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Abstract 20 
We derived two observation-based global monthly mean dust aerosol optical depth (DAOD) 

climatological datasets from 2007 to 2019 with a 2°	(latitude) 	× 5°	(longitude)	 spatial 

resolution, one based on CALIOP and the other on MODIS observations. In addition, the CALIOP 

climatological dataset also includes dust vertical extinction profiles. Dust is distinguished from 

non-dust aerosols based on particle shape information (e.g., lidar depolarization ratio) for CALIOP, 25 

and on dust size and absorption information (e.g., fine-mode fraction, Ångström exponent, and 

single-scattering albedo) for MODIS, respectively. The two datasets compare reasonably well with 

the results reported in previous studies and the collocated AERONET coarse mode AOD. Based 

on these two datasets, we carried out a comprehensive comparative study of the spatial and 

temporal climatology of dust. On multi-year average basis, the global (60°S-60°N) annual mean 30 

DAOD is 0.032 and 0.067 according to CALIOP and MODIS retrievals, respectively. In most dust 

active regions, CALIOP DAOD generally correlates well (correlation coefficient R > 0.6) with the 

MODIS DAOD, although CALIOP value is significantly smaller. CALIOP DAOD is 18%, 34%, 

54% and 31% smaller than MODIS DAOD over Sahara Desert, the tropical Atlantic Ocean, the 

Caribbean Sea, and the Arabian Sea, respectively. Applying a regional specific lidar ratio (LR) of 35 

58𝑠𝑟 instead of the 44𝑠𝑟 used in the CALIOP operational retrieval reduces the difference from 

18% to 8% over the Sahara and from 34% to12% over Tropical Atlantic Ocean. However, over 

Eastern Asia and the Northwestern Pacific Ocean (NWP), the two datasets show weak correlation. 

Despite these discrepancies, CALIOP and MODIS show similar seasonal and interannual 

variations in regional DAOD. For dust aerosol over NWP, both CALIOP and MODIS show a 40 

declining trend of DAOD at a rate of about 2% 𝑦𝑟!". This decreasing trend is consistent with the 

observed declining trend of DAOD in the southern Gobi Desert at a rate of 3% 𝑦𝑟!" and 5% 𝑦𝑟!" 
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according to CALIOP and MODIS, respectively. The decreasing trend of DAOD in the southern 65 

Gobi Desert is in turn found to be significantly correlated with increasing vegetation and 

decreasing surface wind speed in the area. 

1 Introduction 

Mineral dust, referred to as dust for short, is one of the most abundant type of atmospheric 

aerosol in terms of dry mass (Textor et al. 2006; Yu et al. 2012; Kok et al. 2017). Dust aerosol 70 

directly interacts with both solar and thermal infrared radiation, known as the direct radiative effect, 

and thereby influences the Earth’s radiative energy budget  (Kok et al, 2017; Song et al., 2018; Di 

Biagio et al. 2020).Dust also influences the life cycle and properties of clouds by altering the 

thermal structure of the atmosphere (known as semi-direct effects) (Hansen et al., 1997) and acting 

as cloud condensation nuclei (CCN) and ice nuclei (IN) (known as indirect effects) (Albrecht 1989; 75 

Rosenfeld and Lensky 1998; Twomey 1977). Dust storms and plumes can degrade air quality 

affecting human health (Griffin, 2007; Querol et al., 2019). Dust deposition provides essential 

nutrients to marine and terrestrial ecosystems (Jickells et al. 2005; Yu et al., 2015b) but reduces 

the snow albedo increasing snow melt (Painter et al., 2007). All these impacts manifest the 

important role of mineral dust in the Earth systems (e.g. Evan et al., 2006; Lau & Kim, 2007; 80 

Miller & Tegen, 1998; Shao et al., 2011)  

 

Dust production is sporadic in nature. Dust aerosol can be transported on intercontinental, 

hemispherical, and even global scales (Grousset et al. 2003; Uno et al. 2009; Yu et al. 2012, 2013). 

Thus, global and routine measurements of dust spanning over years or even decades are vital for 85 

studying dust transport and deposition, estimating the dust radiative effects, and evaluating and 

constraining dust simulations in numerical weather and climate models. Satellite remote sensing 

Deleted: an 

Deleted: trend of 

Deleted: a 90 
Deleted:  trend of

Deleted: (Textor et al. 2006

Deleted:  by

Deleted: and generate adverse impacts on

Deleted: also contains a variety of nutrients and the 95 
Deleted:  of dust during transport

Deleted: . The deposition of dust on snow

Deleted: and promotes

Deleted: melting

Deleted:  and it100 



 3 

is the only means to observe dust on regional to global scales. Satellite remote sensing techniques 

usually retrieve the optical depth or extinction profile for total aerosol in the atmosphere with 

additional retrievals of particle size, shape, or absorption properties that are sensor specific. 

Passive sensors have been used to detect dust sources and track dust plumes at global scales. A 

few examples are the Total Ozone Mapping Spectrometer (TOMS) (Prospero et al., 2002), Ozone 105 

Monitoring Instrument (OMI) (Chimot et al. 2017), Multi-angle Imaging SpectroRadiometer 

(MISR) (Ge et al., 2014 and Y. Yu et al. 2019), Moderate Resolution Imaging Spectroradiometer 

(MODIS) (Ginoux et al., 2010; Remer et al.,2005; Yu et al., 2009), multi-angular and polarimetric 

POLarization of Directionality of the Earth’s Reflectances / Polarization and Anisotropy of 

Reflectances for Atmospheric science coupled with Observations from a Lidar 110 

(POLDER/PARASOL ) measurements (Chen et al. 2018) and the International Association of 

Structural Integrators (IASI) (Klüser et al., 2011; Clarisse et al. 2019). On one hand, these passive 

sensors provide global or quasi global coverage of column integrated properties of aerosol with 

satisfactory temporal resolution. On the other hand, they do not provide the vertical structure of 

aerosol that is critical for studying aerosol-cloud interactions and aerosol influences on the thermal 115 

structure of the atmosphere. Space-borne lidar systems, such as the Cloud-Aerosol Lidar with 

Orthogonal Polarization (CALIOP) onboard the Cloud-Aerosol Lidar and Infrared Pathfinder 

Satellite Observation (CALIPSO) spacecraft (Winker et al., 2010) and the Cloud-Aerosol 

Transport System (CATS) onboard the International Space Station (Yorks et al. 2015) are able to 

provide the vertical structure of aerosol and clouds, albeit with limited spatial coverage. All these 120 

passive and active remote sensing observations have been used extensively in studies of the spatial 

and temporal evolution of aerosol over the past decade (e.g., Proestakis et al. 2018).  
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A significant hurdle of applying satellite remote sensing measurements for dust studies is how 

to distinguish dust from other aerosol types in a quantitative way. While many studies have used 

total aerosol retrievals by focusing on the regions and seasons where dust dominates, some studies 

have developed sensor-specific methods of partitioning total aerosol into dust and non-dust 135 

components with varying assumptions (Kaufman et al., 2005; Kalashnikova et al. 2005; Dubovik 

et al. 2006; Ginoux et al., 2010; Yu et al., 2009, 2013, 2015a, 2019). In general, the dust separation 

methods are based on dust physical and optical properties such as their large size, their irregular 

or non-spherical shape, and absorption characteristics. For example, CALIOP dust classification 

is mainly based on the fact that dust aerosols are non-spherical in shape and their lidar 140 

depolarization ratio is significantly larger than those spherical aerosols. In contrast, the wide 

spectral coverage of MODIS measurements enables the retrieval of aerosol particle size 

information, such as effective radius, fine-mode fraction (FMF), and aerosol extinction Angstrom 

exponent, as well as spectral gradient of absorption (decreasing of absorption from UV to red) 

(Remer et al., 2005). The combinations of these retrievals provide the basis for dust separation and 145 

DAOD retrievals from MODIS. Some recent studies have also characterized dust distribution 

through integrating satellite measurements with other data sources and model simulations. For 

example, Voss and Evan (2020) (referred to as VE20 hereafter) developed a dust optical depth 

record from MODIS retrievals, similar to Kaufman et al. (2005) over ocean and Ginoux et al. 

(2012) over land. Unlike Kaufman et al. (2005) and Yu et al. (2020) that derived characteristic 150 

FMF values for combustion, dust, and marine aerosol from MODIS retrievals, VE20 determined 

these characteristic FMFs from AERONET measurements. VE20 also extended the MODIS-based 

method to AVHRR over-ocean retrievals with some assumptions and produced the long-term 

(1981-2018) record of dust optical depth. Gkikas et al. 2021 developed a global fine resolution 
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(0.1º x 0.1º) DAOD dataset for the period 2006-2017 by scaling MODIS retrieved Collection 6.1 160 

Aerosol Optical Depth (AOD) with the DAOD-to-AOD ratios provided by MERRA-2 (Modern-

Era Retrospective analysis for Research and Applications, Version 2) reanalysis (Gelaro et al. 

2017). Given that MODIS and other remote sensing measurements (e.g., MISR and AERONET) 

have been assimilated in the MERRA-2 reanalysis to constrain the aerosol optical depth, the 

DAOD-to-AOD ratio reported by MERRA-2 is the same as that from the underlying GOCART 165 

aerosol transport model in the MERRA-2 reanalysis system.  

 

In this study, we focus on the DAOD derived from CALIOP and MODIS with two major 

objectives. First, we produce a decadal (2007-2019) record of global DAOD and dust vertical 

extinction coefficient profile climatology from the CALIOP observations, which represents an 170 

extension of the trans-Atlantic dust transport and deposition studies by Yu et al. (2015a, 2015b, 

2019), both in terms of spatial and temporal coverages. Second, we compare the CALIOP DAOD 

climatology with the MODIS DAOD over both land and ocean (Yu et al. 2020; Pu and Ginoux, 

2018) to identify and understand their differences in terms of global dust distribution and 

interannual variabilities including interannual trend in key dust regions. Our analysis goes beyond 175 

broad dust-laden regions by zooming into potential dust source areas, which provides important 

insights into local dust activities. A systematic comparison and better understanding of DAOD 

from the two sensors based on distinct retrieval algorithms is critical for applying satellite 

measurements to evaluate global dust modeling (Kim et al. 2019). In comparison to some most 

recent studies (Voss and Evan, 2020; Gkikas et al. 2021), our dust climatology is derived using 180 

the satellite observations in a self-consistent way without blending in other measurements (e.g., 

AERONET) or models (e.g., MERRA-2). As discussed in Yu et al. (2009), the self-consistent use 
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of MODIS data could minimize the introduction of additional biases due to discrepancies in FMF 

between MODIS and AERONET. Furthermore, we use the latest version 4.2 CALIOP products 

and version 6.1 MODIS products to characterize the spatial and temporal distributions of dust. The 

rest of the paper is organized as follows. Section 2 provides a description of the methodology of 

deriving dust climatology from CALIOP and MODIS. In Section 3, we compare our DAOD 195 

datasets with previous studies and collocated AERONET retrievals. In Section 4, we compare and 

study the DAOD climatology from CALIOP and MODIS. Section 5 provides a summary of the 

study along with the main conclusions.  

2 Dust Detection and AOD Partition Schemes  

 200 
2.1 CALIOP Dust Detection and AOD Partition  

CALIPSO is in a sun-synchronous polar orbit with an equator crossing time of around 13:30 

local time and 98° orbit inclination. CALIOP is a two-wavelength (532nm and 1064nm) 

polarization-sensitive lidar onboard CALIPSO. CALIPSO orbit track repeats every 16 days, 

CALIOP sensor never provides global coverage due to its small footprint. At Earth’s surface, the 205 

diameter of CALIOP footprint is around 70m, with spacing distance of 333m between two adjacent 

footprints along the orbit track. CALIOP utilizes three receiver channels (one measuring the 

1064nm backscatter intensity and two measuring orthogonally polarized components of the 532nm 

backscatter) to provide high vertical resolution 30-60m of aerosol and cloud structure profiles 

(Winker et al., 2009).  210 

 

Aerosol subtype classification and a priori assumption of LR (extinction to backscatter ratio) 

for specific aerosol type are critical for CALIOP aerosol retrievals. CALIOP Level 2 product has 
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been validated by comparing with ground-based measurements. The comparison between aerosol 225 

subtypes in CALIOP level 2 V2.01 and NASA Aerosol Robotic Network (AERONET) aerosol 

types shows that 70% of the CALIOP and AERONET aerosol types are in agreement and best 

agreement is achieved for dust and polluted dust (Mielonen et al. 2009). Schuster et al. (2012) 

compared CALIOP AOD to the collocated AERONET AOD measurements and found a 

CALIPSO bias of −13%, corresponding to an absolute bias of −0.029 relative to AERONET 230 

AOD on global average. Further comparison between CALIPSO AOD measurements and the 

collocated AERONET AOD measurements for the columns that contain the dust subtype 

exclusively showed a larger bias (i.e., −29% and corresponding absolute bias of −0.1), although 

they show a relatively high correlation of R=0.58; this indicates that the assumed LR of 40 𝑠𝑟 for 

the CALIPSO dust retrievals is too low. Omar et al. 2013 showed that CALIOP AOD are lower 235 

than AERONET AOD especially for low AOD. Furthermore, they found that the median of 

relative AOD difference between CALIOP and AERONET (500nm) is 25% of AERONET AOD 

for AOD > 0.1. 

 

CALIOP observations have been used widely in previous studies of the spatial and temporal 240 

evolution of dust aerosols over the past decade (Huang et al. 2007, 2008; Yang et al. 2012; Xu et 

al. 2016; Kim et al., 2019). It is important to note that these studies are regional in scope and they 

use the standard CALIPSO product and aerosol subtype classification algorithm (Omar et al. 2009). 

In the standard CALIPSO product, each detected aerosol layer is classified as one of the six 

subtypes: dust, polluted dust, polluted continental, smoke, clean marine and clean continental. In 245 

the latest CALIOP version, another sub-type “marine-dust” is introduced (Kim et al. 2018). In 

these studies, the “dust” subtype or a combination of “dust” and “polluted dust” subtypes is 
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categorized as dust. While the former assumption leads to an underestimate of dust due to 

neglecting dust component in the “polluted-dust” subtype, the latter assumption results in an 

overestimate of dust because of accounting for non-dust component in the “polluted-dust” subtype. 

In order to better distinguish dust component from each CALIOP detected aerosol layers, Yu et al. 255 

(2015a) developed an algorithm independent of the standard aerosol subtype classification to 

distinguish dust from non-dust aerosol by using their respective thresholds of particulate 

depolarization ratio (Table 1). The depolarization-based dust separation algorithm is based on the 

method developed by Shimizu et al. 2004, Hayasaka et al. 2007 and Tesche et al. 2009. The 

algorithm has been implemented in the framework of surface lidar network such as European 260 

Aerosol Research Lidar Network (EARLINET) (Ansmann et al. 2011) and also applied to 

CALIOP observations (Yu et al., 2012; Amiridis et al. 2013; Yu et al., 2015a). They further used 

the derived three-dimensional distribution of dust extinction to quantify the trans-Atlantic dust 

transport and deposition and its implications for Amazon rainforest (Yu et al., 2015b, 2019).  

 265 

In this study, we use the methodology in Yu et al. (2015a) to derive the monthly mean dust 

extinction profile under clear-sky conditions from the latest V4.20 CALIOP products on a global 

scale from 2007 to 2019. First, we select the cloud-free columns based on the CALIOP cloud layer 

product. In order to increase the sampling, we define clear-sky cases in this study either as columns 

that are completely cloud-free or with the presence of optically thin (cloud optical depth < 0.2) and 270 

high-level (cloud base > 7km) clouds. This is justified that the presence of high-level optically thin 

clouds does not significantly affect the retrieval of aerosol layers below the clouds (Yu et al. 2015a). 

After clear-sky screening, we use the operational 5 km level 2 CALIOP aerosol profile product 

that contains aerosol depolarization, backscatter and extinction profiles over a global scale (Young 
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et al. 2018) to derive the dust extinction profile. The depolarization ratio from CALIOP is a key 

variable for detecting and distinguishing dust from non-dust aerosol. Backscatter by spherical 280 

particle largely retains the polarization of the incident light, resulting in a depolarization ratio of 

nearly zero. In contrast, dust particles are generally non-spherical in shape and large in size, which 

gives them non-zero depolarization ratio that is significantly larger than other types of aerosol. The 

cloud-aerosol discrimination (CAD) score in the products gauges the level of confidence for a 

feature being classified as aerosol or cloud. In this study, in order to screen out low-confidence 285 

aerosol and cloud discrimination, we select layers with CAD scores between -90 and -100 (high 

level of confidence for aerosol feature) by following Yu et al. (2019). Aerosol profile product also 

provides extinction quality control flag (Ext_QC) to indicate problematic retrievals. This study 

only uses layers with Ext_QC values of 0, 1, 18, and 16 (Winker et al., 2013). Only nighttime data 

are used to avoid sunlight interference in aerosol signals. 290 

For each aerosol backscatter coefficient profile, we derive the fraction of dust backscatter to 

total backscatter (𝑓#) at each altitude from the following equation 

 𝑓# =
(𝛿 − 𝛿$#)(1 + 𝛿#)
(𝛿# − 𝛿$#)(1 + 𝛿)

		, (1) 

where 𝛿 is CALIOP observed particulate depolarization ratio, 𝛿# and 𝛿$# is a priori knowledge of 

depolarization ratios of dust and non-dust aerosols respectively. Clearly, the calculations of 𝑓# in 

Eq. (1) rely on the a priori depolarization ratios of dust and non-dust aerosols (i.e., 𝛿# and 𝛿$#). 295 

To account for various types of non-dust aerosols with different depolarization ratio, we follow 

Yu et al. 2015a and assume 0.02 and 0.07 as lower and upper bounds for 𝛿$# (Burton et al., 2012; 

Fiebig et al., 2002; Sakai et al., 2010). Dust aerosols have significantly larger depolarization ratio 

compared to non-dust aerosols. To account for the variability of dust shape and size, we use 0.2 

and 0.3 as lower and upper bounds for 𝛿# (Ansmann et al., 2012; Esselborn et al., 2009; Sakai et 300 
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al., 2010). Given an observed dust depolarization ratio 𝛿, the 𝑓# based on Eq. (1) has the minimum 

value when 𝛿# = 0.30 and 𝛿$# = 0.07 and the maximum value when 𝛿# = 0.20 and 𝛿$# = 0.02. 

To account for this variability, the final 𝑓# is based on the mean of the lowest (i.e., 𝛿# = 0.30 and 305 

𝛿$# = 0.07) and the highest (i.e., 𝛿# = 0.20 and 𝛿$# = 0.02) dust scenario.  

 

In each 2º (latitude) ×5º (longitude) grid, at each altitude, dust backscatter coefficient for 

per clear-sky overpass is derived by multiplying CALIOP total backscatter coefficient with the 

calculated 𝑓# from Eq. (1). To derive dust extinction coefficient from dust backscatter coefficient, 310 

we assume dust LR, i.e., extinction to backscatter ratio, of 44 ± 9𝑠𝑟 at 532nm, consistent with 

CALIOP Version 4.20 operational retrieval (Kim et al., 2018). The monthly mean dust extinction 

coefficient is calculated at each altitude when overpass samples within the month is larger than 5. 

Then DAOD is calculated by integrating the monthly mean extinction coefficient profile for each 

grid. The use of globally uniform LR and the selection of 𝛿# and 𝛿$# could induce uncertainty to 315 

the derived DAOD. This is discussed in section 3. 

It is important to note that in this study we use only nighttime CALIOP observations for 

DAOD retrievals. This is because the daytime CALIOP observations are often contaminated by 

background solar noise (Getzewich et al. 2018). As shown in Figure S1 in the supplementary 

material, when the above DAOD retrieval method is applied to daytime CALIOP observation, 320 

there is a widespread non-zero DAOD retrieval over remote ocean regions where dust should be 

scarce. This is apparently an artifact caused by solar contamination on CALIOP daytime 

observations, which motivates and justifies our use of nighttime CALIOP observations. On the 

other hand, however, this leads to an inconsistency with the MODIS DAOD retrieval which is 

based on daytime observations (see section 2.2). Although the diurnal cycle of dust has been 325 
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investigated using model simulations (e.g., Yue et al. 2009), it is extremely difficult to assess dust 

diurnal variation from polar orbiting remote sensing observations, especially using elastic lidar in 340 

visible region like CALIOP, due to the inherent instrument limitation. For example, a recent study 

by Yu et al. 2021 attempted to use the retrievals from the Cloud-Aerosol Transport System (CATS) 

lidar to study the diurnal cycle of dust. The 51.6-degree inclination orbit allows CATS to sample 

the tropical and midlatitude regions multiple times a day, which make it more advantageous than 

CALIOP for diurnal variability studies. Unfortunately, after a validation comparison with 345 

AERONET observations (i.e., solar-based during daytime and lunar-based during nighttime), they 

found a significant day–night inconsistency in their retrieval quality. Because of this inconsistency, 

they concluded that diurnal variability in dust and dust mixture characteristics have to be examined 

separately for daytime and nighttime periods. Nevertheless, Yu et al. 2021 plotted the daytime and 

nighttime DAOD together for several dust active regions (see their Figures 3 and 10-13). The 350 

contrast between daytime and nighttime DAOD based on these plots is roughly between 10-15%, 

which is smaller than other uncertainties in CALIOP retrievals as analyzed in section 3. Again, it 

has to be emphasized that this contrast is partly due to the day–night inconsistency in CATS data 

quality.   

2.2 MODIS Dust Detection and AOD Partition  355 

As described above, the CALIOP-based DAOD derivation mainly makes use of dust non-

sphericity in shape to separate dust aerosol from others. Another important difference of dust 

aerosol from other types of aerosols is their relatively large size. This difference provides the basis 

for the dust separation. DAOD derivation scheme based on the Moderate Resolution Imaging 

Spectroradiometer (MODIS) retrievals is introduced in this section. 360 
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MODIS sensors onboard of the Aqua and Terra satellites measure radiances at 36 spectral 

bands ranging from 0.41 to 14 𝜇𝑚, with a 2330 km swath that provides near-global coverage every 

day. MODIS aerosol retrievals employ two complementary algorithms to achieve the global 

coverage. The Dark Target (DT) algorithm is applicable for the retrieval of aerosol loading and 

properties over dark surfaces, including ocean-water and vegetated land. The MODIS aerosol 400 

AOD retrievals over ocean are found within the retrieval errors of Δ𝜏% =	±0.03	 ± 0.05𝜏% 

relative to AERONET AOD measurements (Remer et al. 2005). An approach was developed in 

previous studies to separate DAOD from other types of aerosol by using aerosol optical depth (𝜏) 

and fine mode fraction (𝑓) retrieved from MODIS DT retrieval over ocean. Both 𝜏 and 𝑓 refer to 

properties at 550nm hereafter, unless specified otherwise. In this approach, both 𝜏 and fine-mode 405 

AOD (𝑓𝜏) are assumed to be composed of marine aerosol, dust and combustion aerosols, i.e., 

 𝜏 = 𝜏& + 𝜏# + 𝜏' 		, (2) 

 𝑓𝜏 = 𝑓&𝜏& + 𝑓#𝜏# + 𝑓'𝜏' 		, (3) 

Where the subscripts m, d, and c represent marine aerosol, dust and combustion aerosol, 

respectively. Based on Eq. (2) and (3), 𝜏# can be calculated from MODIS-retrieved 𝜏 and 𝑓, with 

appropriate parameterizations for 𝑓&, 𝑓# , 𝑓' and 𝜏&. More specifically, 𝑓&, 𝑓# , 𝑓' were determined 

from retrieved 𝑓 in selected regions and seasons for which a specific aerosol type dominates, 𝜏& 410 

was parameterized as a function of wind speed (details can be found in Kaufman et al. 2005; Yu 

et al., 2009, 2020). 

 

Over land, MODIS aerosol properties including AOD, Ångström exponent, SSA are retrieved 

from the Deep Blue (DB) algorithm (Hsu et al. 2004, 2013). The MODIS aerosol AOD retrievals 415 

over land are found within the retrieval errors of Δ𝜏% =	±0.05	 ± 0.15𝜏% relative to AERONET 
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AOD measurements (Remer et al. 2005). DAOD over land is derived from the AOD using one 

criterion based on size distribution (to distinguish fine and coarse modes) and the other criterion 

based on absorption (to distinguish between scattering sea salt and absorbing dust). To apply first 

criterion, we use the following formula established by  Anderson et al. 2005 using in-situ data:	420 

 𝐶𝑂𝐷( = 𝐴𝑂𝐷 × (0.98 − 0.5089𝛼 + 0.051𝛼))		, (4) 

Where 𝛼 is the Ångström exponent (a measure of the wavelength dependence of optical depth) 

which has been shown to be highly sensitive to particle size (Eck et al. 1999), 𝐶𝑂𝐷( is the coarse 

mode fraction (aerodynamic diameters larger than 1𝜇𝑚) of AOD retrieved from MODIS, with a 

contribution from absorbing (DAOD) and scattering aerosols (sea salt aerosol optical depth). The 

second criterion requires the single-scattering albedo at 470nm to be less than 0.99 for the retrieval 425 

of DAOD (more details can be found in Pu and Ginoux, 2018).  

 

Overall, multi-wavelength observations from MODIS contains aerosol size information such 

as fine-mode fraction and Ångström exponent in the observed reflectance spectral pattern, which 

was used to separate dust aerosol from others in MODIS dust retrieval over ocean and land (Table 430 

1). In this study, the latest retrieved aerosol properties from MODIS Collection 6.1 are used. We 

use data from Aqua MODIS only, because Terra MODIS retrievals may generate spurious dust 

trend (Yu et al. 2020). In order to minimize cloud contamination and avoid the infrequent sampling 

to bias DAOD in MODIS dust retrieval over ocean, we screen the data by requiring a minimum of 

10 DAOD retrievals in a month.   435 

The relevant variables and the quality assurance procedures used in CALIOP- and MODIS-

based DAOD retrievals are summarized in Table 1 and Table S1, respectively.  
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3 Comparison with previous studies and Uncertainty Analysis 

Based on the dust detection and separation schemes of two sensors described in section 2, we 

derived the following three datasets:  

1. The monthly mean CALIOP-based total aerosol optical depth (TAOD) and DAOD, as well as 450 

the vertical extinction profile on a 2º (latitude) ×5º (longitude) spatial resolution grids for the 

period of 2007 – 2019. This relatively coarse resolution is limited by CALIOP’s sampling. 

2. We combine the monthly mean Aqua MODIS over-ocean (Yu et al., 2020) and over-land (Pu 

and Ginoux, 2018) TAOD and DAOD on a 1º ×1º spatial resolution grids to get the monthly 

mean MODIS-based TAOD and DAOD from 2003 to 2019. In order to compare with 455 

CALIOP-based dust climatology data, we aggregate the 1º×1º MODIS-based data to 2º×5º 

resolution grids. 

3. For evaluation and comparison purpose (see section 4.1), we also produce a seasonal global 

distribution of conditionally sampled DAOD from CALIOP (Marinou et al. 2017, Proestakis 

et al. 2018). While the standard climatological DAOD includes all cloud-free cases in the 460 

average of dust extinction and DAOD regardless of the presence of dust, the conditionally 

sampled DAOD calculation only averages those cases where dust is detected (i.e., DAOD and 

dust extinction are non-zero). Therefore, the conditionally sampled DAOD is directly related 

to the intensity of the detected dust events, whereas the climatological DAOD is determined 

by a number of factors including not only the intensity of the detected dust events but also the 465 

frequency of the dust events as well as the capability of the instrument to sample the dust 

events. 

 
3.1 Comparison with previous studies 
 470 
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Before we compare and study the DAOD climatology from MODIS and CALIOP in detail 

in the next section, we first evaluate our retrievals through comparisons with the regional and 

global DAOD values reported in the previous studies and explore the potential reasons for the 

differences.  

 495 

Table 2 summarizes a comprehensive comparison of our DAOD datasets with previous 

studies. In Ridley et al. 2016, DAOD is first estimated in 14 dust-laden regions from the 

combination of AERONET measurements, MODIS and MISR retrievals. Then the observation-

based, regional DAOD estimates are estimated to the global scale based on the model-estimated 

regional-to-global DAOD ratio. Using this method, they estimated that the global (90°S~90°N) 500 

DAOD@550nm is 0.03 ±	0.005. Using the DAOD-to-AOD ratio from MERRA-2, Gkikas et al. 

2021 converted the MODIS AOD retrievals to DAOD and found a similar global (90°S~90°N) 

DAOD@550nm around 0.033. In contrast, as shown in Table 2 our MODIS-based global 

(90°S~90°N) DAOD is 0.057. However, it is important to note that the global mean DAOD values 

from these studies are not directly comparable to our global mean results because of the 505 

methodology differences. In particular, both of aforementioned studies used model simulations to 

aid their global DAOD estimate, while our estimates are completely based on observations (More 

precisely, DAOD of the scope 60°S~60°N are completely based on observations, while outside of 

the scope, DAOD is assumed to be zero). Nevertheless, to gain a more insightful understanding of 

the differences, we select the same 14 dust-laden regions as in the Ridley et al. 2016 (see Figure 510 

S2 in the supplementary material) and derive the corresponding regional DAOD (see Figure S3 

and Table S2 in the supplementary material). As aforementioned, in Ridley et al. 2016 the DAOD 

in these dust-laden regions is based on AERONET measurements and satellite retrievals, and 
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therefore more comparable with our results. As shown in the supplementary material (Figure S3), 515 

our regional MODIS-based DAOD values are in excellent agreement with those reported in Ridley 

et al. 2016 (relative bias Br = −5.8% in DJF, −0.2% in MAM, −2.5% in JJA and −10.4% in 

SON). This regional comparison suggests that the difference in global DAOD between our study 

and Ridley et al. 2016 is probably because we used different methods to derive the DAOD in the 

regions with less frequent dust activities (i.e., observation-based vs. model-based).  520 

 

Recently, VE20 used a method similar to our MODIS-based DAOD estimate methodology 

to derive the global DAOD. Because of the use of similar methodology and data, VE20 is more 

comparable to our study than Ridley et al. 2016 or Gkikas et al. 2021. They estimated that the 

long-term mean DAOD to be 0.1 over land between 50°S and 60°N, which is almost identical to 525 

our estimate of 0.103 (60°S ~ 60°N) as shown in Table 2. However, when averaged over the ocean, 

their DAOD estimate (0.03 ±0.01) is significantly smaller than our result (0.055). As explained in 

the supplementary material, this difference is probably because different parameterizations of 

𝑓&, 𝑓# , 𝑓' and 𝜏& in Eq. (3) used in the two studies (see Table S4 and discussions in supplementary 

material).  530 

 

A recent study by Proestakis et al. 2018 used a method similar to ours as described in section 

2.1 to derive CALIOP-based regional DAOD in five dust-laden regions in Asia. We compared our 

CALIOP-based regional DAOD for the same regions (Figure S4) and compare the results with the 

values reported in Proestakis et al. 2018. As shown in Figure S5 of the supplementary material, 535 

the two studies are in excellent agreement with relative difference Br = 5.5% in DJF, −6.0% in 

MAM, −6.9% in JJA and 0.8% in SON, respectively.  
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Overall, the above comparisons indicate that our DAOD retrievals are in reasonable 

agreement with previous studies (where directly comparable). However, none of the 540 

aforementioned previous studies performed a systematic comparison between MODIS- and 

CALIOP-based DAOD, which is one of the motivations for this study and will be addressed in the 

Section 4. 

3.2 Uncertainty Analysis 
 545 

In order to understand the differences between the MODIS- and CALIOP-based DAOD, it 

is important to identify and quantify the uncertainties in each retrieval. The uncertainty of CALIOP 

DAOD retrieval come from several sources: An important source is the inherent uncertainty 

associated with CALIOP observations and its retrieval algorithm, such as instrument calibration 

errors, errors in discriminating cloud from aerosol and failure to detect aerosol layers (including 550 

tenuous aerosol layer and the lower part of heavy dust layer. For example, Thorsen and Fu (2015) 

estimated that CALIOP may have underestimated 30%-50% in the magnitude of aerosol direct 

radiative effect due to its low sensitivity to tenuous layer), which is likely to translate into low bias 

in DAOD. In heavy aerosol conditions (e.g., strong dust storms in source regions and outflow 

regions), CALIOP laser cannot penetrate to the bottom of aerosol layer due to the laser attenuation 555 

(Chamara et al., 2017), which could also lead to a low bias in CALIOP DAOD.  

 

CALIOP-based DAOD is also subject to the uncertainty associated with the assumed dust 

LR. Different deserts produce dust with different minerology, size and shape, and thus different 

LRs. Voss et al., (2001) measures LR for African dust as 41 ± 8 sr using a micropulse lidar system 560 

and Liu et al. (2002) measures LR for Asian dust as 42-55 sr. Globally observed LRs are 
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summarized in Müller et al., (2007) and Baars et al., (2016). In this study, we assume dust LR to 

be 44 ±	9	𝑠𝑟 at 532nm to be consistent with the value used in the CALIOP V4 product (Kim et al. 565 

2018). This LR range is also comparable to previous studies and basically covers the range of 

typical dust LRs from 35 𝑠𝑟 to 55 𝑠𝑟 (Muller et al. 2007, Baars et al. 2016). The ±9	𝑠𝑟 induces 

±20%  DAOD uncertainties. When separating dust from non-dust aerosol, the choice of 

depolarization ratio (DPR) for dust aerosols and non-dust aerosols also introduces uncertainty in 

DAOD. To quantify the uncertainty caused by DPR selection, we also calculated DAOD in the 570 

lowest (𝛿# = 0.30 and 𝛿$# = 0.07) and the highest (𝛿# = 0.20 and 𝛿$# = 0.02) dust fraction 

scenarios. The uncertainty induced by DPR is region dependent (Figure S6). The uncertainty is 

much lower in dust dominant regions than other regions. The averaged uncertainty for regions with 

DAOD>0.05 is 20%, while the averaged uncertainty for other regions is 38%. 

 575 

MODIS dust detection is also subject to a number of uncertainties. Over ocean, the 

persistent presence of clouds, especially broken clouds, poses a great challenge to the MODIS 

aerosol retrievals (Martins et al. 2002). If a cloud is mistaken as aerosol, it would lead to a high 

AOD and low FMF bias, and thereby a high DAOD bias. In addition, DAOD was calculated from 

the MODIS-retrieved AOD (𝜏) and FMF (𝑓) with appropriate parameterizations of marine aerosol 580 

AOD (𝜏&), FMF of dust (𝑓#*+,), combustion (𝑓') and marine (𝑓&) aerosols (see Table 2 in Yu et 

al. 2020 for the parameterization values). All the parameterizations could also introduce 

uncertainty in the derived DAOD, in particular on a regional basis (see details in Yu et al. 2020). 

Over land, the derived MODIS DAOD represents the coarse-mode fraction (aerodynamic 

diameters larger than 1𝜇𝑚) of dust only. The exclusion of submicron dust aerosol could induce 585 
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around 3% underestimation of the global atmospheric dust mass load and around 15% 

underestimation of the global DAOD (see Figure S1 in Kok et al. 2017).  

 

 One way to evaluate these uncertainties and validate the two dust detection methods is to 

compare with an independent measurement of DAOD. AERONET measurements have been 590 

considered as ground truth and often used to evaluate satellite aerosol optical depth retrievals. 

However, so far there is not a valid method to derive DAOD from AERONET AOD measurements 

to compare our results with. Therefore, we use coarse-mode AOD (COD) from AERONET 

measurements as a proxy for DAOD (Pu and Ginoux, 2018) to compare with our DAOD datasets 

and further estimate the absolute expected errors (EE) associated with our DAOD datasets. The 595 

fine mode and coarse mode AOD in AERONET product are defined optically, rather than in terms 

of a microphysical cutoff of the associated particle size distribution at some specific radius (see 

details in O’Neill et al. 2003). Over land especially dust source regions, dust aerosols are 

predominantly in coarse mode, therefore, AERONET COD could be considered as a good proxy 

of DAOD over land. Over ocean, the exclusion of fine mode DAOD could be partially cancelled 600 

by the inclusion of coarse sea salt AOD in AERONET COD retrievals. Therefore, AERONET 

COD is considered as a proxy of DAOD over ocean as well.  

 

We use AERONET monthly mean COD retrieved at 500nm from the level 2 (cloud 

screened and quality assured) Spectral Deconvolution Algorithm (SDA) version 4.1 in this study. 605 

The AERONET COD is converted to 550nm and 532nm using Angstrom Exponent to compare 

with MODIS and CALIOP DAOD retrievals, respectively. In addition, we produce a finer 

resolution (1∘ × 1∘) CALIOP-based DAOD retrieval to compare with AERONET COD.  

Moved (insertion) [9]



 20 

 

For overland dust retrievals, between 2007 and 2019, there are 16653 MODIS, CALIOP 610 

monthly mean DAOD retrievals collocated with 761 AERONET sites located within a 1-degree 

MODIS and CALIOP grid cell (Figure 1). MODIS DAOD (DAODM) overall bias high compared 

to AERONET COD with absolute bias 𝐵% = 0.01, and relative bias 𝐵. = 26.7%. While CALIOP 

DAOD (DAODC) generally bias low with 𝐵% = −0.02 and 𝐵. = −27.9%. Using a methodology 

suggested in Sayer et al. 2013, the estimated EE (take 68th percentiles referring to Sayer et al. 2013) 615 

for all collocated MODIS DAOD over land is approximately 0.65×DAODM+0, and for CALIOP 

DAOD over land is approximately 0.52×DAODC+0.02 (Figure 2). 

 

For over-ocean dust retrievals, between 2007 and 2019, there are 7755 MODIS, CALIOP 

monthly mean DAOD retrievals collocated with 311 AERONET sites located within a 1-degree 620 

MODIS and CALIOP grid cell (Figure 3). MODIS DAOD overall bias high compared with 

AERONET COD with absolute bias 𝐵% = 0.01, and relative bias 𝐵. = 18.1%. While CALIOP 

DAOD generally bias low with 𝐵% = −0.02 and 𝐵. = −35%. The estimated EE for all collocated 

MODIS DAOD over land is approximately 0.50×DAODM+0, and for CALIOP DAOD over land 

is approximately 0.54×DAODC+0.02 (Figure 4). 625 

 

We further analyze the statistical parameters and EE by continents for MODIS and 

CALIOP DAOD (Table 3). The lowest EE, 𝐵.  and highest correlation (R) are estimated over 

Africa, followed by Asia, Europe, Americas and Australia. This implies that our DAOD retrievals 

are subject to higher bias under high AOD in polluted regions. Overall, MODIS-based monthly 630 

mean DAOD retrievals are larger than AERONET COD measurements, while CALIOP-based 
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DAOD retrievals are smaller than AERONET COD, which seems to suggest that the true DAOD 

fall between the MODIS and CALIOP DAOD products.  

 

4 Global Dust Climatology  635 

 
In this section, we compare CALIOP global dust retrieval against MODIS dust retrieval, 

more specifically MODIS ocean dust retrieval from Yu et al. (2009, 2020) and land dust retrieval 

from Pu and Ginoux (2018), we analyze the similarities and differences between two dust 

climatological datasets and furthermore study the seasonal cycle and decadal trend of dust aerosols 640 

based on these datasets. 

4.1 Comparison between CALIOP and MODIS DAOD Climatology  

The DAOD climatology datasets derived from the CALIOP and MODIS observations, as 

described in Section 3, have two major sources of uncertainty:  

1) The uncertainty associated with the TAOD retrieval. The primary uncertainty sources in 645 

MODIS TAOD retrieval include instrument calibration errors, cloud-masking errors, inappropriate 

assumption of surface reflectance and aerosol model selection (Remer et al. 2005; (Levy et al. 

2013, 2018). Uncertainty sources in CALIOP aerosol retrieval include instrument calibration 

errors, errors in discriminating cloud from aerosol, uncertainties associated with the a priori 

assumption of LRs, under detection of tenuous aerosol layers, and overestimation of the elevation 650 

height of heavy aerosol plume base (Winker et al. 2009; Yu et al., 2010; Schuster et al., 2012; 

Thorsen and Fu, 2015; Rajapakshe et al. 2017).  

2) The uncertainty associated with dust detection and separation. As explained in section 2, 

CALIOP- and MODIS-based dust detection and separation methods are based on different 
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characteristics of dust aerosols in comparison with other types of aerosols, as summarized in Table 

1. The CALIOP-based method makes use of the fact that depolarization ratio of dust aerosols is 665 

much higher than other types of aerosols, primarily because of irregular non-spherical shape and 

also to a lesser extent because of coarse size of dust particles (Gasteiger et al. 2011, Järvinen et al. 

2016). MODIS-based method is largely based on the characteristics of coarse particle size. Over 

ocean, DAOD is derived from MODIS-retrieved TAOD and Fine Mode Fraction (FMF) with a 

priori characteristic FMF for individual aerosol types. Over land, DAOD is derived using spectral 670 

dependence of aerosol extinction (i.e., Angstrom exponent) and single scattering albedo. In other 

words, MODIS retrieves overland DAOD based on dust size supplemented by absorption 

characteristics.  

Given these retrieval uncertainties and methodological differences, some discrepancies 

between the two DAOD climatological datasets are expected. In this section, we will compare the 675 

two datasets to identify and understand their similarities and differences. Since the mechanisms of 

dust generation, dust transport and dust removal processes all have a seasonal cycle (Mbourou et 

al. 1997; Parrington et al. 1983), we first present and discuss dust spatial distributions for each 

season in this section. Table 4 summarizes the seasonal and annual mean DAOD and TAOD values 

averaged over ocean, land and the globe (all limited to 60°S-60°N), respectively, based on MODIS 680 

and CALIOP dust retrievals from 2007 to 2019. On multi-year average basis, the global DAOD 

was found to be 0.055 over the ocean and 0.103 over land based on MODIS, and 0.020 over ocean 

and 0.068 over land based on CALIOP. The global, annual mean DAOD (TAOD) is 0.032 (0.121) 

and 0.067 (0.171) according to CALIOP and MODIS retrieval, respectively. 

As a comparison of two DAOD retrievals in this study, generally, DAOD from two retrievals 685 

differ by a factor of about 3 over ocean and less than 2 over land, while TAOD differ by a factor 

Deleted: CALIOP-based method makes use of the fact that 
depolarization ratio of dust aerosols is much higher than 
other types of aerosols, primarily because of irregular non-
spherical shape and also to a lesser extent because of coarse 690 
size of dust particles. MODIS-based method is largely based 
on the characteristics of coarse particle size. Over ocean, 
DAOD is derived from total aerosol AOD (TAOD) and fine 
mode fraction (FMF) with a priori characteristic FMF for 
individual aerosol types. Over land, DAOD is derived using 695 
spectral dependence of aerosol extinction (i.e., Angstrom 
exponent) and single scattering albedo. In other words, 
MODIS retrieves

Deleted: climatology

Deleted: Table 2700 

Deleted: 029

Deleted: 112

Deleted: 063

Deleted: 167

Deleted:  Generally705 



 23 

of less than 2 over both ocean and land. The ratio of DAOD over land to that over ocean is about 

2 and 3 for MODIS and CALIOP, respectively. For TAOD, the land to ocean ratio is about 2 for 

both products. Overall, the difference in TAOD between two retrievals is less than their difference 

in DAOD.  On a global average, both MODIS and CALIOP-based DAOD peaks in boreal summer 

(June-July-August). DAOD reaches minimum in boreal Fall (September-October-November) for 710 

MODIS but in boreal Winter (December-January-February) for CALIOP. The MODIS and 

CALIOP differences are region dependent, which is discussed as follows. 

Figure 5 shows the spatial distribution of seasonal mean DAOD and the percentage of 

DAOD to the TAOD based on 13-year (2007-2019) CALIOP and MODIS observations. Note that 

this period is chosen because both datasets are available. Generally, MODIS-based DAOD is larger 715 

than CALIOP-based DAOD. As expected, high values are seen from both CALIOP-based and 

MODIS-based DAOD over the ‘dust belt’ regions extending from the west coast of North Africa 

to the Middle East, Central Asia, and China, where large-scale dust activities occur persistently 

throughout the year. However, the CALIOP-based DAOD is rather low in some other regions that 

are known to be dusty in certain seasons, such as the southwestern United States, South America 720 

(Patagonian Desert), Australia, and South Africa (i.e., Kalahari Desert). These regions do stand 

out in MODIS DAOD maps (i.e., the second column in Figure 5). Then we plot DAOD-to-TAOD 

ratio based on DAOD and TAOD retrievals from two sensors (the last two columns in Figure 5). 

These regions indeed show up in the DAOD-to-TAOD ratio plot based on both sensors (i.e., the 

last two columns in Figure 5). This means that in those regions both sensor-specific methodologies 725 

are able to distinguish dust aerosol from sensor-detected total aerosol to some extent so that the 

DAOD-to-TAOD ratio stands out in those regions for both sensors.  
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The climatological dust product shown in Figure 5 is a measure of the average dust loading 

over a geographical domain and time interval. It contains information of both the intensity and 

frequency of dust activities. The seasonal conditionally sampled DAOD shown in the first column 

of Figure 6 eliminates the impacts from dust frequency by excluding dust-free cases in the average. 

It is mainly related to the intensity of observed dust events. Therefore, the comparison between 740 

climatological and conditionally sampled DAOD sheds a light on the frequency and intensity of 

dust events detected by CALIOP. Therefore, we further compare the seasonal climatological 

DAOD and conditional DAOD product. The second column of Figure 6 shows the seasonal 

climatological DAOD. The third column in Figure 6 shows the relative difference between 

conditionally sampled DAOD and climatological DAOD with respect to the climatological DAOD. 745 

In ‘dust belt’ regions, especially in Sahara Desert and Middle East where dust activities are 

persistent, climatological DAOD is very close to conditional DAOD. In Australia, Southwest 

United State, South America and South Africa, however, the conditional DAOD (column 1 in 

Figure 6) and the difference (column 3 in Figure 6) are relatively high. This suggests that dust 

activities in those regions are highly episodic and/or occur in relatively small scales. The difference 750 

also is very large in open oceans, suggesting that dust aerosols are present at a very low frequency.   

 

Having analyzed the conditionally sampled DAOD from CALIOP, we now return to 

climatological DAOD and comparison between CALIOP and MODIS. Hereafter, all AOD values 

are climatological without otherwise explicit statement. Figure 7 shows the difference in seasonal 755 

mean TAOD, DAOD, and the percentage of DAOD in TAOD between MODIS retrievals and 

CALIOP retrievals. We first focus on ‘dust belt’ and its ocean out-flow regions extending from 

Northeast Atlantic, North Africa to the Middle East, Central Asia, China and Northwest Pacific. 
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We note that in Figure 7 CALIOP-based TAOD and DAOD is generally smaller than MODIS-

based ones over North Africa and Saharan dust out-flow region over the tropical Atlantic Ocean. 775 

One of the reasons of this large discrepancy is the choose of LR in CALIOP aerosol retrieval in 

these regions. CALIOP V4 products retrieve dust extinction coefficients with two steps. First, 

apply a globally uniform LR of 44𝑠𝑟 for the identified dust aerosol layers to retrieve backscatter 

coefficients. Second, use the same LR of 44𝑠𝑟  value to convert backscatter coefficients to 

extinction coefficients. Amiridis et al. 2013 shows that in the second step applying LR of 58𝑠𝑟 to 780 

CALIOP dust backscatter coefficients in North Africa improves the resulting aerosol extinction in 

terms of optical depth comparison with synchronous and collocated AERONET and MODIS 

measurements. Similarly, over Sahara Desert and the tropical Atlantic Ocean (see Figure 8 (a) and 

(d)), we apply LR of 58𝑠𝑟  to the derived backscatter coefficient of dust component to get 

extinction coefficient of dust component. The resulting DAOD for LR of 58𝑠𝑟  shows an 785 

improvement in comparison with MODIS DAOD relative to LR of 44𝑠𝑟 (Figure 9 (a) and (d)). 

Therefore, the choose of LR can largely explain the difference between MODIS and CALIOP 

DAOD over North Africa and tropical Atlantic Ocean. For other regions, typical values of LR of 

desert dust aerosols vary between 35 and 55	𝑠𝑟, which is basically covered by the range of 44 ±

9𝑠𝑟 used in this study. The DAOD uncertainty induced by ±9𝑠𝑟 is estimated to be around 20% as 790 

shown in the shaded area in Figure 9. 

 

In Middle East (the region indicated by Figure 8 (b)), the second column in Figure 7 shows 

that MODIS-DAOD is generally larger than CALIOP-DAOD in Arabian Peninsula, while 

opposite in India.  795 
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In Arabian Sea (the region indicated by Figure 8 (h)), comparing column 2 and column 4 

in Figure 7, we could see that MODIS-DAOD is significantly larger than CALIOP-DAOD during 

JJA, during which cloud fraction is very high in the region. MODIS aerosol retrieval is more 

susceptible to cloud contamination. Specifically, the cloud contamination can lead to an 

overestimation of TAOD but underestimation of FMF. Although the MODIS retrieval algorithm 800 

neither assume coarse particles are exclusively from dust aerosols nor assume dust particles are all 

coarse particles (Yu et al., 2020), coarse mode aerosols are primarily dust. Thus, the overestimation 

of TAOD and underestimation of FMF will lead to an overestimation in DAOD. 

 Over Eastern Asia and Asian dust outflow region (Northwest Pacific-NWP), CALIOP-

based DAOD is generally smaller than MODIS-based DAOD. There could be several reasons for 805 

this. First, this region is a major outflow region of Asian pollution (Yu et al., 2020). It is possible 

that the internal mixing of dust aerosols with industrial pollution in this region changes the dust 

morphology making it less non-spherical (Li and Shao 2009, Huang et al. 2020) but larger in size, 

which leads to smaller depolarization ratio and smaller fine-mode fraction. As a result, CALIOP 

shape-based DAOD derivation method could not capture the dust particles contained in the mixture, 810 

while those dust particles can be captured by MODIS size-based method. Another potential reason 

could be associated with that dust plumes in this region are vertically dispersed (Yu et al., 2010; 

Su and Toon, 2011). These tenuous dust layers are likely to go undetected by CALIOP because of 

its relatively low sensitivity. However, MODIS retrieves aerosol from the columnal integrated 

reflectance which is not dependent on the vertical distribution of aerosol. The difference may also 815 

be caused by uncertainties in MODIS aerosol retrievals. The West Pacific Ocean is cloudy almost 

all year long (see the last column in Figure 7), which makes MODIS aerosol retrievals bias high 

due to its more susceptibility to cloud contamination. An exception occurs during winter when 
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cloud fraction is large in NWP. The MODIS-based DAOD is smaller than CALIOP-based DAOD, 835 

even though MODIS TAOD is larger than CALIOP TAOD. Similarly, over the southeastern 

Atlantic Ocean, CALIOP-based DAOD is also generally smaller than MODIS-based DAOD. On 

one hand, cloud contamination may have biased the MODIS dust retrieval high. On the other hand, 

CALIOP clear-sky sampling is not large enough to capture some dust events in this region. 

 We further compare DAOD (Figure 9) and TAOD (Figure S7 in the supplementary) 840 

retrievals from CALIOP and MODIS over major dust laden regions (as shown in Figure 8), 

including three source regions on land (i.e., Sahara Desert, Middle East and Eastern Asia) and six 

oceanic outflow regions (i.e., the Tropical Atlantic Ocean - TAT, the Caribbean Basin - CRB, the 

Mediterranean Sea - MED, the Northwest Pacific Ocean - NWP, the Arabian Sea - ARB as well 

as the tropical Indian Ocean and the Bay of Bengal - IND). Each data point in the scatter plot 845 

represents a monthly mean DAOD (or TAOD) in a 2º × 5º grid. The density of data is represented 

by different color. To avoid our analysis being biased by some extreme and rare cases, we exclude 

those data points within the lowest 5% of data density (grey points in Figure 9 and Figure S7). 

Overall, the DAOD from the two instruments correlate well (R > 0.75) and on average CALIOP-

based DAOD is 18%, 34%, 54% and 31% lower than MODIS-based DAOD over the Sahara 850 

(Figure 9(a)), TAT (Figure 9(d)), CRB(Figure 9(e)) and ARB(Figure 9(h)) regions, respectively. 

Applying LR of 58𝑠𝑟 to Sahara dust reduces the difference from 18% to 8% over the Sahara and 

from 34% to12% over TAT. Over the Sahara Desert, the good agreement in DAOD between the 

two sensors (bias of 8% and R = 0.78) suggests that over the Sahara Desert dust particles can be 

adequately characterized by both irregular non-spherical shape and coarse size. As a result, both 855 

CALIOP- and MODIS-based methods are able to detect and separate the dust from other types of 

aerosols. In TAT and ARB regions, two instruments correlate well (R > 0.8) in both DAOD and 
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TAOD. For TAOD, CALIOP is smaller than MODIS by 2% in TAT and larger than MODIS by 875 

15% in ARB. Differences in DAOD are larger, with CALIOP DAOD lower than the MODIS 

DAOD by 12% and 31% in TAT and ARB, respectively. This suggests that the differences in 

DAOD from the two instruments are mainly resulted from differences in the dust separation 

method. In East Asia and NWP, on contrast, both TAOD and DAOD show poor correlation 

between the two methods (Figure 9(c), 9(g), S7(c) and S7(g)). As discussed earlier, the poor 880 

correlation between the two methods may be contributed by many factors. For example, the total 

TAOD retrievals from MODIS are subject to larger uncertainties due to cloud contamination, or 

the DAOD retrieval from CALIOP may miss spherical dust particles that are coated by large 

combustion emissions from East Asia. 

4.2 Comparison between CALIOP and MODIS DAOD Seasonality  885 

Figure 10 compares annual cycle of MODIS and CALIOP DAOD based on the 13-year 

(2007-2019) average over the nine dust laden regions. Each data point represents domain-

averaged 13-year mean DAOD for a month while the error bar indicates ±1s (one standard 

deviation of DAOD). The seasonal cycles of dust activities and dust transport are consistent with 

results in literature. For example, Prospero et al. 2002 shows that dust activity peaks in May-July 890 

in North Africa and Middle East, while peaks in spring in China. These seasonal cycles are 

consistent with our results shown in the first row of Figure 10. Yu et al. 2015a shows that DAOD 

peaks in June-July-August in La Parguera, which is consistent with the seasonal cycle in CRB in 

this study. Generally, CALIOP and MODIS show very similar seasonality over those dust laden 

regions. DAOD peaks in summer June-July-August (JJA) over Sahara Desert, Middle East, TAT, 895 

CRB, ARB and IND, but in spring March-April-May (MAM) over Eastern Asia, MED and NWP. 

Over NWP, the seasonal cycle of MODIS DAOD is somewhat different from that of CALIOP 
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DAOD. While CALIOP DAOD peaks in spring, MODIS DAOD shows a peak in late spring or 

even summer months for some years. This could have resulted from cloud contamination in 

MODIS retrievals due to the large cloud fraction in summer [Yu et al., 2020].  

Compared to the MODIS dust retrieval, CALIOP has a unique capability of detecting dust 910 

aerosol vertical distribution. Figure 11 shows seasonal mean dust extinction vertical profile from 

CALIOP for the nine dust-laden regions. The values on each plot represent the seasonal mean 

DAOD. Both DAOD and dust vertical structure have a seasonal dependence. In Sahara (a), Middle 

East (b) and their dust outflow regions the Tropical Atlantic (d) and the Arabian Sea (h), 

summertime dust aerosol has the highest DAOD and reaches to the highest altitude extending from 915 

surface up to 6km in altitude.    

The analysis above has been performed over the broad dust-laden regions. Here we focus 

on MODIS and CALIOP comparison in major potential source areas (PSAs) for dust in North 

Africa, namely NAF-1 to NAF-6 as illustrated in Figure 12 (adapted from Fig. 1 in Formenti et al., 

2011). Among all dust source regions around the globe, the Sahara Desert and its margins in North 920 

Africa are the largest dust emitter. Within this region, prominent dust sources are often associated 

with topographical lows and foothills of mountains (Prospero et al. 2002). Seasonal variations of 

DAOD in the six PSAs are shown in Figure 13. Two B values are shown in the upper left of each 

panel in Figure 13, where B is defined as the average of CALIOP DAOD / MODIS DAOD ratios 

of all data pairs. B=1, >1, <1 indicates no bias, high bias and low bias. They are calculated based 925 

on CALIOP DAOD using dust LR of 44sr and 58sr respectively. The CALIOP DAOD derived 

using larger LR (58sr) achieve a better agreement (B values are closer to 1) with MODIS DAOD. 

Striking CALIOP and MODIS differences in DAOD exist in NAF-5 where the mean bias (B) 

deviate far from 1. NAF-5 (14N-20N, 15E-20E) is located in Bodélé Depression, Western Chad. 
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This region is reported as the most intense dust source in the world (Prospero et al. 2002), and dust 

activity in the region occurs with a high frequency during all seasons except fall (Mbourou et al., 945 

1997). However, CALIOP DAOD are much smaller than MODIS retrievals in this region. In terms 

of dust seasonality (Figure 13), the MODIS DAOD indicates intense dust aerosol loading all year 

long with a lower DAOD in Fall, while CALIOP shows a more distinct seasonality with the highest 

DAOD of about 0.3 in May-July and the lowest DAOD of <0.1 in winter. Over other PSAs in 

North Africa, MODIS and CALIOP DAOD show similar seasonality with B closing to 1 (Figure 950 

13).  

In summary, MODIS and CALIOP DAOD show largest differences under the following 

conditions: (1) highly cloudy oceanic regions and (2) dust-pollution internal mixtures with high 

relative humidity. Their differences can be explained as follows. 

1. Over cloudy ocean, effective cloud screening is critical to the quality of aerosol retrievals. 955 

As an active sensor, CALIOP is more reliable in discriminating clouds and aerosols than 

passive imager MODIS. In addition, active sensor is able to avoid impact from cloud side 

scattering. Therefore, MODIS is subject to more cloud contamination than CALIOP. Large 

cloud contamination in MODIS results in overestimation in TAOD and underestimation in 

FMF, introducing a high bias in DAOD over ocean cloudy regions (e.g., NWP).  960 

2. Pure dust particles are hydrophobic and will not absorb water vapor. However, for dust 

aerosols coated by other types of aerosols (such as the deliquescent dust-nitrate Ca(NO3)2) 

and saline mineral dust particles emitted from saline topsoil in arid and semiarid areas 

(Tang et al. 2019), those types of dust particles will take up water vapor and grow to be 

larger in size and more spherical in shape (Wu et al. 2020). This phenomenon is most 965 

prominent for dust aerosols in polluted region (e.g., EAS) as well as with relatively high 
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relative humidity. While such coarse spherical dust particles will not be accounted as dust 

in CALIOP shape-based method, they are categorized as dust in the MODIS size-based 

method. 975 

 

4.3 DAOD Inter-annual variation from CALIOP and MODIS observations 

In this section we examine the inter-annual variation of DAOD captured by two sensors over 

several major dust source and outflow regions. Figure 14 shows a global map of DAOD interannual 

trend derived based on the 13-year (2007-2019) time series of annual mean DAOD from CALIOP 980 

and MODIS. DAOD trend are calculated for each 2º×5º grid. Red color indicates positive trend 

and blue negative trend. Regions where the trend is statistically significant (p < 0.05) are marked 

with symbol ‘+’. The similar trend map for total aerosol optical depth is shown in Figure S8 in the 

supplementary. Overall, DAOD global pattern of interannual trend is similar to TAOD in major 

dust-laden regions. For example, Over Sahara Desert and tropical Atlantic Ocean region, both 985 

CALIOP and MODIS do not show statistically significant trend in DAOD and TAOD. In East 

Asia and the northwest Pacific Ocean, both sensors show negative trend in DAOD and TAOD.  

 Figure 15 displays interannual variability of annual-mean DAOD for the major dust-laden 

regions as defined in Figure 8. Seasonal and annual DAOD trends in the nine regions are listed in 

Table 5. Both MODIS and CALIOP show a clear DAOD trend in certain seasons over the Eastern 990 

Asia, ARB and NWP regions. In Eastern Asia, MODIS and CALIOP show a consistent DAOD 

decreasing trend at a rate of −1.7% 𝑦𝑟!" annually. The two sensors show a DAOD decreasing 

tend of −3.5% 𝑦𝑟!"  and −2.5% 𝑦𝑟!"  respectively in Eastern Asia during spring and show a 

consistent trend of DAOD in ARB during the fall, though with a factor of 2 difference in magnitude. 

In NWP, both MODIS- and CALIOP-based DAOD shows a decreasing trend of −1.7% 𝑦𝑟!"and 995 
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−1.6% 𝑦𝑟!", respectively. The annual DAOD decreasing trend in NWP is mainly attributed to the 

DAOD decline in spring at a rate of -2.3% 𝑦𝑟!"	 and -3.0% 𝑦𝑟!"  for MODIS and CALIOP, 1000 

respectively. For comparison, Shimizu et al. (2017) detect the decreasing DAOD trends of −4.3% 

𝑦𝑟!" in spring and −2.5% 𝑦𝑟!" on annual mean basis from the Asian Dust Network (AD-Net) 

lidar observations over Japan (2007-2016). These trends are greater than our results based on 

MODIS and CALIOP data records.  

Dust over NWP comes mainly from East Asian dust sources. The broad East Asian region 1005 

(ESA defined in Figure 12) shows statistically significant DAOD decreasing trends (Figure 15c) 

which is consistent with the DAOD decreasing trend in NWP. It is also imperative to further 

examine which of six major PSAs in East Asia (ESA-1 to ESA-6 in Figure 12) contribute to the 

decreasing trend of DAOD. As shown in Figure 16, among the six PSAs, the satellite data show 

consistent interannual declining trend of DAOD in EAS-5 (Southern Gobi Desert) at a rate of  1010 

−4.8% 𝑦𝑟!" and −2.8% 𝑦𝑟!" for MODIS and CALIOP, respectively. In spring, DAOD in EAS-

5 shows a significantly declining trend at a rate of −5.6% 𝑦𝑟!" and −3.3% 𝑦𝑟!" for MODIS and 

CALIOP (Figure S9). Figure 17 assesses the correlation between DAOD in EAS-5 and DAOD in 

NWP based on MODIS and CALIOP, respectively. For annual mean DAOD from 2007 to 2019, 

both sensors show a good correlation between EAS-5 and NWP with 𝑅 ≈ 0.6	(𝑝 = 0.02). In 1015 

spring, the correlation of DAOD from two regions is good based on CALIOP (𝑅 = 0.6	, 𝑝 = 0.03), 

while a weaker correlation (𝑅 = 0.53, 𝑝 = 0.07) was found based on MODIS. We further examine 

potential factors contribute to the declining trend of DAOD in ESA-5. The first row in Figure 18 

shows the springtime trend of MODIS enhance vegetation index (EVI), MERRA2 near-surface (at 

10 m) wind speed and precipitation in EAS-5 region (Qian et al. 2002; Kurosaki and Mikami 2003; 1020 

Lee and Sohn 2011). EVI and precipitation show a statistically significant (p<0.05) increasing 
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trend with R = 0.82 and R=0.58, respectively. Surface wind speed shows a statistically significant 

(p<0.05) decreasing trend with R = – 0.66. The second row in Figure 18 shows the correlations of 

the three factors with MODIS DAOD and CALIOP DAOD, respectively. Clearly, EVI is anti-

correlated with both MODIS and CALIOP DAOD with |R| > 0.7 and p<0.05. Surface wind speed 

is correlated with MODIS DAOD and CALIOP DAOD with |R| > 0.6 and p<0.05. While the 1050 

correlation with precipitation is not statistically significant (p>0.05). Note that EVI and surface 

wind speed are not independent variables that affect dust emissions. An increase of EVI or 

vegetation cover could reduce the surface wind speed. However, given the relatively coarse 

resolution of MERRA2, the surface wind speed trend may largely reflect the change in atmospheric 

circulations other than local wind decrease induced by more vegetation. The precipitation shows 1055 

no statistically significant correlation with MODIS and CALIOP DAOD.  

 

As discussed earlier, our results suggest that the decrease of NWP DAOD is likely a result of 

the decreasing dust events in Asian deserts (i.e., EAS-5 Gobi) in turn likely due to change of 

vegetation. This is also reported in several recent studies.  Sternberg et al. (2015) found that Gobi 1060 

Desert contracted from 2000 to 2012 due to increased moisture availability. Song et al. (2016) 

used an Integrated Wind Erosion Modeling System to simulate the spring dust emissions in 

northern China over the period of 1982 to 2011. They found a significant decrease of the magnitude 

of spring dust event in China which is attributed to both climate change and local mitigation 

strategies. Similarly, An et al., (2018) also noted a significant decrease of dust storm event in East 1065 

Asian after analyzing observational data from ground stations, numerical modeling, and vegetation 

indices obtained from both satellite and reanalysis data. Over the last few decades, The Chinese 

government has been taking actions to restore overgrazed land in Inner Mongolia, the enlarged 

Deleted: R2

Deleted: 421070 
Deleted: While the surface

Deleted: R2 =

Deleted: 53

Deleted: , its

Deleted: CALIOP DAOD 1075 
Deleted: weaker (R2 = 

Deleted: 29 and p=0.06



 34 

vegetation coverage and the expected earlier vegetation green-up due to global warming could 

have mitigated dust activity in this region (Fan et al. 2014). Together the results from our analysis, 

along with the aforementioned recent studies, suggest that the decreasing springtime DAOD trend 1080 

in the NWP region is a result of the decline of dust activities in the Inner Mongolia (i.e., EAS-5) 

which is likely linked to vegetation coverage changes in recent years as a result of China’s 

mitigation projects to hold back desertification.  

Some caveats must be mentioned, however, when interpreting the trend analysis here. First of 

all, due to the limitation of satellite data record, we have only 13 years’ CALIOP data and 17 years’ 1085 

MODIS data available. Other climate variabilities, such as the El Nino-Southern Oscillation 

(ENSO), could confound the trend analysis. For example, Abish and Mohanakumar (2013) shows 

that La Nina (El Nino) weakens (strengthens) the zonal circulation over the Indian subcontinent, 

which result in low (high) aerosol concentration over Indian subcontinent transported from 

Arabian Desert over the period. Gong et al. (2005) also shows the impact of ENSO on the 1090 

interannual variability of Asian dust loading and deposition. According to the NOAA Oceanic 

Nino Index (ONI), the climate switched from a strong La Niña phase in 2010-2011 to a strong El 

Niño phase in 2015-2016. However, the potential impact of ENSO on the dust inter-annual 

variability is beyond the scope of this study and will be left for the future research.   

5 Summary and Conclusion 1095 
 

We derive two observation-based global monthly mean dust aerosol optical depth (DAOD) 

climatological datasets from 2007 to 2019 with a 2° (latitude) ×5° (longitude) spatial resolution, 

one based on CALIOP and the other on MODIS observations. Our product captures very well as 

much hot spots along the ‘dust belt’ region well, as weaker signals in other dust active regions 1100 
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such as Southwestern United States, Patagonian Desert in South America, Central Australia, and 

South Africa (Figure 5). Since DAOD climatology product contains and mixes the information of 1215 

the intensity and frequency of dust activities, we introduce the conditional DAOD product, which 

diminishes impacts from dust frequency by excluding dust-free cases in the average. The 

comparison between DAOD climatology data and conditional DAOD data suggests that dust 

activities in those regions are highly episodic. The two data records compare reasonably well with 

the results reported in previous studies and the collocated AERONET coarse model AOD. The 1220 

comparison of our MODIS-based and CALIOP-based DAOD with AERONT COD indicates that 

MODIS overestimates DAOD, while CALIOP underestimates DAOD. It is highly probably that 

the true DAOD fall between MODIS and CALIOP DAOD. 

 

CALIOP distinguishes dust aerosols based on its non-spherical shape, whereas MODIS 1225 

separates dust aerosols from others based on its large size characteristics. The discrepancy in dust 

retrieval based on two instruments are expected due to the uncertainty associated with their TAOD 

retrieval and the uncertainty associated with their different mechanism in dust detection and 

separation. The comparison between CALIOP dust retrieval and MODIS dust retrieval facilitate a 

better understanding of advantages and limitations of each dust product and also provide some 1230 

insights on dust morphology and dust size. Through the comparison, we found generally CALIOP-

based DAOD correlates well with MODIS-based DAOD over dust-laden regions such as Sahara 

(R=0.78), TAT (R=0.84), CRB (R=0.75) and ARB (R=0.85), but with CALIOP-based DAOD 

18%, 34%, 54% and 31% lower than MODIS-based DAOD over those regions respectively. This 

result is consistent with the different treatment of the dust-pollution mixtures in the dust separation 1235 

approaches of two instruments. Applying LR of 58𝑠𝑟 to Sahara dust reduce the difference from 
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18% to 8% over the Sahara and from 34% to12% over TAT. Over the Sahara Desert, the good 1245 

agreement in DAOD between the two sensors (bias of 8% and R = 0.78) suggests that dust aerosols 

are irregular non-spherical and at the same time large in size in this region. In some regions such 

as NWP, the DAOD correlation between two sensors is quite low. There could be many reasons 

for this, for example, the total TAOD retrievals from MODIS have larger uncertainty due to cloud 

contamination, or the DAOD retrieval from CALIOP may miss coarse spherical dust-pollution 1250 

mixtures.  

The interannual variability of DAOD over dust-laden regions show a clear trend in Eastern 

Asia a rate of −1.7% 𝑦𝑟!" based on two sensors. Over the outflow region of Easter Asia, DAOD 

in NWP region shows a clear trend at a rate of −1.6%	𝑦𝑟!" and −1.7%	𝑦𝑟!" based on CALIOP 

and MODIS respectively, this trend is mainly attributed to the decreasing trend in spring with a 1255 

rate of −3.0%	𝑦𝑟!" based on CALIOP and −2.3%	𝑦𝑟!" based on MODIS. Further investigation 

of DAOD trend in six dust source areas in Eastern Asia where NWP dust aerosols come from 

shows that there is an obvious decreasing trend in DAOD during 2007 - 2019 over Southern Gobi 

Desert based on both CALIOP and MODIS dust retrievals. The decreasing trend of DAOD is 

correlated significantly with the vegetation index and surface wind speed in the area, whereas there 1260 

is almost no correlation with the precipitation. 
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Data availability. The global DAOD and dust vertical extinction coefficient climatology data 

derived from CALIOP in this study and the MODIS DAOD retrieval data over land and ocean 

are available at 

‘https://drive.google.com/drive/folders/1aQVupe7govPwR6qmsqUbR4fJQsp1DBCX?usp=shari1270 

ng’. The MODIS Enhanced Vegetation Index (EVI) data could be downloaded from 

‘https://lpdaac.usgs.gov/products/myd13c2v006/#tools’. The MERRA2 surface wind speed and 

precipitation data are available at 

‘https://disc.sci.gsfc.nasa.gov/datasets/M2T1NXFLX_5.12.4/summary?keywords=%22MERRA-

2%22’.  1275 
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Table 1. Summary of DAOD retrievals from MODIS and CALIOP 
Sensors Retrieve Scope Relevant variables used to derive DAOD References 

MODIS Ocean AOD, fine-mode AOD Yu et al. (2009, 2020) 

MODIS Land AOD, SSA at 470nm, Angstrom exponent Pu and Ginoux et al. (2018) 

CALIOP Globe Profiles of backscatter, extinction, 
depolarization ratio 

Yu et al. (2015a) 
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Table 2. Compare global mean DAOD retrievals in this study with some relevant studies (Note 
the definition of global scope is different for different studies).  

Region DAOD@550nm Reference 
 

90°S~90°N  
 

 
Global 

 
0.03±0.005 

Ridley et al. 2016 
Use multiple satellite platforms, in-situ AOD 
observations and four global models  

 
90°S~90°N  

 

 
Global 

 
0.033 

Gkikas et al 2021 
Use AOD from Aqua MODIS and DOD-to-AOD ratio 

from MERRA2 
 

50°S~60°N  
 

Over Ocean 0.03±0.06 Voss and Evan 2020 
Over Ocean: use method in Kaufman et al 2005 
Over Land: use method in Ginoux et al. 2012 Over Land 0.1 

 
60°S~60°N 

 

Over Ocean 0.055, 0.020   This Study 
MODIS-based, CALIOP-based DAOD  

(To calculate global mean DAOD for scope 90°S~90°N, 
we assume zero DAOD outside of region 60°S~60°N. 
We weight each grid-cell surface area into ocean, land 
and global DAOD average) 

Over Land 0.103, 0.068   

90°S~90°N Global 0.057, 0.028 
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Table 3 Statistical parameters and absolute error by continents using the method indicated in 
Figure 1. Sites is the number of AERONET sites involved; N is the number of MODIS, CALIOP 1305 
and AERONET matchups. R is correlation coefficient; C is the intercept of the linear fit; K is the 
slope of the linear fit; RMSE is root mean square error of the linear fit; Ba is the absolute bias; Br 
is the relative bias. For cells with two rows of values, the upper row is for MODIS, the lower row 
is for CALIOP.  

Region Sites N R C K RMSE Ba Br (%) Absolute Error 
Global 761 16653 0.72 

0.70 
0.01 
–0.01 

1.05 
0.90 

0.08 
0.07 

0.01 
–0.02 

26.7 
–27.9 

0.65×DAODM 

0.52×DAODC+0.02 
Africa 44 706 0.79 

0.72 
0.04 
0.01 

0.72 
0.75 

0.10 
0.12 

0.01 
–0.02 

4.5 
–19.8 

0.37×DAODM+0.01 
0.51×DAODC+0.02 

Asia 143 2507 0.64 
0.57 

0.04 
0.00 

0.88 
0.84 

0.10 
0.11 

0.03 
–0.01 

34.2 
–11.0 

0.61×DAODM 

0.66×DAODC+0.01 
Europe 156 4359 0.27 

0.35 
0.03 
0.00 

0.55 
0.53 

0.05 
0.04 

0.01 
–0.02 

18.2 
–48.6 

0.70×DAODM 

0.47×DAODC+0.02 
Americas 319 6656 0.29 

0.33 
0.02 
0.00 

0.54 
0.31 

0.04 
0.03 

0.01 
–0.02 

25.5 
–55.8 

0.77×DAODM 

0.26×DAODC+0.02 
Australia 12 507 0.51 

0.28 
0.0 
0.0 

0.57 
0.32 

0.03 
0.04 

–0.02 
–0.02 

–43.9 
–59.3 

0.37×DAODM+0.02 
0.34×DAODC+0.03 
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Table 4. Global (60° S-60° N) seasonal mean DAOD and TAOD based on MODIS and CALIOP 
(2007~2019) dust retrievals. Since Earth is a sphere, grid-cell surface area decreases toward the 
poles. We weight each grid-cell surface area into ocean, land and global DAOD average.  1315 

 MAM JJA SON DJF Annual 
DAOD TAOD DAOD TAOD DAOD TAOD DAOD TAOD DAOD TAOD 

MODIS Ocean 0.057 0.151 0.062 0.153 0.047 0.143 0.052 0.144 0.055 0.148 
Land 0.131 0.283 0.119 0.270 0.079 0.206 0.085 0.217 0.103 0.244 
Global 0.075 0.183 0.077 0.183 0.055 0.159 0.059 0.160 0.067 0.171 
Land 
/Ocean 

2.27 1.87  1.90 1.77 1.67 1.44 1.64 1.51 1.89 1.65 

CALIOP Ocean 0.022 0.098 0.025 0.104 0.015 0.092 0.016 0.090 0.020 0.096 
Land 0.086 0.196 0.086 0.228 0.051 0.186 0.047 0.157 0.068 0.192 
Global 0.039 0.124 0.041 0.137 0.025 0.117 0.024 0.107 0.032 0.121 
Land 
/Ocean 

3.90 1.99 3.45 2.20 3.40 2.03 2.87 1.74 3.45 2.00 
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Table 5. DAOD inter-seasonal trend over major dust-laden regions based on MODIS and CALIOP 1475 
observations. The changing rate of DAOD trend is shown in a sequence of 
annual/spring/summer/fall/winter in each cell of the table. Those statistically meaningful trends 
with p<0.05 are shown in bold. 

 MODIS [% yr-1] CALIOP [% yr-1] 

 Annual MAM JJA SON DJF Annual MAM JJA SON DJF 
Sahara Desert (a) -0.04 -0.84 0.21 0.29 0.51 -0.09 -0.93 0.34 -0.52 0.55 
Middle East (b) 0.32 -0.61 -0.02 1.80 1.37 -1.84 -2.36 -1.86 -2.46 -0.09 
Eastern Asia (c) -1.74 -3.48 -0.28 -0.33 -0.56 -1.70 -2.46 -1.99 -0.45 -1.42 
TAT (d) 0.34 -0.68 -0.03 1.68 1.32 -0.25 -1.41 -0.07 0.91 -0.09 
CRB (e) 1.10 0.78 0.94 1.59 1.97 -0.40 -1.39 -0.34 0.79 -1.09 
MED (f) 0.10 0.32 0.49 -0.71 0.03 -1.09 -1.07 -1.63 -1.20 -0.52 
NWP (g) -1.67 -2.33 -1.93 0.63 -1.35 -1.58 -3.01 -2.89 -0.40 -0.19 
ARB (h) -1.42 -0.72 -1.81 -1.85 -0.31 -1.17 -1.70 -0.46 -3.60 -0.06 
IND (i) -0.09 -0.51 0.40 0.38 -0.89 -1.96 -2.92 -2.43 -0.21 -0.54 
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Figure 1. Scatter density histogram comparing monthly (from 2007 to 2019) MODIS DAOD (on 
the left panel) and CALIOP DAOD (on the right panel) with monthly coarse mode CODSDA 
retrieved at 550nm for MODIS comparison and at 532nm for CALIOP comparison from the Level 1485 
2 (cloud screened and quality assured) Spectral Deconvolution Algorithm (SDA) version 4.1 
(O’Neill et al., 2003). The 1 to 1 line and linear regression line are shown by dotted and solid lines, 
respectively. The number of sites (Sites), of matchups (N), correlation (R), slope (S), constant (C), 
and root mean square error (RMSE) of the linear regression as well as absolute bias (Ba) and 
relative Bias (Br) are indicated in the lower right of the panel. Ba, Br and RMSE are defined as: 1490 
𝐵% = 𝐷𝐴𝑂𝐷TTTTTTTT/	1.	( 	− 	𝐶𝑂𝐷TTTTTT234, 𝐵. = 𝐷𝐴𝑂𝐷TTTTTTTT/	1.	( 	/	𝐶𝑂𝐷TTTTTT234 	− 1, 𝑅𝑀𝑆𝐸 =

Y
∑ (3473888888888!	#$	%,'	!/73888888()*,')+'

:
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Figure 2 Left panel: the x-axis is the MODIS derived DAOD, y-axis is the absolute MODIS 
DAOD–AERONET COD difference (without scaling by AMF). Data are sorted by bins of 100 
values (we have 16653 matchups in total; therefore, the last bin has 53 values). The means and 
standard deviations of the MODIS DAODM are the centers and half widths of the boxes in the 1505 
horizontal. The mean, medians, and lower to upper quartile interval of the MODIS –AERONET 
SDA differences are the red dots, the center, and top-bottom intervals of the boxes. The dotted 
line is the error estimated from the least squares linear fit of the 68th percentiles for each box. 
The right panel is the same except for CALIOP DAOD.  
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Figure 3 The same as Figure 1 except for over ocean. 
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 1515 
Figure 4 The same as Figure 2 except for over ocean. 
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 1520 
Figure 5. Spatial distribution of the seasonal mean CALIOP-based DAOD, MODIS-based DAOD and the 
fraction of DAOD with respect to the TAOD based on CALIOP and MODIS respectively for the globe at 
a 5∘	𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 × 2∘	𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒  resolution based on 13-year (2007-2019) CALIOP measurements. DJF: 
December from previous year-January-February; MAM: March-April-May; JJA: June-July-August; SON: 
September-October-November. 1525 
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Figure 6. Conditional DAOD (the first column), climatological DAOD (the second column) based on 
CALIOP dust retrieval from 2007 to 2019. The third column shows the relative difference between 1530 
conditionally sampled DAOD and climatological DAOD with respect to the climatological DAOD 
expressed in fraction. 
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Figure 7. The difference between MODIS and CALIOP for seasonal mean TAOD (the first column), 1535 
DAOD (the second column), and the fraction of DAOD in TAOD (the third column) on a basis of 13-year 
(2007-2019) average. The fourth column is the seasonal mean cloud fraction from MODIS L3 product. 
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Figure 8. Major dust-laden regions including three dust source regions on land (a ~ c) and six outflow 1540 
regions over ocean (e ~ i). (a) Sahara Desert (14ºN-30ºN, 15ºW-30ºE), (b) Middle East (10ºN-35ºN, 40ºE-
85ºE) and (c) Eastern Asia (30ºN-50ºN,75ºE-130ºE)  (d) the tropical Atlantic Ocean–TAT (0º-30ºN, 
15ºW-60ºW), (e) the Caribbean Sea–CRB (6ºN-22ºN, 60ºW-90ºW), (f) the Mediterranean Sea–MED 
(30ºN-46ºN, 5ºW-35ºE), (g) the northwest Pacific Ocean–NWP (30ºN-55ºN, 120ºE-160ºE), (h) the 
Arabian Sea–ARB (0º-26ºN,45ºE-80ºE and (i) the tropical Indian Ocean and the Bay of Bengal–IND 1545 
(10ºS-22ºN,75ºE-100ºE). Note we only consider grids over land for the three dust source regions and 
grids over ocean for the six dust outflow regions. 
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 1550 
Figure 9. Comparison of CALIOP DAOD against MODIS DAOD over dust-laden regions indicated in 
Figure 8. Color represents the probability density using gaussian kernel density estimation. Grey points 
represent data points within the lowest 5% of data density. Those grey points are excluded in the linear 
regression analysis. The blackline and blue shadow are the linear regression for LR=44 ± 9𝑠𝑟, the red line 
and red shadow in (a) and (d) represent the linear regression for LR=58 ± 8𝑠𝑟. Red text in panel (a) and 1555 
(d) is the linear fit based on LR=58 sr. Black text in each panel is the linear fit based on LR=44 sr. R is 
Pearson’s linear correlation coefficient between MODIS and CALIOP DAOD. 

  

Deleted: ¶



 52 

 1560 
Figure 10. Monthly variation of DAOD from CALIOP (green) and MODIS (red) for major dust-laden 
regions indicated in Figure 8. Vertical line represents ±1 sigma (standard deviation) over the 13-year period. 
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Figure 11. Vertical profiles of seasonal mean dust extinction coefficient (Mm-1) in 9 dust-laden regions 
indicated in Figure 8. Different colors represent different seasons. The numbers on each plot are the 
seasonal mean DAOD for the region.  1570 
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 1575 
Figure 12. Six dust potential source subregions in Northern Africa (NAF) and Eastern Asia (EAS) based 
on Fig.1. and Fig. 2. in Formenti, et al., 2011. PSA NAF-1(30N-36N, 0-9E), PSA NAF-2 (16N-28N, 10W-
15W), PSA NAF-3 (18N-26N, 5W-5E), PSA NAF-4 (24N-30N, 15E-20E), PSA NAF-5 (14N-20N, 15E-
20E), PSA NAF-6 (14N-24N, 25E-35E);  EAS-1: (34N-40N, 75E-90E) ; EAS-2: (44N-46N, 85E-90E); 
EAS-3: (40N-42N,90E-95E and 42N-44N, 85E-90E); EAS-4: (42N-46N, 100E-115E); EAS-5: (38N-42N, 1580 
100E-110E); EAS-6: (42N-46N, 115E-125E and 48N-50N, 115E-120E)  
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Figure 13. Annual cycle of 13-year (2007-2019) monthly mean DAOD over the six PSAs of North 1585 
African dust. The CALIOP DAOD annual cycle shown in the figure is derived from backscatter 
coefficients using LR of 44sr. The mean bias (B) is computed as the average of CALIOP DAOD / 
MODIS DAOD ratios of all data pairs. B =1, >1, <1 indicates no bias, high bias and low bias. The mean 
bias (B) associated with CALIOP DAOD based on LR=44sr and 58sr are shown in the upper left of each 
panel. 1590 
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Figure 14. Global map of DAOD interannual trend based on CALIOP (left) and MODIS (right) dust 
climatology data over 2007-2019 period. Red and blue represents increasing and decreasing trend, 1605 
respectively. Symbol ‘+’ denotes trends with p-value < 0.05, which are considered as statistically 
meaningful trend.  
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Figure 15. DAOD interannual variability over main dust source regions (a-c) and dust outflow regions (d-1620 
i) revealed by CALIOP (green curve) and MODIS (red curve) observations.  
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 1625 
Figure 16. Interannual variability of CALIOP (green) and MODIS (red) DAOD in the six potential dust 
source areas in Eastern Asia (refer to Figure 12). 
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Figure 17. Correlation between DAOD in EAS-5 (Southern Gobi Desert) and DAOD in NWP for annual 
mean (left) and springtime average (right).  
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Figure 18. The inter-annual trend of Enhance Vegetation Index (EVI), surface wind speed and precipitation 
and their correlation with DAOD in spring, EAS5 region. The 1st row shows inter-annual trend of EVI, 
surface wind speed and precipitation. The 2nd shows the correlation of EVI, surface wind speed and 1640 
precipitation with MODIS-based DAOD and CALIOP-based DAOD respectively. In addition, the time 
series of EVI versus DAOD, wind speed versus DAOD, precipitation versus DAOD is shown in Figure S10 
in the supplement.  

  

Deleted: ¶1645 

¶
Deleted: and 3rd rows show



 61 

 
 
 1650 
References 
Abish, B. and K. Mohanakumar. 2013. “Absorbing Aerosol Variability over the Indian 

Subcontinent and Its Increasing Dependence on ENSO.” Global and Planetary Change 
106:13–19. 

Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. 1655 
Welton. 2000. “Reduction of Tropical Cloudiness by Soot.” Science 288(5468):1042–47. 

Albrecht, B. A. 1989. “Aerosols, Cloud Microphysics, and Fractional Cloudiness.” Science 
245(4923):1227–30. 

Amiridis, V., U. Wandinger, E. Marinou, E. Giannakaki, A. Tsekeri, S. Basart, S. Kazadzis, A. 
Gkikas, M. Taylor, J. Baldasano, and A. Ansmann. 2013. “Optimizing CALIPSO Saharan 1660 
Dust Retrievals.” Atmospheric Chemistry and Physics 13(23):12089–106. 

An, Linchang, Huizheng Che, Min Xue, Tianhang Zhang, Hong Wang, Yaqiang Wang, 
Chunhong Zhou, Hujia Zhao, Ke Gui, and Yu Zheng. 2018. “Temporal and Spatial 
Variations in Sand and Dust Storm Events in East Asia from 2007 to 2016: Relationships 
with Surface Conditions and Climate Change.” Science of The Total Environment 633:452–1665 
62. 

Anderson, Theodore L., Yonghua Wu, D. Allen Chu, Beat Schmid, Jens Redemann, and Oleg 
Dubovik. 2005. “Testing the MODIS Satellite Retrieval of Aerosol Fine-Mode Fraction.” 
Journal of Geophysical Research D: Atmospheres 110(18):1–16. 

Ansmann, A., P. Seifert, Matthias Tesche, and U. Wandinger. 2012. “Profiling of Fine and 1670 
Coarse Particle Mass: Case Studies of Saharan Dust and Eyjafjallajökull/Grimsvötn 
Volcanic Plumes.” Atmospheric Chemistry and Physics. 

Ansmann, A., M. Tesche, P. Seifert, S. Groß, V. Freudenthaler, A. Apituley, K. M. Wilson, I. 
Serikov, H. Linné, B. Heinold, A. Hiebsch, F. Schnell, J. Schmidt, I. Mattis, U. Wandinger, 
and M. Wiegner. 2011. “Ash and Fine-Mode Particle Mass Profiles from EARLINET-1675 
AERONET Observations over Central Europe after the Eruptions of the Eyjafjallajökull 
Volcano in 2010.” Journal of Geophysical Research Atmospheres 116(12). 

Baars, Holger, Thomas Kanitz, Ronny Engelmann, Dietrich Althausen, Birgit Heese, Mika 
Komppula, Jana Preißler, Matthias Tesche, Albert Ansmann, and Ulla Wandinger. 2016. 
“An Overview of the First Decade of PollyNET: An Emerging Network of Automated 1680 
Raman-Polarization Lidars for Continuous Aerosol Profiling.” 

Di Biagio, C., Y. Balkanski, S. Albani, O. Boucher, and P. Formenti. 2020. “Direct Radiative 
Effect by Mineral Dust Aerosols Constrained by New Microphysical and Spectral Optical 
Data.” Geophysical Research Letters 47(2):e2019GL086186. 

Boucher, O., D. Randall, P. Artaxo, C. Bretherton, G. Feingold, P. Forster, V.-M. Kerminen, Y. 1685 
Kondo, H. Liao, U. Lohmann, P. Rasch, S.K. Satheesh, S. Sherwood, B. Stevens and X. Y. 
Zhang. 2013. “Clouds and Aerosols.” Climate Change 2013 The Physical Science Basis: 
Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental 
Panel on Climate Change. 

Burton, S. P., R. A. Ferrare, C. A. Hostetler, J. W. Hair, R. R. Rogers, M. D. Obland, C. F. 1690 
Butler, A. L. Cook, D. B. Harper, and K. D. Froyd. 2012. “Aerosol Classification Using 
Airborne High Spectral Resolution Lidar Measurements-Methodology and Examples.” 
Atmospheric Measurement Techniques 5(1):73. 



 62 

Chen, Cheng, Oleg Dubovik, Daven K. Henze, Tatyana Lapyonak, Mian Chin, Fabrice Ducos, 
Pavel Litvinov, Xin Huang, and Lei Li. 2018. “Retrieval of Desert Dust and Carbonaceous 1695 
Aerosol Emissions over Africa from POLDER/PARASOL Products Generated by the 
GRASP Algorithm.” Atmospheric Chemistry and Physics 18(16):12551–80. 

Chimot, Julien, J. Pepijn Veefkind, Tim Vlemmix, Johan F. de Haan, Vassilis Amiridis, 
Emmanouil Proestakis, Eleni Marinou, and Pieternel F. Levelt. 2017. “An Exploratory 
Study on the Aerosol Height Retrieval from OMI Measurements of the 477  Nm  O.Sub.2 - 1700 
O.Sub.2 Spectral Band Using a Neural Network Approach.” Atmospheric Measurement 
Techniques 10:783. 

Clarisse, Lieven, Cathy Clerbaux, Bruno Franco, Juliette Hadji‐Lazaro, Simon Whitburn, A. K. 
Kopp, Daniel Hurtmans, and P‐F Coheur. 2019. “A Decadal Data Set of Global 
Atmospheric Dust Retrieved from IASI Satellite Measurements.” Journal of Geophysical 1705 
Research: Atmospheres 124(3):1618–47. 

Dubovik, O., A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. 
Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J. F. Leon, M. Sorokin, and I. 
Slutsker. 2006. “Application of Spheroid Models to Account for Aerosol Particle 
Nonsphericity in Remote Sensing of Desert Dust.” Journal of Geophysical Research-1710 
Atmospheres 111(D11). 

Eck, T. F., B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. O’Neill, I. Slutsker, and S. 
Kinne. 1999. “Wavelength Dependence of the Optical Depth of Biomass Burning, Urban, 
and Desert Dust Aerosols.” Journal of Geophysical Research Atmospheres 
104(D24):31333–49. 1715 

Esselborn, Michael, Martin Wirth, Andreas Fix, Bernadett Weinzierl, Katharina Rasp, Matthias 
Tesche, and Andreas Petzold. 2009. “Spatial Distribution and Optical Properties of Saharan 
Dust Observed by Airborne High Spectral Resolution Lidar during SAMUM 2006.” Tellus 
B: Chemical and Physical Meteorology 61(1):131–43. 

Evan, A. T., J. Dunion, J. A. Foley, A. K. Heidinger, and C. S. Velden. 2006. “New Evidence for 1720 
a Relationship between Atlantic Tropical Cyclone Activity and African Dust Outbreaks.” 
Geophysical Research Letters 33(19). 

Fan, Bihang, Li Guo, Ning Li, Jin Chen, Henry Lin, Xiaoyang Zhang, Miaogen Shen, Yuhan 
Rao, Cong Wang, and Lei Ma. 2014. “Earlier Vegetation Green-up Has Reduced Spring 
Dust Storms.” Scientific Reports 4:1–6. 1725 

Fiebig, Markus, Andreas Petzold, Ulla Wandinger, Manfred Wendisch, Christoph Kiemle, 
Armin Stifter, Martin Ebert, Tom Rother, and Ulrich Leiterer. 2002. “Optical Closure for an 
Aerosol Column: Method, Accuracy, and Inferable Properties Applied to a Biomass‐
burning Aerosol and Its Radiative Forcing.” Journal of Geophysical Research: Atmospheres 
107(D21):LAC-12. 1730 

Formenti, P., L. Schutz, Y. Balkanski, K. Desboeufs, M. Ebert, K. Kandler, A. Petzold, D. 
Scheuvens, S. Weinbruch, and D. Zhang. 2011. “Recent Progress in Understanding Physical 
and Chemical Properties of African and Asian Mineral Dust.” Atmospheric Chemistry and 
Physics 11(16):8231–56. 

Gasteiger, Josef, Matthias Wiegner, Silke Groß, Volker Freudenthaler, Carlos Toledano, 1735 
Matthias Tesche, and Konrad Kandler. 2011. “Modelling Lidar-Relevant Optical Properties 
of Complex Mineral Dust Aerosols.” Tellus, Series B: Chemical and Physical Meteorology 
63(4):725–41. 

Ge, J. M., J. P. Huang, C. P. Xu, Y. L. Qi, and H. Y. Liu. 2014. “Characteristics of Taklimakan 



 63 

Dust Emission and Distribution: A Satellite and Reanalysis Field Perspective.” Journal of 1740 
Geophysical Research: Atmospheres 119(20):11,711-772,783. 

Gelaro, Ronald, Will McCarty, Max J. Suárez, Ricardo Todling, Andrea Molod, Lawrence 
Takacs, Cynthia A. Randles, Anton Darmenov, Michael G. Bosilovich, Rolf Reichle, 
Krzysztof Wargan, Lawrence Coy, Richard Cullather, Clara Draper, Santha Akella, 
Virginie Buchard, Austin Conaty, Arlindo M. da Silva, Wei Gu, Gi Kong Kim, Randal 1745 
Koster, Robert Lucchesi, Dagmar Merkova, Jon Eric Nielsen, Gary Partyka, Steven 
Pawson, William Putman, Michele Rienecker, Siegfried D. Schubert, Meta Sienkiewicz, 
and Bin Zhao. 2017. “The Modern-Era Retrospective Analysis for Research and 
Applications, Version 2 (MERRA-2).” Journal of Climate 30(14):5419–54. 

Getzewich, Brian J., Mark A. Vaughan, William H. Hunt, Melody A. Avery, Kathleen A. 1750 
Powell, Jason L. Tackett, David M. Winker, Jayanta Kar, Kam Pui Lee, and Travis D. Toth. 
2018. “CALIPSO Lidar Calibration at 532&thinsp;Nm: Version 4 Daytime Algorithm.” 
Atmospheric Measurement Techniques 11(11):6309–26. 

Ginoux, Paul, Dmitri Garbuzov, and N. Christina Hsu. 2010. “Identification of Anthropogenic 
and Natural Dust Sources Using Moderate Resolution Imaging Spectroradiometer (MODIS) 1755 
Deep Blue Level 2 Data.” Journal of Geophysical Research Atmospheres 115(5):1–10. 

Ginoux, Paul, Joseph M. Prospero, Thomas E. Gill, N. Christina Hsu, and Ming Zhao. 2012. 
“Global-Scale Attribution of Anthropogenic and Natural Dust Sources and Their Emission 
Rates Based on MODIS Deep Blue Aerosol Products.” Reviews of Geophysics 50(3). 

Gkikas, Antonis, Emmanouil Proestakis, Vassilis Amiridis, Stelios Kazadzis, Enza Di Tomaso, 1760 
Alexandra Tsekeri, Eleni Marinou, Nikos Hatzianastassiou, and Carlos Pérez Garciá-Pando. 
2021. “ModIs Dust AeroSol (MIDAS): A Global Fine-Resolution Dust Optical Depth Data 
Set.” Atmospheric Measurement Techniques 14(1):309–34. 

Gong, S. L., X. Y. Zhang, T. L. Zhao, # X B Zhang, L. A. Barrie, I. G. Mckendry, and C. S. 
Zhao. 2005. A Simulated Climatology of Asian Dust Aerosol and Its Trans-Pacific 1765 
Transport. Part II: Interannual Variability and Climate Connections. 

Griffin, Dale W. 2007. “Atmospheric Movement of Microorganisms in Clouds of Desert Dust 
and Implications for Human Health.” Clinical Microbiology Reviews 20(3):459 LP – 477. 

Grousset, Francis E., Paul Ginoux, Aloys Bory, and Pierre E. Biscaye. 2003. “Case Study of a 
Chinese Dust Plume Reaching the French Alps.” Geophysical Research Letters 30(6). 1770 

Hansen, J., M. Sato, and R. Ruedy. 1997. “Radiative Forcing and Climate Response.” Journal of 
Geophysical Research-Atmospheres 102(D6):6831–64. 

Hayasaka, Tadahiro, Shinsuke Satake, Atsushi Shimizu, Nobuo Sugimoto, Ichiro Matsui, 
Kazuma Aoki, and Yoshitaka Muraji. 2007. “Vertical Distribution and Optical Properties of 
Aerosols Observed over Japan during the Atmospheric Brown Clouds-East Asia Regional 1775 
Experiment 2005.” Journal of Geophysical Research Atmospheres 112(22). 

Hsu, N. C., M. J. Jeong, C. Bettenhausen, A. M. Sayer, R. Hansell, C. S. Seftor, J. Huang, and S. 
C. Tsay. 2013. “Enhanced Deep Blue Aerosol Retrieval Algorithm: The Second 
Generation.” Journal of Geophysical Research: Atmospheres 118(16):9296–9315. 

Hsu, N. Christina, Si Chee Tsay, Michael D. King, and Jay R. Herman. 2004. “Aerosol 1780 
Properties over Bright-Reflecting Source Regions.” IEEE Transactions on Geoscience and 
Remote Sensing 42(3):557–69. 

Huang, Jianping, Patrick Minnis, Bin Chen, Zhongwei Huang, Zhaoyan Liu, Qingyun Zhao, 
Yuhong Yi, and J. Kirk Ayers. 2008. “Long-Range Transport and Vertical Structure of 
Asian Dust from CALIPSO and Surface Measurements during PACDEX.” Journal of 1785 

Deleted: Ginoux, P., M. Chin, I. Tegen, J. M. Prospero, B. 
Holben, O. Dubovik, and S. J. Lin. 2001. “Sources and 
Distributions of Dust Aerosols Simulated with the 
GOCART Model.” Journal of Geophysical Research-
Atmospheres 106(D17):20255–73.¶1790 

Deleted: García

Deleted: 2020

Deleted: Dataset

Deleted: Discussions 

Deleted: –621795 



 64 

Geophysical Research: Atmospheres 113(D23). 
Huang, Jianping, Patrick Minnis, Yuhong Yi, Qiang Tang, Xin Wang, Yongxiang Hu, Zhaoyan 

Liu, Kirk Ayers, Charles Trepte, and David Winker. 2007. “Summer Dust Aerosols 
Detected from CALIPSO over the Tibetan Plateau.” Geophysical Research Letters 34(18). 

Huang, Yue, Jasper F. Kok, Konrad Kandler, Hannakaisa Lindqvist, Timo Nousiainen, Tetsu 1800 
Sakai, Adeyemi Adebiyi, and Olli Jokinen. 2020. “Climate Models and Remote Sensing 
Retrievals Neglect Substantial Desert Dust Asphericity.” Geophysical Research Letters 
47(6). 

Järvinen, E., O. Kemppinen, T. Nousiainen, T. Kociok, O. Möhler, T. Leisner, and M. Schnaiter. 
2016. “Laboratory Investigations of Mineral Dust Near-Backscattering Depolarization 1805 
Ratios.” Journal of Quantitative Spectroscopy and Radiative Transfer 178:192–208. 

Jickells, T. D., Z. S. An, K. K. Andersen, A. R. Baker, G. Bergametti, N. Brooks, J. J. Cao, P. W. 
Boyd, R. A. Duce, K. A. Hunter, H. Kawahata, N. Kubilay, J. Laroche, P. S. Liss, N. 
Mahowald, J. M. Prospero, A. J. Ridgwell, I. Tegen, and R. Torres. 2005. “Global Iron 
Connections Between Desert Dust, Ocean Biogeochemistry, and Climate.” Science 1810 
(308):67–71. 

Kalashnikova, O. V, R. Kahn, I. N. Sokolik, and Wen‐Hao Li. 2005. “Ability of Multiangle 
Remote Sensing Observations to Identify and Distinguish Mineral Dust Types: Optical 
Models and Retrievals of Optically Thick Plumes.” Journal of Geophysical Research: 
Atmospheres 110(D18). 1815 

Kaufman, Y. J., I. Koren, L. A. Remer, D. Tanré, P. Ginoux, and S. Fan. 2005. “Dust Transport 
and Deposition Observed from the Terra-Moderate Resolution Imaging Spectroradiometer 
(MODIS) Spacecraft over the Atlantic Ocean.” Journal of Geophysical Research D: 
Atmospheres 110(10):1–16. 

Kim, Dongchul, Mian Chin, Hongbin Yu, Xiaohua Pan, Huisheng Bian, Qian Tan, Ralph A. 1820 
Kahn, Kostas Tsigaridis, Susanne E. Bauer, Toshihiko Takemura, Luca Pozzoli, Nicolas 
Bellouin, and Michael Schulz. 2019. “Asian and Trans-Pacific Dust: A Multimodel and 
Multiremote Sensing Observation Analysis.” Journal of Geophysical Research: 
Atmospheres 124(23):13534–59. 

Kim, Man Hae, Ali H. Omar, Jason L. Tackett, Mark A. Vaughan, David M. Winker, Charles R. 1825 
Trepte, Yongxiang Hu, Zhaoyan Liu, Lamont R. Poole, Michael C. Pitts, Jayanta Kar, and 
Brian E. Magill. 2018. “The CALIPSO Version 4 Automated Aerosol Classification and 
Lidar Ratio Selection Algorithm.” Atmospheric Measurement Techniques 11(11):6107–35. 

Klüser, L., D. Martynenko, and T. Holzer-Popp. 2011. “Thermal Infrared Remote Sensing of 
Mineral Dust over Land and Ocean: A Spectral SVD Based Retrieval Approach for IASI.” 1830 
Atmospheric Measurement Techniques 4(5):757–73. 

Kok, Jasper F., David A. Ridley, Qing Zhou, Ron L. Miller, Chun Zhao, Colette L. Heald, 
Daniel S. Ward, Samuel Albani, and Karsten Haustein. 2017. “Smaller Desert Dust Cooling 
Effect Estimated from Analysis of Dust Size and Abundance.” Nature Geoscience 
10(4):274–78. 1835 

Koren, I., Y. J. Kaufman, L. A. Remer, and J. V Martins. 2004. “Measurement of the Effect of 
Amazon Smoke on Inhibition of Cloud Formation.” Science 303(5662):1342–45. 

Kurosaki, Yasunori and Masao Mikami. 2003. “Recent Frequent Dust Events and Their Relation 
to Surface Wind in East Asia.” Geophysical Research Letters 30(14). 

Lau, K. M. and K. M. Kim. 2007. “Cooling of the Atlantic by Saharan Dust.” Geophysical 1840 
Research Letters 34(23). 

Deleted: Kim, M. H., A. H. Omar, J. L. Tackett, M. A. 
Vaughan, D. M. Winker, C. R. Trepte, Y. Hu, Z. Liu, L. R. 
Poole, M. C. Pitts, J. Kar, and B. E. Magill. 2018. “The 
CALIPSO Version 4 Automated Aerosol Classification and 1845 
Lidar Ratio Selection Algorithm.” Atmospheric 
Measurement Techniques 11(11):6107–35.¶

Deleted: Kittaka, C., D. M. Winker, M. A. Vaughan, A. 
Omar, and L. A. Remer. 2011. “Intercomparison of 
Column Aerosol Optical Depths from CALIPSO and 1850 
MODIS-Aqua.” Atmospheric Measurement Techniques 
4(2):131–41.¶



 65 

Lee, Eun Hee and Byung Ju Sohn. 2011. “Recent Increasing Trend in Dust Frequency over 
Mongolia and Inner Mongolia Regions and Its Association with Climate and Surface 
Condition Change.” Atmospheric Environment 45(27):4611–16. 1855 

Levy, R. C., S. Mattoo, L. A. Munchak, L. A. Remer, A. M. Sayer, F. Patadia, and N. C. Hsu. 
2013. “The Collection 6 MODIS Aerosol Products over Land and Ocean.” Atmospheric 
Measurement Techniques 6(11):2989–3034. 

Levy, Robert C., Shana Mattoo, Virginia Sawyer, Yingxi Shi, Peter R. Colarco, Alexei I. 
Lyapustin, Yujie Wang, and Lorraine A. Remer. 2018. “Exploring Systematic Offsets 1860 
between Aerosol Products from the Two MODIS Sensors.” Atmospheric Measurement 
Techniques 11(7):4073–92. 

Li, W. J. and L. Y. Shao. 2009. “Observation of Nitrate Coatings on Atmospheric Mineral Dust 
Particles.” Atmospheric Chemistry and Physics 9(6):1863–71. 

Liu, Zhaoyan, Nobuo Sugimoto, and Toshiyuki Murayama. 2002. “Extinction-to-Backscatter 1865 
Ratio of Asian Dust Observed with High-Spectral-Resolution Lidar and Raman Lidar.” 
Applied Optics 41(15):2760–67. 

Marinou, Eleni, Vassilis Amiridis, Ioannis Binietoglou, Athanasios Tsikerdekis, Stavros 
Solomos, Emannouil Proestakis, DImitra Konsta, Nikolaos Papagiannopoulos, Alexandra 
Tsekeri, Georgia Vlastou, Prodromos Zanis, DImitrios Balis, Ulla Wandinger, and Albert 1870 
Ansmann. 2017. “Three-Dimensional Evolution of Saharan Dust Transport towards Europe 
Based on a 9-Year EARLINET-Optimized CALIPSO Dataset.” Atmospheric Chemistry and 
Physics 17(9):5893–5919. 

Martins, José Vanderlei, Didier Tanré, Lorraine Remer, Yoram Kaufman, Shana Mattoo, and 
Robert Levy. 2002. “MODIS Cloud Screening for Remote Sensing of Aerosols over Oceans 1875 
Using Spatial Variability.” Geophysical Research Letters 29(12):MOD4-1-MOD4-4. 

Mbourou, G. N’Tchayi, J. J. Bertrand, and S. E. Nicholson. 1997. “The Diurnal and Seasonal 
Cycles of Wind-Borne Dust over Africa North of the Equator.” Journal of Applied 
Meteorology 36(7):868–82. 

Mielonen, T., A. Arola, M. Komppula, J. Kukkonen, J. Koskinen, G. De Leeuw, and K. E. J. 1880 
Lehtinen. 2009. “Comparison of CALIOP Level 2 Aerosol Subtypes to Aerosol Types 
Derived from AERONET Inversion Data.” Geophysical Research Letters 36(18). 

Miller, R. L. and I. Tegen. 1998. “Climate Response to Soil Dust Aerosols.” Journal of Climate 
11(12):3247–67. 

Müller, Detlef, Albert Ansmann, Ina Mattis, Matthias Tesche, Ulla Wandinger, Dietrich 1885 
Althausen, and G. Pisani. 2007. “Aerosol‐type‐dependent Lidar Ratios Observed with 
Raman Lidar.” Journal of Geophysical Research: Atmospheres 112(D16). 

N’Tchayi Mbourou, G., J. J. Bertrand, and S. E. Nicholson. 1997. “The Diurnal and Seasonal 
Cycles of Wind-Borne Dust over Africa North of the Equator.” Journal of Applied 
Meteorology 36(7):868–82. 1890 

O’Neill, N. T., T. F. Eck, A. Smirnov, B. N. Holben, and S. Thulasiraman. 2003. “Spectral 
Discrimination of Coarse and Fine Mode Optical Depth.” Journal of Geophysical Research: 
Atmospheres 108(17). 

Omar, A. H., D. M. Winker, J. L. Tackett, D. M. Giles, J. Kar, Z. Liu, M. A. Vaughan, K. A. 
Powell, and C. R. Trepte. 2013. “CALIOP and AERONET Aerosol Optical Depth 1895 
Comparisons: One Size Fits None.” Journal of Geophysical Research Atmospheres 
118(10):4748–66. 

Omar, Ali H., David M. Winker, Chieko Kittaka, Mark A. Vaughan, Zhaoyan Liu, Yongxiang 



 66 

Hu, Charles R. Trepte, Raymond R. Rogers, Richard A. Ferrare, Kam Pui Lee, Ralph E. 
Kuehn, and Chris A. Hostetler. 2009. “The CALIPSO Automated Aerosol Classification 1900 
and Lidar Ratio Selection Algorithm.” Journal of Atmospheric and Oceanic Technology 
26(10):1994–2014. 

Parrington, Josef R., WILLIAM H. ZOLLER, and NAMIK K. ARAS. 1983. “Asian Dust: 
Seasonal Transport to the Hawaiian Islands.” Science 220(4593):195 LP – 197. 

Proestakis, Emmanouil, Vassilis Amiridis, Eleni Marinou, Aristeidis K. Georgoulias, Stavros 1905 
Solomos, Stelios Kazadzis, Julien Chimot, Huizheng Che, Georgia Alexandri, Ioannis 
Binietoglou, Vasiliki Daskalopoulou, Konstantinos A. Kourtidis, Gerrit De Leeuw, and 
Ronald J. Van Der A. 2018. “Nine-Year Spatial and Temporal Evolution of Desert Dust 
Aerosols over South and East Asia as Revealed by CALIOP.” Atmospheric Chemistry and 
Physics 18(2):1337–62. 1910 

Prospero, Joseph M., Paul Ginoux, Omar Torres, Sharon E. Nicholson, and Thomas E. Gill. 
2002. “Environmental Characterization of Global Sources of Atmospheric Soil Dust 
Identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) Absorbing 
Aerosol Product.” Reviews of Geophysics 40(1):2-1-2–31. 

Pu, Bing and Paul Ginoux. 2018. “How Reliable Are CMIP5 Models in Simulating Dust Optical 1915 
Depth?” Atmospheric Chemistry and Physics 18(16):12491–510. 

Qian, Weihong, Lingshen Quan, and Shaoyin Shi. 2002. “Variations of the Dust Storm in China 
and Its Climatic Control.” Journal of Climate 15(10):1216–29. 

Querol, Xavier, Aurelio Tobías, Noemí Pérez, A. Karanasiou, Fulvio Amato, Massimo 
Stafoggia, C. Pérez García-Pando, P. Ginoux, Francesco Forastiere, and Sophie Gumy. 1920 
2019. “Monitoring the Impact of Desert Dust Outbreaks for Air Quality for Health Studies.” 
Environment International 130:104867. 

Rajapakshe, Chamara, Zhibo Zhang, John E. Yorks, Hongbin Yu, Qian Tan, Kerry Meyer, 
Steven Platnick, and David M. Winker. 2017. “Seasonally Transported Aerosol Layers over 
Southeast Atlantic Are Closer to Underlying Clouds than Previously Reported.” 1925 
Geophysical Research Letters 44(11):5818–25. 

Remer, L A, Y. J. Kaufman, D. Tanre, S. Mattoo, D. A. Chu, J. V Martins, R. R. Li, C. Ichoku, 
R. C. Levy, R. G. Kleidman, T. F. Eck, E. Vermote, and B. N. Holben. 2005. “The MODIS 
Aerosol Algorithm, Products, and Validation.” Journal of the Atmospheric Sciences 
62(4):947–73. 1930 

Remer, Lorraine A, Y. J. Kaufman, D. Tanré, S. Mattoo, D. A. Chu, J. V Martins, R. R. Li, C. 
Ichoku, R. C. Levy, R. G. Kleidman, T. F. Eck, E. Vermote, and B. N. Holben. 2005. “The 
MODIS Aerosol Algorithm, Products, and Validation.” Journal of the Atmospheric 
Sciences 62(4):947–73. 

Ridley, A. David, L. Colette Heald, F. Jasper Kok, and Chun Zhao. 2016. “An Observationally 1935 
Constrained Estimate of Global Dust Aerosol Optical Depth.” Atmospheric Chemistry and 
Physics 16(23):15097–117. 

Rosenfeld, D. and I. M. Lensky. 1998. “Satellite-Based Insights into Precipitation Formation 
Processes in Continental and Maritime Convective Clouds.” Bulletin of the American 
Meteorological Society 79(11):2457–76. 1940 

Sakai, Tetsu, Tomohiro Nagai, Yuji Zaizen, and Yuzo Mano. 2010. “Backscattering Linear 
Depolarization Ratio Measurements of Mineral, Sea-Salt, and Ammonium Sulfate Particles 
Simulated in a Laboratory Chamber.” Applied Optics 49(23):4441–49. 

Sayer, A. M., N. C. Hsu, C. Bettenhausen, and M. J. Jeong. 2013. “Validation and Uncertainty 

Deleted: . 1999. “Long-Range Transport of Mineral Dust 1945 
in the Global Atmosphere: Impact of African Dust on the 
Environment of the Southeastern United States.” 
Proceedings of the National Academy of Sciences of the 
United States of America 96(7):3396–3403.¶
Prospero, Joseph M1950 

Deleted: .

Deleted: .,



 67 

Estimates for MODIS Collection 6 ‘Deep Blue’ Aerosol Data.” Journal of Geophysical 
Research Atmospheres 118(14):7864–72. 

Schuster, G. L., M. Vaughan, D. MacDonnell, W. Su, D. Winker, O. Dubovik, T. Lapyonok, and 1955 
C. Trepte. 2012. “Comparison of CALIPSO Aerosol Optical Depth Retrievals to 
AERONET Measurements, and a Climatology for the Lidar Ratio of Dust.” Atmospheric 
Chemistry and Physics 12(16):7431–52. 

Shao, Y. P., K. H. Wyrwoll, A. Chappell, J. P. Huang, Z. H. Lin, G. H. McTainsh, M. Mikami, 
T. Y. Tanaka, X. L. Wang, and S. Yoon. 2011. “Dust Cycle: An Emerging Core Theme in 1960 
Earth System Science.” Aeolian Research 2(4):181–204. 

Shimizu, Atsushi, Nobuo Sugimoto, Ichiro Matsui, Kimio Arao, Itsushi Uno, Toshiyuki 
Murayama, Naoki Kagawa, Kazuma Aoki, Akihiro Uchiyama, and A. Akihiro Yamazaki. 
2004. “Continuous Observations of Asian Dust and Other Aerosols by Polarization Lidars 
in China and Japan during ACE-Asia.” Journal of Geophysical Research D: Atmospheres 1965 
109(19). 

Shimizu, Atsushi, Nobuo Sugimoto, Tomoaki Nishizawa, Yoshitaka Jin, and Dashdondog 
Batdorj. 2017. “Variations of Dust Extinction Coefficient Estimated by Lidar Observations 
over Japan, 2007-2016.” Scientific Online Letters on the Atmosphere 13:205–8. 

Song, Hongquan, Kesheng Zhang, Shilong Piao, and Shiqiang Wan. 2016. “Spatial and 1970 
Temporal Variations of Spring Dust Emissions in Northern China over the Last 30 Years.” 
Atmospheric Environment 126:117–27. 

Song, Q., Z. Zhang, H. Yu, S. Kato, P. Yang, P. Colarco, L. A. Remer, and C. L. Ryder. 2018. 
“Net Radiative Effects of Dust in the Tropical North Atlantic Based on Integrated Satellite 
Observations and in Situ Measurements.” Atmospheric Chemistry and Physics 18(15). 1975 

Sternberg, Troy, Henri Rueff, and Nick Middleton. 2015. “Contraction of the Gobi Desert, 2000-
2012.” Remote Sensing 7(2):1346–58. 

Su, L. and O. B. Toon. 2011. “Saharan and Asian Dust: Similarities and Differences Determined 
by CALIPSO, AERONET, and a Coupled Climate-Aerosol Microphysical Model.” 
Atmospheric Chemistry and Physics 11(7):3263–80. 1980 

Tang, Mingjin, Huanhuan Zhang, Wenjun Gu, Jie Gao, Xing Jian, Guoliang Shi, Bingqi Zhu, 
Luhua Xie, Liya Guo, Xiaoyan Gao, Zhe Wang, Guohua Zhang, and Xinming Wang. 2019. 
“Hygroscopic Properties of Saline Mineral Dust From Different Regions in China: 
Geographical Variations, Compositional Dependence, and Atmospheric Implications.” 
Journal of Geophysical Research: Atmospheres 124(20):10844–57. 1985 

Tesche, M., A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. 
Groß. 2009. “Vertically Resolved Separation of Dust and Smoke over Cape Verde Using 
Multiwavelength Raman and Polarization Lidars during Saharan Mineral Dust Experiment 
2008.” Journal of Geophysical Research Atmospheres 114(13). 

Textor, C., M. Schulz, S. Guibert, S. Kinne, Y. Balkanski, S. Bauer, T. Berntsen, T. Berglen, O. 1990 
Boucher, M. Chin, F. Dentener, T. Diehl, R. Easter, H. Feichter, D. Fillmore, S. Ghan, P. 
Ginoux, S. Gong, A. Grini, J. Hendricks, L. Horowitz, P. Huang, I. Isaksen, T. Iversen, S. 
Kloster, D. Koch, A. Kirkevåg, J. E. Kristjansson, M. Krol, A. Lauer, J. F. Lamarque, X. 
Liu, V. Montanaro, G. Myhre, J. Penner, G. Pitari, S. Reddy, Seland, P. Stier, T. Takemura, 
and X. Tie. 2006. “Analysis and Quantification of the Diversities of Aerosol Life Cycles 1995 
within AeroCom.” Atmospheric Chemistry and Physics 6(7):1777–1813. 

Thorsen, Tyler J. and Qiang Fu. 2015. “CALIPSO-Inferred Aerosol Direct Radiative Effects: 
Bias Estimates Using Ground-Based Raman Lidars.” Journal of Geophysical Research 

Deleted: Ø. 

Deleted: . Vol.2000 



 68 

120(23):12,209-12,220. 
Twomey, Sean. 1977. “The Influence of Pollution on the Shortwave Albedo of Clouds.” Journal 

of the Atmospheric Sciences 34(7):1149–52. 
Uno, Itsushi, Kenta Eguchi, Keiya Yumimoto, Toshihiko Takemura, Atsushi Shimizu, Mitsuo 

Uematsu, Zhaoyan Liu, Zifa Wang, Yukari Hara, and Nobuo Sugimoto. 2009. “Asian Dust 2005 
Transported One Full Circuit around Theglobe.” Nature Geoscience 2(8):557–60. 

Voss, Kara K. and Amato T. Evan. 2020. “A New Satellite-Based Global Climatology of Dust 
Aerosol Optical Depth.” Journal of Applied Meteorology and Climatology 59(1):83–102. 

Voss, Kenneth J., Ellsworth J. Welton, Patricia K. Quinn, James Johnson, Anne M. Thompson, 
and Howard R. Gordon. 2001. “Lidar Measurements during Aerosols99.” Journal of 2010 
Geophysical Research: Atmospheres 106(D18):20821–31. 

Winker, D. M., J. L. Tackett, B. J. Getzewich, Z. Liu, M. A. Vaughan, and R. R. Rogers. 2013. 
“The Global 3-D Distribution of Tropospheric Aerosols as Characterized by CALIOP.” 
Atmospheric Chemistry and Physics 13:3345. 

Winker, David M., Mark A. Vaughan, Ali Omar, Yongxiang Hu, Kathleen A. Powell, Zhaoyan 2015 
Liu, William H. Hunt, and Stuart A. Young. 2009. “Overview of the CALIPSO Mission and 
CALIOP Data Processing Algorithms.” Journal of Atmospheric and Oceanic Technology 
26(11):2310–23. 

Wu, Tong, Zhanqing Li, Jun Chen, Yuying Wang, Hao Wu, Xiao’ai Jin, Chen Liang, Shangze 
Li, Wei Wang, and Maureen Cribb. 2020. “Hygroscopicity of Different Types of Aerosol 2020 
Particles: Case Studies Using Multi-Instrument Data in Megacity Beijing, China.” Remote 
Sensing 12(5). 

Xu, Hui, Fengjie Zheng, and Wenhao Zhang. 2016. “Variability in Dust Observed over China 
Using A-Train Caliop Instrument.” Advances in Meteorology 2016(2015). 

Yang, W., A. Marshak, O. V Kalashnikova, and A. B. Kostinski. 2012. “CALIPSO Observations 2025 
of Transatlantic Dust: Vertical Stratification and Effect of Clouds.” Atmospheric Chemistry 
and Physics 12:11339. 

Yorks, J. E., S. P. Palm, D. L. Hlavka, M. J. McGill, E. Nowottnick, P. Selmer, and W. D. Hart. 
2015. “The Cloud-Aerosol Transport System (CATS) Algorithm Theoretical Basis 
Document.” 2030 

Young, Stuart A., Mark A. Vaughan, Anne Garnier, Jason L. Tackett, James D. Lambeth, and 
Kathleen A. Powell. 2018. “Extinction and Optical Depth Retrievals for CALIPSO’s 
Version 4 Data Release.” Atmospheric Measurement Techniques 11:5701. 

Yu, H. B., M. Chin, H. S. Bian, T. L. Yuan, J. M. Prospero, A. H. Omar, L. A. Remer, D. M. 
Winker, Y. K. Yang, Y. Zhang, and Z. B. Zhang. 2015a. “Quantification of Trans-Atlantic 2035 
Dust Transport from Seven-Year (2007-2013) Record of CALIPSO Lidar Measurements.” 
Remote Sensing of Environment 159:232–49. 

Yu, H. B., M. Chin, T. L. Yuan, H. S. Bian, L. A. Remer, J. M. Prospero, A. Omar, D. Winker, 
Y. K. Yang, Y. Zhang, Z. B. Zhang, and C. Zhao. 2015b. “The Fertilizing Role of African 
Dust in the Amazon Rainforest: A First Multiyear Assessment Based on Data from Cloud-2040 
Aerosol Lidar and Infrared Pathfinder Satellite Observations.” Geophysical Research 
Letters 42(6):1984–91. 

Yu, Hongbin, Mian Chin, Lorraine A. Remer, Richard G. Kleidman, Nicolas Bellouin, Huisheng 
Bian, and Thomas Diehl. 2009. “Variability of Marine Aerosol Fine-Mode Fraction and 
Estimates of Anthropogenic Aerosol Component over Cloud-Free Oceans from the 2045 
Moderate Resolution Imaging Spectroradiometer (MODIS).” Journal of Geophysical 

Deleted: 2015 (a).

Deleted: 2015 (b).



 69 

Research Atmospheres 114(10):1–11. 
Yu, Hongbin, Mian Chin, David M. Winker, Ali H. Omar, Zhaoyan Liu, Chieko Kittaka, and 2050 

Thomas Diehl. 2010. “Global View of Aerosol Vertical Distributions from CALIPSO Lidar 
Measurements and GOCART Simulations: Regional and Seasonal Variations.” Journal of 
Geophysical Research Atmospheres 115(4):1–19. 

Yu, Hongbin, Lorraine A. Remer, Mian Chin, Huisheng Bian, Qian Tan, Tianle Yuan, and Yan 
Zhang. 2012. “Aerosols from Overseas Rival Domestic Emissions over North America.” 2055 
Science 337(6094):566–69. 

Yu, Hongbin, Lorraine A. Remer, Ralph A. Kahn, Mian Chin, and Yan Zhang. 2013. “Satellite 
Perspective of Aerosol Intercontinental Transport: From Qualitative Tracking to 
Quantitative Characterization.” Atmospheric Research 124:73–100. 

Yu, Hongbin, Qian Tan, Mian Chin, Lorraine A. Remer, Ralph A. Kahn, Huisheng Bian, 2060 
Dongchul Kim, Zhibo Zhang, Tianle Yuan, Ali H. Omar, David M. Winker, Robert C. 
Levy, Olga Kalashnikova, Laurent Crepeau, Virginie Capelle, and Alain Chédin. 2019. 
“Estimates of African Dust Deposition Along the Trans-Atlantic Transit Using the 
Decadelong Record of Aerosol Measurements from CALIOP, MODIS, MISR, and IASI.” 
Journal of Geophysical Research: Atmospheres 124(14):7975–96. 2065 

Yu, Hongbin, Yang Yang, Hailong Wang, Qian Tan, Mian Chin, Robert Levy, Lorraine Remer, 
Steven Smith, Tianle Yuan, and Yingxi Shi. 2020. “Interannual Variability and Trends of 
Combustion Aerosol and Dust in Major Continental Outflows Revealed by MODIS 
Retrievals and CAM5 Simulations During 2003–2017.” Atmospheric Chemistry and 
Physics Discussions 1–38. 2070 

Yu, Yan, Olga V. Kalashnikova, Michael J. Garay, Huikyo Lee, Myungje Choi, Gregory S. 
Okin, John E. Yorks, James R. Campbell, and Jared Marquis. 2021. “A Global Analysis of 
Diurnal Variability in Dust and Dust Mixture Using CATS Observations.” Atmospheric 
Chemistry and Physics 21(3):1427–47. 

Yu, Yan, Olga V Kalashnikova, Michael J. Garay, and Michael Notaro. 2019. “Climatology of 2075 
Asian Dust Activation and Transport Potential Based on MISR Satellite Observations and 
Trajectory Analysis.” Atmospheric Chemistry & Physics 19(1). 

Yue, Xu, Huijun Wang, Zifa Wang, and Ke Fan. 2009. “Simulation of Dust Aerosol Radiative 
Feedback Using the Global Transport Model of Dust: 1. Dust Cycle and Validation.” 
Journal of Geophysical Research Atmospheres 114(10). 2080 

 
 
 
 
 2085 



Page 34: [1] Deleted   Qianqian Song   5/27/21 12:37:00 PM 

 
1  

Page 34: [2] Deleted   Qianqian Song   5/27/21 12:37:00 PM 

 
2  

Page 34: [3] Deleted   Qianqian Song   5/27/21 12:37:00 PM 

 
3  

Page 34: [4] Deleted   Qianqian Song   5/27/21 12:37:00 PM 

 
4  

Page 34: [5] Deleted   Qianqian Song   5/27/21 12:37:00 PM 
 

Page 34: [6] Deleted   Qianqian Song   5/27/21 12:37:00 PM 

 

 

 


