

Five satellite sensor study of the rapid decline of wildfire smoke in the stratosphere

Bengt G. Martinsson*, Johan Friberg, Oscar S. Sandvik, and Moa K. Sporre
Department of Physics, Lund University, Lund, Sweden

*Email: bengt.martinsson@nuclear.lu.se

9

10 **Abstract**

11

12 Smoke from ~~W~~estern North American wildfires reached the stratosphere in large amounts in
 13 August 2017. Limb-oriented satellite-based sensors are commonly used for studies of wildfire
 14 aerosol injected into the stratosphere (OMPS-LP (Ozone Mapping and Profiler Suite Limb
 15 Profiler) and SAGE III/ISS (Stratospheric Aerosol and Gas Experiment III on the International
 16 Space Station)). We find that these methods are inadequate for studies the first 1 – 2 months after
 17 such a strong fire event due to event termination (“saturation”). The nadir-viewing lidar CALIOP
 18 (Cloud-Aerosol Lidar with Orthogonal Polarization) is less affected due to shorter path in the
 19 smoke, and, further, provides means that we could use to develop a method to correct for strong
 20 attenuation of the signal. After the initial phase, the aerosol optical depth (AOD) from OMPS-LP
 21 and CALOP show very good agreement above the 380 K isentrope, whereas the OMPS-LP tends
 22 to produce higher AOD than CALIOP in the lowermost stratosphere (LMS), probably due to
 23 reduced sensitivity at altitudes below 17 km. Time series from CALIOP of attenuation-corrected
 24 stratospheric AOD of wildfire smoke show an exponential decline during the first month after the
 25 fire, which coincides with highly significant changes in the wildfire aerosol optical properties.
 26 The AOD decline is verified by the evolution of the smoke layer composition, comparing the
 27 aerosol scattering ratio (CALIOP) to the water vapor concentration from MLS (Microwave Limb
 28 Sounder). Initially the stratospheric wildfire smoke AOD is comparable with the most important
 29 volcanic eruptions during the last 25 years. Wildfire aerosol declines much faster, 80 – 90% of
 30 the AOD is removed with a half-life of approximately 10 days. We hypothesize that this dramatic
 31 decline is caused by photolytic loss. This process is rarely observed in the atmosphere. However,
 32 in the stratosphere this process can be studied with practically no influence from wet deposition,
 33 in contrast to the troposphere where this is the main removal path of sub-micron aerosol particles.
 34 Despite the loss, the aerosol particles from wildfire smoke in the stratosphere are relevant for the
 35 climate.

36

37

1. Introduction

38

39 Background stratospheric aerosol is composed of sulfuric acid, water, carbonaceous components,
 40 and minor extraterrestrial and tropospheric components (Murphy et al., 2007; Kremser et al.,
 41 2016; Martinsson et al., 2019). Volcanism is a strong source of the stratospheric sulfurous,
 42 carbonaceous and ash aerosol (Martinsson et al., 2009; Andersson et al., 2013; Friberg et al.,
 43 2014). Large eruptions, like that of Mt Pinatubo in 1991, affect the stratosphere for several years,
 44 causing global cooling of several tenths of degrees Kelvin (Kremser et al., 2016). These eruptions
 45 are scarce, only a few per century (Ammann et al., 2003; Stothers, 2007). Moderate eruptions are
 46 more frequent contributors to the stratospheric aerosol (Vernier et al., 2011; Andersson et al.,
 47 2015; Friberg et al., 2018), forming the persistently variable stratospheric background aerosol
 48 (Solomon et al., 2011).

49

50 The stratospheric aerosol is also influenced by pyrocumulonimbus clouds (pyroCb) that form
 51 during extreme weather conditions in connection with intense wildfires (Fromm et al., 2010). The

52 ongoing climate change is projected to increase the frequency of large wildfires (Kasischke et al.,
53 2006; Dennison et al., 2014). Interestingly, the two largest events have, in terms of stratospheric
54 impact, occurred during the last few years, in North America 2017 (Peterson et al., 2018) and
55 Australia 2019-2020 (Kablick et al., 2020). Here we investigate the great pyroCbs formed in
56 western North America as southern British Columbia, Canada and northern Washington State, USA
57 on August 12 – 13, 2017 (Fromm et al., 2021). Figure 1a shows an example of the strong impact
58 on the stratospheric aerosol of the 2019 Raikoke volcanic eruption, one of the strongest eruptions
59 post Mt Pinatubo in 1991. In comparison, Figure 1b demonstrates the formidable early impact of
60 wildfire aerosol. The stratospheric impact of that fire has been described in terms of light-
61 backscatter reaching unprecedentedly high values for a non-volcanic aerosol layer (Khaykin et
62 al., 2018), light extinction about 20 times higher than after the Pinatubo volcanic eruption in 1991
63 (Ansmann et al., 2018), and mass of smoke comparable to that of a moderate sized volcanic
64 eruption (Peterson et al., 2018). The pyroCbs lifted smoke from the fire to the extratropical
65 tropopause region, where absorption of radiation by black carbon (BC) in the smoke induced
66 additional lift to 23 km altitude in 2 months (Yu et al., 2019; Lestrelin et al., 2021).
67

68 Smoke particles from wildfires contain a dominating fraction of organic matter by mass
69 (Garofalo et al., 2019). Organic aerosol is susceptible to photochemical loss (Jimenez et al.,
70 2009), and laboratory studies have demonstrated that this phenomenon could be an important
71 sink of secondary organic aerosol mass (Molina et al., 2004; Sareen et al., 2013). The residence
72 time of stratospheric air spans months to years depending on its path in the Brewer-Dobson
73 circulation (Engel et al., 2009; Bönisch et al., 2009). Due to very low probability of clouds, fine
74 aerosol particles have considerably longer residence times in the stratosphere than in the
75 troposphere, which further emphasizes the importance of investigating photochemical loss in the
76 stratosphere (Martinsson et al., 2019).
77

78 The aim of this study is to further understand the stratospheric aerosol sources and its climate
79 impact. We develop methodology to correct for attenuation in dense smoke layers from wildfires
80 to properly deal with intense smoke injections into the stratosphere, with two main questions: 1)
81 does photochemical loss of wildfire smoke occur in the stratosphere, and 2) how does the AOD
82 of smoke from the wildfire studied here compare with volcanic aerosol?
83

84 The first decade of the 21st century was characterized by slower temperature evolution than
85 anticipated from CMIP5 models (Fyfe et al., 2016). The discrepancy was attributed to inter-
86 decadal Pacific oscillation (Medhaug et al., 2017), variations in solar forcing (Myhre et al., 2013)
87 and aerosol in the stratosphere from moderate volcanic eruptions (Santer et al., 2014). Should
88 wildfire smoke in the stratosphere be added to this list of phenomena that require more attention
89 in climate models?
90

91 Our investigation deals with the evolution of the wildfire AOD, and aerosol optical properties
92 obtained from the lidar CALIOP aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared
93 Pathfinder Satellite Observation) satellite, OMPS-LP/Suomi and SAGE III/ISS in comparison
94 with volcanic injections to the stratosphere. Additionally, the water vapor concentrations of

95 individual smoke layers are investigated by the MLS, the spatial evolution of smoke layers is
96 investigated using OMPS-NM (Ozone Mapping and Profiler Suite Nadir Mapper), and the AODs
97 and extinction coefficients obtained from CALIOP are compared with that of OMPS-LP and
98 SAGE III/ISS.

99
100 **2. Methods**
101
102 This study of the dense stratospheric smoke layers from pyro-cumulonimbus formed over
103 Western North America in August 12 – 13, 2017 is based on five satellite sensors. For four of
104 them, OMPS-LP, SAGE III/ISS, MLS and OMPS-NM, high level products (Level 2) are used.
105 The CALIOP data evaluation is based on a Level 1 product. A method to correct for attenuation
106 of the CALIOP laser beam in the smoke layers is presented. For these reasons CALIOP requires
107 more space in this section compared to the other methods.
108

109 **2.1 CALIOP**

110
111 The evaluation of the CALIOP instrument carried by the CALIPSO satellite is based on version
112 4-10, level 1B data. CALIOP measures backscattering of laser light at two wavelengths, 532 and
113 1064 nm. For the shorter wavelength, scattered laser light is detected in parallel and
114 perpendicular polarizations relative to the outgoing beam. These almost nadir-viewing aerosol
115 and cloud measurements result in high resolution vertical profiles. For the altitude ranges <8.2,
116 8.2 – 20.2, 20.2 – 30.1 and 30.1 – 40 km the vertical resolutions are 30, 60, 180, and 300 m,
117 respectively. CALIPSO orbits between 82° S and 82° N, completing 14 – 15 orbits per day
118 (Winker et al., 2007; Winker et al., 2010).
119

120 **2.1.1 AOD**

121
122 Stratospheric AOD was obtained by integrating the backscattering intensity corrected for
123 attenuation (described below) from the tropopause to 35 km altitude. Figure 1b illustrates how
124 attenuation of the laser signal strongly reduced the signal below the dense smoke layer between
125 11 to 16 km altitude. We use the tropopause height according to MERRA-2 supplied with the
126 version 4.10 CALIOP data, which is a mixture of a dynamic and a thermal tropopause. The AOD
127 was averaged in the 20 - 80° N latitude range, where all nighttime swaths available from
128 CALIOP were included. The data were averaged over all longitudes in one-degree latitude bands,
129 and these latitude bands were averaged for the 20 - 80° N latitude range using area-weighting.
130 For dense layers, the lidar ratios estimated for the individual smoke layers were applied
131 (explained below). Apart from the first few days the lidar ratio shows no temporal evolution, it is
132 found to have geometrical mean of 48.9 sr with double-sided 95% confidence interval of 47.6 –
133 50.3 sr (Figure 2a), which is close to the typical background lidar ratio of 50 sr (Jäger and
134 Deshler, 2003). For layers that were not dense, the lidar ratio was held at this typical background
135 level. The volume depolarization ratio (δ_v) contains information that can be used to classify
136 aerosol layers. When δ_v the depolarization ratio is less than 0.05 the data is considered
137 background and the lidar ratio is set to 50 sr (Vernier et al., 2009). Ice-clouds were removed in
138 the lowest 3 km of the stratosphere by identifying them in stratospheric layers where the

139 backscattering was high (attenuated backscattering larger than $0.0025 \text{ km}^{-1} \text{ sr}^{-1}$). This limitation is
140 introduced to avoid statistically induced detection of ice clouds from weak signals. Data in these
141 layers were classified as probable ice clouds if their δ_v was higher than 0.20, or smoke if δ_v was
142 between 0.05–exceed 0.20, which classifies all the smoke layers in Figure 2c as aerosol since the
143 volume depolarization ratio always is smaller or equal to that of particles for a depolarizing
144 aerosol, after which the data within each swath were then clustered depending on their location.
145 Noise in the data led to some lone pixels within layers ~~of either ice or smoke~~. These were
146 reclassified depending on the surrounding pixels, making sure that no single pixel marked as
147 aerosol occurred within the ice-cloud layers. Layers of ice-clouds were then expanded upwards
148 and horizontally to capture faint edges of the clouds (Friberg et al., 2018). Aerosol with δ_v in the
149 range 0.05 to 0.2 were considered to be smoke, and $\delta_v < 0.05$ as background aerosol. In the
150 present work the latter discrimination had little effect because smoke was found to have the same
151 lidar ratio as typical background aerosol. The classification was carried out on data at 8 km
152 resolution along each swath with their highest vertical resolution (30, 60, or 180 m, depending on
153 altitude), after which the tropospheric data were removed. Possible polar stratospheric cloud
154 (PSC) signals north of 45°N were excluded by classifying pixels with temperature below 195 K
155 as possible PSC occasions. Underlying pixels were also excluded, to prevent bias from
156 attenuation of the lidar signals or from settling ice-crystals (Friberg et al., 2018).

157
158 **2.1.2 Attenuation correction and radiative properties of individual smoke layers**

159
160 The evolution of the lidar, color and depolarization ratios were investigated using 32 separate
161 smoke layer measurements over the period 3 – 59 days after the fire. CALIOP has a statistical
162 disadvantage compared with lidars at the ground (Baars et al., 2019), because of small solid angle
163 due to long distance to the stratosphere ($\sim 700 \text{ km}$) and short measurement time. Optical
164 properties of old and faint individual smoke layers therefore could not be quantified with high
165 precision using CALIOP. The faint layers though still affect the AOD determinations described
166 above, where AOD elevation after the fire remains approximately one year. Out of the 32 smoke
167 layers studied, 29 were night-time measurements, whereas the remaining three are defined as
168 day-time measurements. These latter ones increased the number of early observations (day 3 – 5)
169 and were taken when the disturbance from solar radiation is small, i.e., shortly before the night.

170
171 During the first weeks after the fire the smoke layers could be very dense with layer AODs
172 exceeding 1, causing strong attenuation of the CALIOP signals with two-way transmissions down
173 to below 0.01. Such high AOD values were also observed for this fire by the Deep Space Climate
174 Observatory/Earth Polychromatic Imaging Camera (DSCOVR-EPIC) mapper and the Aerosol
175 Robotic Network (AERONET) (Torres et al., 2020). For the 532 nm wavelength the particle lidar
176 ratio was estimated by aiming the scattering ratio (R ; total-to-molecular backscattering ratio)
177 below a smoke layer to a target value. The target value was obtained from the background
178 scattering ratio beside each smoke layer investigated, which on average is $R = 1.08$, with standard
179 deviation ± 0.05 . To reduce influence from noise, the CALIOP data were averaged along the
180 swath. The averaging range varied between the smoke layers, due to its extension along the
181 swath, the homogeneity of the layer, and avoidance of sub-layer features.

183 The particle lidar ratio of an individual smoke layer was iterated until reaching the target value (R
 184 = 1.08) described above from the combined effect of all altitude pixels. Pixels at altitudes outside
 185 the smoke layer were set to the background lidar ratio of 50 sr (Jäger and Deshler, 2003). The
 186 altitude resolution provided in the CALIOP data was used, where each altitude pixel (j) is
 187 corrected for attenuation. The calculation starts at the highest altitude (40 km) and continues
 188 downwards in two rounds. In the first round the star-marked quantities of equations 1-3 were
 189 computed, correcting for attenuation from overlaying pixels. Before moving to the next altitude,
 190 we account for self-attenuation from the pixel itself (equations to the right, without a star):
 191

$$192 \quad \beta_j^* = \frac{\beta'_j}{\prod_{k=1}^{j-1} T_k^2}; \quad \beta_j = \frac{\beta_j^*}{\sqrt{T_j^{*2}}} \quad (1)$$

193 where β' is the attenuated backscattering and T^2 the two-way transmissions from both particles
 194 and molecules. The two-way particle transmission is obtained by first computing the AOD:
 195

$$197 \quad AOD_j^* = (\beta_j^* - \beta_{m,j}) S_p \Delta z_j; \quad AOD_j = (\beta_j - \beta_{m,j}) S_p \Delta z_j \quad (2)$$

199 where Δz_j is the height of the altitude pixel, $\beta_{m,j}$ is backscattering from air molecules, and S_p the
 200 lidar ratio of the aerosol particles. The molecular lidar ratio, for computation of the molecular
 201 extinction, was set to 8.70477 sr (Prata et al., 2017). ~~CALIOP measurements are affected by
 202 multiple scattering (Wandinger et al., 2010), causing overestimation of the backscattering. The
 203 multiple scattering factor (η), the ratio of the apparent to the actual extinction coefficient, is not
 204 known. Previous estimates are in the range 0.85 – 0.95 for layers thicker than 500 m (Prata et al.,
 205 2017). Not correcting for multiple scattering results in determination of the effective lidar ratio,
 206 which is lower than the actual lidar ratio by a factor η . In equation 2 thus the backscattering
 207 inflated by multiple scattering is multiplied by an underestimated lidar ratio to, at least in part,
 208 compensate for the effects of multiple scattering on the AOD.~~ The two-way transmission of
 209 altitude pixel j due to the particles present is obtained from:
 210

$$211 \quad T_{p,j}^{*2} = \exp(-2AOD_j^*); \quad T_{p,j}^2 = \exp(-2AOD_j) \quad (3)$$

212 These calculations in equations 1 – 3 are carried out until the background layer between altitudes
 213 a and b below the smoke layer reaches the target scattering ratio of 1.08 (Figure 3a):
 214

$$216 \quad R = \frac{\sum_a^b \beta_j}{\sum_a^b \beta_{m,j}} \quad (4)$$

217 ~~CALIOP measurements are affected by multiple scattering (Wandinger et al., 2010), causing
 218 overestimation of the backscattering described by the multiple scattering factor (η). This factor is
 219 not known, previous estimates for fine aerosol are in the range 0.085 – 0.95 for layers thicker
 220 than 500 m (Prata et al., 2017). In equation 2 the backscattering inflated by multiple scattering~~

222 (β) is multiplied by a lidar ratio. The latter is obtained by iterating equations 1 – 3 until reaching
223 the target scattering ratio, that of the surrounding air, below the cloud. Since the backscattering is
224 inflated by multiple scattering, the lidar ratio obtained will become the product of the actual lidar
225 ratio and the multiple scattering factor, i.e., the effective lidar ratio. Thus, while overestimating
226 the backscattering and underestimating the lidar ratio to equal multiplicative degree, the method
227 applied here corrects the AOD for multiple scattering.

228
229 Error estimates of the effective lidar ratio were obtained by varying the target scattering ratio
230 from its average value ($R = 1.08$) mentioned above, to its ± 0.05 standard deviation range. The
231 fitting uncertainty in these estimates is strongly dependent on the light extinction in the smoke
232 layer. Dense layers result in very small uncertainties in the effective lidar ratio because of the
233 strong impact on R from a slight change in the extinction. Layers with lower extinction
234 progressively increase the uncertainties of the estimate. When the error estimate of the effective
235 lidar ratio fit exceeds 25% the result is excluded from the data analysis, which terminates
236 estimates of lidar ratios from day 22 after the fire.

237
238 The color ratio, the ratio between the backscattering at 1064 nm to 532 nm wavelength, is
239 affected by a difference in attenuation of the two wavelengths. This is clearly visible for dense
240 smoke layers in the CALIOP browse images by a gradual increase of the color ratio through the
241 layer because of the weaker attenuation for 1064 nm wavelength than for 532 nm (Figure 1d).
242 Therefore, estimations of the attenuation were undertaken also for the long wavelength. The
243 molecular backscattering is assumed to be 1/16 of that at 532 nm ($1/\lambda^4$ dependence of Rayleigh
244 scattering). Weak molecular scattering at 1064 nm prohibits lidar ratio estimation at that
245 wavelength by CALIOP. Instead, the lidar ratio was assumed to be 60 sr, inducing uncertainties
246 in the color ratio. The volume color ratio is obtained from:
247

$$248 \quad \chi = \sum_{k=\text{top}}^{\text{base}} \beta_{1064,k} / \sum_{k=\text{top}}^{\text{base}} \beta_{532,k} \quad (5)$$

249
250 To limit influence from attenuation in the color ratio computations, the estimates were based on
251 the upper part of a smoke layer. Starting from the top of the smoke layer, the computations were
252 truncated when the two-way transmission of the 532 nm wavelength fell below 0.7. Varying the
253 1064 nm wavelength lidar ratio in the wide range of 60 ± 20 sr the uncertainty in the color ratio
254 becomes less than $\pm 5\%$ with this constraint applied. From the color ratio we define the particle
255 color ratio:
256

$$257 \quad \chi_p = \sum_{k=\text{top}}^{\text{base}} (\beta_{1064,k} - \beta_{m,1064,k}) / \sum_{k=\text{top}}^{\text{base}} (\beta_{532,k} - \beta_{m,532,k}) = \frac{\chi^R}{R-1} - \frac{1}{16(R-1)} \quad (6)$$

258
259 where we made use of the wavelength dependence of Rayleigh scattering for molecular
260 scattering, and the scattering ratio for the 532 nm wavelength was obtained from eqn. 4.

261
262 We also investigated the depolarization of the scattered laser beam at 532 nm by first forming the
263 volume depolarization ratio:

264

265
$$\delta_v = \sum_{k=\text{top}}^{\text{base}} \beta'_{532\perp,k} / \sum_{k=\text{top}}^{\text{base}} \beta'_{532,k} \quad (7)$$

266

267 where symbol \perp indicates scattered light polarized perpendicularly to the incident beam. Having
268 access to the volume depolarization and an estimate of the molecular depolarization ratio $\delta_m \approx$
269 0.003656 (Prata et al., 2017; Hostetler et al., 2006) the particle depolarization ratio is obtained
270 from:
271

272
$$\delta_p = \frac{\delta_v - \delta_m + \delta_v(1 + \delta_m)(R - 1)}{\delta_m - \delta_v + (1 + \delta_m)(R - 1)} \quad (8)$$

273

274 where R is obtained from eqn. 4.
275276 **2.2 Extinction coefficients and AOD from OMPS-LP**277
278 The aerosol data from OMPS-LP (Chen et al., 2018; Jaross et al., 2014; Loughman et al., 2018)
279 have lately been used extensively in the literature on volcanic and wildfire impact on the
280 stratospheric aerosol. Several data products are available, here we use the recently released Level
281 2 product: Suomi-NPP OMPS LP L2 AER Daily Product, version 2.0 (Taha et al., 2020). The
282 polar-orbiting Suomi satellite completes between 14 and 15 laps-orbits per day. OMPS-LP is a
283 limb-scattering method that collects data looking backwards along the satellite orbit, and along
284 two other directions separated by 4.25° from the orbit, giving a cross-track separation of
285 approximately 250 km at the tangent point. Measurements are undertaken in the wavelength and
286 altitude ranges of 290 – 1000 nm and 10 – 80 km, respectively. The vertical resolution of OMPS-
287 LP is 1.5 – 2 km (Rault and Loughman, 2013). The measurements are evaluated by the Gauss-
288 Seidel limb scattering (GSLS) radiative transfer model. By improving calculations of the multiple
289 scattering source function, the total radiance error has become 1 – 3% (Loughman et al., 2015).
290 The aerosol product used here comprises 6 wavelengths (510, 500, 675, 745, 869 and 997 nm).
291 The group responsible for the OMPS-LP version 2.0 data (Taha et al., 2020) recommends caution
292 when using data from altitudes below 17 km altitude due to loss of sensitivity. This problem can
293 be reduced by use of the 745 nm and longer wavelengths. Here we will make use of two of
294 wavelengths: 745 nm because of the reduced problem with sensitivity, and 510 nm because it is
295 the wavelength closest to that of CALIOP (532 nm).
296297 The OMPS-LP aerosol extinction coefficients are provided on a grid with a vertical resolution of
298 1 km. To study the smoke from the August 2017 fire we compute the average AOD over all
299 longitudes in the latitude interval $20 - 80^\circ$ N for three layers, the LMS (tropopause to 380 K
300 isentrope), lower Brewer-Dobson branch (380 – 470 K) and the upper Brewer-Dobson branch
301 (470 K to 35 km altitude). The OMPS-LP version 2 dataset use a cloud detection algorithm (Chen
302 et al., 2016), and comes in two forms: one without filtering out signals from clouds, and the other
303 where signals affected by clouds and polar stratospheric clouds are removed. In Figure 4 we
304 show both these varieties for 745 nm wavelength, and, with and without flags regarding data
305 quality including profile retrieval errors (named RetrievalFlags in the OMPS-LP files), high root-

306 mean squares (ResidualFlags), and further errors from the South Atlantic anomaly, disturbances
307 from the Moon, solar eclipses, planets, and satellite maneuvers (SwathLevelQualityFlags). In the
308 two upper layers (Figures 4a and b) the differences are usually small between the varieties except
309 for some spikes, whereas the LMS data (Figure 4c) show large stochastic variability as well as
310 periods of clear differences between the varieties. Since this data is taken well below 17 km
311 altitude, sensitivity issues can be expected (Taha et al., 2020), see above. Days 130 – 190 (during
312 December 2017 to February 2018) several spikes appear in the two higher layers which ~~likely~~
313 probably are caused by polar stratospheric clouds. The data set filtered for clouds and flagged
314 stands out by comparably small peaks, whereas the differences between the varieties usually are
315 small elsewhere. We therefore select the cloud-filtered and flagged data for further analysis in the
316 coming sections.

317
318 **2.3 Extinction coefficients from SAGE III/ISS**
319
320 SAGE III/ISS is a limb-viewing instrument based on solar occultation. Here we make use of
321 Level 2 aerosol extinction coefficients (SAGE III/ISS User's Guide, 2018), version 5.10,
322 supplied with a vertical resolution of 0.5 km. The upper limit of the slant path optical depth is
323 about 8, translating to a vertical optical depth of approximately 0.02 (SAGE III/ISS User's Guide,
324 2018). The orbiting of ISS differs markedly from the polar orbiting satellites CALIPSO
325 (CALIOP) and Soumi (OMPS-LP). This causes sporadic coverage by ISS of the latitudes of
326 interest here, resulting in that no average AODs over the 20 – 80° N latitude range could be
327 formed with adequate time resolution. However, daily maximum extinction coefficients from
328 SAGE III/ISS could, when available, be included in a comparison with CALIOP and OMPS-LP.
329

330 **2.4 Water vapor measurements from MLS**
331
332 Water vapor concentrations (mixing ratio) in individual smoke layers was obtained from the MLS
333 instrument aboard the Aura satellite (Waters et al., 2006) in 12 vertical steps per decade of
334 pressure (version 5.0-1.0a, level 2). In nighttime measurements from days 6 – 59 after the fire,
335 the smoke layers studied by CALIOP were also investigated with MLS in almost simultaneous
336 measurements, both instruments being on satellites that are members of the A-train ([L'Ecuyer
337 and Jiang, 2010](#)). Data in the 10 – 316 hPa atmospheric pressure range were used, with vertical
338 resolution 1.3 – 3.2 km ([Lambert et al., 2020](#); [Livesley et al., 2020](#)). Limited vertical resolution
339 induces problems to obtain well defined observation of H₂O concentration of smoke layers close
340 to the strong H₂O concentration gradient across the tropopause. [H₂O from MLS for this fire have
341 previously been reported by Pumphrey et al. \(2021\)](#). Close to the tropopause, but in the
342 stratosphere, no H₂O peak from a smoke layer can be detected. As the distance to the tropopause
343 increases, an H₂O peak from the smoke layer becomes discernible. Further up from the
344 tropopause, when the peak H₂O concentration is well above the extratropical tropopause at
345 atmospheric pressure of less than 110 hPa, a deep minimum appears between the tropopause
346 gradient and the peak from the smoke layer. All H₂O peaks were fitted with a Gaussian
347 distribution operating on logarithmic pressure and H₂O concentration to obtain estimates of the
348 peak concentration and the corresponding atmospheric pressure. To investigate a time

Formatted: Subscript

349 dependence in the smoke layer composition the peak H₂O concentration (C_{H2O}) was compared
350 with the attenuation-corrected aerosol scattering ratio (R) from CALIOP, the optical equivalent of
351 the mixing ratio, where the latter was obtained by forming the geometrical mean over 900 m
352 around the peak scattering ratio. The ratio of the two quantities (R/C_{H2O}) was formed, and
353 its dependence on time from the fire was studied. Out of the 13 smoke layers available with peak
354 water vapor concentrations above the altitude of 110 hPa atmospheric pressure, one was flagged
355 as low quality in the MLS data set, leaving 12 observations for the study of the R/C_{H2O} evolution.
356

357 **2.5 UV aerosol index from OMPS-NM**

358 The UV aerosol index of OMPS-NM based on measurements at two wavelengths, 340 and 378.5
359 nm, is the official NASA aerosol index product according to OMPS-NM (NMMIEAI-L2 V2.1.1)
360 release notes (Torres, 2019). For strongly UV absorbing aerosols, like black carbon from
361 wildfires, the UV aerosol index strongly increases with altitude (Herman et al., 1997). [UV](#)
362 [aerosol index can be used to quantify AOD when layer altitude is available \(Torres et al., 2020\).](#)
363 However, here the OMPS-NM UV aerosol index was used to map the geographical evolution of
364 the smoke layers, that according to CALIOP measurements were distributed in both the
365 troposphere and the stratosphere.
366

367 **3. Results**

368 Here we use an approach based on five satellite sensors to study the influence on the stratosphere
369 of the great North American fire in August 2017. We start by briefly describing results from the
370 method to correct CALIOP data for attenuation of the backscattered laser light. Then follows a
371 comparison of AODs obtained from OMPS-LP and CALIOP. Absorption aerosol index from
372 OMPS-NM is used to describe the dispersion of the wildfire aerosol in the stratosphere. To
373 explain differences in AOD between OMPS-LP and CALIOP, a comparison of extinction
374 coefficients follows, where results from SAGE III/ISS also are included in the comparison. The
375 evolution of the optical properties of the wildfire aerosol is then described, before the North
376 American wildfire aerosol is compared with volcanic influence on the stratospheric AOD.
377 Finally, the fifth data set, water vapor from the MLS, is introduced in the discussion section,
378 where the evolution of the wildfire aerosol in the stratosphere is analyzed.
379

380 **3.1 Correction for attenuation**

381 The smoke layers usually were 1 – 3 km thick and could extend several degrees in longitude and
382 latitude. Measurements with the CALIOP lidar provide, in addition to short, nadir-viewing
383 measurement path in dense layers, the advantage that the signal is retrieved as a function of
384 position along the laser path with high resolution, which can be used to correct for attenuation of
385 the signal. Figure 3a shows the attenuated scattering ratio (R'; the measured backscattering
386 divided by the calculated molecular backscattering) from an example-smoke-layer measured on
387 August 16, 2017. The scattering ratio should be close to 1 in air layers with low aerosol
388 concentration, whereas values below 1 is caused by attenuation from particles. As can be seen in
389
390
391

392 Figure 3a, the attenuated scattering ratio first increases (starting from above the layer). Then the
393 signal decreases and reaches well below unity from 11 km altitude and downwards, i.e., well
394 below the scattering ratio of particle-free air. By techniques described in the Methods section we
395 correct for attenuation and fit the lidar ratio ([the ratio of extinction to backscattering](#)) (Figure 2a)
396 to obtain an estimate of the backscattering without attenuation, as illustrated by the scattering
397 ratio (R) in Figure 3a.

398
399 The evolution of wildfire aerosol from day 3 to 59 after the North American PyroCbs on August
400 12, 2017, is first investigated by comparing 32 smoke layers from individual CALIOP swaths.
401 The influence from attenuation is shown in Figure 3b. Clear deviation from the 1:1 line appears
402 already at layer attenuated (uncorrected) AODs (AOD_{att}) of 0.12, and 50% reduction of the signal
403 appears at layer AOD_{att} of approximately 0.25. Reduction by more than 50% appears until day 10
404 after the fire, whereas those measurements close to the 1:1 line were taken after day 30. The
405 AOD, i.e., the AOD corrected for attenuation, exceeds the AOD_{att} by more than a factor of 5 in
406 the densest layers of this study (Figure 3b).

407
408 **3.2 Comparison of CALIOP and OMPS-LP**
409

410 To study the evolution of the stratospheric AOD, we form a 3-dimensional box in the
411 stratosphere extending over all longitudes in the 20 – 80° N latitude range. In this box we use all
412 daily profiles-14 – 15 CALIOP and 42 – 45 OMPS-LP, to form the average AOD. We apply the
413 method to correct CALIOP data for attenuation, as described in the Methods section. AODs are
414 computed for three layers, the LMS, the lower Brewer-Dobson branch, and the upper Brewer-
415 Dobson branch, as shown in Figure 5.

416
417 When comparing AODs, the measurement wavelengths should be as close as possible, due to the
418 wavelength dependence of scattering. CALIOP AODs are shown for 532 nm wavelength, and the
419 OMPS-LP data are shown for the close wavelength of 510 nm. In addition, the 745 nm AODs
420 from OMPS-LP is shown. The response to the 2017 North American fire is weak in the upper
421 Brewer-Dobson branch (Figure 5a), whereas the two lower layers (Figures 5b-c) show clear
422 increase of the AOD. Comparing the two methods, they agree well in the upper Brewer-Dobson
423 branch. In the lower Brewer-Dobson branch we see good agreement between the two methods,
424 except for the first 1 – 2 months after the fire where much higher AODs are recorded by CALIOP
425 (Figure 5b). The latter is also true for the LMS, whereas the general agreement between the two
426 methods is poor (Figure 5c). The OMPS-LP documentation advise against using data from below
427 approximately 17 km altitude, approximately the upper limit of the LMS, due to loss of
428 sensitivity (Taha et al., 2020). We therefore do not perform any further comparisons in the LMS.
429 The stratosphere above the LMS (above the 380 K isentrope) shows good agreement between the
430 two methods, except for the first 1 – 2 months after the fire (Figure 5d).

431
432 **3.3 Early evolution of the smoke layers**
433

434 The daily AOD averages from CALIOP show large variability during the first days after the fire
435 because the lidar measures narrow curtains through the atmosphere, Figure 5e. The variability
436 remains until the smoke layers become sufficiently dispersed, allowing several daily
437 measurements of the smoke layers. The nadir-viewing OMPS-NM provides UV (ultraviolet)
438 absorbing aerosol index, where strong signal for strongly UV light absorbing aerosol is obtained
439 in the upper troposphere and the stratosphere. Figure 6 shows the geographic evolution of the
440 smoke layers from August 14 to 22, 2017 together with the orbits followed by the CALIOP
441 measurements. Up to August 16 the smoke is found in a rather confined area. From August 17 the
442 smoke layers are stretched in Easterly-castward direction, and after that the smoke spreads rapidly
443 to the East. The dispersion gradually increases the number of daily CALIOP observations of the
444 smoke. This can also be seen in Figure 5e, where the variability in the daily AOD data becomes
445 successively smaller. From day 10 (August 22) we see a clear pattern of decline of the AOD.
446

447 Figure 5e shows the total stratospheric AOD according to CALIOP from the tropopause to 35 km
448 altitude. We see a strong decline of the stratospheric AOD the first 1.5 months after the fire, and a
449 fitted exponential function has a half-life of 6.5 ± 0.9 days. Such a decline cannot be found in the
450 OMPS-LP AODs, which instead are increasing during the first month.
451

452 To further investigate this clear difference between the two methods, individual smoke layers are
453 investigated with respect to extinction coefficients. Figure 7a-d show the extinction coefficient of
454 strong smoke layers from four days in August and September 2017. From CALIOP we show the
455 attenuated extinction coefficients as well as the profiles corrected for attenuation. Together with
456 the CALIOP data the OMPS-LP data closest by are shown. It is obvious that OMPS-LP shows
457 very much smaller reaction to the smoke layers than CALIOP. However, we cannot be sure that
458 the two instruments viewed the same airmasses in these four examples, because the two
459 instruments do not belong to the same satellite constellation. To remove that obstacle, the daily
460 maximum stratospheric extinction coefficient from OMPS-LP was extracted and compared with
461 32 selected profiles' peak extinction coefficients from CALIOP. SAGE III/ISS was also included
462 in the comparison from day 19 after the fire. Unfortunately, the orbiting of ISS did not permit
463 measurements of the fire studied here before that day. The very strong signals from CALIOP are
464 not reflected in the OMPS-LP or SAGE III/ISS measurements, see Figure 7e. In part, this can be
465 explained by difference in vertical resolution, but as shown in Figures 7a-d, these high extinction
466 coefficients extend to broad vertical ranges that should allow detection of strong signals also by
467 OMPS-LP and SAGE III/ISS.
468

469 There is one principal difference between CALIOP on one hand and OMPS-LP and SAGE
470 III/ISS on the other hand: whereas the former is nadir-viewing (vertical) the latter two methods
471 operate in limb orientation (horizontal). This is important, because the horizontal extension of
472 smoke layers is much larger, e.g., the smoke layer in Figure 1b has a vertical extension of
473 approximately 2 km, whereas the horizontal extension is approximately 700 km. The vertical,
474 two-way transmission to the CALIOP sensor through this layer is approximately 0.01, which we
475 correct for. The horizontal path through this layer is 350 times longer, implying that the one-way
476 limb transmission becomes 10^{-350} for the same wavelength. Even if the horizontal extension

would be just one tenth the transmission is still as low as 10^{-35} . Obviously, the radiation used for detection in OMPS-LP and SAGE III/ISS is rapidly eliminated in such smoke layers. Therefore, these two methods are inadequate for studies of dense aerosol layers. The upper limit in terms of vertical AOD is estimated to 0.02 (SAGE III/ISS Users Guide, 2018), corresponding to the extinction coefficient of 0.02 km^{-1} for a 1 km thick layer. This problem is also acknowledged for OMPS-LP (Chen et al., 2018; DeLand, 2019), [and has been pointed out for other limb-oriented satellite-based instruments \(Fromm et al., 2014\)](#). [Failure to properly handle this methodological shortcoming could seriously affect attempts to verify results by modeling \(Lurton et al., 2018\)](#). Despite the clear limitation of OMPS-LP and SAGE III/ISS in this respect, the large body of information on wildfires is based on these methods, e.g., Bourassa et al., (2019), Das et al., (2021), Khaykin et al., (2020), Kloss et al., (2019), Torres et al., (2020) and Yu et al., (2019). By comparing with CALIOP we here show that the limb-oriented techniques miss the dramatic events during the first 1 – 2 months after the fire. The rapid decline of the wildfire smoke will be further analyzed below.

491 492 **3.4 Aerosol optical properties** 493

494 To further investigate the unusual evolution of the AOD, we turn to the optical properties of the
495 wildfire aerosol. The particle color and depolarization ratios are shown in Figure 2b and c. [The](#)
496 [former is the ratio of backscattering at 1064 nm wavelength to that at 532 nm, where a smaller](#)
497 [color ratio indicates smaller particles, and the latter is the ratio of perpendicularly polarized to](#)
498 [total scattering at 532 nm, where a low ratio indicates particle shape close to spherical.](#) To test the
499 significance in the evolution the data were temporally divided into two equal halves by number of
500 data points, and geometric averages were formed (black lines in Figure 2). The particle color ratio
501 shows a highly significant decrease comparing the first to the last half of the data points, whereas
502 the particle depolarization ratio increases with high significance. The change in the optical
503 properties takes place up to 15 – 30 days after the fire. This coincides with the decline of the
504 AOD, thus connecting a change of the aerosol properties to the AOD decline.

505 506 **3.5 Stratospheric AOD variability caused by volcanism and wildfires** 507

508 The stratospheric AOD varies considerably over time mainly due to influence from explosive
509 volcanic eruptions as demonstrated in Figure 8, showing the period 2008 – 2018. In this time
510 span, nine volcanic eruptions clearly, but to varying degree, affected the stratospheric AOD. We
511 also identify two cases of influence from wildfires, the Victoria fire (Australia, 2009) and the fire
512 studied here (Western North America, 2017). The residence time in the stratosphere varies from
513 several years for tropical injections into the upper layer representing the upper branch in the
514 Brewer-Dobson circulation (BD) (Figure 8a), the order of a year in the shallow branch of the BD
515 circulation (Figure 8b), to months in the LMS (Figure 8c) (Friberg et al., 2018). The sum of the
516 three layers is shown in Figure 8d. The volcanic eruptions in these 11 years mainly affected the
517 two lower stratospheric layers, only the Kelut eruption (2014) clearly reached to the deep BD
518 branch. Fire aerosol contains black carbon, which absorbs radiation, heats surrounding air and
519 induces lifting, as observed after the fire studied here (Khaykin et al., 2018; Yu et al., 2019).

520 After both fires, we see weak AOD elevation in the deep BD branch (Figure 8a), but for the fire
521 studied here the two lower layers dominate the AOD, like most of the volcanic eruptions in the
522 eleven-year period.

523
524 Comparing the evolution of the AOD of the North American wildfire with the evolution of the
525 aerosol from two of the most important volcanic eruptions during the last 25 years (Figure 9), we
526 find that the maximum stratospheric AOD after the fire is similar to that after the 2011 Nabro and
527 2009 Sarychev eruptions. During the first couple of months after volcanic events the AOD grows
528 due to formation of condensable sulfuric acid from the emitted volcanic gas sulfur dioxide. In
529 contrast, the wildfire aerosol displays a rapid decline during the first few weeks, before the AOD
530 stabilizes (Figure 9). This is followed by a period of rather stable AOD of more than 6 months,
531 before the AOD evolution turns to a slower decline towards background conditions, with similar
532 seasonality as the aerosol from the volcanic eruptions discussed (Figure 9). This latter decline is
533 mainly caused by springtime transport out from the stratosphere at mid and high latitudes
534 (Bönisch et al., 2009; Martinsson et al., 2017).

535
536 **4. Discussion**
537

538 The smoke aerosol is distributed both in the LMS and in the lower BD branch like aerosol from
539 several volcanic eruptions (Figure 8). The rapid decline of the smoke aerosol during the first
540 month after the fire thus cannot be explained by transport out of the stratosphere. Measurements
541 with Raman lidars at three wavelengths indicate that the smoke from this North American fire
542 contain an accumulation mode but no coarse mode (Haarig et al., 2018; Hu et al., 2019). To leave
543 the extratropical stratosphere particles must pass through the LMS. The influence from
544 sedimentation on submicron diameter particles is small at that level of the stratosphere, e.g., for
545 0.6 μ m diameter sulfuric acid/water particles the sedimentation velocity is 0.15 km/month, which
546 is slow compared to the large-scale transport down to the troposphere from the LMS (Martinsson
547 et al., 2005). Moreover, the change in the particle depolarization ratio (Figure 2c) indicates
548 change of the aerosol particle properties, and the particle color ratio decrease after the fire (Figure
549 2b) is the expected outcome for reduced particle sizes. Based on these arguments we turn the
550 attention to loss of material from the aerosol particles to the gas phase to explain the rapid
551 decrease in AOD seen in Figure 5e.

552
553 Smoke layers contain water vapor that could induce hygroscopic growth/shrinkage. Water vapor
554 profiles for individual smoke layers from days 6 – 60 after the fire were obtained from the MLS.
555 Measurements close to the tropopause (Figure 10a) are affected by a steep gradient in H₂O
556 concentration. The profiles well above the gradient peaking at atmospheric pressure of less than
557 110 hPa are shown in Figure 10b. For the latter category the peak H₂O concentration is in the
558 range 7 – 14 ppmv, implying a maximum H₂O vapor pressure of 0.16 Pa. For typical conditions
559 in the extratropics that vapor pressure corresponds to a relative humidity of a few percent or less
560 (Murphy and Koop, 2005).
561

562 To further investigate the smoke layers, the temporal evolution of the composition is studied by
563 forming the ratio of the mixing ratios of two components: aerosol backscattering and H₂O at the
564 peak of respective vertical distribution. As pointed out above, the strong H₂O gradient around the
565 tropopause affects the MLS measurements. But for the smoke layers higher up, peaking above
566 110 hPa, we find a rapid decrease in the aerosol scattering ratio compared with the H₂O
567 concentration (Figure 10c). Fitting an exponential function ($\frac{R}{c_{H_2O}} = a + be^{-t/\tau}$), the half-life
568 becomes 9.7 ± 3.2 days, which is somewhat longer than that computed from the AOD (half-life
569 6.5 ± 0.9 days). The rapid AOD decline (Figure 5e) is thus verified by relative concentrations of
570 aerosol and H₂O under well-controlled humidity conditions, whereas the low relative humidity
571 rules out hygroscopic growth and influence from clouds as the explanation of the AOD decline.
572

573 The near-field wildfire aerosol contains, besides black carbon (Bond et al., 2013; Ditas et al.,
574 2018), approximately 90% organic material (Garofalo et al., 2019). After emission, secondary
575 organic aerosol (SOA) is formed by oxidation of gas phase compounds (Shrivastava et al., 2017).
576 Knowledge of processes controlling formation and removal in the atmosphere is limited (Hodzic
577 et al., 2016). Global aerosol models usually remove SOA mainly by wet (90%) and, to a smaller
578 extent, by dry deposition (Tsigaridis et al., 2014). In contrast to the species dominating the
579 stratospheric aerosol and its precursor compounds during background conditions and volcanic
580 influence (sulfuric acid and sulfur dioxide), organic species are not the ultimate
581 thermodynamically stable compounds (Hallquist et al., 2009). Organic aerosol is an intermediate
582 state on routes, with little known rates, from emitted compositions to the highly oxidized gaseous
583 products CO and CO₂ (Jimenez et al., 2009). Modeling and numerous laboratory studies find
584 evidence for photolytic removal rates of organic aerosol similar to that of wet deposition in the
585 troposphere (Hodzic et al., 2016; Zawadowics et al., 2020). Recently, photolytic removal of
586 particulate SOA was included in the Whole Atmosphere Community Climate Model (WACCM6)
587 (Gettelman et al., 2019). Hodzic et al. (2015) estimate the photolytic loss over a 10-day period to
588 50% for most organic species at mid tropospheric conditions.
589

590 These high rates are disputed by Yu et al. (2019), claiming a lifetime of 150 days (halflife 104
591 days) of organic aerosol from the fire studied here, whereas Das et al. (2021) explain a similar
592 half-life of the same fire by large-scale circulation and particle sedimentation using OMPS-LP
593 and modeling. The experimental data used here cannot differentiate these two explanations,
594 although the slow part of the smoke decline is similar in seasonality to that of volcanic aerosol
595 (Figure 9) where photochemical loss is less important. The modeling study by Yu et al. (2019)
596 was based on mimicking the extinction according to SAGE III/ISS at 1020 nm wavelength at 18
597 km altitude. For three reasons their study misses the strong decline of the AOD during the first
598 month. Firstly, because the orbiting of ISS prohibits studies of the wildfire smoke the first 19
599 days after the fire, secondly because of the time required to transport the wildfire aerosol to 18
600 km altitude is approximately one month (Yu et al., 2019) and thirdly because problems with
601 event termination (“saturation”), see Figure 7e. We therefore conclude that ~~that~~ Yu et al. (2019)
602 could not observe the main decline of the aerosol taking place during the first 1 – 2 months after
603 the fire, see section 3.3 for further details.
604

605 Submicron aerosol particles have much longer residence time in the stratosphere than in the
606 troposphere due to sparsity of clouds, thus inhibiting the sink that traditionally is considered the
607 most important in the troposphere, i.e., wet deposition. This provides unique possibilities to study
608 photolytic loss without competition from other aerosol sinks. Interpreting the body of evidence
609 on the strong and rapid decline of the stratospheric AOD during the first month after the fire, we
610 find that photolytic loss of organic aerosol is a highly likely explanation. The rate of photolytic
611 loss is likely better described by the evolution of R/C_{H2O} than by the AOD, because the latter
612 could to some degree be affected by transport across the tropopause. Our strong experimental
613 evidence leads us to the hypothesis that the rapid decline of the wildfire aerosol in the
614 stratosphere with a half-life of 10 days is caused by photochemical loss of organic material. This
615 should be further investigated by modeling, but that is outside the scope of the present study.
616

617 To further put the strong early decline of wildfire aerosol into context, we compare the AOD
618 during background conditions (years 2013 and 2014) with the year of the fire. When the
619 contribution of the exponential term is very small of the wildfire aerosol (after 7 half-lives), the
620 background is approximately 2/3 of the wildfire AOD (Figure 9). Taking the background into
621 account, the excess stratospheric aerosol due to the wildfire declines by 83% from the R/C_{H2O}
622 value day 10 after the fire. The process starts before day 10, indicating that almost all the organic
623 aerosol constituting approximately 90% of the near-field wildfire aerosol mass (Garofalo et al.,
624 2019) could be lost by photolysis. Residual wildfire aerosol particles, likely stripped off by a
625 large fraction of its original organic content, remain in the stratosphere up to approximately one
626 year (Figure 9).
627

628 Finally, we investigate the stratospheric aerosol load from the wildfire by comparing with the
629 more studied volcanic impact (Table 1). The AOD growth, the average AOD over one year from
630 the fire/eruption subtracted by the average background AOD (2013 – 2014), is approximately 1/4
631 and 1/3 of that of two of the most important volcanic eruptions for the stratospheric aerosol in the
632 last 25 years (Sarychev 2009, Nabro 2011). The average excess aerosol during the year following
633 the fire corresponds to a radiative forcing of -0.06 W m^{-2} in the region $20 - 80^\circ \text{ N}$, using standard
634 conversion as an approximation (Solomon et al., 2011).
635

636 **Conclusions**

637 In this study we investigate massive injections of smoke into the stratosphere from the August
638 2017 North American wildfires using five satellite sensors. Methodology was developed to
639 correct CALIOP data for attenuation of the laser signal. The CALIOP AOD and extinction
640 coefficients were compared with OMPS-LP and SAGE III/ISS. From 1 – 2 months after the fire
641 we find that OMPS-LP and CALIOP AOD agree very well at altitudes above the 380 K
642 isentrope, where the former demonstrates high sensitivity with small statistical fluctuations. The
643 methods differ dramatically during the first 1 – 2 months after the fire when the smoke layers are
644 dense, because the long optical path through the smoke of the limb-oriented instruments OMPS-
645 LP and SAGE III/ISS cause event termination (“saturation”). This is clearly demonstrated by the
646 low daily maximum extinction coefficients of the two instruments, being orders of magnitude
647

648 lower than the peak extinction coefficients of CALIOP. The nadir viewing CALIOP experiences
649 a much shorter optical path, because the vertical extension of smoke layers usually are orders of
650 magnitude shorter than for limb orientation. We find that CALIOP is an indispensable tool for
651 studies of dense smoke layers entering the stratosphere after intense wildfires, providing signal
652 along the laser path that can be used to correct for attenuation. Once the smoke layers are
653 sufficiently thin, the limb technique OMPS-LP provide sensitive measurements of the AOD that
654 can be used together with CALIOP.

655
656 The AOD from the wildfire declines exponentially with a half-life of 6.5 days. This decline is
657 further studied by the evolution of the ratio of the aerosol and water vapor mixing ratios of the
658 smoke layers, resulting in a massive decline of 80 – 90% of the wildfire aerosol with a half-life of
659 approximately 10 days. We find transport out of the stratosphere, sedimentation, influence from
660 clouds or hygroscopic growth/shrinkage to be highly unlikely explanations for the rapid decline
661 of wildfire aerosol in the stratosphere. Based on strong experimental evidence we hypothesize
662 that photochemical loss of organic aerosol causes the rapid decline, which would mean that
663 almost the entire organic fraction of the wildfire aerosol would be lost in the exponential decline.
664 The half-life according to this study agrees well with results from laboratory studies and global
665 modeling. Our unique result could be obtained because of the long residence time of aerosol
666 particles in the stratosphere, whereas tropospheric studies of photochemical loss are extremely
667 difficult because it is masked by SOA formation and wet deposition due to short residence time.
668 The residual aerosol leaves the stratosphere within a year in the Brewer-Dobson circulation.
669 Despite the initial loss, the long-term effects of wildfire smoke on the stratospheric AOD and
670 radiative forcing are considerable. The ongoing climate change is projected to increase the
671 frequency of wildfires, prompting the need for inclusion of wildfire impact on the stratospheric
672 aerosol load in the climate models.

673 **Acknowledgements**

674 Aerosol products from the CALIOP sensor and SAGE III/ISS were produced by NASA Langley
675 Research Center. The official NASA aerosol index from the OMPS Nadir Mapper, the aerosol
676 scattering from OMPS Limb Profiler and water vapor profiles from MLS are supplied by
677 Goddard Earth Sciences Data and Information Services Center. We gratefully acknowledge
678 financial support from the Swedish Research Council for Environment, Agricultural Sciences and
679 Spatial Planning (contract 2018-00973), the Swedish National Space Board (contracts 130/15 and
680 104/17), and the Crafoord foundation (contract 20190690).

681 **Author Contributions**

682 B.G.M. designed the study, designed methodology, undertook part of the data analysis, and wrote
683 most of the paper. J.F. contributed to the design of the study, designed methodology, did part of
684 the data analysis, and wrote parts of the text. O.S.S. contributed to the data analysis and M.K.S.
685 contributed to the design of methodology. In addition, all authors participated in discussions and
686 commented on the manuscript.

691 **Data availability**

692
693 CALIOP V4.10 lidar data (<https://search.earthdata.nasa.gov/search?fp=CALIPSO>) are publicly
694 available.
695 OMPS-NM UV aerosol index was obtained from the publicly available site
696 <https://worldview.earthdata.nasa.gov/>.
697 OMPS-LP stratospheric aerosol optical depths were obtained from
698 https://disc.gsfc.nasa.gov/datasets/OMPS_NPP_LP_L2_AER_DAILY_2/summary
699 MLS water vapor concentrations were obtained from
700 https://disc.gsfc.nasa.gov/datasets?page=1&keywords=ML2H2O_005
701 SAGE III/ISS aerosol data were obtained from
702 https://asdc.larc.nasa.gov/project/SAGE%20III-ISS/g3bssp_51.
703

704 **Competing Interest**

705
706 The authors declare no competing interests.
707

708 **Additional Information**

709
710 Correspondence and requests for materials should be addressed to B.G.M.

711 **References**

712
713
714 Ammann C.M., Meehl G.A., Washington W.M., and Zender C.S., A monthly and latitudinally
715 varying volcanic forcing dataset in simulations of 20th century climate. *Geophys Res. Lett.*,
716 30, 1567-1661, doi:10.1029/2003GL016875, 2003.
717 Andersson, S. M., Martinsson, B. G., Friberg, J., Brenninkmeijer, C. A. M., Rauthe-Schöch, A.,
718 Hermann, M., van Velthoven, P. F. J., and Zahn, A., Composition and evolution of volcanic
719 aerosol from eruptions of Kasatochi, Sarychev and Eyjafjallajökull in 2008 – 2010 based on
720 CARIBIC observations. *Atmos. Chem. Phys.* 13, 1781-1796, doi:10.5194/acp-13-1781-2013,
721 2013.
722 Andersson, S. M., Martinsson, B. G., Vernier, J. P., Friberg, J., Brenninkmeijer, C. A. M.,
723 Hermann, M., Van Velthoven, P.F. J., and Zahn, A, Significant radiative impact of volcanic
724 aerosol in the lowermost stratosphere, *Nat. Commun.* 6:7692 doi:10.1038/ncomms8692,
725 2015.
726 Ansmann, A., Baars, H., Chudnovsky, A., Mattis, I., Veselovskii, I., Haarig, M., Seifert, P.,
727 Engelmann, R., and Wandinger, U., Extreme levels of Canadian wildfire smoke in the
728 stratosphere over central Europe on 21-22 August 2017. *Atmos. Chem. Phys.* 18, 11831-
729 11845, <https://doi.org/105194/acp-18-11831-2018>, 2018.
730 Baars, H., Ansmann, A., Ohneiser, K., Haarig, M., Engelmann, R., Althausen, D., Hanssen, I.,
731 Gausa, M., Pietruczuk, A., Szkop, A., Stachlewska, I. S., Wang, D., Reichardt, J., Skupin, A.,
732 Mattis, I., Trickl, T., Vogelmann, H., Navas-Guzmán, F., Haefele, A., Acheson, K., Ruth, A.,
733 A., Tatarov, B., Müller, D., Hu, Q., Podvin, T., Goloub, P., Veselovskii, I., Pietras, C.,
734 Haeffelin, M., Fréville, P., Sicard, M., Comerón, A., Fernández García, A. J., Molero
735 Menéndez, F., Córdoba-Jabonero, C., Guerrero-Rascado, J. L., Alados-Arboledas, L., Bortoli,

736 D., Costa, M. J., Dionisi, D., Liberti, G. L., Wang, X., Sannino, A., Papagiannopoulos, N.,
 737 Boselli, A., Mona, L., D'Amico, G., Romano, S., Perrone, M. R., Belegante, L., Nicolae, D.,
 738 Grigorov, I., Gialitaki, A., Amiridis, V., Soupiona, O., Papayannis, A., Mamouri, R.-E.,
 739 Nisantzi, A., Heese, B., Hofer, J., Schechner, Y. Y., Wandinger, U., and Pappalardo, G., The
 740 unprecedeted 2017-2018 stratospheric smoke event: Decay phase and aerosol properties
 741 observed with the EARLINET. *Atmos. Chem. Phys.* 19, 15183-15198,
 742 <https://doi.org/10.5194/acp-19-15183-2019, 2019>.

743 Bond T.C., Doherty, S. J., Fahey, D., Forster, P., Berntsen, T., DeAngelo, B., Flanner, M., Ghan,
 744 S., Kärcher, B., and Koch, D., Bounding the role of black carbon in the climate system: A
 745 scientific assessment. *J. Geophys. Res. Atmos.*, 118, 5380-5552,
 746 <https://doi:10.1002/jgrd.50171, 2013>.

747 Bourassa A.E., Rieger, L. A., Zawada, D. J., Khaykin, S., Thomason, L. W., and Degenstein, D. A.,
 748 Satellite Limb Observations of Unprecedented Forest Fire Aerosol in the Stratosphere. *J*
 749 *Geophys. Res.* 124, 9510-9519, <https://doi.org/10.1029/2019JD030607, 2019>.

750 Bönisch H., Engel A., Curtius J., Birner Th., and Hoor P., Quantifying transport into the lowermost
 751 stratosphere using simultaneous in-situ measurements of SF6 and CO2. *Atmos. Chem. Phys.*,
 752 9, 5905-5919, doi.org/10.5194/acp-9-5905-2009www.atmos-chem-phys.net/9/5905/2009/,
 753 2009.

754 Chen Z., DeLand M., and Bhartia P.K., A new algorithm for detecting cloud height using
 755 OMPS/LP measurements. *Atmos. Meas. Tech.* 9, 1239-1246, [doi:10.5194/amt-9-1239-2016, 2016](https://doi.org/10.5194/amt-9-1239-2016, 2016).

756 Chen Z., Bhartia P.K., Loughman R., Colarco P., and DeLand M., Improvement of stratospheric
 757 aerosol extinction retrieval from OMPS/LP using a new aerosol model. *Atmos. Meas. Tech.*,
 758 11, 6495-6509, <https://doi.org/10.5194/amt-11-6495-2018, 2018>.

759 Das S., Colarco P.R., Oman L.D., Taha G., and Torres O., The long-term transport and radiative
 760 impacts of the 2017 British Columbia pyrocumulonimbus smoke aerosols in the stratosphere.
 761 *Atmos. Chem. Phys.*, 21, 12069-12090, <https://doi.org/10.5194/acp-21-12069-2021, 2021>.

762 DeLand M., Readme document for the Soumi-NPP OPMS LP L2 AER675 Daily product. Goddard
 763 Earth Sciences Data and Information Services Center (GES DISC), <http://disc.gsfc.nasa.gov, 2019>.

764 Dennison P.E., Brewer S.C., Arnold J.D., and Moritz M.A., Large wildfire trends in the western
 765 United States, 1984-2011. *Geophys. Res. Lett.*, 41, 2928-2933, [doi:10.1002/2014GL059576, 2014](https://doi.org/10.1002/2014GL059576, 2014).

766 Ditas J., Ma, N., Zhang, Y., Assmann, D., Neumaier, M., Riede, H., Karu, E., Williams, J.,
 767 Scharffe, D., Wang, Q., Saturno, J., Schwarz, J. P., Katich, J. M., McMeeking, G. R., Zahn,
 768 A., Hermann, M., Brenninkmeijer, C. A. M., Andreae, M. O., Pöschl, U., Su, H., and Cheng,
 769 Y., Strong impact of wildfires on the abundance and aging of black carbon in the lowermost
 770 stratosphere. *Proc. Natl. Acad. Sci. USA*, 115, E11595-E11603,
 771 <https://doi.org/10.1073/pnas.1806868115, 2018>.

772 Engel A., Mobius, T., Bonisch, H., Schmidt, U., Heinz, R., Levin, I., Atlas, E., Aoki, S., Nakazawa,
 773 T., Sugawara, S., Moore, F., Hurst, D., Elkins, J., Schauffler, S., Andrews, A., and Boering,
 774 K., Age of stratospheric air unchanged within uncertainties over the past 30 years. *Nat.*
 775 *Geosci.* 2, 28-31, [doi:10.1038/NGE0388, 2009](https://doi.org/10.1038/NGE0388, 2009).

776 Friberg, J., Martinsson, B. G., Andersson, S. M., Brenninkmeijer, C. A. M., Hermann, M., Van
 777 Velthoven, P. F. J., and Zahn, A., Sources of increase in lowermost stratospheric sulphurous
 778

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: 14 pt

Field Code Changed

781 and carbonaceous aerosol background concentrations during 1999-2008 derived from
782 CARIBIC flights, Tellus B, 66, 23428, <http://dx.doi.org/10.3402/tellusb.v66.23428>, 2014.

783 Friberg J., Martinsson, B. G., Andersson, S. M., and Sandvik, O. S., Volcanic impact on the climate
784 – the stratospheric aerosol load in the period 2006 – 2015. *Atmos. Chem. Phys.*, 18, 11149-
785 11169, doi: 10.5194/acp-18-11149-2018, 2018.

786 Fromm, M., Lindsey, D. T., Servranckx, R., Yue, G., Trickl, T., Sica, R., Doucet, P., and Godin-
787 Beekmann, S., The untold story of pyrocumulonimbus. *Bull. Am. Meteorol. Soc.* 91, 1193-
788 1209, 2010.

789 [Fromm, M., Kablick, III, G., Nedoluha, G., Carboni, E., Grainger, R., Campbell, J., and Lewis, L.,](#)
790 [Correcting the record of volcanic stratospheric aerosol impact: Nabro and Sarychev Peak. *J.*](#)
791 [Geophys. Res. Atmos.](#), 119, doi:10.1002/2014JD021507, 2014.

792 [Fromm, M., Kablick, III, G.P., Peterson, D.A., Kahn, R.A., Flower, V.J.B. and Seftor, C.J.,](#)
793 [Quantifying the source term and uniqueness of the August 12, 2017 Pacific Northwest](#)
794 [pyroCb event. *J. Geophys. Res.* 126, e2021JD034928, doi: org/10.1029/2021JD034928, 2021.](#)

795 Fyfe, J. C., Meehl, G. A., England, M. H., Mann, M. E., Santer, B. D., Flato, G. M., Hawkins, E.,
796 Gillett, N. P., Xie, S.P., Kosaka, Y., and Swart, N. C., et al., Making sense of the early-2000s
797 warming slowdown. *Nat. Clim. Change* 6, 224-228, 2016.

798 Garofalo, L. A., Levin, E. J. T., Campos, T., Kreidenweis, S. N., and Farmer, D. K., Emission and
799 evolution of submicron organic aerosol in smoke from wild fires in the western United States.
800 *ACS Space Chem.* 3, 1237-1247, 2019.

801 Gettelman A., Mills, M.J., Kinnison, D.E., Garcia, R.R., Smith, A.K., Marsh, D.R., Tilmes, S., Vitt,
802 F., Bardeen, C.G., McInerny, J., Liu, H.-L., Solomon, S.C., Polvani, L.M. Emmons, L.K.,
803 Lamarque, J.-F., Richter, J.H., Glanville, A.S., Bacmeister, J.T., Phillips, A.S., Neale, R.B.,
804 Simpson, I.R., DuVivier, A.K., Hodzic, A., and Randel W.J., The Whole Atmosphere
805 Community Climate Model Version 6 (WACCM6). *J. Geophys. Res.* 124, 12380-12403,
806 <https://doi.org/10.1029/2019JD030943>, 2019.

807 Haarig, M., Ansmann, A., Baars, H., Jimenez, C., Veselovskii, I., Engelmann, R., and Althausen,
808 D., Depolarization and lidar ratios at 355, 532 and 1064 nm and microphysical properties of
809 aged tropospheric and stratospheric wildfire smoke. *Atmos. Chem. Phys.* 18, 11847-11861,
810 <https://doi.org/10.5194/acp-18-11847-2018>, 2018.

811 Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J.,
812 Donahue, N.M., George, C., Goldstein, A.H., Hamilton, J.F., Herrmann, H., Hoffmann, T.,
813 Iiuma, Y., Jang, M., Jenkin, M.E., Jimenez, J.L., Kiendler-Scharr, A., Maenhaut, W.,
814 McFiggans, G., Mentel, T.F., Monod, A., Prevot, A.S.H., Seinfeld, J.H., Surratt, J.D.,
815 Szmiigelski, R., and Wildt, J., The formation, properties and impact of secondary organic
816 aerosol: current and emerging issues. *Atmos. Chem. Phys.*, 9, 5155-5236, 2009.

817 Herman J.R., Bhartia, P., Torres, O., Hsu, C., Seftor, C., and Celarier, E., Global distribution of
818 UV-absorbing aerosols from Nimbus 7/TOMS data. *J Geophys. Res.* 102, 16911-16922,
819 1997.

820 Hodzic, A., Madronich, S., Kasibhatla, P.S., Tyndall, G., Aumont, B., Jimenez, J.L., Lee-Taylor, J.,
821 and Orlando, J., Organic photolysis reactions in tropospheric aerosols: effects on secondary
822 organic aerosol formation and lifetime. *Atmos. Chem. Phys.* 15, 9253-9269, 2015.

823 Hodzic, A., Kasibhatla, P.S., Duseong, S.J., Cappa, C.D., Jimenez, J.L., Madronich, S., and Park
824 R.J., Rethinking the global secondary organic aerosol (SOA) budget: stronger production,
825 faster removal, shorter lifetime. *Atmos. Chem. Phys.* 16, 7917-7941, doi:10.5194/acp-16-
826 7917-2016, 2016.

Formatted: English (United States)
Formatted: English (United States)
Formatted: English (United States)
Formatted: English (United States)

827 Hostetler, C. A., Liu, Z., Reagan, J., Vaughan, M., Winker, D., Osborn, M., Hunt, W. H., Powell,
828 K. A., and Trepte, C., CALIOP algorithm theoretical basis document part 1: Calibration and
829 level 1 data products. Available at <https://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI->
830 201v1.0.pdf, 2006.

831 Hu, Q., Goloub, P., Veselovskii, I., Bravo-Aranda, J.-A., Popovici, I. E., Podvin, T., Haeffelin, M.,
832 Lopatin, A., Dubovik, O., Pietras, C., Huang, X., Torres, B., and Chen, C., Long-range-
833 transported Canadian smoke plumes in the lower stratosphere over northern France. *Atmos.*
834 *Chem. Phys.* 19, 1173-1193, <https://doi.org/10.5194/acp-19-1173-2019>, 2019.

835 Jaross, G., P. K. Bhartia, G. Chen, M. Kowitt, M. Haken, Z. Chen, P. Xu, J. Warner, and T. Kelly,
836 OMPS Limb Profiler instrument performance assessment. *J. Geophys. Res. Atmos.*, 119,
837 doi:10.1002/2013JD020482, 2014.

838 Jimenez J.L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H.,
839 DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. M.,
840 Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A.,
841 Hueglin, C., Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,
842 P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J., E, Dunlea, J.,
843 Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P. I., Bower, K., Kondo, Y.,
844 Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell,
845 L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y.,
846 M., Dzepina, K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M.,
847 Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E., Baltensperger, U., and
848 Worsnop, D. R., Evolution of organic aerosol in the atmosphere. *Science* 326, 1525-1529
849 (2009).

850 Jäger H. and Deshler T., Erratum: Lidar backscatter to extinction, mass and area conversions based
851 on balloonborne aerosol measurements. *Geophys. Res. Lett.*, 22, 1729-1732,
852 <https://doi.org/10.1029/2003GL017189>, 2003.

853 Kablick III G.P., Allen D.R., Fromm M.D., and Nedoluha G.E., Australian pyroCb smoke
854 Generates synoptic-scale stratospheric anticyclones. *Geophys. Res. Lett.*, 47,
855 <https://doi.org/10.1029/2020GL088101>, 2020.

856 Kasischke E.S. and Turetsky M.R., Recent changes in the fire regime across the North American
857 boreal region – Spatial and temporal patterns of burning across Canada and Alaska, *Geophys.*
858 *Res. Lett.*, 33, L09703, doi:10.1029/2006GL025677, 2006.

859 Khaykin, S. M., Godin-Beckmann, S., Hauchecorne, A., Pelon, J., Ravetta, F., and Keckhut, P.,
860 Stratospheric smoke with unprecedentedly high backscatter observed by lidars above
861 southern France. *Geophys. Res. Lett.* 45, 1639-1646. <https://doi.org/10.1002/2017GL076763>,
862 2018.

863 Khaykin, S., Legras, B., Bucci, S., Sellitto, P., Isaksen, L., Tencé, F., Bekki, S., Bourassa, A.,
864 Rieger, L., Zawada, D., Jumelet, J., and Godin-Beckmann, S., The 2019/20 Australian
865 wildfires generated a persistent smoke-charged vortex rising up to 35 km altitude. *Commun.*
866 *Earth and Environ.* 1, <https://doi.org/10.1038/s43247-020-00022-5>, 2020.

867 Kloss, C., Berthet, G., Sellitto, P., Ploeger, F., Bucci, S., Khaykin, S., Jégou, F., Taha, G.,
868 Thomason, L. W., Barret, B., Le Flochmoen, E., von Hobe, M., Bossolasco, A., Bègue, N.,
869 and Legras, B., Transport of the 2017 Canadian wildfire plume to the tropics via the Asian
870 monsoon circulation. *Atmos. Chem. Phys.*, 19, 13547-13567, <https://doi.org/10.5194/acp-19-13547-2019>, 2019.

872 Kremser, S., Thomason, L. W., von Hobe, M., Hermann, M., Deshler, T., Timmreck, C., Toohey,
873 M., Stenke, A., Schwarz, J. P., Weigel, R., Fueglistaler, S., Prata, F. J., Vernier, J. P.,

874 Schlager, H., Barnes, J. E., Antuña-Marrero, J. C., Fairlie, D., Palm, M., Mahieu, E., Notholt,
875 J., Rex, M., Bingen, C., Vanhellemont, F., Bourassa, A., Plane, J. M. C., Klocke, D., Carn, S.
876 A., Clarisse, L., Trickl, T., Neely, R., James, A. D., Rieger, L., Wilson, J. C., and Meland, B,
877 Stratospheric aerosol – Observations, processes, and impact on climate. *Rev. GeoPhys.*, 54,
878 278–335, doi:10.1002/2015RG000511, 2016.

879 [Lambert, A., Read, W. and Livesey, N. MLS/Aura Level 2 Water Vapor \(H₂O\) Mixing Ratio](#)
880 [V005, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center](#)
881 [\(GES DISC\), Accessed: \[Data Access Date: Spring 2021\], 10.5067/Aura/MLS/DATA2508,](#)
882 [2020.](#)

883 [L'Ecuyer, T.S. and Jiang, J.H., Touring the atmosphere aboard the A-Train. *Physics Today* 63\(7\),](#)
884 [doi:10.1063/1.3463626, 2010.](#)

885 [Lestrelin, H., Legras, B., Podglajen, A., and Salihoglu, M.: Smoke-charged vortices in the](#)
886 [stratosphere generated by wildfires and their behaviour in both hemispheres: comparing](#)
887 [Australia 2020 to Canada 2017. *Atmos. Chem. Phys.*, 21, 7113–7134, doi.org/10.5194/acp-](#)
888 [21-7113-2021, 2021.](#)

889 Livesey, N. J., Read, W. G., Wagner, P. A., Froidevaux, L., Santee, M. L., Schwartz, M. J.,
890 Lambert, A., Manney, G. L., Valle, L. F. M., Pumphrey, H. C., Fuller, R. A., Jarnot, R. F.,
891 Knosp, B. W., and Lay, R. R.: EOS MLS Version 5.0x Level 2 and 3 data quality and
892 description document, Tech. rep., Jet Propulsion Laboratory D734 105336 Rev. A, available
893 from <https://mls.jpl.nasa.gov/publications>, 2020.

894 [Loughman, R., D. Flittner, E. Nyaku, and P. K. Bhartia, Gauss–Seidel limb scattering \(GSLS\)](#)
895 [radiative transfer model development in support of the Ozone Mapping and Profiler Suite](#)
896 [\(OMPS\) limb profiler mission. *Atmos. Chem. Phys.*, 15, 3007–3020, doi:10.5194/acp-15-](#)
897 [3007-2015, 2015.](#)

898 Loughman, R., P. K. Bhartia, Z. Chen, P. Xu, E. Nyaku, and G. Taha, The Ozone Mapping and
899 Limb Profiler Suite (OMPS) Limb Profiler (LP) Version 1 aerosol extinction algorithm:
900 theoretical basis, *Atmos. Meas. Tech.*, 11, 2633–2651, doi.org/10.5194/amt-11-2633-2018,
901 2018.

902 [Lurton, T., Jegou, F., Berthet, B., Renard, J.-B., Clarisse, L., Schmidt, A., Brogniez, C., and](#)
903 [Roberts, T.J., Model simulations of the chemical and aerosol microphysical evolution of the](#)
904 [Sarychev Peak 2009 eruption cloud compared to in situ and satellite observations. *Atmos.*](#)
905 [Chem. Phys., 18, 3223–3247, doi.org/10.5194/acp-18-3223-2018, 2018.](#)

906 Martinsson, B. G., Nguyen, H. N., Brenninkmeijer, C. A. M., Zahn, A., Heintzenberg, J., Hermann,
907 M., and van Velthoven, P. F. J., Characteristics and origin of lowermost stratospheric aerosol
908 at northern midlatitudes under volcanically quiescent conditions based on CARIBIC
909 observations. *J. Geophys. Res.* 110, D12201, doi:10.1029/2004JD005644, 2005.

910 Martinsson, B. G., Brenninkmeijer, C. A. M., Carn, S. A., Hermann, M., Heue, K. P., van
911 Velthoven, P. F. J., and Zahn, A., Influence of the 2008 Kasatochi volcanic eruption on
912 sulfurous and carbonaceous aerosol constituents in the lower stratosphere. *Geophys. Res.*
913 *Lett.*, 36, L12813, doi:10.1029/2009GL038735, 2009.

914 Martinsson, B. G., Friberg, J., Sandvik, O. S., Hermann, M., van Velthoven, P. F. J., and Zahn, A.,
915 Particulate sulfur in the upper troposphere and lowermost stratosphere – sources and climate
916 forcing. *Atmos. Chem. Phys.*, 17, 10937–10953, <https://doi.org/10.5194/acp-17-10937-2017>,
917 2017.

918 Martinsson, B. G., Friberg, J., Sandvik, O. S., Hermann, M., van Velthoven, P. F. J., and Zahn, A.,
919 Formation and composition of the UTLS aerosol. *Npj Climate and Atmospheric Science* 2:40,
920 <https://doi.org/10.1038/s41612-019-0097-1>, 2019.

Formatted: English (United States)

921 Medhaug I., Stolpe M.B., Fischer E.M., and Knutti R., Reconciling controversies about the “global
922 warming hiatus”. *Nature* 545, 41-47, 2017.

923 Molina M.J., Ivanov A.V., Trakhtenberg S., and Molina L.T., Atmospheric evolution of organic
924 aerosol. *Geophys. Res. Lett.* 31, L22104, doi:10.1029/2004GL020910, 2004.

925 Murphy D. M., Cziczo D. J., Hudson P. K. and Thomson D. S., Carbonaceous material in aerosol
926 particles in the lower stratosphere and tropopause region. *J. Geophys. Res.*, 112, D04203,
927 doi:10.1029/2006JD007297, 2007.

928 Murphy D.M. and Koop T., Review of the vapour pressures of ice and supercooled water for
929 atmospheric applications. *Q. J. R. Meteorol. Soc.*, 131, 1539–1565, doi: 10.1256/qj.04.94,
930 2005.

931 Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque,
932 J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., and
933 Zhang, H., Anthropogenic and Natural Radiative Forcing. In: *Climate Change 2013: The
934 Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of
935 the Intergovernmental Panel on Climate Change*. Cambridge University Press, Cambridge,
936 United Kingdom and New York, NY, USA, 2013.

937 Peterson, D. A., Campbell, J. R., Hyer, E. J., Fromm, M. D., Kablick, G. P., Cossuth, J. H., and
938 DeLand, M. T., Wildfire-driven thunderstorms cause a volcano-like stratospheric injection of
939 smoke. *Npj Climate and Atmospheric Science* 1, 30. <https://doi.org/10.1038/s41612-018-0039-3>,
940 2018.

941 Prata A.T, Young S.A., Siems S.T., and Manton M.J., Lidar ratios of stratospheric volcanic ash and
942 sulfate aerosols retrieved from CALIOP measurements. *Atmos. Chem. Phys.* 17, 8599-8618,
943 <https://doi.org/10.5194/acp-17-8599-2017>, 2017.

944 Pumphrey, H. C., Schwartz, M. J., Santee, M. L., Kablick III, G. P., Fromm, M. D., and Livesey, N.
945 J.: Microwave Limb Sounder (MLS) observations of biomass burning products in the
946 stratosphere from Canadian forest fires in August 2017, *Atmos. Chem. Phys.*, 21, 16645–
947 16659, doi.org/10.5194/acp-21-16645-2021, 2021.

948 Rault D.F. and Loughman R.P., The OMPS Limb Profiler Environmental Data Record Algorithm
949 Theoretical Basis Document and Expected Performance. *IEEE Transactions on Geosci. and*
950 *remote sensing.* 51, 2505-2527, 2013.

951 SAGE III/ISS Users Guide, Stratospheric Aerosol and Gas Experiment on the International Space
952 Station (SAGE III/ISS), Data Products User’s Guide, Version 2.0, Distributed by the
953 Atmospheric Science Data Center, Accessed: 2021-11-10, <http://eosweb.larc.nasa.gov>, 2018.

954 Santer, B. D., Bonfils, C., Painter, J. F., Zelinka, M. D., Mears, C., Solomon, S., Schmidt, G. A.,
955 Fyfe, J. C., Cole, J. N. S., Nazarenko, L., Taylor, K. E., and Wentz, F. J., Volcanic
956 contribution to decadal changes in tropospheric temperature. *Nat. Geosci.* 7, 185-189, 2014.

957 Sareen N., Moussa S.G., and McNeill V.F., Photochemical aging of light-absorbing secondary
958 organic aerosol material. *J. Phys. Chem. A* 117, 2987-2996, 2013.

959 Shrivastava M., Cappa, C. D., Fan, J., Goldstein, A. H., Guenther, A. B., Jimenez, J. L., Kuang, C.,
960 Laskin, A., Martin, S. T., Ng, N. L., Petaja, T., Pierce, J. R., Rasch, P. J., Roldin, P., Seinfeld,
961 J. H., Shilling, J., Smith, J. N., Thornton, J. A., Volkamer, R., Wang, J., Worsnop, D. R.,
962 Zaveri, R. A., Zelenyuk, A., and Zhang, Q.: Recent advances in understanding secondary
963 organic aerosol: Implications for global climate forcing. *Rev. Geophys.* 55, 509-559, 2017.

964 Solomon, S., Daniel, J. S., Neely, R. R., Vernier, J.-P., Dutton, E. G., and Thomason, L. W., The
965 persistently variable “background” stratospheric aerosol layer and global climate change.
966 *Science*, 333, 866 – 870, 2011.

967 Stothers R.B., Three centuries of observation of stratospheric transparency. *Climatic Change* 83,
 968 515-521, doi:10.1007/s10584-007-9238-3, 2007.

969 Taha G., OMPS-NPP L2 LP Aerosol Extinction Vertical Profile swath daily 3slit V2, Greenbelt,
 970 MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC),
 971 Accessed: 2021-09-29, 10.5067/CX2B9NW6FI27, 2020.

972 Torres O., OMPS-NPP L2 NM Aerosol Index swath orbital V2.1.1, Greenbelt, MD, USA, Goddard
 973 Earth Sciences Data and Information Services Center (GES DISC), Accessed: [Data Access:
 974 Fall, 2019], 10.5067/40L92G8144IV, 2019.

975 Torres, O., Bhartia, P. K., Taha, G., Jethva, H., Das, S., Colarco, P., Krotkov, N., Omar, A., and
 976 Ahn, C., Stratospheric Injection of Massive Smoke Plume From Canadian Boreal Fires in
 977 2017 as Seen by DSCOVR-EPIC, CALIOP, and OMPS-LP Observations. *J Geophys. Res.*
 978 125, e2020JD032579. <https://doi.org/10.1029/2020JD032579>, 2020.

979 Tsigaridis K., Daskalakis, N., Kanakidou, M., Adams, P. J., Artaxo, P., Bahadur, R., Balkanski, Y.,
 980 Bauer, S. E., Bellouin, N., Benedetti, A., Bergman, T., Berntsen, T. K., Beukes, J. P., Bian,
 981 H., Carslaw, K. S., Chin, M., Curci, G., Diehl, T., Easter, R. C., Ghan, S. J., Gong, S. L.,
 982 Hodzic, A., Hoyle, C. R., Iversen, T., Jathar, S., Jimenez, J. L., Kaiser, J. W., Kirkevåg, A.,
 983 Koch, D., Kokkola, H., Lee, Y. H., Lin, G., Liu, X., Luo, G., Ma, X., Mann, G. W.,
 984 Mihalopoulos, N., Morcrette, J.-J., Müller, J.-F., Myhre, G., Myrookefalitakis, S., Ng, N. L.,
 985 O'Donnell, D., Penner, J. E., Pozzoli, L., Pringle, K. J., Russell, L. M., Schulz, M., Sciare, J.,
 986 Selander, Ø., Shindell, D. T., Sillman, S., Skeie, R. B., Spracklen, D., Stavrakou, T., Steenrod,
 987 S. D., Takemura, T., Tiiita, P., Tilmes, S., Tost, H., van Noije, T., van Zyl, P. G., von Salzen,
 988 K., Yu, F., Wang, Z., Wang, Z., Zaveri, R. A., Zhang, H., Zhang, K., Zhang, Q., and Zhang,
 989 X., The AeroCom evaluation and intercomparison of organic aerosol in global models.
 990 *Atmos. Chem. Phys.*, 14, 10845–10895, doi:10.5194/acp-14-10845-2014, 2014.

991 Vernier, J.-P., Pommereau, J.-P., Garnier, A., Pelon, J., Larsen, N., Nielsen, J., Christensen, T.,
 992 Cairo, F., Thomason, L.W., Leblanc, T., and McDermid, I.S., Tropical stratospheric aerosol
 993 layer from CALIPSO lidar observations. *J. Geophys. Res.*, 114, D00H10,
 994 doi:10.1029/2009JD011946, 2009.

995 Vernier, J. P., Thomason, L. W., Pommereau, J. P., Bourassa, A., Pelon, J., Garnier, A.,
 996 Hauchecorne, A., Blanot, L., Trepte, C., Degenstein, D., and Vargas, F., Major influence of
 997 tropical volcanic eruptions on the stratospheric aerosol layer during the last decade. *Geophys.*
 998 *Res. Lett.*, 38, 1-8, <https://doi.org/10.1029/2011GL047563>, 2011.

999 Wandinger U., Tesche, M., Seifert, P., Ansmann, A., Muller, D., and Althausen, D., Size matters:
 1000 Influence of multiple scattering on CALIPSO light-extinction profiling in desert dust.
 1001 *Geophys. Res. Lett.* 37, L10801, doi:10.1029/2010GL042815, 2010.

1002 Waters, J. W., Froidevaux, L., Harwood, R., Jarnot, R., Pickett, H., Read, W., Siegel, P., Cofield,
 1003 R., Filipiak, M., Flower, D., Holden, J., Lau, G., Livesey, N., Manney, G., Pumphrey, H.,
 1004 Santee, M., Wu, D., Cuddy, D., Lay, R., Loo, M., Perun, V., Schwartz, M., Stek, P.,
 1005 Thurstans, R., Boyles, M., Chandra, S., Chavez, M., Chen, G.-S., Chudasama, B., Dodge, R.,
 1006 Fuller, R., Girard, M., Jiang, J., Jiang, Y., Knosp, B., LaBelle, R., Lam, J., Lee, K., Miller, D.,
 1007 Oswald, J., Patel, N., Pukala, D., Quintero, O., Scaff, D., Snyder, W., Tope, M., Wagner, P.,
 1008 and Walch, M., The earth observing system microwave limb sounder (EOS MLS) on the
 1009 Aura satellite. *IEEE Trans. Geosci. Remote Sens.* 44, 1106–1121, 2006.

1010 Winker D.M., Hunt W.H., and McGill M.J., Initial performance assessment of CALIOP. *Geophys.*
 1011 *Res. Lett.*, 34, 1-5, <https://doi.org/10.1029/2007GL030135>, 2007.

1012 Winker, D. M., Pelon, J., Coakley, J. A., Ackerman, S. A., Charlson, R. J., Colarco, P. R., Flamant,
 1013 P., Fu, Q., Hoff, R. M., Kittaka, C., Kubat, T. L., Le Treut, H., McCormick, M. P., Mégié, G.,

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: English (United States)

Formatted: Font: (Default) Times New Roman, 12 pt

1014 Poole, L., Powell, K., Trepte, K., Vaughan, M. A., and Wielicki, B. A., The CALIPSO
1015 mission – A global 3D view of aerosols and clouds. *B. Am. Meteorol. Soc.*, 91, 1211-1229,
1016 <https://doi.org/10.1175/2010BAMS3009.1>, 2010.

1017 Yu, P., Toon, O. B., Bardeen, C. G., Zhu, Y., Rosenlof, K. H., Portmann, R. W., Thornberry, T. D.,
1018 Gao, R. S., Davis, S. M., Wolf, E. T., de Gouw, J., Peterson, D. A., Fromm, M. D., and
1019 Robock, A., Black carbon lofts wildfire smoke high into the stratosphere to form a persistent
1020 plume. *Science* 365, 587-590, 2019.

1021 Zawadowics M.A., Lee, B.H., Shrivastava, M., Zelenyuk, A., Zaveri, R.A., Flynn, C., Thornton,
1022 J.A., and Shilling, J.E., Photolysis Controls Atmospheric Budgets of Biogenic Secondary
1023 Organic Aerosol. *Environ. Sci. Technol.* 54, 3861–3870, 2020.

1024

1025

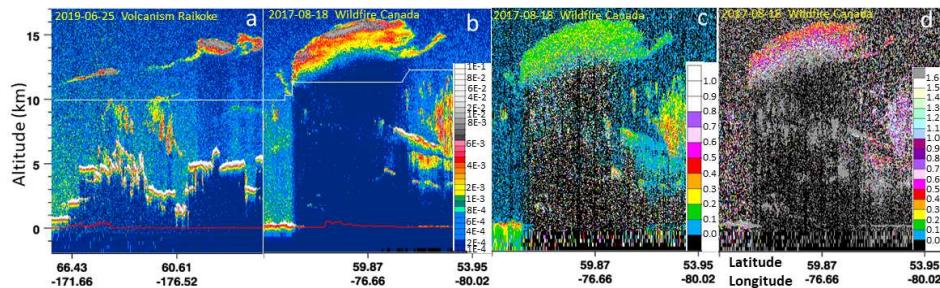
1026

1027 **Tables**

1028

1029 Table 1. Maximum and yearly average stratospheric AOD during background conditions and
1030 during one year after the fire and after the two volcanic eruptions in Figure 9.

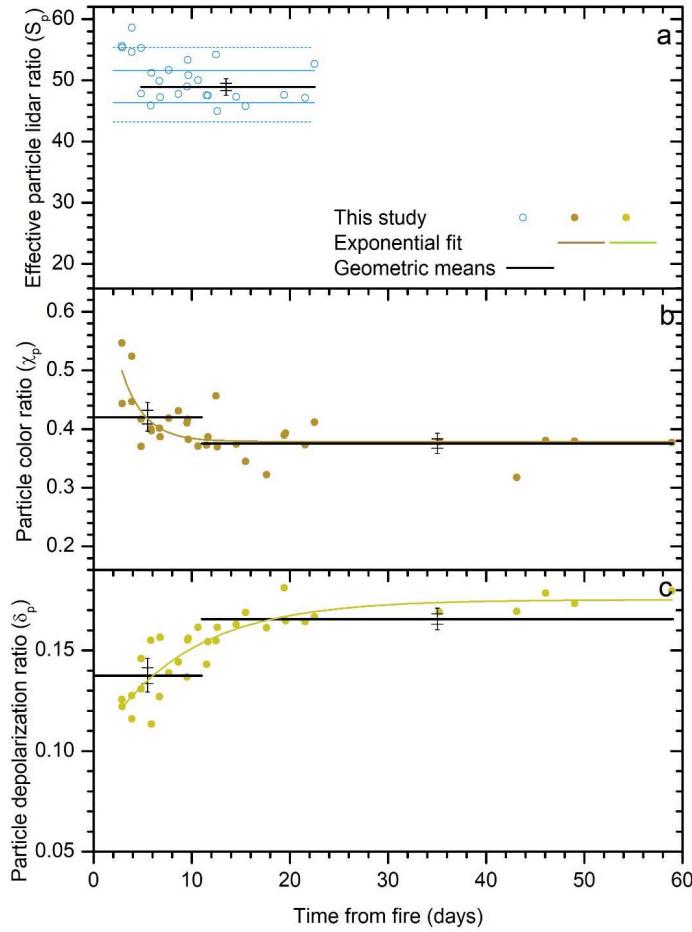
Year	Background 2013	Background 2014	Wildfire 2017	Sarychev 2009	Nabro 2011
AOD max	0.009	0.009	0.020	0.028	0.017
AOD	0.0075	0.0074	0.0097	0.0169	0.0138
AOD growth ^a	-	-	0.0023	0.0095	0.0064
RF ^b	-	-	-0.06	-0.24	-0.16


1031 ^aGrowth of AOD due to influence from wildfire/volcanism obtained by subtracting the average of 2013
1032 and 2014 AOD.1033 ^bRadiative forcing (W m⁻²) of the background-subtracted AOD.

1034

1035

1036
1037
1038


Figures

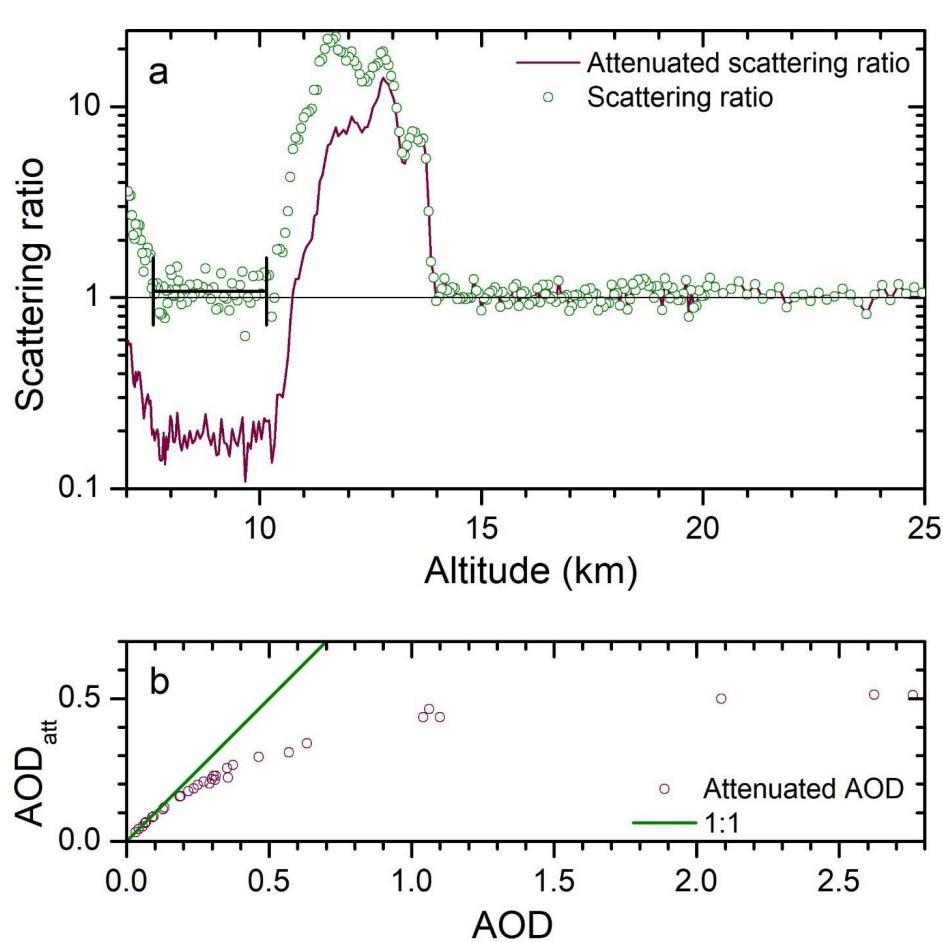
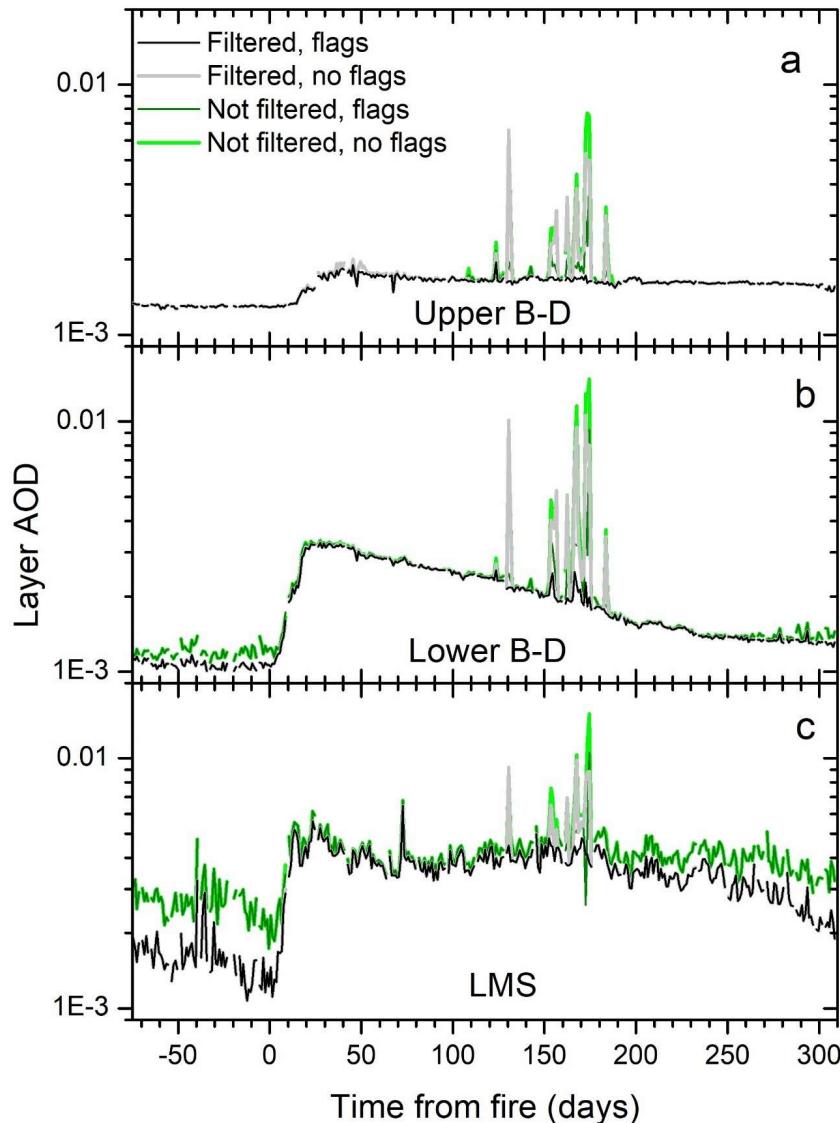
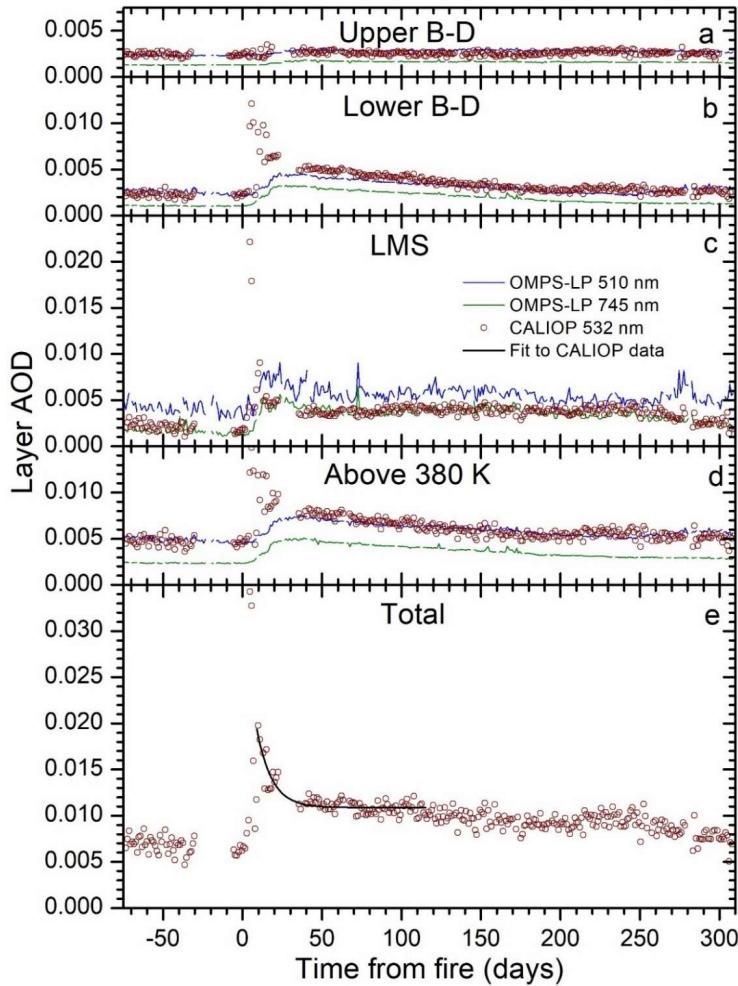

1039
1040
1041
1042
1043
1044
1045
1046

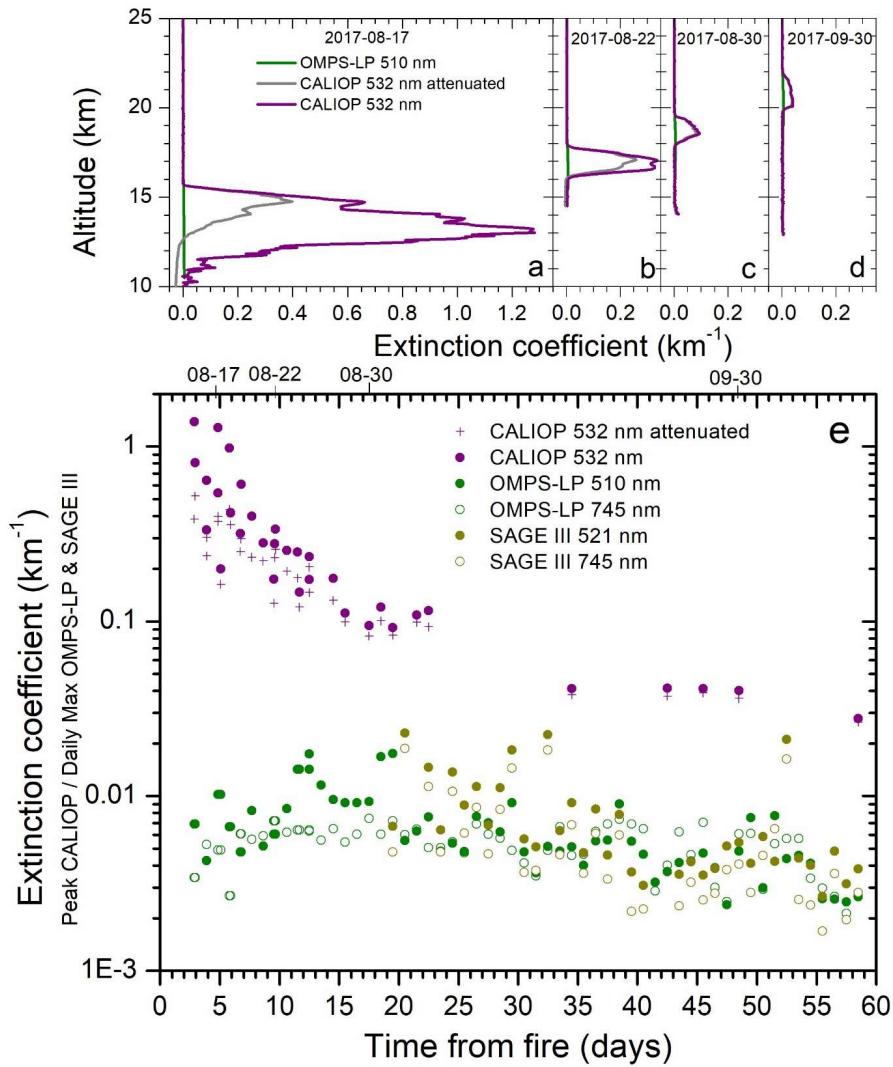
Figure 1. CALIOP curtains of total attenuated backscatter ($\text{km}^{-1} \text{ sr}^{-1}$) at 532 nm from a) volcanic aerosol layers in the stratosphere three days after the 2019 Raikoke eruption and b) a stratospheric smoke layer from the August 12, 2017, North American wildfire. where “aE-b” in the scale refers to $a10^{-b}$. c) Volume depolarization ratio at 532 nm and d) attenuated color ratio (1064 to 532 nm) for the curtain in b). The white lines in a) and b) show the position of the tropopause.


Formatted: Superscript

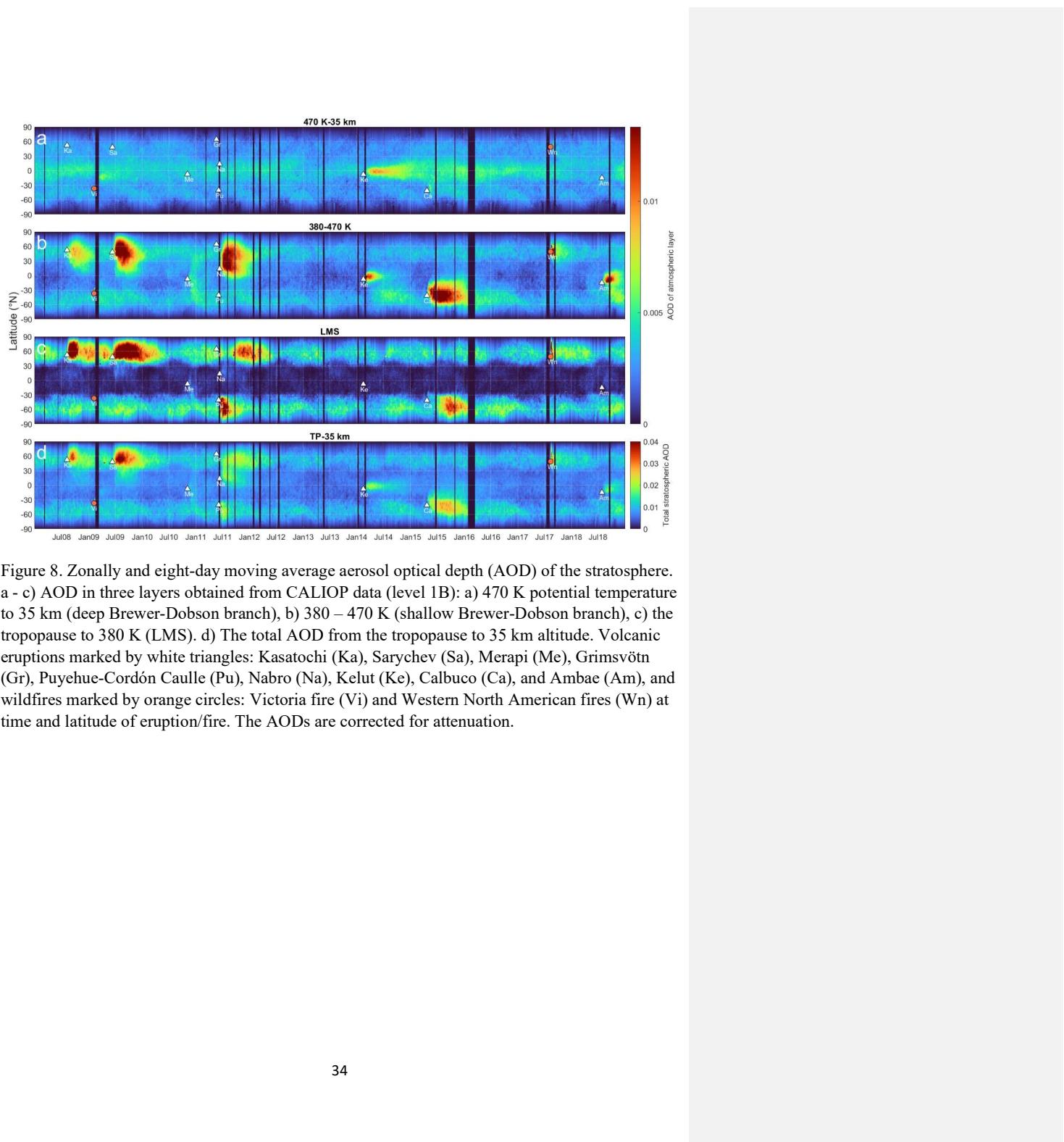

1047
 1048 Figure 2. Particle optical properties during the first 60 days after the fire. Black error bars show
 1049 standard error and the double-sided 95% probability range of the geometric means. a) Particle
 1050 lidar ratios for 532 nm where data points with fitting error exceeding 25% are discarded. The
 1051 black line shows the geometric mean after day 4, and the full and dotted blue lines show the
 1052 standard deviation and the double-sided 95% probability range of the distribution. b) Particle
 1053 color ratio (1064 nm divided by 532 nm wavelength backscattering) with exponential fit ($R^2 =$
 1054 0.48, $P < 10^{-10}$), and c) particle depolarization ratio with exponential fit ($R^2 = 0.76$, $P < 10^{-10}$).
 1055 The color and depolarization ratios were divided in two equal groups by number of observations
 1056 to illustrate the highly significant changes with time of the optical properties, where the long and
 1057 short error bars are the standard error and the double-sided 95% probability range of the
 1058 geometric means.
 1059

1061
1062 Figure 3. Illustration of methodology and its effect. a) The attenuated and corrected scattering
1063 ratios as a function of altitude. Example of methodology for one smoke layer, where the
1064 scattering ratio between 7.5 – 10 km altitude, below the smoke layer at 10.5 – 14 km, is targeted
1065 to a value of 1.08 (explained in the method section) by iteratively fitting the lidar ratio for 532 nm
1066 wavelength. b) The attenuated layer AOD (AOD_{att}) related to the layer AOD corrected for
1067 attenuation. The 1:1 relation is shown by the full line.
1068

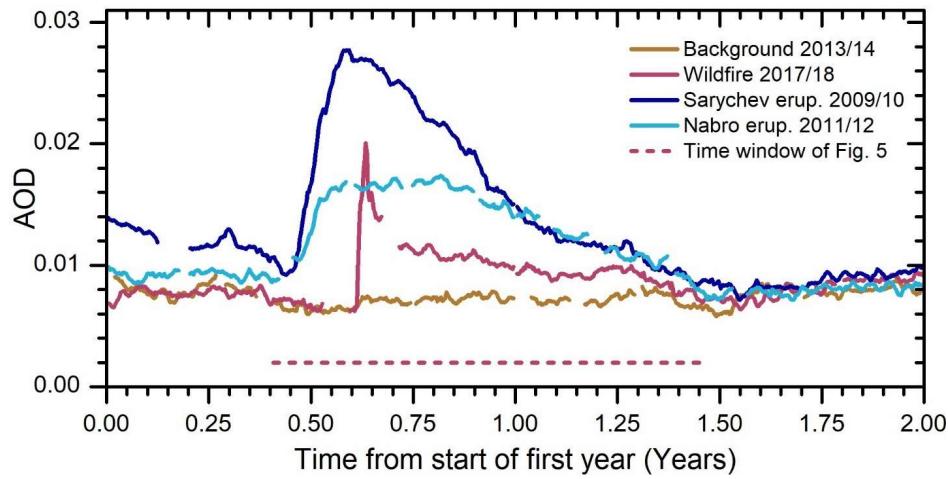
1069
1070 Figure 4. OMPS-LP layer AODs averaged over 20 to 80° North for 745 nm wavelength using
1071 data filtered and not filtered from clouds and polar stratospheric clouds, and with and without
1072 data flagged for data quality. Layer AOD for a) the upper Brewer-Dobson branch (470 K
1073 isentrope – 35 km), b) the lower brewer-Dobson branch (380 – 470 K) and c) the LMS
1074 (tropopause – 380 K) are shown.


1075

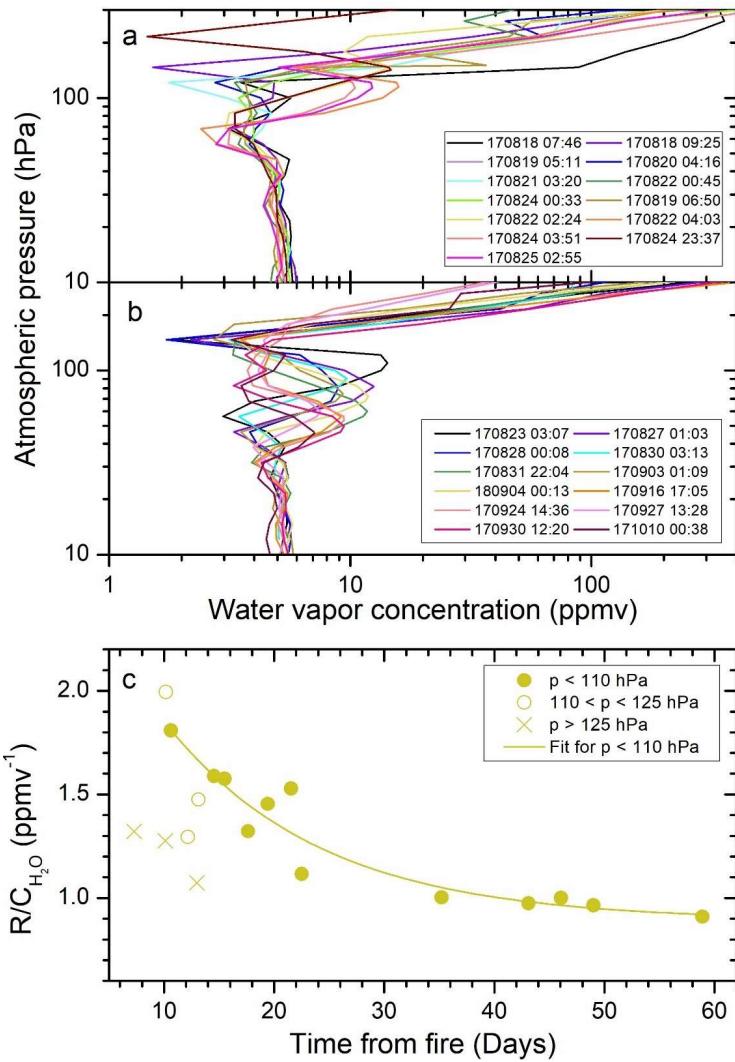
1076 Figure 5. AOD evolution of the stratospheric AOD (daily average) from 75 days before to 310
 1077 days after the 2017 western North American fires. Comparisons of AOD from CALIOP (532 nm)
 1078 with OMPS-LP (510 and 745 nm) with cloud filtering and flags activated for a) the upper
 1079 Brewer-Dobson branch (470 K isentrope – 35 km), b) the lower Brewer-Dobson branch (380 –
 1080 470 K) c) the LMS (tropopause – 380 K), d) from 380 K to 35 km (sum of layers in a and b) and
 1081 e) the stratosphere of CALIOP from the tropopause to 35 km (sum of layers in a, b and c). The
 1082 black, full line is an exponential fit ($R^2 = 0.79$, $P < 10^{-10}$) to the AOD over days 10 – 115 after the
 1083 fire. The total stratospheric AOD half-life of the fit is 6.5 ± 0.9 days.


1084

1085 Figure 6. Daily OMPS-NM aerosol absorbing index (UV) August 14 – 22, 2017 over all
 1086 longitudes and latitudes 20 - 80° N. This index is sensitive to UV absorbing aerosol particles in
 1087 the upper troposphere and the stratosphere, where signals from tropospheric aerosol declines
 1088 faster than from stratospheric due to short residence time. The yellow lines indicate nighttime
 1089 swaths of the CALIPSO satellite, and the faint lines show CALIPSO daytime swaths.


1090

1091 Figure 7. Extinction coefficients according to CALIOP, OMPS-LP and SAGE III in the 20 -
1092 80° North latitude range during the first 60 days following the North American fire. a - d)
1093 selected profiles (attenuated and corrected for attenuation) from CALIOP compared with closest
1094 profiles according to OMPS-LP. e) Peak extinction coefficient from selected CALIOP profiles
1095 compared with daily maximum extinction coefficients from OMPS-LP and SAGE III/ISS. Note
1096 that SAGE III/ISS data are missing the first 19 days because of irregular coverage of the latitude
1097 range of interest.


1098

1099 Figure 8. Zonally and eight-day moving average aerosol optical depth (AOD) of the stratosphere.
1100 a - c) AOD in three layers obtained from CALIOP data (level 1B): a) 470 K potential temperature
1101 to 35 km (deep Brewer-Dobson branch), b) 380 – 470 K (shallow Brewer-Dobson branch), c) the
1102 tropopause to 380 K (LMS). d) The total AOD from the tropopause to 35 km altitude. Volcanic
1103 eruptions marked by white triangles: Kasatochi (Ka), Sarychev (Sa), Merapi (Me), Grimsvötn
1104 (Gr), Puyehue-Cordón Caulle (Pu), Nabro (Na), Kelut (Ke), Calbuco (Ca), and Ambae (Am), and
1105 wildfires marked by orange circles: Victoria fire (Vi) and Western North American fires (Wn) at
1106 time and latitude of eruption/fire. The AODs are corrected for attenuation.

1107

1108 Figure 9. Evolution of the AOD in the 20 - 80° N interval (8-day moving average) over two
 1109 years: close to background conditions in the latitude interval studied (2013 – 2014), the year and
 1110 the following year of the August 12, 2017, fire (2017 – 2018), and the same for two volcanic
 1111 eruptions, the June 12, 2009, Sarychev (2009 – 2010) and June 12, 2011, Nabro (2011 – 2012)
 1112 eruptions.

1113

1114 Figure 10. Water vapor in the smoke layer. Microwave Limb Sounder (MLS) measurements of
 1115 water vapor concentrations (ppmv) Vs. atmospheric pressure for smoke layers a) close to the
 1116 tropopause and b) well above the tropopause (atmospheric pressure < 110 hPa at the H₂O peak)
 1117 for individual smoke layers available days 6 – 60 after the fire. c) The peak scattering ratio (R)
 1118 according to CALIOP divided by the peak water vapor concentration (C_{H2O}) from MLS. The full
 1119 line is an exponential fit ($R^2 = 0.88$, $P < 3 \times 10^{-10}$) to smoke layers peaking in water vapor
 1120 concentration at a pressure less than 110 hPa. The half-life of the fit is 9.7 ± 3.2 days.