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Abstract 20 

We present a satellite-derived global dust climatological record over the last two decades, 

including the monthly mean visible dust optical depth (DAOD) and vertical distribution of dust 

extinction coefficient at a 2° (latitude)  × 5° (longitude) spatial resolution derived from 

CALIOP and MODIS. Dust is distinguished from non-dust aerosols based on particle shape 

information (e.g., lidar depolarization ratio) for CALIOP, and on dust size and absorption 25 

information (e.g., fine-mode fraction, Angstrom exponent, and single-scattering albedo) for 

MODIS, respectively. On multi-year average basis, the global (60°S-60°N) and annual mean 

DAOD is 0.029 and 0.063 derived from CALIOP and MODIS retrievals, respectively. In most 

dust active regions, CALIOP DAOD generally correlates well with the MODIS DAOD, with 

CALIOP DAOD being significantly smaller. CALIOP DAOD is 18%, 34%, 54% and 31% 30 

smaller than MODIS DAOD over Sahara Deserts, the tropical Atlantic Ocean, the Caribbean Sea, 

and the Arabian Sea, respectively. Over East Asia and the northwestern Pacific Ocean (NWP), 

however, the two datasets show weak correlation. Despite these discrepancies, CALIOP and 

MODIS show similar seasonal and interannual variations in regional DAOD. For dust aerosol 

over NWP, both CALIOP and MODIS show a declining trend of DAOD at a rate of about 2% 35 

yr−1. This decreasing trend is consistent with the observed declining trend of DAOD in the 

southern Gobi Desert at a rate of –3% yr−1 and –5% yr−1 according to CALIOP and MODIS, 

respectively. The decreasing trend of DAOD in the southern Gobi Desert is in turn found to be 

significantly correlated with an increasing trend of vegetation and a decreasing trend of surface 

wind speed in the area. 40 
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1 Introduction 

Mineral dust, referred to as dust for short, is one of the most abundant type of atmospheric 

aerosol in terms of dry mass (Textor et al. 2006; Yu et al. 2012; Kok et al. 2017). Dust aerosol 

directly interacts with both solar and thermal infrared radiation, known as the direct radiative 

effect, and thereby influences the Earth’s radiative energy budget  (Kok et al, 2017; Song et al., 45 

2018; Di Biagio et al. 2020).Dust also influences the life cycle and properties of clouds by 

altering the thermal structure of the atmosphere (known as semi-direct effects) (Hansen et al., 

1997) and by acting as cloud condensation nuclei (CCN) and ice nuclei (IN) (known as indirect 

effects) (Albrecht 1989; Rosenfeld and Lensky 1998; Twomey 1977). Dust storms and plumes 

can degrade air quality and generate adverse impacts on human health (Griffin, 2007; Querol et 50 

al., 2019). Dust also contains a variety of nutrients and the deposition of dust during transport 

provides essential nutrients to marine and terrestrial ecosystems (Jickells et al. 2005; Yu et al., 

2015b). The deposition of dust on snow reduces the snow albedo and promotes snow melting 

(Painter et al., 2007). All these impacts manifest the important role of mineral dust in the Earth 

systems (e.g. Evan et al., 2006; Lau & Kim, 2007; Miller & Tegen, 1998; Shao et al., 2011)  55 

 

Dust production is sporadic in nature and it can be transported on intercontinental, 

hemispherical, and even global scales (Grousset et al. 2003; Uno et al. 2009; Yu et al. 2012, 

2013). Thus, global and routine measurements of dust spanning over years or even decades are 

vital for studying dust transport and deposition, estimating the dust radiative effects, and 60 

evaluating and constraining dust simulations in numerical weather and climate models. Satellite 

remote sensing is the only means to observe dust on regional to global scales. Satellite remote 

sensing techniques usually retrieve the optical depth or extinction profile for total aerosol in the 
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atmosphere with additional retrievals of particle size, shape, or absorption properties that are 

sensor specific. Passive sensors, such as the Total Ozone Mapping Spectrometer (TOMS) 65 

(Prospero et al., 2002), Ozone Monitoring Instrument (OMI) (Chimot et al. 2017), Multiangle 

Imaging SpectroRadiometer (MISR) (Ge et al., 2014 and Y. Yu et al. 2019), Moderate 

Resolution Imaging Spectroradiometer (MODIS) (Ginoux et al., 2010; Remer et al.,2005; Yu et 

al., 2009), multi-angular and polarimetric POLDER/PARASOL measurements (Chen et al. 2018) 

and IASI (Klüser et al., 2011; Clarisse et al. 2019) are used to detect dust sources and track dust 70 

plumes at global scales. On one hand, these passive sensors provide global or quasi global 

coverage of column integrated properties of aerosol with satisfactory temporal resolution. On the 

other hand, they do not provide the vertical structure of aerosol that is critical for studying 

aerosol-cloud interactions and aerosol influences on the thermal structure of the atmosphere. 

Space-borne lidar systems, such as the Cloud-Aerosol Lidar with Orthogonal Polarization 75 

(CALIOP) onboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation 

(CALIPSO) spacecraft (Winker et al., 2010) and the Cloud-Aerosol Transport System (CATS) 

onboard the International Space Station (Yorks et al. 2015) are able to provide the vertical 

structure of aerosol and clouds, albeit with limited spatial coverage. All these passive and active 

remote sensing observations have been used extensively in studies of the spatial and temporal 80 

evolution of aerosol over the past decade (e.g., Proestakis et al. 2018).  

 

A significant hurdle of applying satellite remote sensing measurements for dust studies is 

how to distinguish dust from other aerosol types in a quantitative way. While many studies have 

used total aerosol retrievals by focusing on regions and seasons where dust dominates, some 85 

studies have developed sensor-specific methods of partitioning total aerosol into dust and non-
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dust components with varying assumptions (Kaufman et al., 2005; Kalashnikova et al. 2005; 

Dubovik et al. 2006; Ginoux et al., 2010; Yu et al., 2009, 2013, 2015a, 2019). In general, the 

dust separation methods are based on dust physical and optical properties such as their large size, 

their irregular or nonspherical shape, and absorption characteristics. For example, CALIOP dust 90 

classification is mainly based on the fact that dust aerosols are nonspherical in shape and their 

lidar depolarization ratio is significantly larger than those spherical aerosols. In contrast, the 

wide spectral coverage of MODIS measurements enables the retrieval of aerosol particle size 

information, such as effective radius, fine-mode fraction (FMF), and aerosol extinction 

Angstrom exponent, as well as spectral gradient of absorption (decreasing of absorption from 95 

UV to red) (Remer et al., 2005). The combinations of these retrievals provide the basis for dust 

separation and DAOD retrievals from MODIS. Some recent studies have also characterized dust 

distribution through integrating satellite measurements with other data sources and model 

simulations. For example, Voss and Evan (2020) developed a dust optical depth record from 

MODIS retrievals, similar to Kaufman et al. (2005) over ocean and Ginoux et al. (2012) over 100 

land. Unlike Kaufman et al. (2005) and Yu et al. (2020) that derived characteristic FMF values 

for combustion, dust, and marine aerosol from MODIS retrievals, Voss and Evan (2020) 

determined these characteristic FMFs from AERONET measurements. Voss and Evan (2020) 

also extended the MODIS-based method to AVHRR over-ocean retrievals with some 

assumptions and produced the long-term (1981-2018) record of dust optical depth.  Gkikas et al. 105 

(2020) developed a global fine resolution (0.1º x 0.1º) DAOD dataset for the period 2006-2017 

by scaling MODIS retrieved AOD with the DAOD-to-AOD ratios provided by MERRA-2 

(Modern-Era Retrospective analysis for Research and Applications, Version 2) reanalysis 

(Gelaro et al., 2017). Given that MODIS and other remote sensing measurements (e.g., MISR 
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and AERONET) have been assimilated in the MERRA-2 reanalysis to constrain the aerosol 110 

optical depth, the DAOD-to-AOD ratio reported by MERRA-2 is the same as that from the 

underlying GOCART aerosol transport model in the MERRA-2 reanalysis system.  

 

In this study, we focus on the dust optical depth derived from CALIOP and MODIS with two 

major objectives. First, we produce a decadal (2007-2019) record of global DAOD and dust 115 

vertical extinction coefficient profile climatology from the CALIOP observations, which 

represents an extension of the trans-Atlantic dust transport and deposition studies by Yu et al. 

(2015a, 2015b, 2019), both in terms of spatial and temporal coverages. Second, we compare the 

CALIOP DAOD climatology with the MODIS DAOD over both land and ocean (Yu et al. 2020; 

Pu and Ginoux, 2018) to identify and understand their differences in terms of global dust 120 

distribution and interannual variabilities including decadal trend in key dust regions. Our 

analysis goes beyond broad dust-laden regions by zooming into potential dust source areas, 

which provides important insights into local dust activities. A systematic comparison and better 

understanding of DAOD from the two sensors based on distinct retrieval algorithms is critical for 

applying satellite measurements to evaluate global dust modeling (Kim et al. 2019). In 125 

comparison to some most recent studies (Voss and Evan, 2020; Gkikas et al. , 2020), our dust 

climatology is derived by using the satellite observations in a self-consistent way without 

blending in other measurements (e.g., AERONET) or models (e.g., MERRA-2) (see section 2 for 

details). As discussed in Yu et al. (2009), the self-consistent use of MODIS data could minimize 

the introduction of additional biases due to discrepancies in FMF between MODIS and 130 

AERONET. Furthermore, we use the latest version 4.2 CALIOP products and version 6.1 

MODIS products in this study to characterize the three-dimensional distributions of dust. The 
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rest of the paper is organized as follows. Section 2 provides a description of the methodology of 

deriving dust climatology from CALIOP and an overview of MODIS dust retrieval algorithm. 

Section 3 provides the main results including analysis of CALIOP dust climatology data and its 135 

comparison against MODIS dust data. Section 4 discusses the uncertainties in CALIOP as well 

as MODIS DAOD retrievals. Section 5 provides a summary of the study along with the main 

conclusions.  

2 Dust Detection and AOD Partition Schemes  

 140 

2.1 CALIOP Dust Detection and AOD Partition  

CALIPSO is in a sun-synchronous polar orbit with an equator crossing time of around 13:30 

local time and 98 orbit inclination. CALIOP is a two-wavelength (532nm and 1064nm) 

polarization-sensitive lidar onboard CALIPSO. CALIPSO orbit track repeats every 16 days, 

CALIOP sensor never provides global coverage due to its small footprint. At Earth’s surface, the 145 

diameter of CALIOP footprint is around 70m, with spacing distance of 333m between two 

adjacent footprints along the orbit track. CALIOP utilizes three receiver channels (one measuring 

the 1064nm backscatter intensity and two measuring orthogonally polarized components of the 

532nm backscatter) to provide high vertical resolution 30-60m of aerosol and cloud structure 

profiles (Winker et al., 2009).  150 

Aerosol subtype classification and a priori assumption of lidar ratio for specific aerosol type 

are critical for CALIOP aerosol retrievals. CALIOP Level 2 product has been validated by 

comparing with ground-based measurements. The comparison between aerosol subtypes in 

CALIOP level 2 V2.01 and NASA Aerosol Robotic Network (AERONET) aerosol types shows 

that 70% of the CALIOP and AERONET aerosol types are in agreement. Best agreement is 155 
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achieved for dust and polluted dust (Mielonen et al. 2009). Schuster et al. (2012) compared 

CALIOP AOD to the collocated AERONET AOD measurements and found a CALIPSO bias of 

−13%, corresponding to an absolute bias of −0.029 relative to AERONET AOD on global 

average. Further comparison between CALIPSO AOD measurements and the collocated 

AERONET AOD measurements for the columns that contain the dust subtype exclusively 160 

showed a larger bias (i.e., −29% and corresponding absolute bias of −0.1), although they show 

a relatively high correlation of R=0.58; this indicates that the assumed lidar ratio (40 sr) for the 

CALIPSO dust retrievals is too low. Omar et al. 2013 showed that CALIOP AOD are lower than 

AERONET AOD especially for low AOD. Furthermore, they found that the median of relative 

AOD difference between CALIOP and AERONET (500nm) is 25% of AERONET AOD for 165 

AOD > 0.1. 

CALIOP observations have been used widely in previous studies of the spatial and temporal 

evolution of dust aerosols over the past decade (Huang et al. 2007, 2008; Yang et al. 2012; Xu et 

al. 2016; Kim et al., 2019). It is important to note that these studies are regional in scope and 

they use the standard CALIPSO product and aerosol subtype classification algorithm (Omar et al. 170 

2009). In the standard CALIPSO product, each detected aerosol layer is classified as one of the 

six subtypes: dust, polluted dust, polluted continental, smoke, clean marine and clean continental. 

In the latest CALIOP version, another sub-type “marine-dust” is introduced (Kim et al. 2018). In 

these studies, the “dust” subtype or a combination of “dust” and “polluted dust” subtypes is 

categorized as dust. While the former assumption leads to an underestimate of dust due to 175 

neglecting dust component in the “polluted-dust” subtype, the latter assumption results in an 

overestimate of dust because of accounting for non-dust component in the “polluted-dust” 

subtype. In order to better distinguish dust component from each CALIOP detected aerosol 
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layers, Yu et al. (2015a) developed an algorithm independent of the standard aerosol subtype 

classification to distinguish dust from non-dust aerosol by using their respective thresholds of 180 

particulate depolarization ratio. They further used the derived three-dimensional distribution of 

dust extinction to quantify the trans-Atlantic dust transport and deposition and its implications 

for Amazon rainforest (Yu et al., 2015b, 2019). 

 

In this study, we use the methodology in Yu et al. (2015a) to derive the monthly mean dust 185 

extinction profile under clear-sky conditions from the latest V4.20 CALIOP products on a global 

scale from 2007 to 2019. First, we select the clear-sky profiles based on the operational CALIOP 

vertical feature mask and cloud layer product. In order to increase the sampling, we define clear-

sky cases in this study either as columns that are completely cloud-free or with the presence of 

optically thin (cloud optical depth < 0.2) and high-level (cloud base > 7km) clouds. This is 190 

justified that the presence of high-level optically thin clouds does not significantly affect the 

retrieval of aerosol layers below the clouds (Yu et al. 2015a). After clear-sky screening, we use 

the operational 5 km level 2 CALIOP aerosol profile product  that contains aerosol 

depolarization, backscatter and extinction profiles over a global scale (Young et al. 2018) to 

derive the dust extinction profile. The depolarization ratio from CALIOP is a key variable for 195 

detecting and distinguishing dust from non-dust aerosol. Backscatter by spherical particle largely 

retains the polarization of the incident light, resulting in a depolarization ratio of nearly zero. In 

contrast, dust particles are generally non-spherical in shape and large in size, which gives them 

non-zero depolarization ratio that is significantly larger than other types of aerosol. The cloud-

aerosol discrimination (CAD) score in the products gauges the level of confidence for a feature 200 

being classified as aerosol or cloud. In this study, in order to screen out low-confidence aerosol 
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and cloud discrimination, we select layers with CAD scores between −90 and −100 (high level of 

confidence for aerosol feature) by following Yu et al. (2019). Aerosol profile product also 

provides extinction quality control flag (Ext_QC) to indicate problematic retrievals. This study 

only uses layers with Ext_QC values of 0, 1, 18, and 16 (Winker et al., 2013). Only nighttime 205 

data are used to avoid sunlight interference in aerosol signals. 

For each backscatter coefficient profile, we derive the fraction of dust backscatter to total 

backscatter (𝑓𝑑) at each altitude from the following equation 

 𝑓𝑑 =
(𝛿 − 𝛿𝑛𝑑)(1 + 𝛿𝑑)

(𝛿𝑑 − 𝛿𝑛𝑑)(1 + 𝛿)
  , (1) 

where 𝛿 is CALIOP observed particulate depolarization ratio, 𝛿𝑑 and 𝛿𝑛𝑑 is a priori knowledge 

of depolarization ratios of dust and non-dust aerosols respectively. Clearly, the calculations of 𝑓𝑑 210 

in Eq. (1) rely on the a priori depolarization ratios of dust and non-dust aerosols (i.e., 𝛿𝑑 and 

𝛿𝑛𝑑). To account for various types of non-dust aerosols with different depolarization ratio, we 

follow Yu et al. 2015a and assume 0.02 and 0.07 as lower and upper bounds for 𝛿𝑛𝑑 (Burton et 

al., 2012; Fiebig et al., 2002; Sakai et al., 2010). Dust aerosols have significantly larger 

depolarization ratio compared to non-dust aerosols. In order to account for the variability of dust 215 

shape and size, we use 0.2 and 0.3 as lower and upper bounds for 𝛿𝑑 (Ansmann et al., 2012; 

Esselborn et al., 2009; Sakai et al., 2010). Given an observed dust depolarization ratio 𝛿, the 𝑓𝑑 

based on Eq. (1) has the minimum value when 𝛿𝑑 = 0.30 and 𝛿𝑛𝑑 = 0.07 and the maximum 

value when 𝛿𝑑 = 0.20 and 𝛿𝑛𝑑 = 0.02. In order to account for this variability, the final 𝑓𝑑  is 

based on the mean of the lowest (i.e., 𝛿𝑑 = 0.30 and 𝛿𝑛𝑑 = 0.07) and the highest (i.e., 𝛿𝑑 =220 

0.20 and 𝛿𝑛𝑑 = 0.02) dust scenario. The DAOD is also calculated for low dust and high dust 

scenarios for uncertainty study in section 4.  
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Dust backscatter coefficient profiles are derived by multiplying CALIOP total backscatter 

coefficient with the calculated 𝑓𝑑 from Eq. 1. In order to derive dust extinction coefficient from 225 

dust backscatter coefficient, we assume dust lidar ratio (LR), i.e., extinction to backscatter ratio, 

of 44 sr at 532nm, consistent with CALIOP Version 4.20 operational retrieval (Kim et al., 2018). 

The use of globally uniform LR could also induce uncertainty to the derived regional DAOD, 

which is discussed in section 4. 

 230 

2.2 MODIS Dust Detection and AOD Partition  

As described above, the CALIOP-based DAOD derivation mainly makes use of dust non-

sphericity in shape to separate dust aerosol from others. Another important difference of dust 

aerosol from other types of aerosols is their relatively large size. This difference provides the 

basis for the dust separation and DAOD derivation scheme based on the Moderate Resolution 235 

Imaging Spectroradiometer (MODIS) retrievals that is introduced in this section. 

 

MODIS sensors onboard of the Aqua and Terra satellites measure radiances at 36 spectral 

bands ranging from 0.41 to 14 𝜇𝑚, with a 2330 km swath that provides near-global coverage 

every day. As aforementioned, we use CALIOP nighttime observations to avoid solar 240 

contamination. However, MODIS AOD retrievals rely on the solar reflective bands and therefore 

are only available during daytime. Kittaka et al., 2011 shows that daytime and nighttime global 

seasonal-mean AOD distributions for JJA 2006 from CALIOP are generally similar in both 

outflow and source regions (see their Figure 1). It is difficult to tell what caused the minor 

differences because it could be a combination of different calibration procedures and algorithms 245 

for day and for night, different spatial sampling, and diurnal changes in the aerosol. Based on 
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this consideration, we choose to use the nighttime CALIOP product that is free of solar noise, in 

hoping that the better data quality would outweigh the diurnal difference between nighttime 

CALIOP product and daytime MODIS retrievals.   

 250 

MODIS aerosol retrievals employ two complementary algorithms to achieve the global 

coverage. The Dark Target (DT) algorithm is applicable for the retrieval of aerosol loading and 

properties over dark surfaces, including ocean-water and vegetated land. The MODIS aerosol 

AOD retrievals over ocean are found within the retrieval errors of Δ𝜏𝑎 =  ±0.03 ± 0.05𝜏𝑎 

relative to AERONET AOD measurements (Remer et al. 2005). An approach was developed in 255 

previous studies to separate DAOD from other types of aerosol by using aerosol optical depth 𝜏 

and fine mode fraction retrieved from MODIS DT retrieval over ocean (details can be found in 

Kaufman et al., 2005; Yu et al., 2009, 2020). Over land, MODIS aerosol properties including 

AOD, Angstrom exponent, SSA are retrieved from the Deep Blue (DB) algorithm (Hsu et al. 

2004, 2013). The MODIS aerosol AOD retrievals over land are found within the retrieval errors 260 

of Δ𝜏𝑎 =  ±0.05 ± 0.15𝜏𝑎 relative to AERONET AOD measurements (Remer et al. 2005). To 

separate dust from scattering aerosols, it is required that the single-scattering albedo at 470nm to 

be less than 0.99. Then a continuous function relating the Angstrom exponent to fine-mode AOD 

is used to separate dust from fine particles (more details can be found in Pu and Ginoux, 2018).  

Overall, multi-wavelength observations from MODIS contains aerosol size information such 265 

as fine-mode fraction and Angstrom exponent in the observed reflectance spectral pattern, which 

was used to separate dust aerosol from others in MODIS dust retrieval over ocean and land. In 

this study, the latest retrieved aerosol properties from MODIS Collection 6.1 are used. We use 

data from Aqua MODIS only, because Terra MODIS retrievals may generate spurious dust trend 
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(Yu et al. 2020). In order to minimize cloud contamination and avoid the infrequent sampling to 270 

bias DAOD in MODIS dust retrieval over ocean, we screen the data by requiring a minimum of 

10 DAOD retrievals in a month.   

3 Global Dust Climatology  

Based on the dust detection and separation schemes of two sensors described above, we derived 

the following two datasets:  275 

1. The monthly mean CALIOP-based total aerosol optical depth (TAOD) and DAOD, as well 

as the vertical extinction profile on a 2º (latitude) ×5º (longitude) spatial resolution grids for 

the period of 2007 – 2019. This relatively coarse resolution is limited by CALIOP’s sampling. 

2. We combine the monthly mean Aqua MODIS over-ocean (Yu et al., 2020) and over-land (Pu 

and Ginoux, 2018) TAOD and DAOD on a 1º ×1º spatial resolution grids to get the monthly 280 

mean MODIS-based TAOD and DAOD from 2003 to 2019. In order to compare with 

CALIOP-based dust climatology data, we aggregate the 1º ×1º MODIS-based data to 2º ×5º 

resolution grids. 

3. For evaluation and comparison purpose (see section 3.1), we also produce a seasonal global 

distribution of conditionally sampled DAOD from CALIOP. Different from the 285 

climatological DAOD introduced above, where we include all cloud-free cases in the average 

of dust extinction and DAOD regardless of the presence of dust or not. In other words, 

DAOD and dust extinction are assumed to be zero when no dust is detected. In the 

conditionally sampled DAOD calculation, we only average those cases where dust is 

detected (i.e., DAOD and dust extinction are non-zero). Therefore, the conditionally sampled 290 

DAOD is directly related to the intensity of the detected dust events, whereas the 

climatological DAOD is determined by a number of factors including not only the intensity 
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of the detected dust events but also the frequency of the dust events as well as the capability 

of the instrument to sample the dust events. 

 295 

In this section, we compare shape-based CALIOP global dust retrieval against size-based 

MODIS dust retrieval, more specifically MODIS ocean dust retrieval from Yu et al. (2009, 2020) 

and land dust retrieval from Pu and Ginoux (2018), we analyze the similarities and differences 

between two dust climatology data and furthermore study seasonal cycle and decadal trend of 

dust aerosols based on these datasets. 300 

3.1 Comparison between CALIOP and MODIS dust Climatology  

The DAOD climatology datasets derived from the CALIOP and MODIS observations, as 

described in the last section, have two major sources of uncertainty:  

1) The uncertainty associated with the AOD retrieval. The primary uncertainty sources in 

MODIS AOD retrieval include instrument calibration errors, cloud-masking errors, inappropriate 305 

assumption of surface reflectance and aerosol model selection (Remer et al. 2005; Levy et al. 

2013, 2018). Uncertainty sources in CALIOP aerosol retrieval include instrument calibration 

errors, errors in discriminating cloud from aerosol, uncertainties associated with the a priori 

assumption of lidar ratios, and the under detection of tenuous aerosol layers, and overestimation 

of the elevation height of heavy aerosol plume base (Winker et al. 2009; Yu et al., 2010; 310 

Schuster et al., 2012; Thorsen and Fu, 2015; Rajapakshe et al. 2017).  

2) The uncertainty associated with dust detection and separation. As explained in section 2, 

CALIOP- and MODIS-based dust detection and separation methods are based on different 

characteristics of dust aerosols in comparison with other types of aerosols, as summarized in 

Table 1. CALIOP-based method makes use of the fact that depolarization ratio of dust aerosols is 315 
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much higher than other types of aerosols, primarily because of irregular non-spherical shape and 

also to a lesser extent because of coarse size of dust particles. MODIS-based method is largely 

based on the characteristics of coarse particle size. Over ocean, DAOD is derived from total 

aerosol AOD (TAOD) and fine mode fraction (FMF) with a priori characteristic FMF for 

individual aerosol types. Over land, DAOD is derived using spectral dependence of aerosol 320 

extinction (i.e., Angstrom exponent) and single scattering albedo. In other words, MODIS 

retrieves DAOD based on dust size supplemented by absorption characteristics.  

Given these retrieval uncertainties and methodological differences, some discrepancies 

between the two DAOD climatology datasets are expected. In this section, we will compare the 

two datasets to identify and understand their similarities and differences. Since the mechanisms 325 

of dust generation, dust transport and dust removal processes all have a seasonal cycle (Mbourou 

et al. 1997; Parrington et al. 1983), we first present and discuss dust spatial distributions for each 

season in this section. Table 2 summarizes the seasonal and annual mean DAOD and TAOD 

values averaged over ocean, land and the globe (all limited to 60° S-60° N), respectively, based 

on MODIS and CALIOP dust retrievals from 2007 to 2019. On multi-year average basis, the 330 

global, annual mean DAOD (TAOD) is 0.029 (0.112) and 0.063 (0.167) according to CALIOP 

and MODIS retrieval, respectively. Generally, DAOD from two retrievals differ by a factor of 

about 3 over ocean and less than 2 over land, while TAOD differ by a factor of less than 2 over 

both ocean and land. The ratio of DAOD over land to that over ocean is about 2 and 3 for 

MODIS and CALIOP, respectively. For TAOD, the land to ocean ratio is about 2 for both 335 

products. Overall, the difference in TAOD between two retrievals is less than their difference in 

DAOD.  On a global average, both MODIS and CALIOP-based DAOD peaks in boreal summer 

(June-July-August). DAOD reaches minimum in boreal Fall (September-October-November) for 
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MODIS but in boreal Winter (December-January-February) for CALIOP. The MODIS and 

CALIOP differences are region dependent, which is discussed as follows. 340 

Figure 1 shows the spatial distribution of seasonal mean DAOD and the percentage of 

DAOD to the TAOD based on 13-year (2007-2019) CALIOP and MODIS observations. Note 

that this period is chosen because both datasets are available. Generally, MODIS-based DAOD is 

larger than CALIOP-based DAOD. As expected, high values are seen from both CALIOP-based 

and MODIS-based DAOD over the ‘dust belt’ regions extending from the west coast of North 345 

Africa to the Middle East, Central Asia, and China, where large-scale dust activities occur 

persistently throughout the year. However, the CALIOP-based DAOD is rather low in some 

other regions that are known to be dusty in certain seasons, such as the southwestern United 

States, South America (Patagonian Desert), Australia, and South Africa (i.e., Kalahari Desert). 

These regions do stand out in MODIS DAOD maps (i.e., the second column in Figure 1). 350 

Interestingly, these regions indeed show up in the DAOD to TAOD ratio plot based on both two 

sensors (i.e., the last two columns in Figure 1). One of possible reasons for this is that dust 

activities in those regions are more intermittent and CALIOP’s narrow swath results in more 

frequent miss of detection than MODIS does. To test this hypothesis, we compare the seasonal 

climatological DAOD and conditional DAOD product. The second column of Figure 2 shows the 355 

seasonal climatological DAOD which is the average dust load over a geographical domain and 

time interval. It contains information of both the intensity and frequency of dust activities. On 

the other hand, the seasonal conditionally sampled DAOD shown in the first column of Figure 2 

eliminates the impacts from dust frequency by excluding dust-free cases in the average. It is 

mainly related to the intensity of observed dust events. Therefore, the comparison between 360 

climatological and conditionally sampled DAOD sheds a light on the frequency and intensity of 
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dust events. For example, the third column in Figure 2 shows the relative difference between 

conditionally sampled DAOD and climatological DAOD with respect to the climatological 

DAOD. In ‘dust belt’ regions, especially in Sahara Desert and Middle East where dust activities 

are persistent, climatological DAOD is very close to conditional DAOD. In Australia, Southwest 365 

United State, South America and South Africa, however, the conditional DAOD (column 1 in 

Figure 2) and the difference (column 3 in Figure 2) are relatively high. This suggests that dust 

activities in those regions are highly episodic and/or occur in relatively small scales. As a result, 

the dust events in those regions are prone to be missed by CALIOP due to its once-a-day 

sampling over limited spatial coverage. Even if the episodic dust events are sampled by CALIOP, 370 

the monthly averaging would diminish the sparse daily DAOD retrievals in those regions. Indeed, 

Prospero (1999) reported that dust signals were shown in the daily TOMS aerosol index (AI) 

product in those regions but were not captured in TOMS monthly-mean AI product.  The 

difference also is very large in open oceans, suggesting that dust aerosols are present at a very 

low frequency.   375 

 

Having analyzed the conditionally sampled DAOD from CALIOP, we now return to 

climatological DAOD and comparison between CALIOP and MODIS. Hereafter, all AOD 

values are climatological without otherwise explicit statement. Figure 3 shows the difference in 

seasonal mean TAOD, DAOD and the percentage of DAOD in TAOD between MODIS 380 

retrievals and CALIOP retrievals. We note in Figure 3 that CALIOP-based DAOD is generally 

smaller than MODIS-based DAOD over Northeast Asia and Asian dust outflow region 

(Northwest Pacific-NWP). There could be several reasons for this. First, this region is a major 

outflow region of Asian pollution (Yu et al., 2020). It is possible that the internal mixing of dust 
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aerosols with industrial pollution in this region changes the dust morphology making it less non-385 

spherical (Li and Shao 2009) but larger in size, which leads to smaller depolarization ratio and 

smaller fine-mode fraction. As a result, CALIOP shape-based DAOD derivation method could 

not capture the dust particles contained in the mixture, while those dust particles can be captured 

by MODIS size-based method. Another potential reason could be associated with that dust 

plumes in this region are vertically dispersed (Yu et al., 2010; Su and Toon, 2011). These 390 

tenuous dust layers are likely to go undetected by CALIOP because of its relatively low 

sensitivity. However, MODIS retrieves aerosol from the columnal integrated reflectance which is 

not dependent on the vertical distribution of aerosol.  

The difference may also be caused by uncertainties in MODIS aerosol retrievals. The 

West Pacific Ocean is cloudy almost all year long (see the last column in Figure 3), which makes 395 

MODIS aerosol retrievals being susceptible to cloud contamination. The cloud contamination 

can lead to an overestimation of TAOD but underestimation of FMF. Although the MODIS 

retrieval algorithm neither assume coarse particles are exclusively from dust aerosols nor assume 

dust particles are all coarse particles (Yu et al., 2020), coarse mode aerosols are primarily dust. 

Thus, the overestimation of TAOD and underestimation of FMF will lead to an overestimation in 400 

DAOD. An exception occurs during winter when cloud fraction is large in NWP. The MODIS-

based DAOD is smaller than CALIOP-based DAOD, even though MODIS TAOD is larger than 

CALIOP TAOD. Similarly, over the southeastern Atlantic Ocean, CALIOP-based DAOD is also 

generally smaller than MODIS-based DAOD. On one hand, cloud contamination may have 

biased the MODIS dust retrieval high. On the other hand, CALIOP clear-sky sampling is not 405 

large enough to capture some dust events in this region. In southern part of Sahel and India, 

MODIS-based DAOD is generally smaller than CALIOP-based DAOD. 
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 We further compare DAOD (Figure 5) and TAOD (Figure S1 in the supplementary) 

retrievals from CALIOP and MODIS over major dust laden regions (as shown in Figure 4), 

including three source regions on land (i.e., Sahara Desert, Middle East and Eastern Asia) and 410 

six oceanic outflow regions (i.e., the tropical Atlantic Ocean - TAT, the Caribbean Basin - CRB, 

the Mediterranean Sea - MED, the northwest Pacific Ocean - NWP, the Arabian Sea - ARB as 

well as the tropical Indian Ocean and the Bay of Bengal - IND). Each data point in the scatter 

plot represents a monthly mean DAOD (or TAOD) in a 2º × 5º grid. The density of data is 

represented by different color.  To avoid our analysis being biased by some extreme and rare 415 

cases, we exclude those data points within the lowest 5% of data density (grey points in Figure 5). 

Overall, the DAOD from the two instruments correlate well (R2 > 0.5) and on average CALIOP-

based DAOD is 18%, 34%, 54% and 31% lower than MODIS-based DAOD over the Sahara 

(Figure 5a), TAT (Figure 5d), CRB(Figure 5e) and ARB(Figure 5h) regions, respectively. Over 

the Sahara Desert, the good agreement in DAOD between the two sensors (bias of 18% and R2 = 420 

0.61) suggests that over the Sahara Desert dust particles can be adequately characterized by both 

irregular non-spherical shape and coarse size. As a result, both CALIOP- and MODIS-based 

methods are able to detect and separate the dust from other types of aerosols. In TAT and ARB 

regions, two instruments correlate well (R2 > 0.7) in both DAOD and TAOD. For TAOD, 

CALIOP is smaller than MODIS by 2% in TAT and larger than MODIS by 15% in ARB. By 425 

comparison differences in DAOD are larger, with CALIOP DAOD lower than the MODIS 

DAOD by 34% and 31% in TAT and ARB, respectively. This suggests that the differences in 

DAOD from the two instruments are mainly resulted from differences in the dust separation 

method.  In East Asia and NWP, on contrast, both TAOD and DAOD show poor correlation 

between the two methods (Figure 5c, 5g, S1(c) and S1(g)). As discussed earlier, the poor 430 
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correlation between the two methods may be contributed by many factors. For example, the total 

TAOD retrievals from MODIS are subject to larger uncertainties due to cloud contamination, or 

the DAOD retrieval from CALIOP may miss spherical dust particles that are coated by large 

combustion emissions from East Asia. 

Figure 6 compares annual cycle of MODIS and CALIOP DAOD based on the 13-year 435 

(2007-2019) average over the nine dust laden regions. Each data point represents domain-

averaged 13-year mean DAOD for a month, while the error bar indicates ±1 (one standard 

deviation of DAOD). The seasonal cycles of dust activities and dust transport are consistent with 

results in literature (Prospero et al. 2002; Yu et al., 2012, 2015a). Generally, CALIOP and 

MODIS show very similar seasonality over those dust laden regions. DAOD peaks in summer 440 

(JJA) over Sahara Desert, Middle East, TAT, CRB, ARB and IND, but in spring (MAM) over 

Eastern Asia, MED and NWP. Over NWP, the seasonal cycle of MODIS DAOD is somewhat 

different from that of CALIOP DAOD. While CALIOP DAOD peaks in spring, MODIS DAOD 

shows a peak in late spring or even summer months for some years. This could have resulted 

from cloud contamination in MODIS retrievals due to the large cloud fraction in summer [Yu et 445 

al., 2020]. In addition, a secondary maximum of dust activity with high elevation plume in 

summer over the Taklamakan desert (Ginoux et al., 2001) may also contribute to the seasonality 

trend captured by MODIS over NWP. 

Compared to the MODIS dust retrieval, CALIOP has a unique capability of detecting 

dust aerosol vertical distribution. Figure 7 shows seasonal mean dust extinction vertical profile 450 

from CALIOP for the nine dust-laden regions. The values on each plot represent the seasonal 

mean DAOD. Both DAOD and dust vertical structure have a seasonal dependence. In Sahara (a), 

Middle East (b) and their dust outflow regions the Tropical Atlantic (d) and the Arabian Sea (h), 
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summertime dust aerosol has the highest DAOD and reaches to the highest altitude extending 

from surface up to 6km in altitude.    455 

The analysis above has been performed over the broad dust-laden regions. Here we focus 

on MODIS and CALIOP comparison in major potential source areas (PSAs) for dust in North 

Africa, namely NAF-1 to NAF-6 as illustrated in Figure 8 (adapted from Fig. 1 in Formenti et al., 

2011). Among all dust source regions around the globe, the Sahara Desert and its margins in 

North Africa are the largest dust emitter. Within this region, prominent dust sources are often 460 

associated with topographical lows and foothills of mountains (Prospero et al. 2002). Figure 9 

shows scatterplots of CALIOP DAOD against MODIS DAOD over the six PSAs (corresponding 

scatterplots for TAOD are shown in Figure S2 in the supplementary), with each data point 

representing a monthly average over 2º×5º grid. Seasonal variations of DAOD in the six PSAs 

are shown in Figure 10. Striking CALIOP and MODIS differences in both DAOD and TAOD 465 

exist in NAF-5 where the correlation is very weak. NAF-5 (14N-20N, 15E-20E) is located in 

Bodélé Depression, Western Chad. This region is reported as the most intense dust source in the 

world (Prospero et al. 2002), and dust activity in the region occurs with a high frequency during 

all seasons except fall (Mbourou et al., 1997). However, CALIOP TAOD and DAOD are much 

smaller than MODIS retrievals in this region. In terms of dust seasonality (Figure 10), the 470 

MODIS DAOD indicates intense dust aerosol loading all year long with a lower DAOD in Fall, 

while CALIOP shows a more distinct seasonality with the highest DAOD of about 0.3 in May-

July and the lowest DAOD of <0.1 in winter. Over other PSAs in North Africa, MODIS and 

CALIOP DAOD are correlated well with 𝑅2  ≥ 0.5 in NAF-2, 3, 6 and agree well with the slope 

close to 1 and average bias of 0.6 – 0.7  in NAF-2, 3, 4, 6 (Figure 9), and both dust retrievals 475 

show similar seasonality (Figure 10).  
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In summary, MODIS and CALIOP DAOD show largest differences under the following 

conditions: (1) highly cloudy oceanic regions and (2) dust-pollution internal mixtures with high 

relative humidity. Their differences can be explained as follows. 

1. Over cloudy ocean, cloud screening is critical to the quality of aerosol retrievals. As an 480 

active sensor, CALIOP is more reliable in discriminating clouds and aerosols than 

passive imager MODIS. In addition, active sensor is able to avoid impact from cloud side 

scattering. Therefore, MODIS is subject to more cloud contamination than CALIOP. 

Large cloud contamination in MODIS results in overestimation in TAOD and 

underestimation in FMF, introducing a high bias in DAOD over ocean cloudy regions 485 

(e.g., NWP).  

2. Pure dust particles are hydrophobic and will not absorb water vapor. However, for dust 

aerosols coated by other types of aerosols (such as the deliquescent dust-nitrate 

Ca(NO3)2) and saline mineral dust particles emitted from saline topsoil in arid and 

semiarid areas (Tang et al. 2019), those types of dust particles will take up water vapor 490 

and grow to be larger in size and more spherical in shape (Wu et al. 2020). This 

phenomenon is most prominent for dust aerosols in polluted region (e.g., EAS) as well as 

with relatively high relative humidity. While such coarse spherical dust particles will not 

be accounted as dust in CALIOP shape-based method, they are categorized as dust in the 

MODIS size-based method. 495 

 

3.2 DAOD Inter-annual variation from CALIOP and MODIS observations 

In this section we examine the inter-annual variation of DAOD captured by two sensors 

over some major dust source and outflow regions.   Figure 11 shows a global map of DAOD 
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interannual trend derived based on the 13-year (2007-2019) time series of annual mean DAOD 500 

from CALIOP and MODIS. DAOD trend are calculated for each 2º×5º grid. Red color indicates 

positive trend and blue negative trend. Regions where the trend is statistically significant (p < 

0.05) are marked with symbol ‘+’. The similar trend map for total aerosol optical depth is shown 

in Figure S3 in the supplementary. Overall, DAOD global pattern of interannual trend is similar 

to TAOD in major dust-laden regions. For example, Over Sahara Desert and tropical Atlantic 505 

Ocean region, both CALIOP and MODIS do not show statistically significant trend in DAOD 

and TAOD. In East Asia and the northwest Pacific Ocean, both sensors show negative trend in 

DAOD and TAOD.  

 Figure 12 displays interannual variability of annual-mean DAOD for the major dust-laden 

regions as defined in Figure 4. Seasonal and annual DAOD trends in the nine regions are listed in 510 

Table 3. Both MODIS and CALIOP show a clear DAOD trend in certain seasons over the 

Eastern Asia, ARB and NWP regions. In Eastern Asia, MODIS and CALIOP show a consistent 

DAOD decreasing trend at a rate of −1.7% 𝑦𝑟−1 annually. The two sensors show a DAOD 

decreasing tend of −3.5% 𝑦𝑟−1 and −2.5% 𝑦𝑟−1 respectively in Eastern Asia during spring and 

show a consistent trend of DAOD in ARB during the fall, though with a factor of 2 difference in 515 

magnitude. In NWP, both MODIS- and CALIOP-based DAOD shows a decreasing trend of 

−1.7% 𝑦𝑟−1and −1.6% 𝑦𝑟−1 , respectively. The annual DAOD decreasing trend in NWP is 

mainly attributed to the DAOD decline in spring at a rate of -2.3% 𝑦𝑟−1  and -3.0% 𝑦𝑟−1 for 

MODIS and CALIOP, respectively. For comparison, Shimizu et al. (2017) detect the decreasing 

DAOD trends of −4.3% yr-1 in spring and  −2.5% yr-1 on annual mean basis from the Asian 520 

Dust Network (AD-Net) lidar observations over Japan (2007-2016). These trends are greater 

than our results based on MODIS and CALIOP data records.  
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Dust over NWP comes mainly from East Asian dust sources. The broad East Asian region 

(ESA defined in Figure 4) show statistically significant DAOD decreasing trends (Figure 12c) 

which is consistent with the DAOD decreasing trend in NWP. It is also imperative to further 525 

examine which of six major PSAs in East Asia (ESA-1 to ESA-6 in Figure 7) contribute to the 

decreasing trend of DAOD. As shown in Figure 13, among the six PSAs, the satellite data show 

consistent interannual declining trend of DAOD in EAS-5 (Southern Gobi Desert) at a rate of  

−4.8% yr-1 and  −2.8% yr-1 for MODIS and CALIOP, respectively. In spring, DAOD in EAS-5 

shows a significantly declining trend at a rate of −5.6% yr-1 and −3.3% yr-1 for MODIS and 530 

CALIOP (Figure S4). Figure 14 assesses the correlation between DAOD in EAS-5 and DOAD in 

NWP based on MODIS and CALIOP, respectively. For annual mean DAOD from 2007 to 2019, 

both sensors show a good correlation between EAS-5 and NWP with 𝑅2 ≈ 0.4 (𝑝 = 0.02). In 

spring, the correlation of DAOD from two regions is slightly reduced based on CALIOP (𝑅2 =

0.36 , 𝑝 = 0.03), while a much weaker correlation (𝑅2 = 0.28, 𝑝 = 0.07) was found based on 535 

MODIS. We further examine potential factors contribute to the declining trend of DAOD in 

ESA-5. The first row in Figure 15 shows the springtime trend of MODIS enhance vegetation 

index (EVI), MERRA2 near-surface (at 10 m) wind speed and precipitation in EAS-5 region. 

While EVI shows a significantly increasing trend with R2 = 0.71 (p<0.05), the surface wind 

speed shows a decreasing trend with R2 = 0.36 (p<0.05). There is no significant trend for 540 

precipitation. The second and third row in Figure 15 shows the correlations of the three factors 

with MODIS DAOD and CALIOP DAOD, respectively. Clearly, EVI is anti-correlated with 

both MODIS and CALIOP DAOD with R2 > 0.42 and p<0.05. While the surface wind speed is 

correlated with MODIS DAOD with R2 = 0.53 and p<0.05, its correlation with CALIOP DAOD 

is weaker (R2 = 0.29 and p=0.06). Note that EVI and surface wind speed are not independent 545 
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variables that affect dust emissions. An increase of EVI or vegetation cover could reduce the 

surface wind speed. However, given the relatively coarse resolution of MERRA2, the surface 

wind speed trend may largely reflect the change in atmospheric circulations other than local wind 

decrease induced by more vegetation. The precipitation shows no statistically significant 

correlation with MODIS and CALIOP DAOD.  550 

 

As discussed earlier, our results suggest that the decrease of NWP DAOD is likely a result 

of the decreasing dust events in Asian deserts (i.e., EAS-5 Gobi) in turn likely due to change of 

vegetation. This is also reported in several recent studies.  Sternberg et al. (2015) found that Gobi 

Desert contracted from 2000 to 2012 due to increased moisture availability. Song et al. (2016) 555 

used an Integrated Wind Erosion Modeling System to simulate the spring dust emissions in 

northern China over the period of 1982 to 2011. They found a significant decrease of the 

magnitude of spring dust event in China which is attributed to both climate change and local 

mitigation strategies. Similarly, An et al., (2018) also noted a significant decrease of dust storm 

event in East Asian after analyzing observational data from ground stations, numerical modeling, 560 

and vegetation indices obtained from both satellite and reanalysis data. Over the last few decades, 

Chinese government has been taking actions to restore overgrazed land in Inner Mongolia, the 

enlarged vegetation coverage and the expected earlier vegetation green-up due to global warming 

could have mitigated dust activity in this region (Fan et al. 2014). Together the results from our 

analysis, along with the aforementioned recent studies, suggest that the decreasing springtime 565 

DAOD trend in the NWP region is a result of the decline of dust activities in the Inner Mongolia 

(i.e., EAS-5) which is likely linked to vegetation coverage changes in recent years as a result of 

China’s mitigation projects to hold back desertification.  
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Some caveats must be mentioned, however, when interpreting the trend analysis here. First 

of all, due to the limitation of satellite data record, we have only 13 years’ CALIOP data and 17 570 

years’ MODIS data available. Other climate variabilities, such as the El Nino-Southern 

Oscillation (ENSO), could confound the trend analysis. For example, Abish and Mohanakumar 

(2013) shows that La Nina (El Nino) weakens (strengthens) the zonal circulation over the Indian 

subcontinent, which result in low (high) aerosol concentration over Indian subcontinent 

transported from Arabian Desert over the period. Gong et al. (2005) also shows the impact of 575 

ENSO on the interannual variability of Asian dust loading and deposition. According to the 

NOAA Oceanic Nino Index (ONI), the climate switched from a strong La Niña phase in 2010-

2011 to a strong El Niño phase in 2015-2016. However, the potential impact of ENSO on the 

dust inter-annual variability is beyond the scope of this study and will be left for the future 

research.   580 

 

4 Uncertainty Analysis 

The uncertainty of CALIOP DAOD retrieval come from several sources: One is some 

technical uncertainty such as instrument calibration errors, errors in discriminating cloud from 

aerosol and failure to detect aerosol layers (including tenuous aerosol layer and the lower part of 585 

heavy dust layer. For example, Thorsen and Fu (2015) estimated that CALIOP may have 

underestimated 30%-50% in the magnitude of aerosol direct radiative effect due to its low 

sensitivity to tenuous layer), which is likely to translate into low bias in DAOD. In heavy aerosol 

conditions (e.g., strong dust storms in source regions and outflow regions), CALIOP laser cannot 

penetrate to the bottom of aerosol layer due to the laser attenuation (Chamara et al., 2017). As a 590 

result, CALIOP AOD is biased low. DAOD is also subject to uncertainty due to the assumption 
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of dust lidar ratio (extinction to backscatter ratio). Different desserts produce dust with different 

minerology, thus different lidar ratio. Voss et al., (2001) measures LR for African dust as 41 ± 8 

sr using a micropulse lidar and Liu et al. (2002) measures LR for Asian dust as 42-55 sr.  

Globally observed lidar ratios are summarized in Müller et al., (2007) and Baars et al., (2016). 595 

Typical lidar ratio values for desert dust aerosols range from 35sr to 55sr. This study assumes 

dust lidar ratio to be 44 sr at 532nm, which is the value used in the CALIOP V4 product (M.-H. 

Kim et al. 2018) and is comparable to previous studies and nevertheless induce potential 

uncertainties to DAOD. When separating dust from non-dust aerosol, the choice of 

depolarization ratio for dust aerosols and non-dust aerosols also introduces uncertainty in DAOD. 600 

To quantify the uncertainty caused by DPR selection, we also calculated DAOD in the lowest 

(𝛿𝑑 = 0.30 and 𝛿𝑛𝑑 = 0.07) and the highest (𝛿𝑑 = 0.20 and 𝛿𝑛𝑑 = 0.02) dust fraction scenarios. 

We estimated that the uncertainty in monthly DAOD is 35%-47% in regions with DAOD larger 

than 0.06 and up to 80% in regions with very low DAOD. 

 605 

MODIS dust detection is also subject to some uncertainties for both over ocean and over land 

retrievals. Over ocean, the persistent presence of clouds in some regions (e.g., North Pacific 

Ocean, southeastern Atlantic Ocean) pose a challenge to MODIS aerosol retrievals, probably 

causing a high AOD bias, and low FMF bias, and thereby a high DAOD bias. In addition, 

DAOD was calculated from the MODIS-retrieved AOD (𝜏) and FMF (𝑓 ) with appropriate 610 

parameterizations of marine aerosol AOD (𝜏𝑚), FMF of dust (𝑓𝑑𝑢𝑠𝑡), combustion (𝑓𝑐) and marine 

(𝑓𝑚) aerosols. All the parameterizations could also introduce uncertainty in the derived DAOD, 

in particular on a regional basis (see details in Yu et al. 2020). Over land, the derived MODIS 

DAOD represents the coarse-mode fraction of dust only. The exclusion of fine mode of dust 
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aerosol at emission could induce a less than 10% underestimation of the emitted mass (Kok et al. 615 

2017). The comparison of Aqua MODIS DAOD retrievals against AERONET coarse-mode 

AOD shows that Aqua MODIS DAOD values are underestimated with an error of 

0.08+0.52DAOD (Pu and Ginoux, 2018).  

 A rigorous way to evaluate these uncertainties and validate the two dust detection 

methods is to compare with an independent measurement of DAOD. AERONET measurements 620 

have been considered as ground truth and often used to evaluate satellite aerosol optical depth 

retrievals. However, so far there is not a valid method to derive DAOD from AERONET AOD 

measurements to compare our results with. Some studies use coarse-mode AOD from 

AERONET measurements as a proxy for DAOD (Pu and Ginoux, 2018), while CALIOP-based 

DAOD retrieval and MODIS-based oceanic DAOD retrieval do not assume dust aerosols are 625 

exclusively coarse particles. Therefore, AERONET measurements could not be used to validate 

DAOD retrievals in this study.   

5 Summary and Conclusion 
 

Following the methodology in Yu et al. (2015a), we extend the study in both temporal 630 

and spatial scale to present monthly mean climatology data for dust aerosol horizontal and 

vertical distributions on a global scale for the period from 2007 to 2019 based on MODIS and 

CALIOP observations. Our product captures very well as much hot spots along the ‘dust belt’ 

region well, as weaker signals in other dust active regions such as Southwestern United States, 

Patagonian Desert in South America, Central Australia, and South Africa (Figure 1). Since 635 

DAOD climatology product contains and mixes the information of the intensity and frequency of 

dust activities, we introduce the conditional DAOD product, which diminishes impacts from dust 
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frequency by excluding dust-free cases in the average. The comparison between DAOD 

climatology data and conditional DAOD data suggests that dust activities in those regions are 

highly episodic. As a result, the dust events in those regions may be missed by CALIOP which 640 

has a very limited spatial sampling coverage. 

CALIOP distinguishes dust aerosols based on its non-spherical shape, whereas MODIS 

separates dust aerosols from others based on its large size characteristics. The discrepancy in 

dust retrieval based on two instruments are expected due to the uncertainty associated with their 

TAOD retrieval and the uncertainty associated with their different mechanism in dust detection 645 

and separation. The comparison between CALIOP dust retrieval and MODIS dust retrieval 

facilitate a better understanding of advantages and limitations of each dust product and also 

provide some insights on dust morphology and dust size. Through the comparison, we found 

generally CALIOP-based DAOD correlates well with MODIS-based DAOD over dust-laden 

regions such as Sahara, TAT, CRB and ARB, but with CALIOP-based DAOD 18%, 34%, 54% 650 

and 31% lower than MODIS-based DAOD over those regions respectively. This result is 

consistent with the different treatment of the dust-pollution mixtures in the dust separation 

approaches of two instruments. The better agreement (k=0.82) and correlation (R2=0.61) in 

Sahara Desert suggest that dust aerosols are irregular non-spherical and at the same time large in 

size in this region. In some regions such as NWP, the DAOD correlation between two sensors is 655 

quite low. There could be many reasons for this, for example, the total TAOD retrievals from 

MODIS have larger uncertainty due to cloud contamination, or the DAOD retrieval from 

CALIOP may miss coarse spherical dust-pollution mixtures.  

The interannual variability of DAOD over dust-laden regions show no clear trend except 

the NWP region at a rate of −1.6% 𝑦𝑟−1  and −1.7% 𝑦𝑟−1  based on CALIOP and MODIS 660 
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respectively, this trend is mainly attributed to the decreasing trend in spring with a rate of 

−3.0% 𝑦𝑟−1 based on CALIOP and −2.3% 𝑦𝑟−1  based on MODIS. Further investigation of 

DAOD trend in six dust source areas in Eastern Asian where NWP dust aerosols come from 

shows that there is an obvious decreasing trend in DAOD over Southern Gobi Desert based on 

both CALIOP and MODIS dust retrievals. The decreasing trend of DAOD is correlated 665 

significantly with the vegetation index and surface wind speed in the area, whereas there is 

almost no correlation with the precipitation.  
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Data availability. The global DAOD and dust vertical extinction coefficient climatology data 

derived from CALIOP in this study and the MODIS DAOD retrieval data over ocean are 670 

available at 

‘https://drive.google.com/drive/folders/1aQVupe7govPwR6qmsqUbR4fJQsp1DBCX?usp=shari

ng’. The MODIS DAOD retrieval data over land can be requested from Dr. Paul Ginoux. The 

MODIS Enhanced Vegetation Index (EVI) data could be downloaded from 

‘https://lpdaac.usgs.gov/products/myd13c2v006/#tools’. The MERRA2 surface wind speed and 675 

precipitation data are available at 

‘https://disc.sci.gsfc.nasa.gov/datasets/M2T1NXFLX_5.12.4/summary?keywords=%22MERRA-

2%22’.  
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aerosol products were obtained from NASA Langley Research Center Atmospheric Science Data 

Center (https://eosweb.larc.nasa.gov/). 
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Table 1. Summary of DAOD retrievals from MODIS and CALIOP 

Sensors Retrieve Scope Relevant variables used to derive DAOD References 

MODIS Ocean AOD, fine-mode AOD Yu et al. (2009, 2020) 

MODIS Land AOD, Spectral SSA, Angstrom exponent Pu and Ginoux et al. (2018) 

CALIOP Globe Profiles of backscatter, extinction, 

depolarization ratio 

Yu et al. (2015a) 

 695 
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Table 2. Global (60° S-60° N) seasonal mean DAOD and TAOD based on MODIS and CALIOP 

(2007~2019) dust retrievals.  

 MAM JJA SON DJF Annual 
DAOD TAOD DAOD TAOD DAOD TAOD DAOD TAOD DAOD TAOD 

MODIS Ocean 0.056 0.148 0.060 0.149 0.045 0.141 0.050 0.141 0.053 0.145 

Land 0.125 0.277 0.112 0.267 0.073 0.195 0.082 0.210 0.099 0.237 

Global 0.072 0.179 0.075 0.180 0.052 0.155 0.056 0.155 0.063 0.167 

Land 

/Ocean 

2.32 1.87 1.91 1.80 1.65 1.39 1.67 1.49 1.90 1.64 

CALIOP Ocean 0.02 0.094 0.022 0.096 0.014 0.088 0.015 0.085 0.018 0.091 

Land 0.076 0.177 0.075 0.204 0.046 0.166 0.041 0.136 0.059 0.171 

Global 0.035 0.116 0.036 0.125 0.023 0.109 0.022 0.099 0.029 0.112 

Land 

/Ocean 

3.76 1.89 3.37 2.13 3.23 1.89 2.68 1.60 3.31 1.89 
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Table 3. DAOD inter-seasonal trend over major dust-laden regions based on MODIS and 700 

CALIOP observations. The changing rate of DAOD trend is shown in a sequence of 

annual/spring/summer/fall/winter in each cell of the table. Those statistically meaningful trends 

with p<0.05 are shown in bold. 

 MODIS [% yr-1] CALIOP [% yr-1] 

 Annual MAM JJA SON DJF Annual MAM JJA SON DJF 
Sahara Desert (a) -0.04 -0.84 0.21 0.29 0.51 -0.09 -0.93 0.34 -0.52 0.55 
Middle East (b) 0.32 -0.61 -0.02 1.80 1.37 -1.84 -2.36 -1.86 -2.46 -0.09 
Eastern Asia (c) -1.74 -3.48 -0.28 -0.33 -0.56 -1.70 -2.46 -1.99 -0.45 -1.42 
TAT (d) 0.34 -0.68 -0.03 1.68 1.32 -0.25 -1.41 -0.07 0.91 -0.09 
CRB (e) 1.10 0.78 0.94 1.59 1.97 -0.40 -1.39 -0.34 0.79 -1.09 
MED (f) 0.10 0.32 0.49 -0.71 0.03 -1.09 -1.07 -1.63 -1.20 -0.52 
NWP (g) -1.67 -2.33 -1.93 0.63 -1.35 -1.58 -3.01 -2.89 -0.40 -0.19 
ARB (h) -1.42 -0.72 -1.81 -1.85 -0.31 -1.17 -1.70 -0.46 -3.60 -0.06 
IND (i) -0.09 -0.51 0.40 0.38 -0.89 -1.96 -2.92 -2.43 -0.21 -0.54 

 

  705 
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Figure 1. Spatial distribution of the seasonal mean CALIOP-based DAOD, MODIS-based DAOD and 

the fraction of DAOD with respect to the TAOD based on CALIOP and MODIS respectively for the 

globe at a 5∘ 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 × 2∘ 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒  resolution based on 13-year (2007-2019) CALIOP measurements. 

DJF: December from previous year-January-February; MAM: March-April-May; JJA: June-July-August; 710 
SON: September-October-November. 
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Figure 2. Conditional DAOD (the first column), climatological DAOD (the second column) based on 715 
CALIOP dust retrieval from 2007 to 2019. The third column shows the relative difference between 

conditionally sampled DAOD and climatological DAOD with respect to the climatological DAOD 

expressed in fraction. 
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 720 
Figure 3. The difference between MODIS and CALIOP for seasonal mean TAOD (the first column), 

DAOD (the second column), and the fraction of DAOD in TAOD (the third column) on a basis of 13-year 

(2007-2019) average. The fourth column is the seasonal mean cloud fraction from MODIS L3 product. 
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 725 
Figure 4. Major dust-laden regions including three dust source regions on land (a ~ c) and six outflow 

regions over ocean (e ~ i). (a) Sahara Desert (14ºN-30ºN, 15ºW-30ºE), (b) Middle East (10ºN-35ºN, 40ºE-

85ºE) and (c) Eastern Asia (30ºN-50ºN,75ºE-130ºE)  (d) the tropical Atlantic Ocean–TAT (0º-30ºN, 

15ºW-60ºW), (e) the Caribbean Sea–CRB (6ºN-22ºN, 60ºW-90ºW), (f) the Mediterranean Sea–MED 

(30ºN-46ºN, 5ºW-35ºE), (g) the northwest Pacific Ocean–NWP (30ºN-55ºN, 120ºE-160ºE), (h) the 730 
Arabian Sea–ARB (0º-26ºN,45ºE-80ºE and (i) the tropical Indian Ocean and the Bay of Bengal–IND 

(10ºS-22ºN,75ºE-100ºE). Note we only consider grids over land for the three dust source regions and 

grids over ocean for the six dust outflow regions. 

 

  735 
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Figure 5. Comparison of CALIOP DAOD against MODIS DAOD over dust-laden regions indicated in 

Figure 4. Color represents the probability density using gaussian kernel density estimation. Grey points 

represent data points within the lowest 5% of data density. Those grey points are excluded in the linear 

regression analysis. 740 
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Figure 6. Monthly variation of DAOD from CALIOP (green) and MODIS (red) for major dust-laden 

regions indicated in Figure 4. Vertical line represents ±1 sigma (standard deviation) over the 13-year 

period. 745 
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 750 
Figure 7. Vertical profiles of seasonal mean dust extinction coefficient (Mm-1) in 9 dust-laden regions 

indicated in Figure 4. Different colors represent different seasons. The numbers on each plot are the 

seasonal mean DAOD for the region.  

 

 755 
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Figure 8. Six dust potential source subregions in Northern Africa (NAF) and Eastern Asia (EAS) based 

on Fig.1. and Fig. 2. in Formenti, et al., 2011. PSA NAF-1(30N-36N, 0-9E), PSA NAF-2 (16N-28N, 760 
10W-15W), PSA NAF-3 (18N-26N, 5W-5E), PSA NAF-4 (24N-30N, 15E-20E), PSA NAF-5 (14N-20N, 

15E-20E), PSA NAF-6 (14N-24N, 25E-35E);  EAS-1: (34N-40N, 75E-90E) ; EAS-2: (44N-46N, 85E-

90E); EAS-3: (40N-42N,90E-95E and 42N-44N, 85E-90E); EAS-4: (42N-46N, 100E-115E); EAS-5: 

(38N-42N, 100E-110E); EAS-6: (42N-46N, 115E-125E and 48N-50N, 115E-120E)  

 765 
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Figure 9. Comparison of CALIOP DAOD against MODIS DAOD over six dust aerosol source regions in 

North Africa from NAF-1 to NAF-6 as indicated in Figure 8. The mean bias (B) is computed as the 

average of CALIOP DAOD / MODIS DAOD ratios of all data pairs. B =1, >1, <1 indicates no bias, high 770 
bias and low bias.  
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Figure 10. Annual cycle of 13-year (2007-2019) monthly mean DAOD over the six PSAs of North 

African dust. 775 
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Figure 11. Global map of DAOD decadal trend based on CALIOP (left) and MODIS (right) dust 780 
climatology data over 2007-2019 period. Red and blue represents increasing and decreasing trend, 

respectively.  Symbol ‘+’ denotes trends with p-value < 0.05, which are considered as statistically 

meaningful trend.  
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Figure 12. DAOD interannual variability over main dust source regions (a-c) and dust outflow regions 

(d-i) revealed by CALIOP (green curve) and MODIS (red curve) observations.  

 

 790 
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Figure 13. Interannual variability of CALIOP (green) and MODIS (red) DAOD in the six potential dust 

source areas in Eastern Asia (refer to Figure 8). 

 795 
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Figure 14. Correlation between DAOD in EAS-5 (Southern Gobi Desert) and DAOD in NWP for annual 800 
mean (left) and springtime average (right).  
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Figure 15. The inter-annual trend of Enhance Vegetation Index (EVI), surface wind speed and 805 
precipitation and their correlation with DAOD in spring, EAS5 region. The 1st row shows inter-annual 

trend of EVI, surface wind speed and precipitation. The 2nd and 3rd rows show the correlation of EVI, 

surface wind speed and precipitation with MODIS-based DAOD and CALIOP-based DAOD respectively.  
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