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Abstract. The prediction of Secondary Organic Aerosol (SOA) in regional scales is traditionally performed by using gas-

particle partitioning models. In the presence of inorganic salted wet aerosols, aqueous reactions of semivolatile organic 15 

compounds can also significantly contribute to SOA formation. The UNIfied Partitioning-Aerosol phase Reaction (UNIPAR) 

model utilizes the explicit gas mechanism to better predict SOA formation from multiphase reactions of hydrocarbons. In this 

work, the UNIPAR model was incorporated with the Comprehensive Air Quality Model with Extensions (CAMx) to predict 

the ambient concentration of organic matter (OM) in urban atmospheres during the Korean-United States Air Quality (2016 

KORUS-AQ) campaign.  The SOA mass predicted with the CAMx-UNIPAR model changed with varying levels of humidity 20 

and emissions and in turn, has the potential to improve the accuracy of OM simulations. The CAMx-UNIPAR model 

significantly improved the simulation of SOA formation under the wet condition, which often occurred during the KORUS-

AQ campaign, through the consideration of aqueous reactions of reactive organic species and gas-aqueous partitioning. The 

contribution of aromatic SOA to total OM was significant during the low-level transport/haze period (24-31 May 2016) because 

aromatic oxygenated products are hydrophilic and reactive in aqueous aerosols. The OM mass predicted with the CAMx-25 

UNIPAR model was compared with that predicted with the CAMx model integrated with the conventional two product model 

(SOAP). Based on estimated statistical parameters to predict OM mass, the performance of CAMx-UNIPAR was noticeably 

better than the conventional CAMx model although both SOA models underestimated OM compared to observed values, 

possibly due to missing precursor hydrocarbons such as sesquiterpenes, alkanes, and intermediate VOCs. The CAMx-UNIPAR 

model simulation suggested that in the urban areas of South Korea, terpene and anthropogenic emissions significantly 30 

contribute to SOA formation while isoprene SOA minimally impacts SOA formation.  
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1 Introduction 

The formation of secondary organic aerosol (SOA) has gained substantial interest from researchers because of its 

important impact on climate change (Ipcc, 2015; Seinfeld and Pandis, 2016), urban visibility (Chen et al., 2012; Ren et al., 35 

2018), and human health (Requia et al., 2018). In urban atmospheres, emissions from industries, fuel combustion, and motor 

vehicles are major contributors to the observed concentrations of organic aerosol via both primary emissions and SOA 

formation (Gentner et al., 2017).  

SOA forms via traditional gas-particle partitioning (Odum et al., 1996) of oxygenated products formed from 

hydrocarbon (HC) photooxidation. Additionally, the heterogeneous chemistry of these oxidized carbons in the aerosol phase 40 

significantly contributes to SOA burdens (Hallquist et al., 2009; Kalberer et al., 2004; Tolocka et al., 2004). These reactions 

include condensation reactions between organic species (i.e., hemiacetal/acetal formation and aldol condensation) (Jang et al., 

2002; Jang and Kamens, 2001; Tobias and Ziemann, 2000), reactions of organics with water (i.e., hydration of aldehydes and 

hydrolysis of epoxy products) (Jang et al., 2002; Hallquist et al., 2009; De Haan et al., 2009), and the formation of 

organonitrates (Farmer et al., 2010) and organosulfates (OS) (Surratt et al., 2007). The contribution of heterogeneous chemistry 45 

on SOA growth has a larger role in the presence of electrolytic wet aerosol (Volkamer et al., 2007; Volkamer et al., 2009).  

Polar organic species can dissolve in the aerosol aqueous phase induced by hygroscopic sulfate and increase SOA mass by 

forming nonvolatile oligomeric matter. Additionally, the aerosol acidity associated with wet inorganic sulfate can catalyze 

aqueous reactions of organic species (Jang and Kamens, 2001; Jang et al., 2002; Kuwata et al., 2013; Limbeck et al., 2003; 

Kleindienst et al., 2006; Lewandowski et al., 2015; Hallquist et al., 2009). Few models account for aqueous reactions of several 50 

products (i.e., glyoxal and IEPOX (epoxy diols form isoprene products)) that potentially may significantly impact SOA 

formation (Ervens et al., 2011; Sumner et al., 2014; Budisulistiorini et al., 2017; Knote et al., 2014). However, current models 

poorly integrate the multiphase chemistry of many other organics into SOA mass predictions. In particular, the model applied 

to regional scales suffers from a substantial negative bias under high humidity conditions (Heald et al., 2011; Pye et al., 2017; 

Li et al., 2020). Park et al. (2021) extensively evaluated the prediction of the organic aerosol produced during the KORUS-55 

AQ campaign by using different air quality models, which were varying in chemistry mechanisms, aerosol thermodynamics, 

the types of SOA precursors, and the SOA schemes. In their study, the SOA formation was simulated with the SOAP, the 4 

bin-base VBS or the 5-bin-base VBS modules. The predicted organic aerosol masses were, however, underestimated compared 

to observation data (HR-ToF-AMS) suggesting the limitation of the current SOA modules. The SOA model, such as the 

partitioning-based two product model, has no feature for SOA formation via aqueous phase reactions of different oxygenated 60 

products formed from various HCs. 

The UNIfied Partitioning-Aerosol phase Reaction (UNIPAR) model was developed by Im et al. (2014) to predict 

SOA mass based on multiphase reactions of toluene and 1,3,5-trimethylbenzene, was developed. In the UNIPAR model, the 

products predicted using explicit gas mechanisms are lumped based on volatility and emerging chemistry in the aerosol phase. 

This UNIPAR model has been extended to various SOA originating from isoprene, terpenes, aromatics, and gasoline and 65 
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demonstrated through the extensive photochemical outdoor smog chamber data (Beardsley and Jang, 2016; Cao and Jang, 

2010; Zhou et al., 2019; Yu et al., 2021b; Han and Jang, 2022).The model parameters linked to thermodynamic properties and 

aerosol chemistry are also estimated according to lumped species characteristics. By exploiting the explicit structures of 

oxygenated products, the UNIPAR model is capable of processing aerosol chemistry to simulate SOA formation at different 

phase states (i.e., dry and wet) of salted aerosol in the setting of various air pollutant emissions (hydrocarbons, NOx and SO2).   70 

In this study, the UNIPAR model was incorporated with the CAMx model (comprehensive air quality model with 

extensions, v7.10) (Environ, 2020)  to predict SOA formation on regional scales during the Korean-United States Air Quality 

(KORUS-AQ) campaign that took place between 10 May, 2016 and 10 June, 2016.  During this campaign, inorganic salted 

aerosols present at four locations across three cities (Seoul, Deajeon, and Gwangju) were wet for the majority of days due to 

high humidity levels during the night-time and humidity levels above the efflorescent humidity level during the daytime. In 75 

this way, field data accurately portrayed the importance of aqueous phase reactions to predict SOA burdens in ambient air. 

The organic matter (OM) mass predicted with the CAMx-UNIPAR model was compared with the that predicted with the 

CAMx model integrated with the conventional two product model (Odum et al., 1996).   

2 Methods 

2.1 Integration of UNIPAR with CAMx 80 

The CAMx regional air quality model v7.1  (Environ, 2020) was incorporated with the UNIPAR model as a sub- 

model to simulate SOA formation during the KORUS-AQ campaign. Fig. 1 illustrates the overall scheme of the integration of 

the UNIPAR model into the CAMx v7.1 model. For comparison, the CAMx model was simulated with the pre-existing SOAP 

model by using the two product model (Odum et al., 1996).  The CAMx model internally maps SOA precursors to their gas 

oxidation mechanism, which uses the State Air Pollution Research Center 07TC (SAPRC07TC) (Hutzell et al., 2012).  For 85 

both the CAMx-UNIPAR and the CAMx-SOAP models used within this study, SOA mass was predicted based on the 

atmospheric oxidation of aromatics, terpenes, and isoprene. The lumping species in the UNIPAR model were constructed using 

explicit gas mechanisms that enabled the flexible treatment of multiphase partitioning and aerosol chemistry. Furthermore, the 

multiphase reaction pathways of organics are important sources of model bias. As a result, the UNIPAR model will improve 

our ability to accurately estimate SOA mass, which is underpredicted by current regional models. The description of the 90 

UNIPAR SOA module is illustrated in Section 2.2.  For inorganic aerosol species, ISORROPIA calculates the aerosol bulk 

composition at equilibrium. The SOA mass products sink by dry deposition at the first atmospheric layer to the surface via an 

irreversible first-order flux.  

2.2 UNIPAR SOA model  

The configuration of the UNIPAR model for SOA formation from each precursor has been described in prior studies 95 

(Beardsley and Jang, 2016; Im et al., 2014; Cao and Jang, 2010; Zhou et al., 2019; Yu et al., 2021b; Han and Jang, 2022). The 
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predetermined mathematical equations and the model parameters employed in the UNIPAR model have been evaluated in the 

UF-APHOR chamber for various aromatic volatile organic compounds (VOCs) and biogenic VOCs (terpenes and isoprene) 

under varying aqueous salted seeds, NOx, SO2, humidity levels, and temperatures. The model equations and parameters used 

in the UNIPAR model of this study are reported in Section S1 of the Supporting Information. In brief, the key components of 100 

the UNIPAR model are described as follows, 

1) SOA formation via aqueous phase reactions of organic species is simulated based on the assumption of liquid-liquid phase 

separation (LLPS) between the organic phase and the salted inorganic solution (Yu et al., 2021a; Im et al., 2014).  SOA 

formation is processed via multiphase partitioning, organic phase oligomerization, and aqueous phase reactions in wet 

inorganic salted aerosol. 105 

2) The UNIPAR model employs a predetermined mathematical equation to dynamically construct the lumping array, which 

is linked to the stoichiometric coefficient array of oxygenated products predicted by using near explicit gas mechanisms 

(MCM v3.3.1 (Jenkin, 2004)) for each precursor.  The resulting lumping groups are applied to gas-particle partitioning 

and heterogeneous reactions in the aerosol phase based on eight volatility (10-8, 10-6, 10-5, 10-4, 10-3, 10-2, 10-1, 10-0 in 

mmHg) and six reactivity categories defined by their emerging chemistry. These categories are non-reactive (P), slow (S), 110 

medium (M), fast (F), very fast (VF), and multifunctional alcohols (MA). Explicit species in UNIPAR lumping include 

glyoxal (Gly), methylglyoxal (MGly), and isoprene epoxydiols (IEPOX). The UNIPAR model of this study includes 151 

lumping species, of which 50 originate from ten aromatics (benzene, toluene, ethylbenzene, propylbenzene, o-xylene, m-

xylene, p-xylene, 1,2,3-timethylbenzene, 1,2,4-timethylbenzene, and 1,3,5-timethylbenzene); 50 originate from terpenes; 

and 51 originate from isoprene.  115 

3) The stoichiometric coefficient array replicates the influence of NOx on SOA formation by capturing the RO2 chemistry 

between RO2+NO reactions and RO2+HO2 reactions under varying NOx environments. Additionally, the stoichiometric 

coefficient array captures dynamically modulated gas under various concentrations of RO2 and HO2 and levels of NOx. 

The mathematical equations used to construct the stoichiometric coefficient array are reported in Section S1.  

4) In the UNIPAR integrated CAMx model, precursor HC consumption is estimated by using the SAPRC07TC gas 120 

mechanism (Hutzell et al., 2012). The concentration (μg m-3 of air) of lumping species i is estimated by using the product 

of the stoichiometric coefficient and each HC consumption value. The resulting concentration is distributed into gas (Cg), 

organic (Cor), and inorganic phases (Cin) by using partitioning coefficients and aerosol masses within each phase (Fig. 1). 

Both the gas-organic partitioning and the gas-aqueous partitioning coefficients are estimated based on Pankow’s 

absorptive partitioning model (Pankow, 1994) with vapor pressure, the estimated activity coefficients of lumping species 125 

in each phase of LLPS (Zhou et al., 2019; Jang and Kamens, 1997, 1998),  and aerosol’s average molecular weight in 

each phase.  The SOA mass formed from the partitioning process (OMP) is attributed to Cor and Cin. 

5) The physicochemical parameter arrays, such as molecular weight (MWi), organic to carbon ratio (O:Ci), and hydrogen 

bonding (HBi), are used to process multiphase partitioning of lumping species. They are universalized for three major 

precursor groups (aromatics, terpenes, and isoprene) in the UNIPAR model of this study as described in Section S1. 130 
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6) Both organic phase oligomerization and aqueous reactions of reactive species yield nonvolatile OM in the model.  Hence, 

the heterogeneous reactions in LLPS are operated by two different second order reaction rate constants: ko,i (L mol-1 s-1) 

for the organic phase and kAR,i (L mol-1 s-1) for the aqueous phase. The impact of viscosity on aerosol growth is also 

considered by including the equation term as a function of the average molecular weight of OM and the O:C ratio (Han 

and Jang, 2022). Aqueous reactions in the presence of salted solution are operated by acid-catalyzed reactions and OS 135 

formation and are processed under broad ranges of aerosol acidity ([H+]) and relative humidity (RH) levels to form both 

dry and wet inorganic salted aerosols.  In order to simulate SOA mass in ambient air, the chamber generated kinetic 

parameters are updated by removing the artifact from gas-wall partitioning (Han and Jang, 2020; Han and Jang, 2022). 

7) The SOA mass produced via gas-organic partitioning is estimated using the Newtonian method, which is typically applied 

in air quality models (i.e., CMAQ) (Schell et al., 2001) based on a mass balance of organic compounds between the gas 140 

and particle phases governed by Raoult’s law. Heterogeneously formed nonvolatile OM (OMH) are considered to be a 

pre-existing absorbing material for gas-particle partitioning (Cao and Jang, 2010; Im et al., 2014). Hence, the gas-organic 

partitioned equation is modified to include OMH. The SOA mass in the UNIPAR model is attributed to OMP and OMH. 

8) The esterification of sulfuric acid with organic species can form organosulfates (Surratt et al., 2007; Liggio et al., 2005).  

In particular, dialkylsulfate is non-electrolytic and neutral, and appears in a variety of SOA (toluene, trimethylbenzene, 145 

isoprene, and α-pinene) (Li et al., 2015). In the UNIPAR model, the formation of dialkylsulfate is predicted based on the 

Hinshelwood-type reaction (Im et al., 2014). The formation of dialkylsulfate reduces aerosol acidity in the presence of 

sulfuric acid, which catalyzes SOA formation (Jang et al., 2002) and alters aerosol liquid water content (Estillore et al., 

2016). In turn, the reduced acidic sulfate due to the dialkylsulfate formation is applied to inorganic thermodynamic model 

(ISORROPIA) to estimate aerosol acidity and aerosol liquid water content for the next step.  150 

9) In order to process SOA formation in the inorganic aqueous phase, the inorganic composition and aerosol acidity are 

predicted by using the inorganic thermodynamic model, ISORROPIA (Fountoukis and Nenes, 2007), and then 

incorporated into the UNIPAR model. For the ISORROPIA model, mutual deliquescence relative humidity (MDRH) is 

predicted. In addition, the efflorescence relative humidity (ERH) is predicted using a pre-trained neural network model 

based on the inorganic composition (Yu et al., 2021a). With MDRH and ERH, the aerosol condition is then estimated to 155 

be wet (organic phase + inorganic aqueous phase) or dry (organic phase + solid-dry inorganic phase). 

2.3 CAMx configurations 

2.3.1 Simulation domain and model configurations 

 The CAMx simulation was conducted using two-way nested grids with a 27-km resolution domain over Eastern Asia 

(EA) and a 9-km fine resolution domain over South Korea (SK). Fig. 2 displays the simulated domain for this study. For the 160 

vertical domains, 22 vertical layers were simulated for both domains. For comparison, the CAMx model was simulated with 

two different SOA modules: the original organic gas-aerosol partitioning and oxidation module (SOAP2.2) and the UNIPAR 
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SOA module of this study. All simulations were performed during the time period between 10 May 2016 and 10 June 2016. 

The detailed configuration of the CAMx simulations is listed in Table 1. The boundary conditions were converted from the 

MOZART-4 global simulation results (https://www.acom.ucar.edu/wrf-chem/mozart.shtml) (Emmons et al., 2010). The initial 165 

conditions were generated by using a two-week spin-up simulation with the same CAMx model setup. The computation cost 

for the CAMx-UNIPAR model was evaluated for the one-day simulation of KORUS-AQ data and summarized in Table S1. 

Overall, the computation time for the CAMx-UNIPAR model is approximately 2 to 2.5 times that of the default CAMx-SOAP 

simulation depending on the parallel computation setup.  The detailed descriptions of statistical parameters to evaluate the 

model performance are presented in Table S2.  Table S3 summarizes the predetermined mathematical equations employed in 170 

the UNIPAR to dynamically construct the stoichiometric coefficient array of oxygenated products.  The physicochemical 

parameter arrays for MWi, HBi and the O:Ci ratios are summarized in Table S4, Table S5, and Table S6, respectively.  Table 

S7 and Table S8 show the kinetic parameters (lumping species’ reactivity scales and their basicity constants, respectively) to 

calculate aerosol phase reaction rate constants in organic phase and inorganic phase.  

2.3.2 Emission source 175 

The anthropogenic emissions were processed with the Sparse Matrix Operator Kernel Emission (SMOKE) v3.1 

(Benjey et al., 2001) for spatiotemporal allocations and chemical speciation as well as vertical allocations for elevated point 

sources. For areas outside of South Korea, the Northeast Asian emissions inventory contained within the  KORUS v5 (Jang et 

al., 2020b) data was applied. For South Korea, the national emissions inventory named the Clean Air Policy Support System 

(CAPSS) 2016 (http://airemiss.nier.go.kr/mbshome/mbs/airemiss/index.do) was applied (Choi et al., 2020; Lee et al., 2011). 180 

The Model of Emissions of Gases and Aerosols from Nature (MEGAN) v2.04 (Guenther et al., 2006) was used to prepare the 

biogenic emissions. Since the chemical speciation profiles for the emissions inventory were only available for the SAPRC99 

chemical mechanism, some of the model VOC species were mapped into those in the SAPRC07TC, with which the CAMx 

model was operated in this study. 

2.4 Observations during the KORUS-AQ campaign 185 

 The KORUS-AQ field study was conducted by the joint efforts of the National Institute of Environmental Research 

of South Korea and the National Aeronautics and Space Administration (NASA) of the United States to understand the factors 

controlling air quality across urban, rural, and coastal interfaces. The study integrated observations from aircraft, ground sites, 

and satellites with air quality models.  The ground-level observational data used in this study were performed at four different 

monitoring stations located in three cities within South Korea (Crawford et al., 2021). Table 2 lists the geological locations of 190 

the monitoring sites, the sampling times, and the measured chemical species used in this study. The Olympic Park site is a 

green site for recreational and sports activities that is heavily influenced by pollution from surrounding urban traffic and 

buildings in Seoul. The Bulgwang site is a highly populated residential area located in the far north-western corner of Seoul. 



7 

 

The Daejeon site is a populated downtown location within a metropolitan city.  The Gwangju site is a residential and forest 

area located far north of downtown Gwangju.  195 

The organic carbon concentration (OC) was continuously monitored by using the semi-continuous organic 

carbon/elemental carbon analyzer (SOCEC, Sunset Lab. Inc). An averaged OM/OC factor of 1.5 was applied to estimate the 

OM concentration at the observation sites (Park et al., 2018).  The concentrations of water-soluble inorganic ions were 

monitored by using an ambient ion monitor (AIM) at the Bulkwang supersite, the Daejeon Supersite, and the Gwangju 

Supersite. The Monitor for AeRosols and Gases in Ambient air (MARGA ADI 2080, Metrohm, Switzerland) was used to 200 

measure the inorganic compositions at the Olympic Park supersite. O3 and NOx levels were monitored by using an O3 analyzer 

(EC9810, Ecotech, Australia) and a NOx analyzer (EC9841, Ecotech, Australia), respectively. The hourly averaged 

observations and simulations of sulfate, nitrate and ammonium concentrations are displayed in Fig. S1-S3. The eight-hour 

averaged concentrations of O3, NOx, and SO2 are displayed in Fig. S4. 

3 Results and discussion 205 

3.1 Simulated OM vs. field observations 

 The OM concentrations, which were simulated by using the CAMx model with two different SOA module setups 

(SOAP and UNIPAR), were plotted with the ground-based observation data at the four different monitoring sites (the 

Bulkwang Supersite, the Olympic Park Supersite, the Daejeon Supersite, and the Gwangju Supersite) between 10 May 2016 

and 10 June 2016 during the KORUS-AQ campaign (Fig. 3). Table 2 summarizes the organic products used to estimate the 210 

SOA formation in both the SOAP and UNIPAR models. For the SOAP simulation, the OM is the sum of the primary organic 

matter (POM) and SOAP products (SOA1, SOA2, SOA3, SOA4, SOPA, and SOPB). In the UNIPAR module, OM is predicted 

as the sum of POM and SOA produced from 151 lumping species. The POM is a single non-volatile species that is not involved 

in the aerosol phase chemistry.  POM and non-volatile SOA mass can both influence the gas-particle partitioning process.  

For all four sites, the ground-based OM concentrations were noticeably high between 24 - 31 May 2016. The CAMx 215 

model equipped with both SOAP and UNIPAR mechanisms generally simulate this tendency. Fig. 4 illustrates the hourly 

averaged OM concentrations during this high OM period.  A sharp increase of OM appears during the daytime in all field data. 

This tendency is captured by the CAMx model in both the Olympic Park (Fig. 4b) and Daejeon sites (Fig. 4c) but is not well 

predicted at the other two sites (Fig. 4a and Fig. 4d).  The rapid increase in OM concentrations during the daytime can be 

explained by the diurnal pattern of pollutant emission due to human activities and photochemically produced SOA.  Overall, 220 

the CAMx-UNIPAR simulation better predicts field observations than the CAMx model with the SOAP module, although 

both the UNIPAR and SOAP models underestimate high OM data points.  The underestimation of high OM peaks is potentially 

due to the missing precursors in the emission inventories.  For example, the CAMx simulation used in this study was performed 

with aromatics, terpenes, and isoprene (Table 2). The SOA simulation needs to be updated to include sesquiterpenes, 
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intermediate VOCs, and volatile chemical species sourced from residential, commercial, and industrial sectors (Mcdonald et 225 

al., 2018). 

Fig. 5 displays the scatter plot for the hourly averaged OM observations vs. predictions at four different ground-based 

monitoring sites. The statistical parameters were calculated for each site by using the mean bias error (MBE), the Pearson 

correlation coefficient (PCC), the mean fractional bias (MFB), and the mean fractional error (MFE). The detailed descriptions 

of these statistical parameters are presented in Table S2. For the Bulkwang, Daejeon, and Gwangju supersites, the estimated 230 

MBE value is between -1.59 to -0.50 indicating that the OM concentration is slightly underestimated in the simulation. The 

absolute values of MBE, which indicates proximity to observations, are smaller in the CAMx-UNIPAR model for Bulkwang 

(-0.80), Daejeon (-0.50), and Gwangju (-1.02) than those in the CAMx-SOAP models for Bulkwang (-1.43), Daejeon (-1.01), 

and Gwangju (-1.59). In general, the model performance were proposed as MFB ≤ ± 30% with MFE ≤ ± 50% for the best 

model performance; and MFB ≤ ± 60% with MFE ≤ ± 75% for the acceptable model performance (Boylan and Russell, 2006). 235 

For all the simulations performed with the CAMx-UNIPAR model, the simulation results meet the best model performance 

goal. Additionally, the estimated MFBs with the CAMx-UNIPAR model at Bulkwang, Daejeon and Gwangju supersites are 

lower than those with the CAMx-SOAP model. The estimated MFE values with the CAMx-UNIPAR simulation are also 3-

10% lower than those with the CAMx-SOAP model. For the Olympic Park supersite, the simulations by both the SOAP and 

UNIPAR modules yield positive MBE (0.3 and 0.89, respectively) and MFB (17.7% and 34.4%, respectively) values indicating 240 

that OM is overestimated. This overestimation can be associated with the variabilities in local emissions at the Olympic Park, 

which is a green space in an urban area. Thus, the ground pollution levels measured at this site may be lower than those 

observed in the city center. However, the model simulation is mainly influenced by the polluted urban air within a 9-km fine 

resolution domain. For the PCC values, no significant differences are observed between the values generated by the SOAP 

and UNIPAR simulations. For organic matter, the average Normalized Mean Bias (NMB, %) between model predictions and 245 

observations at the four monitoring sites are -50% for CAMx-SOAP and -39% for CMAx-UNIPAR.  A similar level of the 

NMB (≈ 46%) was reported in the previous simulation for the same campaign (Park et al., 2021).  

3.2 Impact of aqueous reactions on SOA mass  

Aqueous reactions of reactive organic species in the presence of salted wet aerosol play an important role in the 

formation of SOA (Volkamer et al., 2007; Volkamer et al., 2009). Therefore, the quantity of aerosol liquid water content is an 250 

important model parameter to simulate aqueous reactions. In the CAMx-UNIPAR modules, the phase state of inorganic aerosol 

is determined by using the calculated ERH based on the pre-trained neural network mathematical equation (Yu et al., 2021a) 

and the inorganic compositions (sulfate, ammonium, nitrate, and protons) predicted from the inorganic thermodynamic model, 

ISORROPIA (Fountoukis and Nenes, 2007).  When inorganic aerosol is wet, the aerosol liquid water content is calculated by 

using the inorganic thermodynamic model. 255 

As described in Section 2.2, dialkylsulfate formed in the presence of acidic sulfate is neutral and subtracted from 

sulfates in the inorganic thermodynamic model. However, during the KORUS-AQ campaign periods, ammonia was abundant 
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at the four observation sites, which neutralized acidic aerosol. The low aerosol acidity during the KORUS-AQ campaign has 

been reported in prior studies (Yu et al., 2020; Nault et al., 2021). Under these circumstances, neither SOA formation via acid 

catalyzed aqueous reactions nor dialkylsulfate formation is effective. Evidently, the predicted sulfate concentrations with the 260 

CAMx-UNIPAR model are comparable to those with the CAMx-SOAP model.  

As seen in Fig. 5, temperature at night-time considerably decreased and this influenced the diurnal pattern of RH.  

The time profile of the predicted phase state of inorganic aerosols at the four observation sites is shown in Fig. S6. When RH 

is higher than DRH of inorganic salts, the aerosol is wet and can process heterogeneous reactions of organics in the aqueous 

phase (Witkowski et al., 2018). The inorganic aerosols were wet for the observation periods for 10 -18 May, 23 -31 May, and 265 

7 -10 June. The time profiles of POM, OMH), and the OM produced by multiphase partitioning (OMP) are shown in Fig. 6. 

The concentration of POM is insensitive to RH while OMH and OMP are strongly impacted by the inorganic aerosol phase 

state. For example, OMH and OMP are significantly increased during the wet period (24-28 May) compared to those in the 

dry period (18-22 May). During the wet period, the concentration of anthropogenic HC increased. However, the increased OM 

during the wet period cannot be explained solely by the increased HC emissions. When the mass concentrations of both wet 270 

inorganic salts and preexisting OM (POM+OMH) are high, OMP increases. In addition, the observed RH values at the Daejeon 

(Fig. S6c) and Gwangju sites (Fig. S6d) are generally higher than those at the Bulkwang (Fig. S6a) and Olympic Park sites 

(Fig. S6b). Consequently, the simulated OMH fraction to the total OM is greater at the Daejeon and Gwangju sites than those 

at the two other sites in Seoul (Fig. 6).  

The observed OM concentrations at Bulkwang and Olympic Park sites was plotted vs. the predicted OM 275 

concentrations for the wet period (Fig. S7a and S7c) and dry period (Fig. S7b and S7d). The date and the duration for dry and 

wet periods can be found in Fig. S6.  Overall, the estimated MFB and MFE values were similar between wet and dry aerosols. 

All simulations met the best model performance goal as described in Section 3.1 (MFB ≤ ± 30% with MFE ≤ ± 50%). For the 

Bulkwang site, the deviation of predicted OM from observations was less with wet aerosol than with dry aerosol, yielding a 

smaller MBE and a greater PCC in wet periods than in dry periods. The POM fraction to total OM is high during dry periods 280 

and thus, the contribution of POM uncertainties to total OM can be high leading to the small PCC (0.2). During wet time, the 

simulated SOA fraction to total OM is large due to salted aqueous phase and this can reduce the influence of POM uncertainties 

on total OM (PCC = 0.66).  This difference in PCC values between the dry period and the wet period at the Bulkwang site 

clearly shows the essential role of aqueous reactions on OM prediction. For the Olympic Park site, no significant difference in 

PCC was calculated between the wet and dry periods within 5%.  285 

3.3 SOA compositions and spatial distribution  

Fig. S8 displays the spatial distribution of the averaged OM concentrations (Fig. S8a) for each SOA species (Fig. 

S8b-S8h) for one month (10 May to 10 June 2016) during the KORUS campaign period.  The averaged OM ranged from 0 to 

10 µg m-3 (Fig. S8a). Notably, the relatively high OM concentrations in the range of 4-10 µg m-3 was observed in Southeastern 

China as well as the China’s coastal regions along the Yellow Sea. The high OM concentrations in Southeastern China is 290 
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associated with the large quantity of biogenic VOCs emitted in the region (Fig. S8e and S8f) in the presence of anthropogenic 

NOx. POM is high near China’s East coastal zone because anthropogenic emissions are high from industrial areas of Shandong 

Province. Evidently, the contribution of aromatic SOA (Fig. S8c and S8d) is also high near the Yellow Sea due to long-range 

transport of anthropogenic pollution. Of aromatic SOA, the OMP fraction (Fig. S8d) is significantly greater than OMH (Fig. 

S8c) due to the hygroscopic sea spray aerosol under high humidity levels over the Yellow Sea.  The overall isoprene SOA 295 

contribution is relatively small within the simulated domain (< 0.5 µg m-3) (Fig. S8g and S8h).   

The observations gathered at the four sampling sites of this study can be impacted by both local and long-range 

transport from China’s industrial areas. In particular,  light southwesterly winds were found within the boundary layer behind 

the front, facilitating steady transport of air pollution from China into the study regions during the low-level transport/haze 

period (24-31 May 2016) (Crawford et al., 2021). The previous analysis of data collected by a high-resolution time-of-flight 300 

aerosol mass spectrometer (HR-ToF-AMS) (Kim et al., 2018) showed that the stagnant period (17-22 May 2016) was found 

to be driven by OM, whereas particulate matter during the low-level transport/haze period was dominated by the inorganic 

aerosol components due to a combination of transport and the metrological condition to form haze. The CAMx-UNIPAR 

simulation results are supported by this field analysis, revealing the increased SOA mass in the presence of the high 

concentration of wet inorganic aerosol during the low-level transport/haze period.  The SOA precursors in this study include 305 

aromatics, terpenes, and isoprene as shown in Table 2. Fig. 7 illustrates the time profile of the hourly averaged concentrations 

of SOA species for the four observation sites. In the CAMx-UNIPAR prediction, the high POM (Fig. 6) during the period of 

the low-range transport/haze development increases OMP and sequentially elevates OMH.  In the similar manner, the high 

POM can increase SOA mass with the CAMx-SOAP model. Additionally, the aromatic SOA fractions, predicted by the 

UNIPAR model, were high during this time period across all four sites. The contribution of biogenic SOA to local OM burden 310 

varies by location. For example, the biogenic SOA mass fractions of total SOA at the Gwangju site are obviously higher than 

those present at the other three sites because the Gwangju site is in a suburban environment surrounded by farming and forested 

areas.  

In Fig. 7a-7d (UNIPAR), OMH attributes to 22% to 48% of aromatic SOA, showing the importance of heterogeneous 

reactions of aromatic products to form SOA during the KORUS-AQ campaign. A large fraction of OMP predicted by the 315 

CAMx-UNIPAR model during the wet period is attributed to the partitioning mass to salted inorganic aqueous phase. Based 

on the internal calculation of the UNIPAR simulation, the OMP associated with the aqueous phase comprises higher than 80% 

of the total OMP. In general, aromatic SOA is more sensitive to aqueous reactions than terpene SOA.  Particularly, hydrophilic 

aromatic products (O:C ratios: 0.65-0.95) greatly contribute to OMP during the haze period (24-31 May). Terpene-derived 

SOA is relatively less polar (O:C ratios: 0.45-0.65) and less volatile than oxygenated aromatic products. Therefore, terpene 320 

SOA is minimally impacted by the aqueous phase due to its poor solubility in salted aqueous solution. The OMP fraction of 

terpene SOA is significantly less compared to that in aromatic SOA. Isoprene SOA is negligible at all sites due to low isoprene 

emissions. An estimation of biogenic hydrocarbon emissions in the global scale, simulated by Sindelarova et al. (2014) by 

using Megan for 30 years, showed that the relative significance of isoprene emission is little in South Korea. Isoprene SOA is 
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known to be highly sensitive to aerosol acidity that can accelerate SOA formation (Pye et al., 2013; Lewandowski et al., 2015; 325 

Beardsley and Jang, 2016).  During the KORUS-AQ campaign (Section 3.2) period of this study, inorganic acids were nearly 

neutralized and thus, the effect of acid catalysed reactions on SOA may be trivial. The SOA mass simulated by SOAP (Fig. 

7e-7h) is mainly attributed to partitioning mass originating from SOA1, SOA2, SOA3 and SOA4. The contribution of 

nonvolatile SOA mass (SOPA+SOPB) to total SOA mass in the SOAP model is small compared to that (OMH to SOA mass) 

predicted by the UNIPAR model.   330 

4 Atmospheric implications and uncertainties 

There is no feature in the two-product model (SOAP) to process aqueous reactions in the presence of salted aqueous 

phase. Thus, the CAMx-SOAP simulation may lead to OM underestimation. For example, OM was underpredicted in Europe 

during winter seasons, which caused frequent fog developments to form wet aerosol (Meroni et al., 2017; Jiang et al., 2021).  

SOA formation has also been underestimated in the Southeast United States where isoprene emissions are high during wet 335 

summer seasons (Marais et al., 2016). In particular, isoprene SOA formation is known to be largely influenced by aerosol 

acidity and aerosol water content (Pye et al., 2013; Lewandowski et al., 2015; Beardsley and Jang, 2016). In this study, the 

amount of OM was simulated by using both the newly derived CAMx-UNIPAR and preexisting CAMx-SOAP models. The 

simulated results were compared to the ground-based observations at four observation sites during the KORUS-AQ campaign 

(Fig. 3). Under the dry period (Fig. 3), the predicted SOA mass by the UNIPAR model is dominated by gas-particle partitioning 340 

onto organic phase and oligomerization in organic aerosol. During the wet period, SOA production forms mainly through gas-

aqueous partitioning and aqueous reactions. The KORUS-AQ campaign took place during the wet period of the typical summer 

climate in South Korea. Thus, SOA formation can be considerably promoted by aqueous reactions as discussed in Section 3.2.   

Overall, the statistical parameters (Fig. 5) to predict OM showed a better model performance with the CAMx-

UNIPAR model compared to the CAMx-SOAP model. The predicted POM concentrations were relatively steady during the 345 

campaign period while the simulated SOA concentrations varied with environmental conditions and emission profiles (Fig. 6). 

The SOA mass predicted by the CAMx-UNIPAR model was sensitive to humidity levels and emission profiles and contributed 

to the accurate prediction of OM (Fig. 3 and Fig. 4). For example, the contribution of aromatic SOA to total OM increased 

(Fig. 7) during haze episodes (24-31 May 2016) owing to aqueous reactions and partitioning of polar aromatic products into 

salted aqueous solution.  350 

The major SOA precursors included in the CAMx-UNIPAR model of this study were aromatics, terpenes, and 

isoprene. These precursors are major contributors of urban SOA but other precursors such as sesquiterpene, alkanes, and 

polyaromatic hydrocarbons are missing in the current simulation of CAMx-UNIPAR.  For example, long-chain alkanes or 

intermediate VOCs are often found in the urban air associated with incomplete combustion and diesel exhaust (Worton et al., 

2014; Perrone et al., 2014; Alam et al., 2018). In the future, the UNIPAR model would benefit from an update to include the 355 

model parameters of missing precursors.  The inclusion of missing precursors into the CAMx-UNIPAR model can address the 
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underestimation of OM as compared to field observations.  In addition, the recent study by Mcdonald et al. (2018) showed that 

volatile chemical products (>53% of total anthropogenic VOC emissions in Los Angeles, USA) originating from consumer 

and industrial products, which are currently unaccounted for in models, can significantly contribute to SOA burden in the 

urban atmosphere. In addition, the deposition of SOA was estimated with the one particle size bin. The different particle size 360 

can have different sink fluxes causing the uncertainty in the lifetime of OM. The UNIPAR model is capable of predicting aging 

of gas products but currently has no feature for OM aging. 

During the KORUS-AQ campaign period, particle-phase inorganic nitrate was high when RH was high or 

temperatures dropped in the afternoon (Fig. S5 and S6). Synergistically, high particulate nitrate can modify aerosol 

hygroscopicity and increases aerosol water content, consequently elevating SOA formation through aqueous reactions. The 365 

current UNIPAR model is capable of processing multiphase partitioning of organic species and determining phase state in the 

presence of ammonium-sulfate-nitrate aerosol. The degree of gas aging is also encompassed in UNIPAR model as a function 

of the quantity of atmospheric radicals (HO2 and RO2), which are simulated in the gas mechanism. However, the prediction of 

these radicals varies with different gas mechanisms (i.e., Carbon Bond mechanisms (Tanaka et al., 2003; Yarwood et al., 2005; 

Yarwood et al., 2010), SAPRC mechanisms (Carter, 2010), and Master Chemical Mechanism (Jenkin et al., 2012; Jenkin, 370 

2004)) and thus, variably influences SOA prediction.  The accuracy of the prediction of aerosol acidity can also affect the 

prediction of SOA formation, because of acid-catalysed oligomerization of organic species. In general, aerosol acidity tends 

to be under-predicted in ammonia-rich aerosol (Li et al., 2015; Jang et al., 2020a).  In the future, the performance of the CAMx-

UNIPAR model needs to be evaluated by simulating various episodes compared to field studies.   
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Table 1. List of KORUS-AQ campaign observations sites. 580 

Site Name Location (Latitude/Longitude) Time period Measurements a 

Bulkwang Supersite 37.61/126.93 8 May – 12 June OC, inorganic ions 

Olympic Supersite 37.52/127.12 9 May – 13 June OC, inorganic ions, O3, NOx, SO2 

Daejeon Supersite 36.35/127.38 8 May – 12 June OC, inorganic ions 

Gwangju Supersite 35.23/126.84 8 May – 12 June OC, inorganic ions 

 a The detailed instruments used for the observations are described by Crawford et al. (2021). 
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Table 2. List of SOA products in the SOAP and UNIPAR modules. 

Mechanism Species Number of species Note 

SOAP 

SOA1 1 High volatility aromatic SOA products  

SOA2 1 Low volatility aromatic SOA products  

SOPA 1 Non-volatile aromatic SOA products  

SOA3 1 High volatility biogenic SOA products  

SOA4 1 Low volatility biogenic SOA products  

SOPB 1 Non-volatile biogenic SOA products 

UNIPAR 

OMH-ar 50 Heterogeneously formed aromatic SOA  

OMP-ar 50 Partitioned aromatic SOA  

OMH-te 50 Heterogeneously formed terpene SOA  

OMP-te 50 Partitioned terpene SOA  

OMH-is 51 Heterogeneously formed isoprene SOA  

OMP-is 51 Partitioned isoprene SOA  
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Figure 1: Scheme of CAMx v7.1 chemistry transport model integrated with the UNIPAR secondary organic aerosol module. 
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Figure 2: Simulated domain and observation sites during the KORUS-AQ campaign. “EA” and “SK” represent Eastern Asia and South 

Korea, respectively. 
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 600 

Figure 3: Time profiles of OM concentration (µg m-3) averaged over eight hours for the observation data and the CAMx simulation results 

at the (a) Bulkwang, (b) Olympic Park, (c) Daejeon, and (d) Gwangju supersites.  
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Figure 4: Time profiles of hourly averaged OM concentrations (µg m-3) for the observation data and the CAMx simulation results at the (a) 

Bulkwang, (b) Olympic Park, (c) Daejeon, and (d) Gwangju supersites. 605 
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Figure 5. The observation of hourly averaged OM concentrations vs. CAMx simulation results by using the SOAP SOA 

module at the (a) Bulkwang, (b) Olympic Park, (c) Daejeon, and (d) Gwangju supersites; and the results by using the 

UNIPAR SOA module at the (e) Bulkwang, (f) Olympic Park, (g) Daejeon, and (h) Gwangju supersites. “mean_x” and 610 

“mean_y” are the averaged OM concentrations of observations and predictions, respectively. “MBE” is the estimated mean 

bias error. “PCC” is the Pearson correlation coefficient. “MFB” and “MFE” are the mean fractional bias and mean fractional 

error, respectively. 
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 615 

Figure 6. Time profiles of the predicted hourly averaged concentrations of primary organic matter (POM), OM formed via 

heterogeneous reactions (OMH), and OM formed via gas-particle partitioning process at the (a) Bulkwang, (b) Olympic Park, 

(c) Daejeon, and (d) Gwangju supersites. 
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 620 

 

 
Figure 7. Time profiles of stacked OM concentrations predicted by the CAMx-UNIPAR model at the (a) Bulkwang, (b) 

Olympic Park, (c) Daejeon, and (d) Gwangju supersites; and by the CAMx-SOAP model at the (e) Bulkwang, (f) Olympic 

Park, (g) Daejeon, and (h) Gwangju supersites. “OMH” and “OMP” represent the OM formed through heterogeneous 625 

reactions and gas-particle partitioning process, respectively. “ar”, “te”, and “is” represent the SOA formed from aromatic 

hydrocarbons, terpenes, and isoprene, respectively. 

 


