the
277 dominant and tracer species are plotted in Fig. 2. The results show that almost all
278 VOCs had clear seasonal dependence, with highest concentrations in winter and
279 lowest concentrations in summer. However, the mixing ratio of isoprene was highest
280 ($2.46 \mu\text{g}/\text{m}^3$) in July and lowest ($0.33 \mu\text{g}/\text{m}^3$) in December. As a tracer of biogenic
281 sources, isoprene showed positive correlation with T ($R^2 = 0.61, p < 0.01$). In addition
282 to biogenic emissions, the seasonal variation of VOCs was mainly influenced by
283 changes of anthropogenic sources. As a northern city of China, Zhengzhou emits
284 substantial quantities of pollutants during the heating season in winter (Wang et al.,
285 2019). The higher concentrations of VOCs and tracers (such as acetylene and
286 aromatics) in winter might be derived from coal combustion (Zhang et al., 2020).

287 Seasonal variations in VOC concentrations are associated with several factors
288 such as photochemical activities and meteorological conditions. In summer, VOCs are
289 consumed under the condition of high T, strong UV radiation, and high concentration
290 of OH radicals (Huang et al., 2019). In winter, the high level of VOCs can often be
291 attributed to a lower boundary layer and calm weather conditions (Hui et al., 2019).
292 Additionally, the transport of pollutants from the Beijing–Tianjin–Hebei region
293 cannot be ignored because of the north wind that prevails in Zhengzhou in winter. The
294 seasonal variation of VOCs in several cities was investigated and the variation trend
295 of VOC concentrations in most studies were found similar to that observed in
296 Zhengzhou (Liu et al., 2019; Yadav et al., 2019).

297 **3.1.4 Diurnal variations**

298 The diurnal variations in VOCs, trace gases (NO_2 and O_3), and meteorological
299 parameters (T, relative humidity, WS, and UV) are shown in Fig. S3. The VOCs
300 present negative correlation with O_3 ($R^2 = -0.82$, $p < 0.01$), whereas the diurnal
301 variation of VOCs shows moderate consistency with the variation of NO_2 ($R^2 = 0.62$,
302 $p < 0.01$). The high values of VOCs generally appeared in the morning with low O_3
303 concentrations. The peak in the morning was attributed to vehicle emission (Li et al.,
304 2019b). Additionally, local meteorological and atmospheric processes also play
305 important roles in the diurnal variation of VOCs in ambient air. In the early morning,
306 the concentrations of VOCs remained high owing to stable atmospheric conditions
307 and a shallow boundary layer height (Hui et al., 2020). The concentration of VOCs
308 declined to the lowest value at 15:00 China Standard Time (CST), when O_3 reached a
309 maximum level with the production and consumption rates of O_3 in equilibrium. In
310 the afternoon, higher T and increased UV radiation intensity led to consumption of
311 VOCs. Moreover, higher WS also accelerated the diffusion of VOCs. Subsequently,
312 VOC concentrations gradually accumulated with the arrival of the late traffic peak,
313 and remained at a high level throughout the night. It should be noted that VOC
314 concentrations at night were generally higher than those during the day. Previous
315 studies have suggested that VOCs can be oxidized by O_3 , OH radicals, and NO_3
316 radicals (Atkinson and Arey, 2003). During the daytime, reactions with OH radicals
317 and O_3 are the most important chemical reactions for VOCs, whereas the reactions
318 with NO_3 radicals and O_3 are the main sedimentation reactions at night.
319 Concentrations of VOCs were generally higher at night because the chemical activity
320 of OH radicals is much higher than that of NO_3 radicals (Carter, 2010).

321 The mean diurnal variations of high-concentration and tracer VOCs were
322 investigated, as shown in Fig. 3. As tracers of motor vehicle emissions (Zheng et al.,
323 2018), i-pentane and n-pentane showed remarkable peaks at 08:00 CST that are
324 considered to reflect vehicle emissions. Furthermore, benzene, toluene, ethylbenzene,
325 xylene, and the C₂-C₄ alkanes also presented similar diurnal variation characteristics

326 that are considered to represent the substantial effect of motor vehicles. However, the
327 mixing ratio of isoprene showed higher values in the afternoon and had a trend similar
328 to that of T. The elevated values of isoprene in the afternoon indicated substantial
329 emissions from biogenic sources.

330 **3.2 Diagnostic ratios**

331 Some VOC species are commonly used as indicators of emission sources. To
332 characterize the seasonal differences in the contributions of the various sources, this
333 study adopted the benzene/toluene (B/T) ratio and the i-pentane/n-pentane ratio as the
334 preferred metrics.

335 The B/T ratio can be used to distinguish potential sources such as traffic
336 emissions, coal+biomass combustion, and solvent use. The diagnostic ratios varied
337 according to the emission sources (i.e., below 0.20 for solvent use, 0.5 for traffic
338 sources, 1.5–2.2 for coal combustion, and 2.5 for biomass burning) (Huang et al.,
339 2019; Li et al., 2019a). As shown in Fig. S4, the highest value of the B/T ratio was
340 0.55 in winter, suggesting that traffic emissions affected the ambient atmosphere. The
341 ratios of 0.31, 0.27, and 0.31 in spring, summer, and autumn, respectively, indicate
342 that aromatics were more likely derived from the mixed sources of solvent use and
343 vehicle emissions during these seasons. As a transportation hub, Zhengzhou has a
344 large number of motor vehicles (Gu et al., 2019a). Therefore, regional controls on
345 motor vehicle use should be strengthened.

346 The i-pentane/n-pentane ratio was also investigated. Generally, i-pentane and
347 n-pentane have similar reaction rates with OH radicals, and the ratio of this pair of
348 species is indicative of different sources. The i-pentane/n-pentane ratio associated
349 with coal combustion, vehicle emissions, and fuel evaporation is generally 0.56–0.80,
350 ~ 2.2, and 3.8, respectively (Huang et al., 2019; Li et al., 2019a). The highest
351 i-pentane/n-pentane ratio was found in summer (2.79), indicating strong impact from
352 traffic sources. The ratio was 1.88 in spring and 1.96 in autumn, suggesting that most
353 VOCs originated from the mixed sources of vehicle emissions and coal combustion.

354 Notably, the average ratio in winter (1.55) was lower than that in the other three
355 seasons, indicating stronger contribution from coal burning in the heating season.

356 **3.3 Source identification**

357 In this study, six sources were identified using the PMF model: industrial sources,
358 solvent use, vehicle emissions, LPG/natural gas (NG), fuel burning, and biogenic
359 sources. The source profiles of the VOCs during the sampling period are presented in
360 Fig. 4.

361 **3.3.1 Factor 1: industrial sources**

362 Factor 1 was characterized by high loadings on ethylene (60.6%), ethane (31.6%),
363 propylene (25.8%), and propane (24.0%). Ethene and propylene are the first and
364 second most abundant industrially produced organic compounds worldwide,
365 respectively (Eckert et al., 2014). Additionally, this factor was also dominated by
366 aromatics such as styrene (76.0%), toluene (34.3%), and ethylbenzene (28.1%), which
367 are typical tracers of industrial sources. Meanwhile, this source had correlation with
368 gas tracers of NO₂, SO₂, and CO ($R^2 = 0.47, 0.36$, and 0.49, respectively). CO and
369 NO₂ are mainly gases from combustions sources strongly influenced by urban
370 activities such as traffic and domestic heating. Instead, SO₂ is generally mainly due to
371 industrial sources or combustion of heavy oils and coals. Therefore, source 1 was
372 assigned to industrial sources.

373 The CPF plots indicated the dominant source directions as northeast and
374 southeast, which correspond to industrial estates (as shown in Fig. 5). Moreover, the
375 highest VOC concentration from industrial sources was observed at 10:00 CST,
376 probably attributable to increased industrial activities during daytime.

377 **3.3.2 Factor 2: solvent use**

378 Factor 2 was characterized by high levels of n-hexane (60.4%), n-octane (26.3%),
379 methyl cyclohexane (20.4%), o-xylene (79.6%), m/p-xylene (61.7%), p-

380 diethylbenzene (84.0%), o-xylene (79.0%), m-ethyl toluene (57.8%), o-ethyl toluene
381 (29.2%), ethylbenzene (51.1%), and toluene (20.8%). These compounds are major
382 components emitted through the use of various solvents or industrial processes (Zhou
383 et al. 2019, Wang et al. 2021). However, there were almost no tracers of ethane,
384 ethene, acetylene, and benzene related to combustion sources, and this source
385 appeared to exhibit poor correlation with gas tracers ($R^2 < 0.10$). Therefore, source 2
386 was identified as solvent use.

387 The CPF plots of this factor suggested southeast was the dominant source
388 direction, possibly reflecting the presence of the large manufacturers of automobiles
389 in the southeastern urban area.

390 3.3.3 Factor 3: vehicle emissions

391 Factor 3 was identified by high percentages of C2-C6 alkanes (i.e., ethane
392 (37.8%), propane (46.9%), iso-butane (40.9%), n-butane (38.5%), n-pentane (26.0%),
393 and i-pentane (31.6%)), C2-C4 alkanes (i.e., ethylene (31.4%), propylene (38.4%),
394 and 1-butene (67.4%)), and C6-C8 aromatics (i.e., benzene (21.4%), toluene (30.7%),
395 and m/p-xylene (25.6%)). These components are considered typical products of
396 incomplete combustion processes (Baudic et al., 2016; Gaimoz et al., 2011; Liu et al.,
397 2008a; Song et al., 2018). It is reported that i-pentane usually originates from gasoline
398 evaporation (Mo et al., 2017), and that 2-methylpentane and 3-methylpentane are
399 tracers of the emissions of gasoline-powered vehicles (Tsai et al., 2003; Liu et al.,
400 2008; Song et al., 2018). The T/B ratio was 2.0 in this profile, which further confirms
401 the effect of vehicular emissions (Yao et al., 2021). Moreover, the source correlated
402 significantly with CO and NO₂ ($p < 0.01$), but not with SO₂ ($p > 0.05$); therefore,
403 source 3 was identified as vehicle emissions.

404 Factor 3 showed larger CPF values when the wind came from the north, possibly
405 because the site is adjacent to Jinshui Road, which is the main road in Zhengzhou.
406 The diurnal pattern of the traffic source was characterized by two peaks: one in the
407 morning and the other in the evening, consistent with the relative strength of local

408 traffic flow.

409 **3.3.4 Factor 4: LPG/NG**

410 Factor 4 was dominated by strong presence of ethane (16.3%), propane (14.6%),
411 iso-butane (38.9%), n-butane (44.4%), n-pentane (60.3%), and i-pentane (66.2%),
412 which can also be released via fuel evaporation (gasoline and LPG/NG) (Zhang et al.,
413 2019). Pentanes are the most abundant VOC species associated with gasoline
414 evaporation (Liu et al., 2008; Zhang et al., 2013; Shen et al., 2018), and butanes are
415 reported as tracers of LPG (McCarthy et al., 2013). In particular, the aromatics of this
416 source were very low. Similar to factor 3, the source did not correlate with SO_2 ($p >$
417 0.05), but had positive correlation with both CO and NO_2 ($p < 0.01$); therefore, this
418 source was considered as LPG/NG.

419 The dependence of factor 4 on WD was not as significant as for other sources. It
420 is related to compact residential areas with greater human activity. There are
421 residential areas around the monitoring site, and LPG/NG leakage might have
422 occurred in the process of daily life.

423 **3.3.5 Factor 5: fuel burning**

424 Factor 5 was distinguished by substantial amounts of acetylene (72%), which is a
425 marker of combustion sources (Hui et al., 2021). Additionally, the source was also
426 characterized by considerable amounts of benzene and $\text{C}_2\text{-C}_3$ hydrocarbons, which are
427 representative species of incomplete combustion processes (Zheng et al., 2021).
428 Meanwhile, the independent tracers (i.e., NO_2 , SO_2 , and CO) exhibited correlation
429 with this factor ($R^2 > 0.3$, $p < 0.01$); therefore, source 5 was considered to be fuel
430 burning.

431 Factor 5 displayed high CPF values when the wind was from east. This is
432 possibly related to the heating companies located within 1.0 km to the east of the site.
433 The diurnal variation of this factor was characterized by apparent increase at night,
434 which could be related to the accumulation of pollutants associated with nighttime

435 heating.

436 **3.3.6 Factor 6: biogenic sources**

437 Factor 6 exhibited a significantly high composition of isoprene, which is mainly
438 produced by vegetation through photosynthesis (Song et al., 2019a). Accordingly,
439 source 6 was labeled as biogenic sources.

440 The CPF plots indicated that this factor mainly originated from the west with
441 conditional probability values of approximately 0.44. It is mainly affected by
442 Zijinshan Park, which is located ~1 km to the west of the monitoring site.
443 Additionally, the diurnal pattern of the biogenic sources showed obvious T
444 dependence, with the highest concentration at midday that could be associated with
445 photosynthetic activity.

446 **3.3.7 Comparison between the composite source profiles and the PMF factors**

447 As shown in Fig. S5, the source profiles derived from the PMF analysis were
448 compared with their sources attributed from the source profiles. The data of the source
449 profiles were derived from a local tunnel experiment and a review of the most recent
450 literature. The source profiles for solvent use correlated most strongly between the
451 two methods ($R = 0.84$). A study by Jin et al. (2022) identified that low-carbon
452 alkanes (e.g., ethane, propane, and isopentane), alkenes (e.g., ethylene, propene, and
453 1-butene), and aromatics (e.g., benzene, toluene, and m/p-xylene) were the main
454 groups in the tunnel study, and that vehicle emissions agreed well between this factor
455 and the source profiles ($R = 0.59$). Different profiles of combustion sources were
456 investigated, and the correlation between the results of NG combustion and the PMF
457 factor was strongest ($R = 0.57$). The above results are to be expected because
458 Zhengzhou has gradually phased out coal-fired boilers and replaced them with gas
459 boilers in recent years. As for industrial sources, the correlation between the two
460 methods was 0.43. The C₂-C₃ hydrocarbons accounted for a high proportion in factor
461 1, whereas the content of aromatics was lower. Industrial production of nonmetallic

462 mineral products in Zhengzhou is reasonably well developed, which leads to large
463 emissions of ethane and propane. The main contributing source of aromatic
464 hydrocarbons is rubber and plastics. However, the scale of the enterprises involved in
465 their production is far lower than that in the Pearl River Delta; consequently, the
466 emission of aromatic hydrocarbons is lower in Zhengzhou.

467 **3.4 VOC source contributions**

468 **3.4.1 Interannual variation**

469 The concentration contributions of each VOC source during 2018–2020 are
470 shown in Fig. 6. In 2018, vehicular emissions were the largest contributor to VOC
471 mixing ratios (32%), followed by industrial sources (21%), solvent use (19%), and
472 LPG/NG (15%). The contribution of fuel burning and biogenic sources accounted for
473 9% and 4% of the total VOC concentration, respectively. As for 2019, vehicle
474 emissions made the largest contribution (38%) to atmospheric VOCs. The second
475 most significant source was industrial sources, accounting for 18% of the total. The
476 contribution of solvent use, LPG/NG, fuel burning, and biogenic sources to
477 atmospheric VOCs was 17%, 15%, 11%, and 2%, respectively, in 2019. Vehicular
478 emissions, LPG/NG, industrial sources, solvent use, fuel burning, and biogenic
479 sources accounted for 39%, 18%, 17%, 15%, 9%, and 3%, respectively, in 2020

480 In summary, vehicle emissions and industrial sources made the largest
481 contributions in all three years. Moreover, the proportions of the contributions of
482 vehicle emissions and LPG/NG have increased with each passing year. As a
483 transportation hub city, the number of motor vehicles in Zhengzhou has maintained a
484 rate of growth of 0.4 million annually during the past five years, and the total number
485 of vehicles exceeded 4.5 million in 2020 (Gu et al., 2019a). Thus, vehicle emissions
486 represent an important source of ambient VOCs in Zhengzhou. Both LPG and NG are
487 used widely in residential life, industrial production, and motor vehicles. In terms of
488 the actual situation of the monitoring site, residential emissions might represent the
489 main source of LPG/NG. With adjustment of the energy structure, most industrial

490 enterprises and taxis in Zhengzhou now use NG as energy or fuel. It should be noted
491 that the proportion of the contributions from industrial and solvent sources has
492 presented an annual downward trend. In recent years, Zhengzhou has implemented
493 special actions designed to reduce VOC emissions, focusing on the control of
494 industrial and scattered small-scale pollution enterprises. According to the results
495 obtained using the PMF model, it is speculated that the effect of such policy control
496 has been remarkable.

497 **3.4.2 Seasonal variation**

498 Owing to different meteorological conditions and emission strengths, the source
499 contributions vary seasonally. As shown in Fig. 7, the seasonal variation of biogenic
500 emissions was substantial, with the highest contribution in summer (7%) and the
501 lowest contribution in winter (<1%). This might reflect both T and UV intensity.
502 Conversely, the contributions from fuel burning were larger in winter and lower in
503 summer. Fuel burning accounted for a larger proportion of emissions in winter (17%)
504 than in summer (3%). Meanwhile, industrial emissions contributed a high percentage
505 of VOCs in spring (22%), whereas the contributions in the other three seasons were
506 comparable. Additionally, motor vehicle emissions showed no obvious seasonal
507 characteristics, and the contribution to atmospheric VOCs in each of the four seasons
508 exceeded 30% of the total, indicating that motor vehicles have considerable impact on
509 the air quality of Zhengzhou.

510 **3.4.3 Comparison with other studies**

511 **3.4.3.1 Comparison with emission inventory (EI) studies**

512 This study compared the annual average relative contributions of different
513 sources with results from published emission inventory (EI) studies. In the
514 anthropogenic VOC emission inventories established by Lu et al. (2020), VOC
515 sources were classified into eight categories: stationary combustion, on-road mobile
516 sources, non-road mobile sources, industrial processes, solvent use sources, fuel oil

storage and transportation, biomass burning, and others. Vehicle emissions represented the most abundant source of anthropogenic VOCs in both the EI and the PMF analysis, accounting for 29.7% and 36.3% of the total, respectively. The differences observed between the EI and PMF results were primarily because most of the vehicles considered were in urban areas. The contributions of industrial sources and of solvent use sources represented the second and third largest, respectively, in both the EI and the PMF results. However, the overall contribution of those two sources obtained from the PMF results was lower than that derived from the EI analysis. The relative contribution of combustion sources resolved from the PMF analysis was higher than that obtained from the EI results, accounting for 9.5% and 4.3%, respectively. Such large differences occurred primarily because of uncertainties in the activity data obtained from statistical information. Residential energy consumption and emissions were poorly recorded in comparison with other sources (Chen et al., 2016; Tao et al., 2018), leading to higher uncertainties in the related estimations of such emissions. Thus, it is necessary to estimate the emissions of residential fossil fuel combustion through scientific approaches.

3.4.3.2 Comparison with other PMF studies

The source contributions determined in this research were also compared with the results from other studies. It can be seen from Table 2 that the source apportionment of VOCs in this study was broadly within the values reported for other Chinese cities (Huang et al., 2019; Hui et al., 2018; Li et al., 2020c; Mo et al., 2017; Yan et al., 2017). It was found that traffic emissions represent the main source of VOCs in Zhengzhou and the other five cities, indicating that vehicle emissions have considerable impact on the concentration of VOCs in the urban atmosphere. It should be noted that the contribution of each source determined in this study was very similar to that reported for Wuhan (Hui et al., 2018). Given that Zhengzhou and Wuhan are both important transportation hub cities in central China, this result is in line with expectation.

545 **3.5 AOC**

546 The AOC during the sampling periods was quantified, as shown in Fig. 8. The
547 calculated averaged value of total AOC was 7.4×10^7 molecules $\text{cm}^{-3} \text{ s}^{-1}$, comparable
548 with values reported for a suburban site between Beijing and Tianjin (Yang et al.,
549 2020b), but substantially higher than observed in Shanghai (Zhu et al., 2020), Hong
550 Kong (Xue et al., 2016), Chile (Elshorbany et al., 2009), and Berlin (Geyer et al.,
551 2001). Among the AOC categories, OH exhibited the highest average concentration
552 (7.0×10^7 molecules $\text{cm}^{-3} \text{ s}^{-1}$), accounting for 95% of the total AOC, followed by O_3
553 (3.4×10^6 molecules $\text{cm}^{-3} \text{ s}^{-1}$) and NO_3 (1.1×10^5 molecules $\text{cm}^{-3} \text{ s}^{-1}$), which
554 contributed 4% of the total AOC. Thus, OH is the main contributor of atmospheric
555 oxidation in Zhengzhou, similar to the results reported for other regions by other
556 studies (Yang et al., 2021; Zhu et al., 2020).

557 During 2018–2020, the total AOC presented a decreasing trend annually (as
558 shown in Fig. 8), with mean values of 8.0, 6.4, and 6.2×10^7 molecules $\text{cm}^{-3} \text{ s}^{-1}$,
559 respectively. As expected, OH was the predominant oxidant in each of the three years,
560 accounting for 95%, 95%, and 97% of the total AOC, respectively. The primary
561 pollutants (e.g., CO, CH_4 , and VOCs) decreased significantly in 2020 owing to large
562 reductions in economic activity and the associated emissions during the COVID-19
563 lockdown. However, the average OH concentration was highest in 2020 (4.8×10^7
564 molecules cm^{-3}), far higher than that in either of the two previous years. Thus, the
565 level of atmospheric oxidation needs additional attention. It should be noted that
566 oxidation of the atmosphere did not decrease or even increase significantly during the
567 epidemic, which has been reported by many previous studies (Wang et al., 2021b).

568 As shown in Fig. S7, the mean AOC values showed pronounced seasonal
569 variation. The highest total AOC value was detected in summer (7.5×10^7 molecules
570 $\text{cm}^{-3} \text{ s}^{-1}$), followed by winter (6.4×10^7 molecules $\text{cm}^{-3} \text{ s}^{-1}$), spring (5.8×10^7
571 molecules $\text{cm}^{-3} \text{ s}^{-1}$), and autumn (5.7×10^7 molecules $\text{cm}^{-3} \text{ s}^{-1}$). The concentration of
572 OH in summer was significantly higher than that in the other seasons, which can be
573 ascribed to the relatively favorable meteorological conditions. Meanwhile, high

574 concentrations of isoprene were observed in summer, and its high reaction rate
575 coefficients with oxidants (e.g., OH, NO₃, and O₃) revealed a highly oxidative
576 environment during the summer campaign in Zhengzhou. This seasonal pattern of the
577 AOC is similar to that found in other studies conducted at the national level, and in
578 urban and suburban environments (Yang et al., 2021; Li et al., 2020a).

579 **3.6 Atmospheric environmental implications**

580 **3.6.1 OH reactivity of measured species**

581 The calculated OH reactivity was categorized into SO₂, NO₂, NO, O₃, CO, and
582 VOCs, as shown in Fig. 9. During the sampling period, the average value of total OH
583 reactivity was 45.3 s⁻¹. Generally, the OH reactivity assessed in this study was much
584 higher than that determined in Shanghai (Tan et al., 2019; Zhu et al., 2020),
585 Chongqing (Tan et al., 2019), and New York (Ren et al., 2006), but comparable with
586 or lower than that reported in Xianghe (Yang et al., 2020a) and Backgarden (Lou et al.,
587 2010). In Zhengzhou, NO₂ made the largest contribution to total OH reactivity (54%),
588 followed by VOCs (17%), NO (16%), CO (11%), SO₂ (3%), and O₃ (1%). Similar
589 results were reported by previous studies conducted in other regions (Yang et al.,
590 2021). It should be noted that this study calculated only the OH reactivity of the
591 measured species, i.e., the impact of unmeasured species, such as secondary products
592 (oxygenated VOCs and nitrates produced by photochemical reactions) and
593 monoterpenes, were not considered. Previous studies have shown that both undetected
594 primary emissions and unmeasured secondary products could contribute to missing
595 reactivity (Yang et al., 2016). Therefore, the value of OH reactivity determined in this
596 study was underestimated to a certain extent.

597 OVOCs play an important role to influence the AOC via OH-initiated
598 degradation. A previous review suggested that missing OH reactivity has often been
599 observed, and the difference compared the measured and calculated was attributed to
600 a lack of measurement data for OVOCs (Yang et al., 2016). Steiner et al. (2008) found
601 that OVOCs accounted for 30–50% of the modelled urban VOC reactivity by using

602 the regional Community Multiscale Air Quality model (CMAQ). In another urban
603 study, OVOCs were found to contribute between 11–24% during summertime in
604 Houston (Mao et al., 2010b). In the CareBeijing-2006 and PRIDE-PRD campaigns,
605 Lou et al., (2010) and lu et al., (2013) reported the significant contributions of
606 OVOCs to OH reactivity based on model simulations. Since OVOCs were not
607 simultaneously measured in four Chinese megacities, the OVOC contributions were
608 simulated with a box model. And OVOCs explained between 20% and 23% to the
609 total OH reactivity (Tan et al., 2019). In summary, OVOCs behaved as a major
610 contributor to the total OH reactivity.

611 Table S5 shown the OH reactivity towards the total VOCs and the comparison
612 with other studies. The OH reactivity of the total VOCs was 6.7 s^{-1} , i.e., much lower
613 than that reported for Heshan (13.6 s^{-1}) (Yang et al., 2017) and Beijing (8.3 s^{-1})
614 (Yang et al., 2021), but close to that found in Guangzhou (6.4 s^{-1}) and Chongqing (6.8 s^{-1})
615 (Tan et al., 2019) and higher than that determined in Shanghai (3.2 s^{-1}) (Tan et al.,
616 2019). The detailed contributions of each VOC group to total OH reactivity are
617 presented in Tables S6 and S7. The contribution of alkenes to OH reactivity was
618 predominant, accounting for 5.2 s^{-1} of the total OH reactivity of VOCs. During the
619 sampling period, isoprene made the largest contribution to the OH reactivity of the
620 total VOCs, followed by ethene, m/p-xylene, propene, styrene, cis-2-butene,
621 trans-2-butene, toluene, i-pentane, and trans-2-pentene, which collectively accounted
622 for 70% of the OH reactivity of the total VOCs.

623 As shown in Fig. 9, OH reactivity showed substantial interannual and seasonal
624 variations. The statistical results exhibit a decreasing trend of OH reactivity during
625 2018–2020 in Zhengzhou with mean values of 50.2 , 46.9 , and 36.9 s^{-1} , respectively.
626 This trend might reflect the implementation of emission reduction measures such as
627 traffic-related measures and the “Coal to Gas” project. The OH reactivity in 2020 was
628 21% lower than that in the previous year, which is closely related to the emission
629 reduction associated with the COVID-19 epidemic. Seasonally, the mean value of OH
630 reactivity decreased in the following order: winter (74.5 s^{-1}) > autumn (48.6 s^{-1}) >
631 spring (43.1 s^{-1}) > summer (31.8 s^{-1}). The notable differences might be attributable to

632 higher loadings of reactive trace gases, especially NO_x and CO. As a northern city,
633 coal combustion in Zhengzhou during the heating season produces higher
634 concentrations of NO_x and CO, leading to higher OH reactivity. Therefore, we should
635 continually strengthen policies to control trace gases, especially in autumn and winter.
636 The OH reactivity of the total VOCs was similar with the higher value in winter (7.3
637 s⁻¹) and the lower value in autumn (5.3 s⁻¹). However, the concentrations of the key
638 species were markedly different among the four seasons. Ethylene and propylene had
639 highest OH reactivity in winter, which is speculated to be related to the emission of
640 combustion sources. Additionally, isoprene made the largest contribution to the total
641 OH reactivity in both summer and spring, reflecting the substantial effect of biogenic
642 sources. Overall, the research on specific OH reactivity clearly elucidated the seasonal
643 and annual variations of the major reactants. Therefore, control strategies based on
644 OH reactivity should focus on the key species.

645 **3.6.2 Effect of VOCs on O₃ formation**

646 Because VOCs are important precursors of O₃ formation in the ground-level
647 atmosphere, it is necessary to adequately estimate the contribution of each VOC
648 species to O₃ formation. The concentration contributions of the four VOCs categories
649 expressed on different scales from 2018–2020 are shown in Fig. S8. The result
650 suggests that aromatics made the largest contribution to the MIR concentration,
651 accounting for a combined ratio of 81%. Meanwhile, alkenes were the largest
652 contributors to the PE concentration (87%). Although the concentrations of aromatics
653 and alkenes are relatively low, these two VOC groups play an important role in O₃
654 formation, which is a result supported by many previous studies (Hui et al., 2021; Li
655 et al., 2020b). It should be noted that the effect of VOCs on O₃ formation were
656 calculated from the sum of measured species, and does not involve species that were
657 not measured, such as OVOCs. Therefore, we provided a lower limit of the effect of
658 VOCs on O₃ formation in this study.

659 Among the top 10 reactive species contributing to the PE and MIR weighted

660 concentrations (as shown in Fig. 10), 8 compounds were the same, differing only in
661 their rank order. The top 10 VOCs obtained from the PE and MIR methods represent
662 67% and 74% of VOCs, respectively. Considering kinetic activity, isoprene ranked
663 first (8.8 ppbC) with the PE method, accounting for approximately 20% of the total
664 PE concentration, and m,p-xylene, styrene, ethene, and toluene ranked second to fifth,
665 explaining 16%, 10%, 7%, and 5% of the total OFP, respectively. In comparison,
666 ethene, m/p-xylene, toluene, propane, and isoprene had the highest MIR
667 concentrations, which accounted for approximately 23%, 21%, 12%, 7%, and 7%,
668 respectively. The results of this study highlight the contributions of isoprene, ethene,
669 m/p-xylene, and toluene to O_3 formation, and these species are derived primarily from
670 vehicle emissions and industrial coatings (Xiong and Du, 2020).

671 On the basis of the results of source apportionment, the source contributions to
672 OFP and PE were calculated (shown in Fig. S9). Vehicle emissions made the greatest
673 contribution to O_3 formation (OFP: 23%; PE: 29%), followed by solvent use (OFP:
674 25%; PE: 24%). However, the contribution of biogenic emissions accounting for 22%
675 of the total PE cannot be ignored. Because of the discrepancy between the MIR
676 weighted and PE weighted concentrations, the contribution of this source to OFP was
677 relatively low, accounting for only 6%. The PE concentration method considers only
678 the kinetic reactivity of VOC species and ignores mechanism reactivity, whereas the
679 MIR method considers the impact of the VOC/NO_x ratio on O_3 formation.

680 **4. Conclusions**

681 In this study, hourly observational data of 57 VOC species were collected during
682 2018–2020 at an urban site in Zhengzhou (China). The results showed that the
683 average total VOC mixing ratio was $94.3 \pm 53.1 \mu\text{g}/\text{m}^3$ ($38.2 \pm 15.6 \text{ ppbv}$), and that the
684 VOC concentrations were dominated by alkanes in each of the three years. During the
685 sampling period, the interannual variation of VOCs gradually reduced as follows:
686 $113.2 \pm 65.2 \mu\text{g}/\text{m}^3$ in 2018, $90.7 \pm 52.5 \mu\text{g}/\text{m}^3$ in 2019, and $79.1 \pm 41.7 \mu\text{g}/\text{m}^3$ in 2020.
687 The VOCs showed clear seasonal dependence with the highest value in winter (116.5

688 $\mu\text{g}/\text{m}^3$) and lowest value in summer (74.2 $\mu\text{g}/\text{m}^3$). The PMF method was used to
689 identify six sources: vehicle emissions (36%), solvent use (17%), LPG/NG (16%),
690 industrial sources (18%), fuel burning (10%), and biogenic sources (3%). The
691 proportion of both vehicle emissions and LPG/NG has increased with each passing
692 year. However, the proportion of industrial and solvent sources presented a decreasing
693 trend. In addition to substantial interannual variation, the VOC sources also showed
694 marked seasonal differences. The contribution of vehicle emissions to the atmosphere
695 in each of the four seasons was >30%. Atmospheric VOCs are affected substantially
696 by fuel burning (17%) in winter; however, the influence of biogenic sources cannot be
697 ignored (7%) in summer.

698 This study also focused on the atmospheric environmental implications of VOCs,
699 including the AOC, OH reactivity, and OFP. During the sampling periods, the
700 campaign-averaged value of the total AOC was 7.4×10^7 molecules $\text{cm}^{-3} \text{ s}^{-1}$, and OH
701 exhibited the highest average concentration, accounting for 95% of the total AOC.
702 The average value of the total OH reactivity was 45.3 s^{-1} , and NO_2 made the largest
703 contribution to the total OH reactivity (54%), followed in descending order by VOCs
704 (17%), NO (16%), CO (11%), SO_2 (3%), and O_3 (1%). Investigation of the effects of
705 VOCs on O_3 formation revealed that despite the relatively low concentrations of
706 aromatics and alkenes, they played important roles in O_3 formation. Ethene,
707 m/p-xylene, and toluene contributed substantially to O_3 formation in Zhengzhou. The
708 source apportionment results indicate that vehicle emissions and solvent use remain
709 the key sources of the VOCs that contribute to O_3 formation.

710 Overall, investigation of the concentrations, source apportionment, and
711 atmospheric environmental implications clearly elucidated the differences in the
712 major reactants observed in different seasons and years. Therefore, control strategies
713 should consider seasonal and interannual variations when focusing on the key species
714 and sources. The results of this study could support local governments in developing
715 strategies to control VOCs during O_3 pollution events.

716

717

718 **Data availability**

719 The data set is available to the community and can be accessed by request from

720 Ruiqin Zhang (rqzhang@zzu.edu.cn).

721

722

723 **Author contribution**

724 YSJ and ZRQ planned and organized the study, and were deeply involved in
725 writing the manuscript. WSB, XRX and ZD performed the atmospheric measurements
726 and data analysis and wrote the manuscript. ZM and WLL assisted heavily with the
727 atmospheric measurements and data analysis. SFC and LX and LX conducted the
728 model development and data analysis.

729 Other coauthors provided useful insights in data analysis and contributed to the
730 writing of the manuscript.

731 We thank James Buxton, MSc, from Liwen Bianji (Edanz)
732 (www.liwenbianji.cn/), for editing the English text of a draft of this manuscript.
733

734 **Acknowledgments**

735 This work was supported by the Study of Collaborative Control of PM_{2.5} and
736 O₃ Pollution in Zhengzhou City (No. 20200321A) and National Key Research and
737 Development Program of China (No. 2017YFC0212403).

738

739 References

740 Atkinson, R., Arey, J., 2003. Atmospheric degradation of volatile organic compounds.
741 Chem. Rev. 103, 4605-4638.

742 Atkinson, R., Baulch, D., Cox, R., Crowley, J., Hampson, R., Hynes, R., Jenkin, M.,
743 Rossi, M., Troe, J., 2004. Evaluated kinetic and photochemical data for
744 atmospheric chemistry: volume I - gas phase reactions of Ox, HOx, NOx and
745 SOx species. Atmos. Chem. Phys. 4, 1461-1738.

746 Baudic, A., Gros, V., Sauvage, S., Locoge, N., Sanchez, O., Sarda-Estève, R.,
747 Kalogridis, C., Petit, J.E., Bonnaire, N., Baisnée, D., Favez, O., 2016. Seasonal
748 variability and source apportionment of volatile organic compounds (VOCs) in
749 the Paris megacity (France). Atmos. Chem. Phys. 16, 11961–11989.

750 Carter, W., 1994. Development of ozone reactivity scales for volatile organic
751 compounds. J. Air Waste Manag. Assoc. 44, 881-899.

752 Carter, W., 2010. Development of the SAPRC-07 chemical mechanism. Atmos.
753 Environ. 44, 5324-5335.

754 Elshorbany, Y., Kurtenbach, R., Wiesen, P., Lissi, E., Rubio, M., Villena, G., Gramsch,
755 E., Rickard, A., Pilling, M., Kleffmann, J., 2009. Oxidation capacity of the city
756 air of Santiago, Chile. Atmos. Chem. Phys. 9, 2257-2273.

757 Fan, M., Zhang, Y., Lin, Y., Li, L., Xie, F., Hu, J., Mozaffar, A., Cao, F., 2021. Source
758 apportionments of atmospheric volatile organic compounds in Nanjing, China
759 during high ozone pollution season. Chemosphere. 263, 128025.

760 Fu, S., Guo, M., Luo, J., Han, D., Chen, X., Jia, H., Jin, X., Liao, H., Wang, X., Fan,
761 L., Cheng, J., 2020. Improving VOCs control strategies based on source
762 characteristics and chemical reactivity in a typical coastal city of South China
763 through measurement and emission inventory. Sci. Total Environ. 744, 140825.

764 Gao, J., Zhang, J., Li, H., Li, L., Xu, L., Zhang, Y., Wang, Z., Wang, X., Zhang, W.,
765 Chen, Y., Cheng, X., Zhang, H., Peng, L., Chai, F., Wei, Y., 2018. Comparative
766 study of volatile organic compounds in ambient air using observed mixing ratios

767 and initial mixing ratios taking chemical loss into account - A case study in a
768 typical urban area in Beijing. *Sci. Total Environ.* 628-629, 791-804.

769 Garzn, J., Huertas, J., Magaa, M., Huertas, M., Crdenas, B., Watanabe, T., Maeda, T.,
770 Wakamatsu, S., Blanco, S., 2015. Volatile organic compounds in the atmosphere
771 of Mexico city. *Atmos. Environ.* 119, 415-429.

772 Geyer, A., Aliche, B., Konrad, S., Schmitz, T., Stutz, J., Platt, U., 2001. Chemistry and
773 oxidation capacity of the nitrate radical in the continental boundary layer near
774 Berlin. *J. Geophys. Res.-Atmos.* 106, 8013-8025.

775 Gu, X., Yin, S., Lu, X., Zhang, H., Wang, L., Bai, L., Wang, C., Zhang, R., Yuan, M.,
776 2019a. Recent development of a refined multiple air pollutant emission inventory
777 of vehicles in the central plains of China. *J. Environ. Sci (in China)*. 84, 80-96.

778 Gu, Y., Li, Q., Wei, D., Gao, L., Tan, L., Su, G., Liu, G., Liu, W., Li, C., Wang, Q.,
779 2019b. Emission characteristics of 99 NMVOCs in different seasonal days and
780 the relationship with air quality parameters in Beijing, China. *Ecotoxicol.*
781 *Environ. Saf.* 169, 797-806.

782 Gu, Y., Liu, B., Li, Y., Zhang, Y., Bi, X., Wu, J., Song, C., Dai, Q., Han, Y., Ren, G.,
783 Feng, Y., 2020. Multi-scale volatile organic compound (VOC) source
784 apportionment in Tianjin, China, using a receptor model coupled with 1-hr
785 resolution data. *Environ. Pollut.* 265, 115023.

786 Guo, H., Cheng, H., Ling, Z., Louie, P., Ayoko, G., 2011. Which emission sources are
787 responsible for the volatile organic compounds in the atmosphere of Pearl River
788 Delta. *J. Hazard. Mater.* 188, 116-124.

789 Hsu, C., Chiang, H., Shie, R., Ku, C., Lin, T., Chen, M., Chen, N., Chen, Y., 2018.
790 Ambient VOCs in residential areas near a large-scale petrochemical complex:
791 Spatiotemporal variation, source apportionment and health risk. *Environ. Pollut.*
792 240, 95-104.

793 Huang, X., 2020. Evaluating the effectiveness of multiple emission control measures
794 on reducing volatile organic compounds in ambient air based on observational
795 data: A case study during the 2010 Guangzhou Asian Games. *Sci. Total Environ.*

796 723, 138171.

797 Huang, Y., Hsieh, C., 2019. Ambient volatile organic compound presence in the
798 highly urbanized city: source apportionment and emission position. *Atmos.*
799 *Environ.* 206, 45-59.

800 Hui, L., Liu, X., Tan, Q., Feng, M., An, J., Qu, Y., Zhang, Y., Jiang, M., 2018.
801 Characteristics, source apportionment and contribution of VOCs to ozone
802 formation in Wuhan, Central China. *Atmos. Environ.* 192, 55-71.

803 Hui, L., Liu, X., Tan, Q., Feng, M., An, J., Qu, Y., Zhang, Y., Cheng, N., 2019. VOC
804 characteristics, sources and contributions to SOA formation during haze events
805 in Wuhan, Central China. *Sci. Total Environ.* 650, 2624-2639.

806 Hui, L., Liu, X., Tan, Q., Feng, M., An, J., Qu, Y., Zhang, Y., Deng, Y., Zhai, R.,
807 Wang, Z., 2020. VOC characteristics, chemical reactivity and sources in urban
808 Wuhan, central China. *Atmos. Environ.* 224, 117340.

809 Hui, L., Ma, T., Gao, Z., Gao, J., Wang, Z., Xue, L., Liu, H., Liu, J., 2021.
810 Characteristics and sources of volatile organic compounds during high ozone
811 episodes: A case study at a site in the eastern Guanzhong Plain, China.
812 *Chemosphere.* 265, 129072.

813 Jiang, N., Duan, S., Yu, X., Zhang, R., Wang, K., 2018. Comparative major
814 components and health risks of toxic elements and polycyclic aromatic
815 hydrocarbons of PM_{2.5} in winter and summer in Zhengzhou: Based on three-year
816 data. *Atmos. Res.* 213, 173-184.

817 Li, B., Ho, S., Gong, S., Ni, J., Li, H., Han, L., Yang, Y., Qi, Y., Zhao, D., 2019a.
818 Characterization of VOCs and their related atmospheric processes in a central
819 Chinese city during severe ozone pollution periods. *Atmos. Chem. Phys.* 19,
820 617-638.

821 Li, K., Li, J., Tong, S., Wang, W., Huang, R.-J., Ge, M., 2019b. Characteristics of
822 wintertime VOCs in suburban and urban Beijing: concentrations, emission ratios,
823 and festival effects. *Atmos. Chem. Phys.* 19, 8021-8036.

824 Li, Q., Badia, A., Wang, T., Sarwar, G., Fu, X., Zhang, L., Zhang, Q., Fung, J., Cuevas,
825 C., Wang, S., Zhou, B., Saiz-Lopez, A., 2020a. Potential effect of halogens on
826 atmospheric oxidation and air quality in China. *J. Geophys. Res-atmos.* 125,
827 e2019JD032058.

828 Li, Y., Yin, S., Yu, S., Yuan, M., Dong, Z., Zhang, D., Yang, L., Zhang, R., 2020b.
829 Characteristics, source apportionment and health risks of ambient VOCs during
830 high ozone period at an urban site in central plain, China. *Chemosphere.* 25,
831 126283.

832 Li, Q., Su, G., Li, C., Liu, P., Zhao, X., Zhang, C., Sun, X., Mu, Y., Wu, M., Wang, Q.,
833 Sun, B., 2020c. An investigation into the role of VOCs in SOA and ozone
834 production in Beijing, China. *Sci. Total. Environ.* 720, 137536.

835 Liebmann, J., Muller, J., Kubistin, D., Claude, A., Holla, R., Plass-Dülmmer, C.,
836 Lelieveld, J., Crowley, J., 2018. Direct measurements of NO_3 reactivity in and
837 above the boundary layer of a mountaintop site: identification of reactive trace
838 gases and comparison with OH reactivity. *Atmos. Chem. Phys.* 18, 12045-12059.

839 Liu, B., Liang, D., Yang, J., Dai, Q., Bi, X., Feng, Y., Yuan, J., Xiao, Z., Zhang, Y., Xu,
840 H., 2016. Characterization and source apportionment of volatile organic
841 compounds based on 1-year of observational data in Tianjin, China. *Environ.*
842 *Pollut.* 218, 757-769.

843 Liu, Y., Song, M., Liu, X., Zhang, Y., Hui, L., Kong, L., Zhang, Y., Zhang, C., Qu, Y.,
844 An, J., Ma, D., Tan, Q., Feng, M., 2019a. Characterization and sources of volatile
845 organic compounds (VOCs) and their related changes during ozone pollution
846 days in 2016 in Beijing, China. *Environ. Pollut.* 257, 113599.

847 Liu, Y., Wang, H., Jing, S., Gao, Y., Peng, Y., Lou, S., Cheng, T., Tao, S., Li, L., Li, Y.,
848 Huang, D., Wang, Q., An, J., 2019b. Characteristics and sources of volatile
849 organic compounds (VOCs) in Shanghai during summer: Implications of
850 regional transport. *Atmos. Environ.* 215, 116902.

851 Lou, S., Holland, F., Rohrer, F., Lu, K., Bohn, B., Brauers, T., Chang, C., Fuchs, H.,

852 Häseler, R., Kita, K., Kondo, Y., Li, X., Shao, M., Zeng, L., Wahner, A., Zhang,
853 Y., Wang, W., and Hofzumahaus, A., 2010. Atmospheric OH reactivities in the
854 Pearl River Delta – China in summer 2006: measurement and model results,
855 *Atmos. Chem. Phys.* 10, 11243-11260.

856 Maji, S., Beig, G., Yadav, R., 2020. Winter VOCs and OVOCs measured with
857 PTR-MS at an urban site of India: Role of emissions, meteorology and
858 photochemical sources. *Environ. Pollut.* 258, 113651.

859 Mao, J., Ren, X., Chen, S., Brune, W., Chen, Z., Martinez, M., Harder, H., Lefer, B.,
860 Rappenglück, B., Flynn, J., Leuchner, M., 2010. Atmospheric oxidation capacity
861 in the summer of Houston 2006: comparison with summer measurements in
862 other metropolitan studies. *Atmos. Environ.* 44, 4107-4115.

863 Mo, Z., Shao, M., Lu, S., Niu, H., Zhou, M., Sun, J., 2017. Characterization of
864 non-methane hydrocarbons and their sources in an industrialized coastal city,
865 Yangtze River Delta, China. *Sci. Total. Environ.* 593-594, 641-653.

866 Norris, G., Duvall, R., Brown, S., Bai, S., 2014. EPA Positive Matrix Factorization
867 (PMF) 5.0 Fundamentals and User Guide, U.S. Environmental Protection
868 Agency National Exposure Research Laboratory Research Triangle Park, NC.

869 Prinn, R., 2003. The cleansing capacity of the atmosphere. *Annu. Rev. Environ.*
870 *Resour.* 28, 29-57.

871 Ren, Y., Ma, S., Wang, W., Yu, S., Li, Y., Zhang, R., Yin, S., 2020. Ambient VOCs
872 characteristics, ozone formation potential, and source apportionment of air
873 pollution in spring in Zhengzhou. *Environ. Sci. (in Chinese)*. 41, 2577-2585.

874 Ren, X., Brune, W., Mao, J., Mitchell, M., Lesher, R., Simpas, J., Metcalf, A., Schwab,
875 J., Cai, C., Li, Y., 2006. Behavior of OH and HO₂ in the winter atmosphere in
876 New York City. *Atmos. Environ.* 40, 252-263.

877 Sadeghi, B., Pouyaei, A., Choi, Y., Rappenglück, B., 2022. Influence of seasonal
878 variability on source characteristics of VOCs at Houston industrial area. *Atmos.*
879 *Environ.* 277, 1190.

880 Schneidemesser, E., Monks, P., Plass-Duelmer, C., 2010. Global comparison of VOC
881 and CO observations in urban areas. *Atmos. Environ.* 44, 5053–5064.

882 Song, M., Tan, Q., Feng, M., Qu, Y., Liu, X., An, J., Zhang, Y., 2018. Source
883 apportionment and secondary transformation of atmospheric nonmethane
884 hydrocarbons in Chengdu, southwest China. *J. Geophys. Res. Atmos.* 123,
885 9741-9763.

886 Song, C., Liu, B., Dai, Q., Li, H., Mao, H., 2019a. Temperature dependence and
887 source apportionment of volatile organic compounds (VOCs) at an urban site on
888 the north China plain. *Atmos. Environ.* 207, 167-181.

889 Song, M., Liu, X., Zhang, Y., Shao, M., Lu, K., Tan, Q., Feng, M., Qu, Y., 2019b.
890 Sources and abatement mechanisms of VOCs in southern China. *Atmos. Environ.*
891 201, 28-40.

892 Song, S., Shon, Z., Kang, Y., Kim, K., Han, S., Kang, M., Bang, J., Oh, I., 2019c.
893 Source apportionment of VOCs and their impact on air quality and health in the
894 megacity of Seoul. *Environ. Pollut.* 247, 763-774.

895 Tan, Z., Lu, K., Jiang, M., Su, R., Wang, H., Lou, S., Fu, Q., Zhai, C., Tan, Q., Yue, D.,
896 Chen, D., Wang, Z., Xie, S., Zeng, L., Zhang, Y., 2019. Daytime atmospheric
897 oxidation capacity in four Chinese megacities during the photochemically
898 polluted season: a case study based on box model simulation, *Atmos. Chem.*
899 *Phys.* 19, 3493-3513.

900 Uttamang, P., Campbell, p., Aneja, V., Hanna, A., 2020. A multi-scale model analysis
901 of ozone formation in the Bangkok Metropolitan Region, Thailand. *Atmos.*
902 *Environ.* 229, 117433.

903 Ulbrich, I., Canagaratna, MR., Zhang, Q., Worsnop, D., Jimenez, J., 2009.
904 Interpretation of organic components from positive matrix factorization of
905 aerosol mass spectrometric data. *Atmos. Chem. Phys.* 9, 2891–2918.

906 Warneke, C., 2004. Comparison of daytime and nighttime oxidation of biogenic and
907 anthropogenic VOCs along the New england coast in summer during New
908 england air quality study 2002. *J. Geophys. Res.* 109, D10309.

909 Wang, M., Lu, S., Shao, M., Zeng, L., Zheng, J., Xie, F., Lin, H., Hu, K., Lu, X.,
910 2021a. Impact of COVID-19 lockdown on ambient levels and sources of volatile
911 organic compounds (VOCs) in Nanjing, China. *Sci. Total Environ.* 757, 143823.

912 Wang, Y., Zhu, S., Ma, J., Shen, J., Wang, P., Wang, P., Zhang, H., 2021b. Enhanced
913 atmospheric oxidation capacity and associated ozone increases during
914 COVID-19 lockdown in the Yangtze River Delta. *Sci. Total Environ.* 768,
915 144796.

916 Wang, S., Yin, S., Zhang, R., Yang, L., Zhao, Q., Zhang, L., Yan, Q., Jiang, N., Tang,
917 X., 2019. Insight into the formation of secondary inorganic aerosol based on
918 high-time-resolution data during haze episodes and snowfall periods in
919 Zhengzhou, China. *Sci. Total Environ.* 660, 47-56.

920 Wu, F., Yu, Y., Sun, J., Zhang, J., Wang, J., Tang, G., Wang, Y., 2016. Characteristics,
921 source apportionment and reactivity of ambient volatile organic compounds at
922 Dinghu Mountain in Guangdong Province, China. *Sci. Total Environ.* 548-549,
923 347-359.

924 Xiong, Y., Du, K., 2020. Source-resolved attribution of ground-level ozone
925 formation potential from VOC emissions in Metropolitan Vancouver, BC. *Sci.*
926 *Total Environ.* 721, 137698.

927 Xu, Z., Huang, X., Nie, W., Chi, X., Xu, Z., Zheng, L., Sun, P., Ding, A., 2017.
928 Influence of synoptic condition and holiday effects on VOCs and ozone
929 production in the Yangtze River Delta region, China. *Atmos. Environ.* 168,
930 112-124.

931 Xue, L., Gu, R., Wang, T., Wang, X., Saunders, S., Blake, D., Louie, P., Luk, C.,
932 Simpson, I., Xu, Z., Wang, Z., Gao, Y., Lee, S., Mellouki, A., Wang, W., 2016.
933 Oxidative capacity and radical chemistry in the polluted atmosphere of Hong
934 Kong and Pearl River Delta region: analysis of a severe photochemical smog
935 episode. *Atmos. Chem. Phys.* 16, 9891-9903.

936 Yadav, R., Sahu, L., Tripathi, N., Pal, D., Beig, G., Jaaffrey, S., 2019. Investigation of
937 emission characteristics of NMVOCs over urban site of western India. *Environ.*

938 Pollut. 252, 245-255.

939 Yan, D., Lei, Y., Shi, Y., Zhu, Q., Li, L., Zhang, Z., 2018. Evolution of the
940 spatiotemporal pattern of PM_{2.5} concentrations in China – A case study from the
941 Beijing-Tianjin-Hebei region. *Atmos. Environ.* 183, 225-233.

942 Yan, Y., Peng, L., Li, R., Li, Y., Li, L., Bai, H., 2017. Concentration, ozone formation
943 potential and source analysis of volatile organic compounds (VOCs) in a thermal
944 power station centralized area: A study in Shuozhou, China. *Environ. Pollut.*
945 223, 295-304.

946 Yang, Y., Shao, M., Keßel, S., Li, Y., Lu, K., Lu, S., Williams, J., Zhang, Y., Zeng, L.,
947 Nölscher, A., Wu, Y., Wang, X., Zheng, J., 2017. How the OH reactivity affects
948 the ozone production efficiency: case studies in Beijing and Heshan, China,
949 *Atmos. Chem. Phys.* 17, 7127-7142.

950 Yang, Y., Liu, X., Zheng, J., Tan, Q., Feng, M., Qu, Y., An, J., Cheng, N., 2019.
951 Characteristics of one-year observation of VOCs, NO_x, and O₃ at an urban site in
952 Wuhan, China. *J. Environ. Sci. (in China)*. 79, 297-310.

953 Yang, Y., Wang, Y., Yao, D., Zhao, S., Yang, S., Ji, D., Sun, J., Wang, Y., Liu, Z., Hu,
954 B., Zhang, R., Wang, Y., 2020a. Significant decreases in the volatile organic
955 compound concentration, atmospheric oxidation capacity and photochemical
956 reactivity during the National Day holiday over a suburban site in the North
957 China Plain. *Environ. Pollut.* 263, 114657.

958 Yang, Y., Wang, Y., Zhou, P., Yao, D., Ji, D., Sun, J., Wang, Y., Zhao, S., Huang, W.,
959 Yang, S., Chen, D., Gao, W., Liu, Z., Hu, B., Zhang, R., Zeng, L., Ge, M., Petäjä,
960 T., Kerminen, V., Kulmala, M., Wang, Y., 2020b. Atmospheric reactivity and
961 oxidation capacity during summer at a suburban site between Beijing and Tianjin.
962 *Atmos. Chem. Phys.* 20, 8181-8200.

963 Yang, Y., Wang, Y., Huang, W., Yao, D., Zhao, S., Wang, Y., Wang, Y., Ji, D., Zhang,
964 R., Wang, Y., 2021. Parameterized atmospheric oxidation capacity and speciated
965 OH reactivity over a suburban site in the North China Plain: A comparative study
966 between summer and winter. *Sci. Total Environ.* 773, 145264.

967 Yao, D., Tang, G., Wang, Y., Yang, Y., Wang, L., Chen, T., He, H., Wang, Y., 2021.

968 Significant contribution of spring northwest transport to volatile organic
969 compounds in Beijing. *J. Environ. Sci. (in China)*. 104, 169-181.

970 Yuan, B., Shao, M., de Gouw, J., Parrish, D., Lu, S., Wang, M., Zeng, L., Zhang, Q.,
971 Song, Y., Zhang, J., Hu, M., 2012. Volatile organic compounds (VOCs) in urban
972 air: how chemistry affects the interpretation of positive matrix factorization
973 (PMF) analysis. *J. Geophys. Res.-Atmos.* 117, D24302.

974 Zhang, F., Shang, X., Chen, H., Xie, G., Fu, Y., Wu, D., Sun, W., Liu, P., Zhang, C.,
975 Mu, Y., Zeng, L., Wan, M., Wang, Y., Xiao, H., Wang, G., Chen, J., 2020.
976 Significant impact of coal combustion on VOCs emissions in winter in a North
977 China rural site. *Sci. Total Environ.* 720, 137617.

978 Zhang, G., Xu, H., Qi, B., Du, R., Gui, K., Wang, H., Jiang, W., Liang, L., Xu, W.,
979 2018. Characterization of atmospheric trace gases and particulate matter in
980 Hangzhou, China. *Atmos. Chem. Phys.* 18, 1705-1728.

981 Zhang, X., Yin, Y., Wen, J., Huang, S., Han, D., Chen, X., Cheng, J., 2019.
982 Characteristics, reactivity and source apportionment of ambient volatile organic
983 compounds (VOCs) in a typical tourist city. *Atmos. Environ.* 215, 116898.

984 Zhang, Y., Wang, X., Zhang, Z., Lu, S., Huang, Z., Li, L., 2015. Sources of C(2)-C(4)
985 alkenes, the most important ozone nonmethane hydrocarbon precursors in the
986 Pearl River Delta region. *Sci. Total Environ.* 502, 236-245.

987 Zheng, H., Kong, S., Xing, X., Mao, Y., Hu, T., Ding, Y., Li, G., Liu, D., Li, S., Qi, S.,
988 2018. Monitoring of volatile organic compounds (VOCs) from an oil and gas
989 station in northwest China for 1 year. *Atmos. Chem. Phys.* 18, 4567-4595.

990 Zheng, H., Kong, S., Yan, Y., Chen, N., Yao, L., Liu, X., Wu, F., Cheng, Y., Niu, Z.,
991 Zheng, S., Zeng, X., Yan, Q., Wu, J., Zheng, M., Liu, D., Zhao, D., Qi, S., 2020.
992 Compositions, sources and health risks of ambient volatile organic compounds
993 (VOCs) at a petrochemical industrial park along the Yangtze River. *Sci. Total
994 Environ.* 703, 135505.

995 Zheng, H., Kong, S., Chen, N., Niu, Z., Zhang, Y., Jiang, S., Yan, Y., Qi, S., 2021.
996 Source apportionment of volatile organic compounds: Implications to reactivity,
997 ozone formation, and secondary organic aerosol potential. *Atmos. Res.* 249,

998 105344.

999 Zhou, X., Li, Z., Zhang, T., Wang, F., Wang, F., Tao, Y., Zhang, X., Wang, F., Huang,
1000 J., 2019. Volatile organic compounds in a typical petrochemical industrialized
1001 valley city of northwest China based on high-resolution PTR-MS measurements:
1002 Characterization, sources and chemical effects. *Sci. Total Environ.* 671, 883-896.

1003 Zhu, J., Wang, S., Wang, H., Jing, S., Lou, S., Saiz-Lopez,A., Zhou, B., 2020.
1004 Observationally constrained modeling of atmospheric oxidation capacity and
1005 photochemical reactivity in Shanghai, China. *Atmos. Chem. Phys.* 20,
1006 1217-1232.

1007 Zou, Y., Deng, X., Zhu, D., Gong, D., Wang, H., Li, F., Tan, H., Deng, T., Mai, B., Liu,
1008 X., Wang, B., 2015. Characteristics of 1 year of observational data of VOCs,
1009 NO_x and O₃ at a suburban site in Guangzhou, China. *Atmos. Chem. Phys.* 15,
1010 6625-6636.

1011

1012 **Figure list:**

1013

1014 **Fig. 1** Locations of the sampling stations in Zhengzhou.

1015 .

1016 **Fig. 2** Monthly changes in the concentrations of VOCs in Zhengzhou. The upper and
1017 lower boundaries of the boxes indicate the 75th and 25th percentiles, respectively; the
1018 lines within the boxes mark the median; the whiskers above and below the boxes
1019 indicate the 90th and 10th percentiles, respectively.

1020

1021 **Fig. 3** Diurnal variations in VOCs compounds measured at Zhengzhou. The upper and
1022 lower boundaries of the boxes indicate the 75th and 25th percentiles, respectively; the
1023 lines within the boxes mark the median; the whiskers above and below the boxes
1024 indicate the 90th and 10th percentiles, respectively.

1025

1026 **Fig. 4** Source profiles and contribution percentages from each source during the
1027 observation period by PMF model (bar is a mixing ratio and dot is a percentage).

1028

1029 **Fig. 5** Directional dependence and hourly record of each source in Zhengzhou.

1030

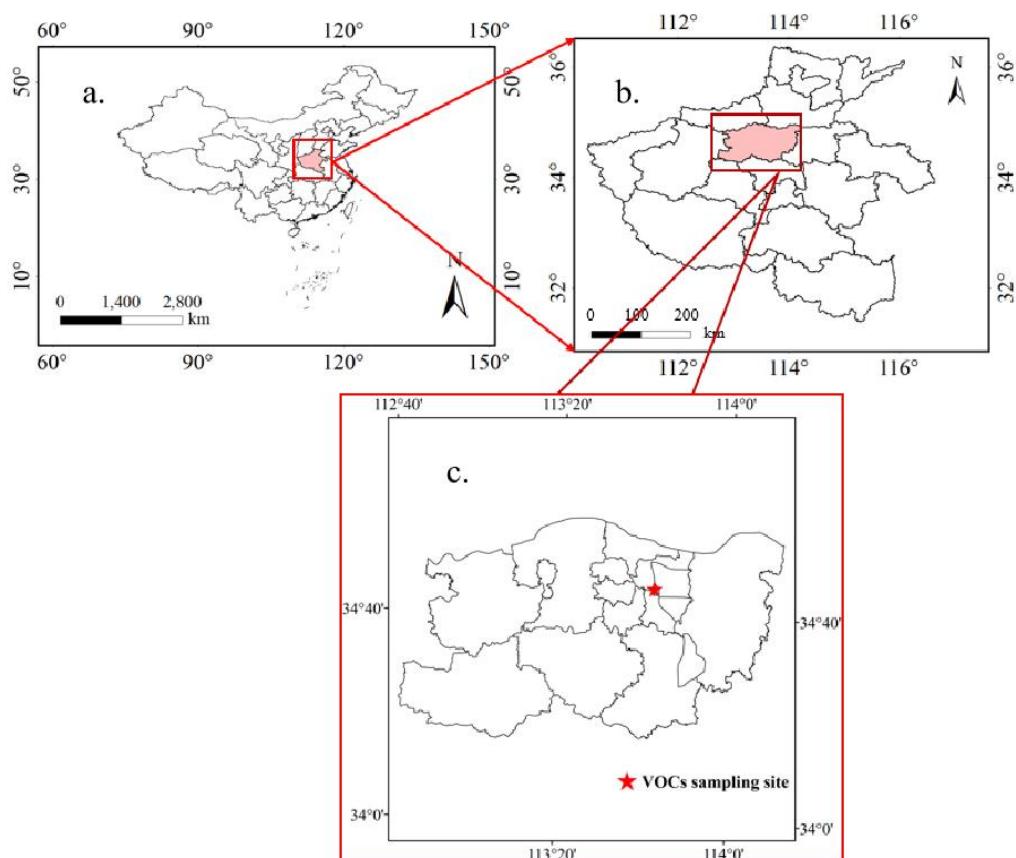
1031 **Fig. 6** The contributions of each VOC source during 2018-2020.

1032

1033 **Fig. 7** Seasonal variation of source contributions to VOCs concentration.

1034

1035 **Fig. 8** Comparison of the relative contributions of OH, O₃ and NO₃ of the AOC in
1036 Zhengzhou during the sampling periods.

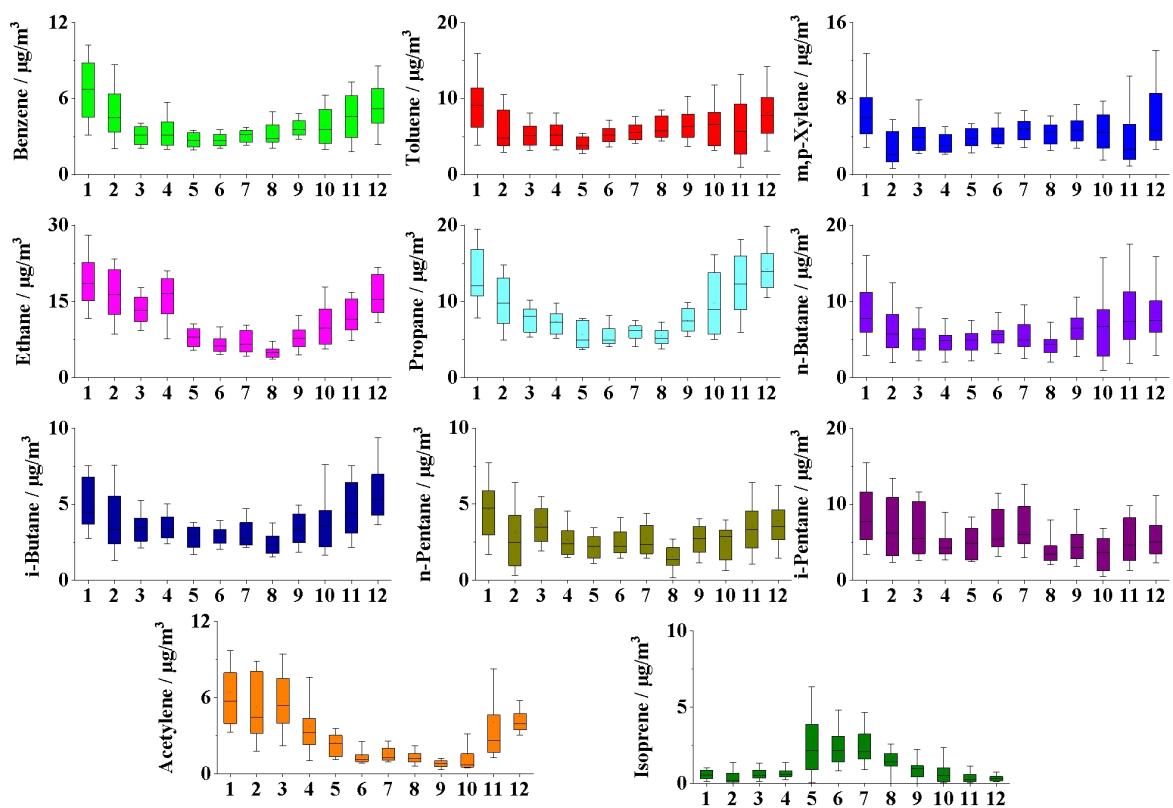

1037

1038 **Fig. 9** Comparison of the relative contributions the OH reactivity in Zhengzhou .

1039

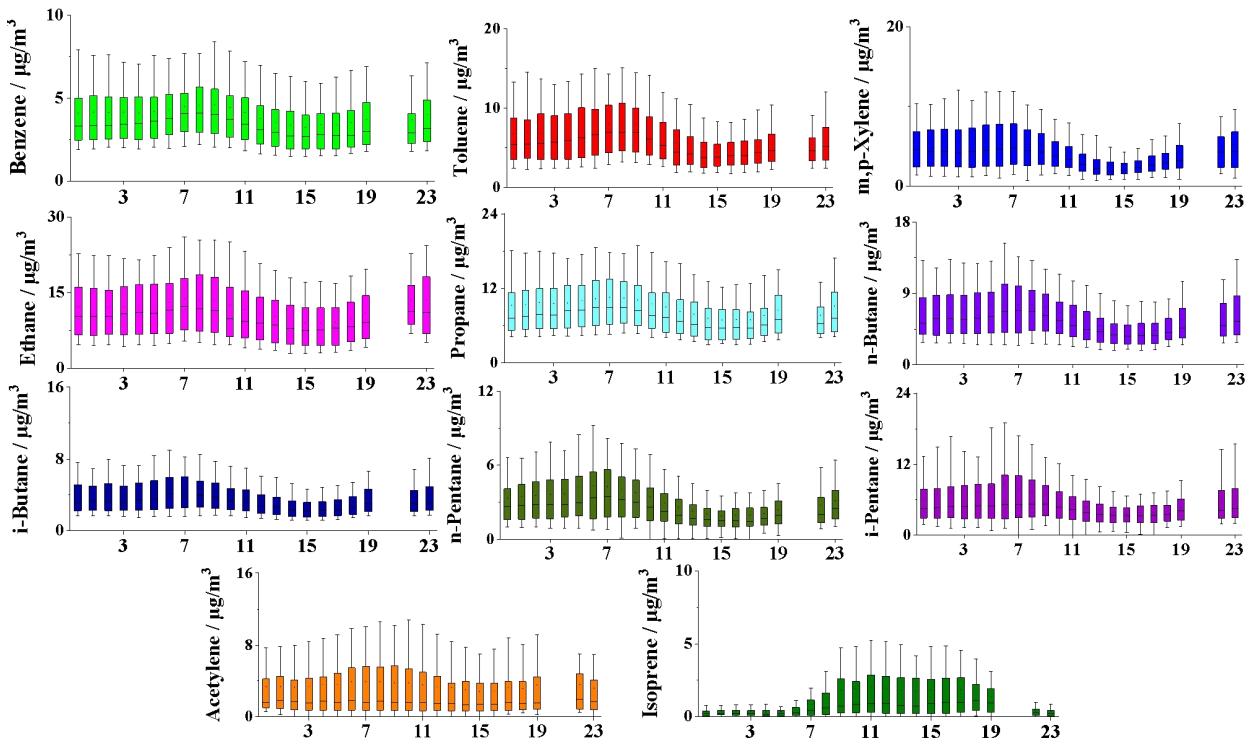
1040 **Fig. 10** Top 10 VOCs species that contributed most to the Propy-Equiv and MIR
1041 weighted concentrations in Zhengzhou.

1042



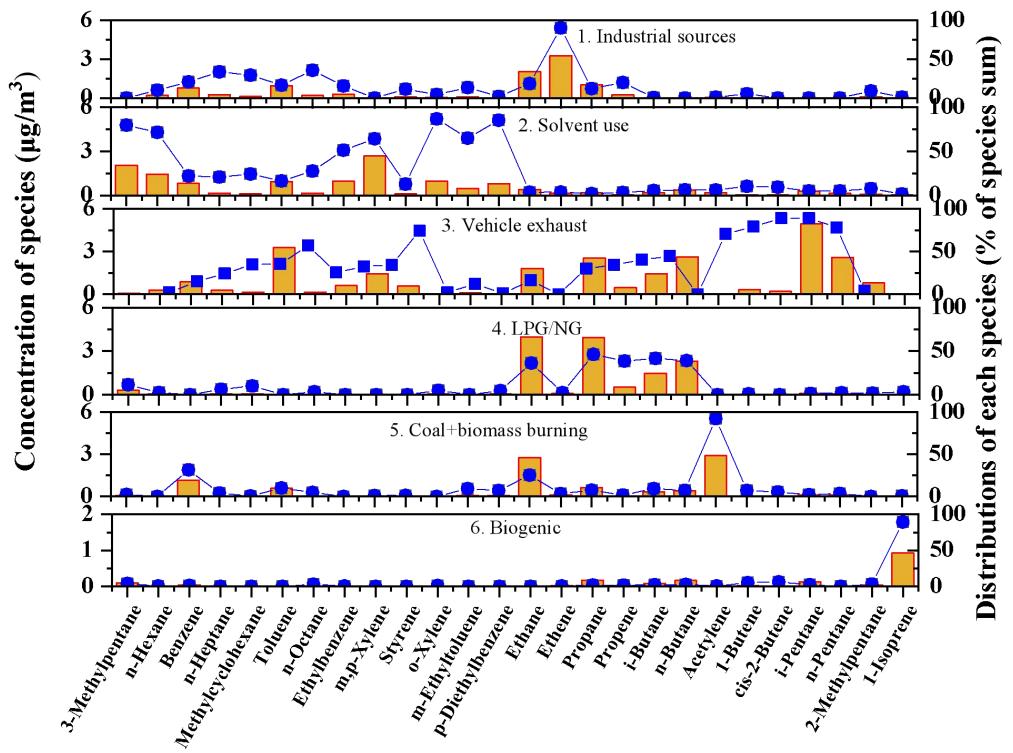
1045 **Fig. 1** Locations of the sampling stations, and Fig. a-c represents China, Henan and
 1046 Zhengzhou respectively.
 1047

1048


1049

1050

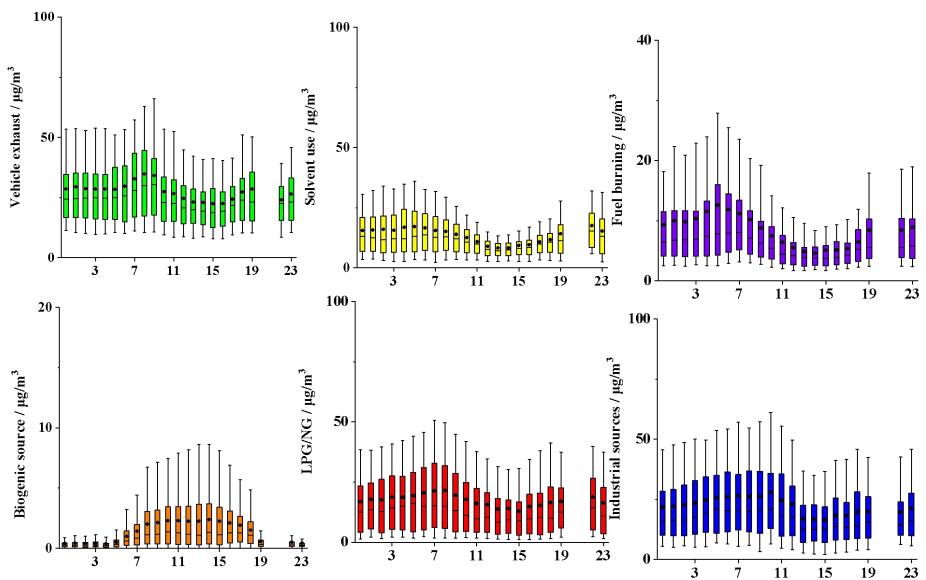
1051


1052 **Fig. 2** Monthly changes in the concentrations of the typical VOCs species in
 1053 Zhengzhou. The upper and lower boundaries of the boxes indicate the 75th and 25th
 1054 percentiles, respectively; the lines within the boxes mark the median; the whiskers
 1055 above and below the boxes indicate the 90th and 10th percentiles, respectively.
 1056

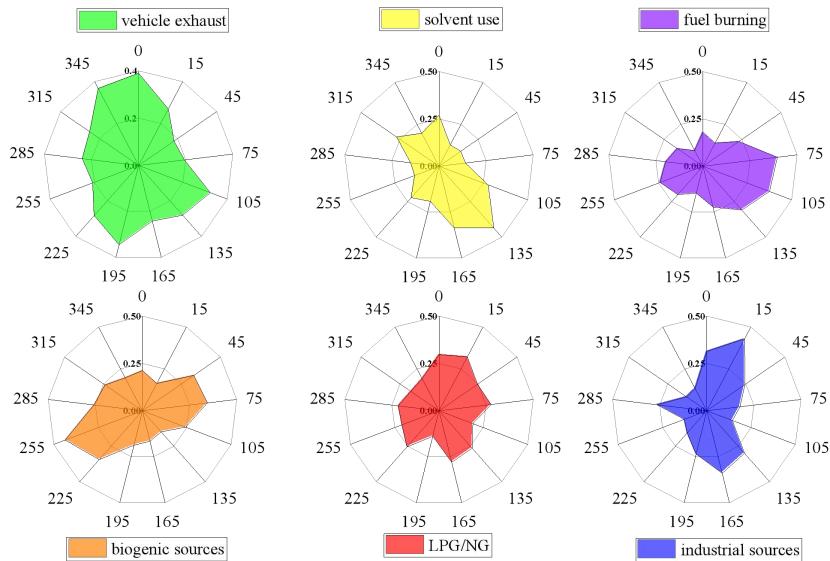
1057

1058

1059 **Fig. 3** Diurnal variations in VOCs compounds measured at Zhengzhou. The upper and
1060 lower boundaries of the boxes indicate the 75th and 25th percentiles, respectively; the
1061 lines within the boxes mark the median; the whiskers above and below the boxes
1062 indicate the 90th and 10th percentiles, respectively.
1063


1064

1065


Fig.4 Source profiles and contribution percentages during the observation period by PMF model (bar is a mixing ratio and dot is a percentage).

1066

1067

1068

1069

1070

1071 **Fig. 5** Directional dependence and hourly record of each source in Zhengzhou.

1072

1073

1074

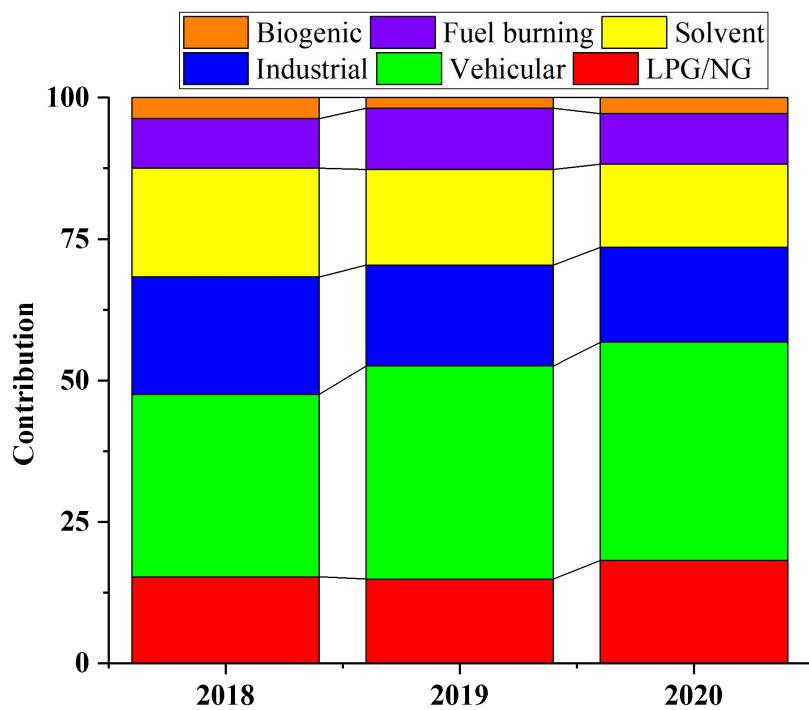
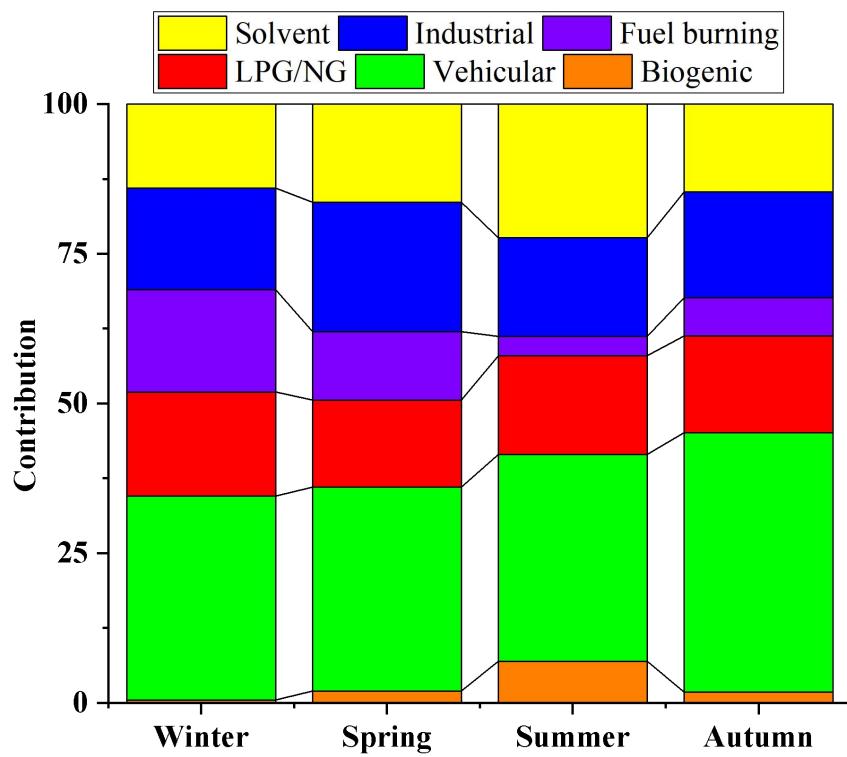


Fig. 6 The contributions of each VOC source during 2018-2020.

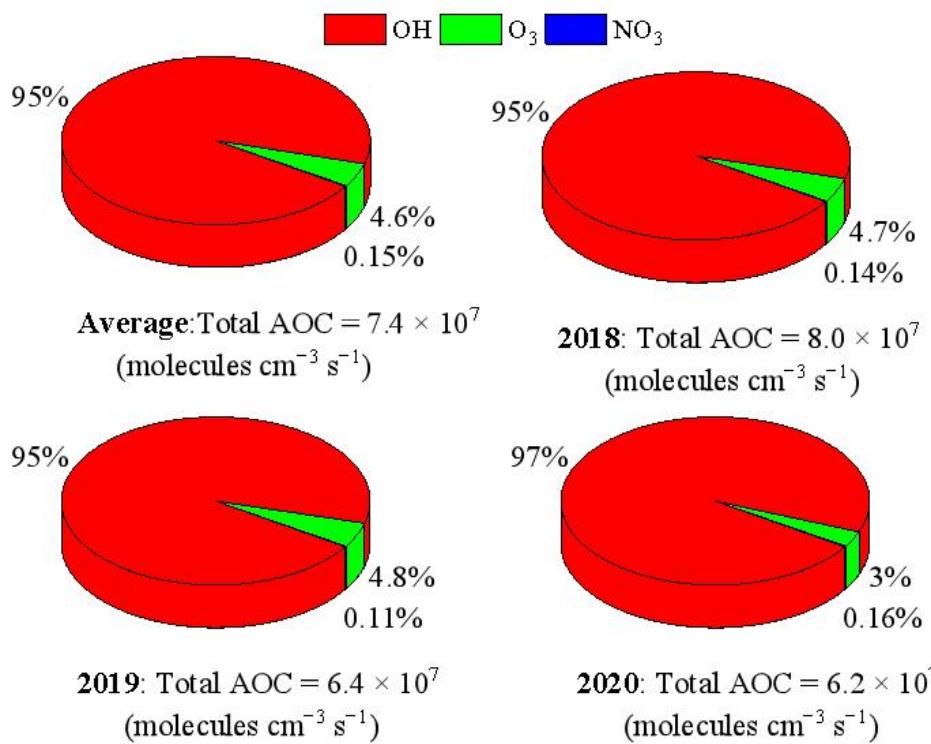

1075

1076

1077

1078

1079



1080

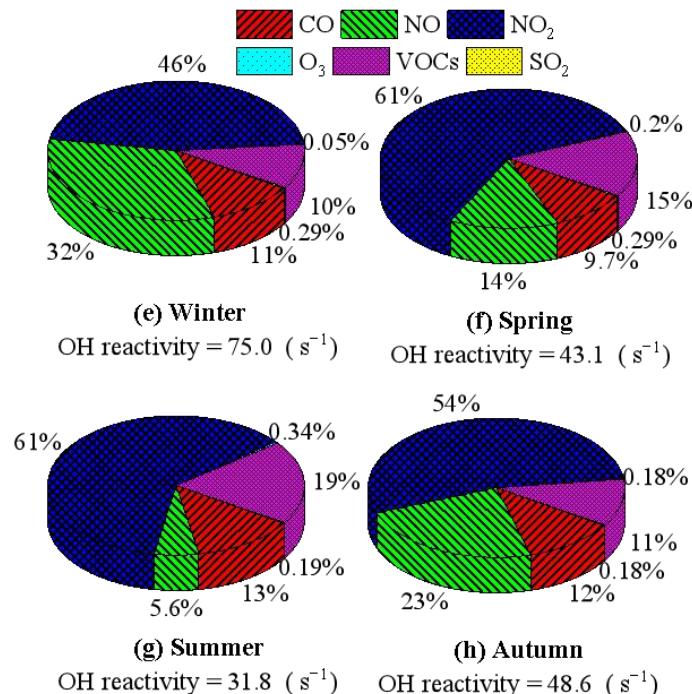
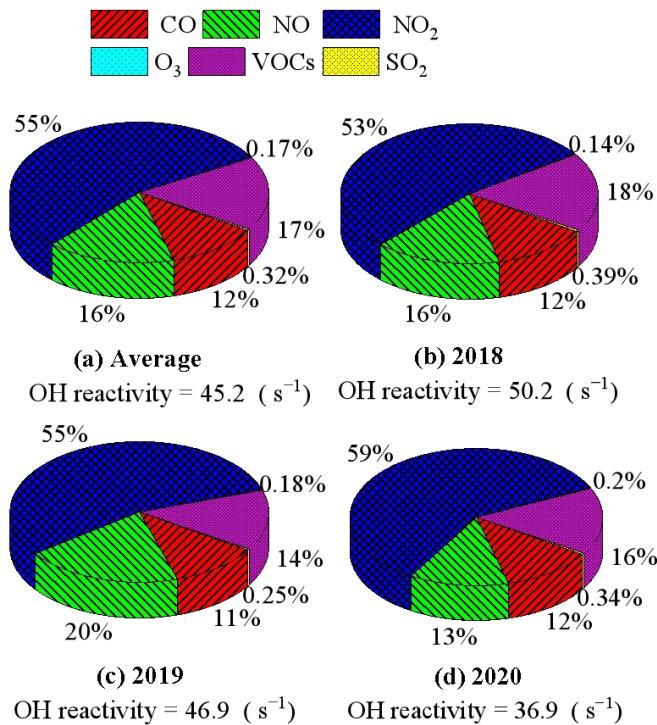
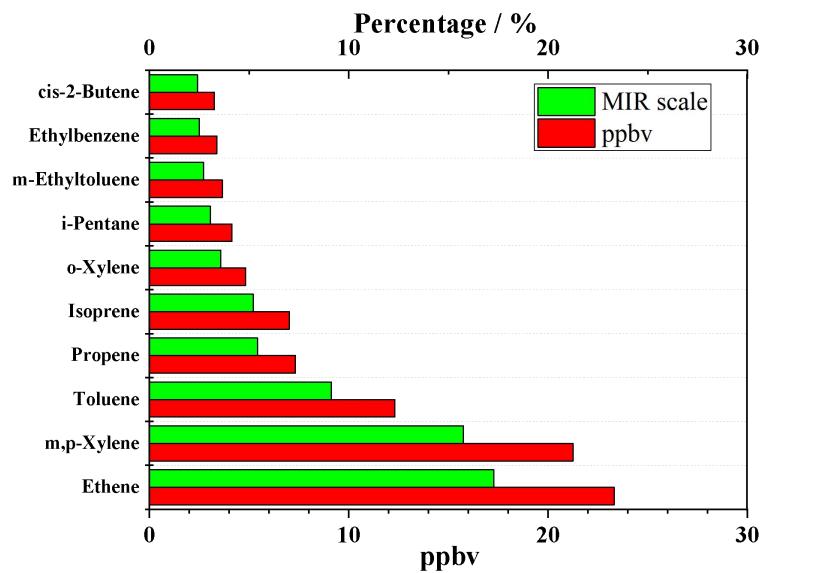
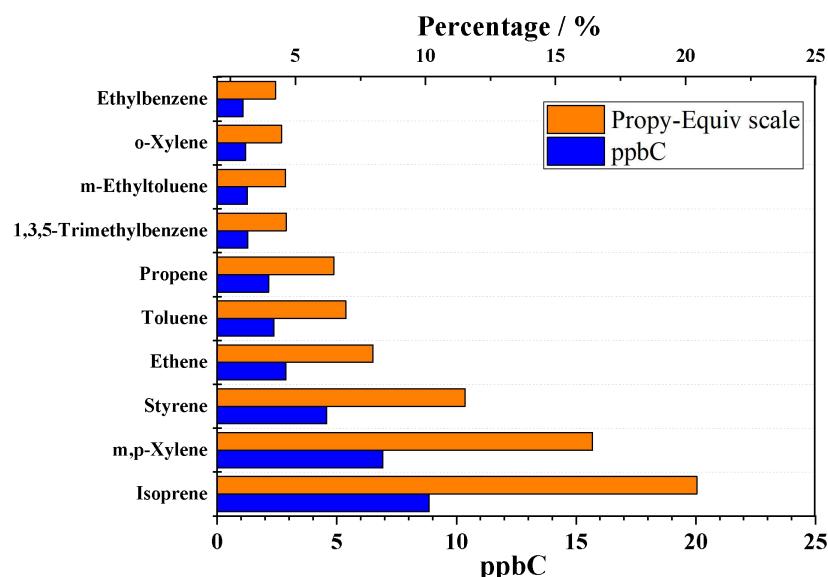


1081

Fig. 7 Seasonal variation of source contributions to VOCs concentration.

1082


Fig. 8 Comparison of the relative contributions of OH, O₃ and NO₃ of the AOC in Zhengzhou during the sampling periods.


Fig. 9 Comparison of the relative contributions the OH reactivity in Zhengzhou .

1093

1094

1095

1096

1097

Fig. 10 Top 10 VOCs species that contributed most to the Propy-Equiv and MIR weighted concentrations in Zhengzhou.

1098

1099

1100

1101 **Table list:**

1102

1103

1104

1105 **Table 1** Top 20 most abundant VOC species ($\mu\text{g}/\text{m}^3$) measured in Zhengzhou for the
1106 study period 2018-2020.

1107

1108 **Table 2** Comparison of source contributions resolved by PMF models in different
1109 cities.

1110

1111 **Table 1** Top 20 most abundant VOC species ($\mu\text{g}/\text{m}^3$) measured in Zhengzhou for the
 1112 study period 2018-2020.

Species	2018	Species	2019	Species	2020	Species	Average
Ethane	13.4 \pm 7.5	Ethane	11.6 \pm 7.7	Ethane	10.2 \pm 5.3	Ethane	11.7 \pm 6.8
Propane	8.6 \pm 5.2	Propane	8.8 \pm 5.6	Propane	7.3 \pm 4	Propane	8.2 \pm 4.9
i-Pentane	7.9 \pm 19.7	n-Butane	6.2 \pm 4.7	Toluene	5.6 \pm 4.3	Toluene	6.5 \pm 4.5
Toluene	7.8 \pm 4.3	Toluene	6.1 \pm 4.7	Ethene	5.5 \pm 4.4	i-Pentane	6.1 \pm 10.4
Ethene	7.6 \pm 6.2	i-Pentane	6 \pm 6.8	n-Butane	5.4 \pm 3.7	n-Butane	5.8 \pm 4.1
n-Pentane	6 \pm 16.1	m,p-Xylene	4.5 \pm 4.4	i-Pentane	4.6 \pm 4.7	Ethene	5.6 \pm 5.3
n-Butane	5.9 \pm 3.8	Benzene	3.9 \pm 2.4	m p-Xylene	4.3 \pm 5.4	m p-Xylene	4.7 \pm 4.3
m--p-Xylene	5.2 \pm 3	Ethene	3.8 \pm 5.3	i-Butane	3.5 \pm 2.2	Benzene	3.8 \pm 2.3
Acetylene	4.9 \pm 5	i-Butane	3.8 \pm 2.7	Benzene	3.4 \pm 1.9	n-Pentane	3.8 \pm 7.3
Cyclopentane	4.4 \pm 23.4	n-Hexane	3.7 \pm 3.5	n-Pentane	2.3 \pm 2.8	i-Butane	3.5 \pm 2.4
Benzene	4.1 \pm 2.5	Acetylene	3.3 \pm 4.8	Ethylbenzene	2 \pm 2	Acetylene	3 \pm 3.6
i-Butane	3.1 \pm 2.1	n-Pentane	3.1 \pm 2.9	Isoprene	1.9 \pm 3.4	Ethylbenzene	2.4 \pm 1.8
Ethylbenzene	3.1 \pm 1.8	3-Methylpentane	2.6 \pm 1.9	n-Hexane	1.1 \pm 1.3	n-Hexane	2.2 \pm 2.2
Isoprene	2.8 \pm 3.2	Ethylbenzene	2.1 \pm 1.6	Styrene	1.1 \pm 1.7	Cyclopentane	2 \pm 9
n-Hexane	1.9 \pm 1.6	Propene	1.6 \pm 1.9	o-Xylene	1.1 \pm 1.4	1-Isoprene	1.9 \pm 2.8
o-Xylene	1.7 \pm 1	o-Xylene	1.2 \pm 1.1	Propene	1 \pm 2.2	3-Methylpentane	1.7 \pm 1.5
3-Methylpentane	1.7 \pm 1.6	2-Methylpentane	1.1 \pm 1.4	n-Heptane	1 \pm 1.6	o-Xylene	1.4 \pm 1.2
Styrene	1.6 \pm 1.2	Isoprene	1.1 \pm 1.9	m-Ethyltoluene	1 \pm 1.2	Propene	1.3 \pm 1.7
p-Diethylbenzene	1.6 \pm 1.2	Cyclopentane	1.1 \pm 2.2	n-Undecane	1 \pm 1.7	Styrene	1.2 \pm 1.3
Propene	1.4 \pm 0.9	p-Diethylbenzene	1 \pm 0.9	n-Dodecane	1 \pm 2.4	p-Diethylbenzene	1.2 \pm 1
Σ TOP 20 species/ Σ VOCs	84%		84%		81%		83%

1113

1114

1115 **Table 2** Comparison of source contributions resolved by PMF models in different
 1116 cities (%).

City	Sampling periods	Solvent use	Industrial sources	Vehicle exhaust	Fuel burning	LPG/ NG	Biogenic sources
Taiwan ^a	January–December 2016	29	15	18	-	-	4
Wuhan ^b	September 1, 2016 to August 31, 2017		16	24	19	13	2
Shuozhou ^c	March and August, 2014	-	14	21	30	18	-
Ningbo ^d	December 2012, April 2013, July 2013, and October 2013	7	50	16	-	27	-
Beijing ^e	March 2016 to January 2017	16	10	19	-	12	8
This study	January 2018 to December 2020	17	18	36	10	16	3

1117 (a:Huang et al., 2019; b:Hui et al., 2018; c: Yan et al., 2017; d: Mo et al., 2017; e: Li et al., 2020c.)

1118

1119