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Abstract. This study provides a comprehensive assessment of NO2 changes across the main European urban areas induced by 

COVID-19 lockdowns using satellite retrievals from the Tropospheric Monitoring Instrument (TROPOMI) onboard the 

Sentinel-5p satellite, surface site measurements, and simulations from the Copernicus Atmosphere Monitoring Service 30 

(CAMS) regional ensemble of air quality models. Some recent TROPOMI-based estimates of changes in atmospheric NO2 
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concentrations have neglected the influence of weather variability between the reference and lockdown periods. Here we 

provide weather-normalised estimates based on a machine learning method (gradient boosting) along with an assessment of 

the biases that can be expected from methods that omit the influence of weather. We also compare the weather-normalised 

satellite-estimated NO2 column changes with weather-normalised surface NO2 concentration changes and the CAMS regional 35 

ensemble, composed of 11 models, using recently published estimates of emission reductions induced by the lockdown. All 

estimates show similar NO2 reductions. Locations where the lockdown measures were stricter show stronger reductions and, 

conversely, locations where softer measures were implemented show milder reductions in NO2 pollution levels. Average 

reduction estimates based on either satellite observations (-23%), surface stations (-43%) or models (-32%) are presented, 

showing the importance of vertical sampling but also the horizontal representativeness. Surface station estimates are 40 

significantly changed when sampled to the TROPOMI overpasses (-37%) pointing out the importance of the variability in time 

of such estimates. Observation-based machine learning estimates show a stronger temporal variability than model-based 

estimates. 

1. Introduction 

Nitrogen dioxide ((NO2; together with NO, a constituent of NOx=NO+NO2) is a very well-established cause of poor air 45 

quality in the most urbanized and industrialized areas of the world. NO2 is harmful for living organisms by long-term 

atmospheric concentration exposure. It also plays a major role in urban ozone formation and secondary aerosols which are also 

harmful for living organisms at high levels in the lower atmosphere (Lelieveld et al., 2015; Myhre et al., 2013). According to 

the European Environment Agency (EEA, 2020a) the main European anthropogenic NOx sources are road transport (39%), 

energy production and distribution (16%), commercial, residential and households (14%), energy use in industry (12%), 50 

agriculture (8%), non-road transport (8%) and industrial processes and product use (3%). With an atmospheric lifetime 

typically below 1 day, NOx is relatively short-lived and is mainly controlled by photochemical reactions. The majority of NOx 

therefore does not get transported far downwind from its sources (Seinfeld and Pandis, 2006). Thus, near-surface NOx 

concentrations are high over cities and densely populated areas and low otherwise. Besides emissions, the variability of NOx 

is strongly driven by meteorological conditions, especially atmospheric transport, vertical mixing, and solar radiation, affecting 55 

the level of accumulation close to the emission sources (Arya, 1999). For example, increased wind speed and a higher planetary 

boundary layer height will increase the dispersion of NOx from the emission sources. It is this short lifetime, which is partly 

modulated by atmospheric conditions such as temperature and radiation combined with localized emission sources, that make 

NO2 an excellent proxy for detecting emission reductions, from both surface and satellite measurements. 

The worldwide outbreak of the coronavirus disease (COVID-19), which arose in late 2019 in China and spread around 60 

the world in early 2020, led many countries to take action to slow down the infection growth rate of the virus. The so-called 

lockdowns severely restricted or banned movements of people closed most public places and limited journeys to essential work 

commutes. Some measures started in China in late 2019 with stricter lockdowns in January 2020. In Europe, lockdown 
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measures were implemented at various dates during February and March 2020. These lockdowns drastically reduced traffic 

and also activity levels in most industries (Guevara et al., 2020; Le Quéré et al., 2020). These sectors represent a large share 65 

of NOx emissions (51% according to EEA 2020a). Studying NO2 concentration changes during the lockdown is therefore very 

important to assess the impact of such activity-level reductions on a population’s exposure to pollution. The COVID-19 

lockdown is a unique opportunity to assess the impact of future pollution reduction measures, in particular, the impact of 

drastic reductions on the road transport sector using combustion energy. 

The lockdowns were expected to have large effects on urban NO2 air pollution levels in conjunction with other 70 

modulating factors (i.e., weather conditions). The first quarter of 2020 had specific and highly variable meteorological 

conditions. Storm Ciara crossed over Europe in the second week of February followed by Storm Dennis that crossed Europe 

a week later. Both extratropical storms generated strong winds over the northern half of Europe (above 45°N) from February 

9th, 2020 until February 18th, 2020. Strong winds, yet milder than during storms Ciara and Dennis, were also generated by 

storms Karine and Myriam over the Iberian Peninsula, the southern part of France and the northern part of Italy in the first 75 

week of March. Moreover, February and March 2020 displayed stronger positive temperatures anomalies over Europe in 

comparison with February and March 2019 (https://surfobs.climate.copernicus.eu/stateoftheclimate). Such weather anomalies, 

however, did not persist during the second quarter of 2020. Accounting for the effect of such meteorological variations is very 

important to assess accurately the effect of COVID-19 related mobility restrictions on air pollution. Different approaches can 

be used to assess the pollution changes, based on different types of data, such as satellite observations, surface site observations 80 

and air quality models. 

 Several studies used the recently launched (October 2017) Tropospheric Monitoring Instrument (TROPOMI, 

Veefkind et al., 2012) onboard the Copernicus Sentinel-5 Precursor (S5P) satellite to highlight the NO2 reductions caused by 

the COVID-19 lockdowns. The substantial interannual variability of meteorological conditions together with the young age of 

the instrument prevented estimating a representative climatological baseline to which NO2 levels observed during the 85 

lockdown period could be compared. As a result, satellite-based studies using TROPOMI comparing before and after lockdown 

periods (e.g., Wang et al., 2020b) or comparing the lockdown period with its 2019 equivalent (e.g., Bauwens et al., 2020, 

Nakada et al., 2020, Zambrano-Monserrate et al. (2020)) have given little to no weight to the synoptic meteorological 

conditions and how they could potentially flaw the emission change estimates. 

In contrast, Schiermeier (2020) mentioned the ‘weather factor’ early on in the COVID-19 crisis, which can strongly 90 

affect the pollution levels.  And studies, such as Le et al. (2020), showed 2019 and 2020 TROPOMI NO2 comparisons but 

acknowledged the impact of weather anomalies on pollution levels. It is only very recently that a weather-normalisation 

technique has been applied to estimate NO2 changes due to the COVID-19 restrictions across cities in the US based on 

TROPOMI (Goldberg et al., 2020). Yet, such analyses place insufficient importance and provide insufficient clarity about the 

fact that satellite data used in such analyses are conditioned by the cloud coverage, revisit frequency and quality flag of the 95 

satellite observations. Ignoring or not acknowledging such information can also lead to flawed satellite-based estimates and 
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provide misleading information (https://atmosphere.copernicus.eu/flawed-estimates-effects-lockdown-measures-air-quality-

derived-satellite-observations). 

Several studies have investigated lockdown impacts using surface measurement sites. For example, Wang et al. 

(2020a) showed that lower emissions from motor vehicles and secondary industries were most likely responsible for the 100 

observed decreases of NO2 concentrations in China during January-March 2020. Collivignarelli et al. (2020) showed using 

surface station measurements that major NO2 reductions occurred in Milan, a city that showed a rapid increase of cases early 

in the European COVID-19 crisis (February 2020) and was one of the first cities to be put into lockdown in Europe. Past 

studies such as Carslaw and Taylor (2009) showed the usefulness and the importance of weather normalisation techniques for 

air pollution applications based on surface observations, such as the local air traffic activity impact on NO2 predictions. This 105 

was followed more recently by Grange et al. (2018, 2019) where machine learning techniques were used to perform weather 

normalisation for analysing trends and detecting the impact of policy measures on air quality. Built on this previous work, 

several studies made use of machine learning to estimate the impact of the COVID-19-related mobility restrictions on air 

pollution levels, taking into account the confounding effect of the meteorological variability. Using ML models fed with ERA5 

reanalysis meteorological data, Petetin et al. (2020) highlighted a strong reduction of surface NO2 concentrations across most 110 

Spanish urban areas during the first weeks of lockdown. Similarly, Keller et al., 2020 assessed the NO2 pollution changes using 

worldwide surface measurements showing country-dependent variations on reductions.  

Finally, air quality modelling systems offer a valuable tool for representing the evolution of pollutants in the 

atmosphere according to changes in emissions, physical processes and weather variability. The Copernicus Atmosphere 

Monitoring Service (CAMS) produces daily European air quality forecasts and analyses using an ensemble of 11 models 115 

ensuring unique reliability and quality (Marecal et al., 2015). Using emission scaling factors to account for lockdown measures 

such an ensemble of models can be used to estimate lockdown reductions on NO2 pollution (amongst other pollutants) and 

account for the weather variability at the same time (Colette et al., 2020, Guevara et al., 2020).  

This paper aims at providing a comprehensive and comparative assessment of the impact of the first European 

COVID-19 lockdown on NO2 pollution levels over major European urban areas using satellite observations, surface in-situ 120 

observations, and air quality models. We firstly illustrate how misleading it can be to ignore the influence of the weather 

variability when assessing the lockdown-induced changes of NO2 with TROPOMI. Then, in order to quantify these changes, 

we use ML-based weather-normalisation methods for estimating the “business as usual” (BAU) NO2 pollution levels that 

would have been observed without any lockdown measures, based on both TROPOMI NO2 tropospheric columns (Section 2) 

and surface in-situ observations (Section 3). NO2 changes are then investigated with the CAMS regional ensemble (Section 125 

4). We compare and discuss the three different approaches in Section 5 followed by conclusions in Section 6. 
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2. TROPOMI NO2 column estimates 

2.1. Dataset and analysis periods 

We use the operational Copernicus S5P TROPOMI NO2 level-2 product, for which data have been available since 28 June 

2018. These observations are tropospheric columns (from the surface to the top of the troposphere) with a pixel resolution of 130 

5.5km by 3.5km since 6 August 2019 and 7km by 3.5km before. The instrument can have an up-to-daily revisit at 13:30 mean 

local solar time assuming clear-sky conditions. The quality flag (qa) provided with the retrieval is used to select only good 

quality data (qa > 0.75), which removes cloud-covered scenes, errors, and problematic retrievals (Eskes et al., 2019). The 

TROPOMI data are then binned on a regular 0.1° ´ 0.1° grid to perform statistical analyses and to facilitate the processing of 

time series for the locations of interest, i.e., large European cities in this study (see section 2.2), as well as the comparison with 135 

other datasets such as the 0.1° ´ 0.1° CAMS regional air quality models (Marecal et al., 2015) and the 9 km resolution weather 

forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF).  

In this study we consider February, March and April 2020 and 2019 to assess the changes in NO2 columns due to 

COVID-19 restrictions over Europe. Although the lockdown conditions and dates vary between countries, we consider the 15th 

of March 2020 as a representative starting date for the European-wide lockdown, given that most European countries 140 

implemented their nation-wide social distancing measures along the 2-week period from 9 March 2020 (Italy) to 23 March 

2020 (United Kingdom (UK)). Two periods of the year are considered in this study: the pre-lockdown period from 1 February 

to 15 March, and the lockdown period from 16 March to 31 April. This study thus focuses on the most stringent period of the 

first European lockdown (since many countries then started to ease up their lockdown restrictions from the beginning of May 

onwards). 145 

 In Figure 1, mean TROPOMI NO2 tropospheric columns are displayed for the pre-lockdown and lockdown periods 

in 2020 and their equivalents in 2019. The comparison of pre-lockdown and lockdown averages for 2020 only shows a decrease 

in Southern Europe but no clear reduction at more northern latitudes (i.e., the UK, The Netherlands and Germany). In the 

corresponding 2019 pre-lockdown period much larger NO2 columns are seen than in 2020. During this period of the year, the 

meteorological conditions over Northern Europe were significantly different between 2019 and 2020. A number of named 150 

extratropical cyclones (storms Ciara, Denis, Karine and Myriam), combined with a strong positive anomaly in surface 

temperature, occurred over Europe during February and early March 2020, especially in western and northern Europe. Such 

anomalies in wind and temperature were not observed in 2019. Figure 2 shows the distribution of 10-meter wind speed, 

planetary boundary layer (PBL) height and 2-meter temperature from the 9 km operational forecasts from the ECMWF 

Integrated Forecasting System (IFS) in both 2019 and 2020 for the pre-lockdown and lockdown periods at the S5P overpass 155 

times. Details on how the PBL height is calculated can be found in the IFS documentation (part IV, chapter 3 in 

https://www.ecmwf.int/en/elibrary/19748-part-iv-physical-processes). Before 15 March, these parameters show very different 

distributions with much lower values in 2019 than in 2020, i.e., less circulation and less vertical diffusion under colder 

conditions. These differences in meteorological conditions explain the increase of NO2 tropospheric columns in 2019 compared 
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to 2020. Conversely, during the post-15 March period, the meteorological distributions are more similar showing much smaller 160 

differences. This illustrates the need for accounting for the meteorological effect when assessing the changes of NO2 

tropospheric columns associated with the lockdown. 

 

 
Figure 1. Average maps of the TROPOMI NO2 tropospheric columns (mol.m-2) for European pre-lockdown and 165 

lockdown periods in 2020 (a, b respectively) and corresponding periods in 2019 (c, d). Grey areas indicate where the 

number of revisits is strictly below 5.  
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Figure 2. Probability density functions of 10-meter wind speed (m.s-1, first row), planetary boundary layer (PBL) 170 

height (m, second row), and 2-meter temperature (K, third row) from the ECMWF operational forecasts for 

European periods before (a,b) and after 15 March (c,d), comparing 2020 to 2019. Distribution is computed for urban 

areas above 0.5 Million inhabitants between 10°W,20°E,45°N and 60°N at the S5P overpasses times. N is the sample 

size for each distribution that can be multiplied by the relative frequency (in %) to obtain the absolute frequency. 
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2.2. Non-weather-normalised changes of TROPOMI NO2 tropospheric columns 175 

Changes in NO2 tropospheric columns associated with the lockdown measures can be estimated by comparing NO2 levels 

observed during the lockdown period in 2020 with a given baseline. In this section, we compare the results obtained with two 

different baselines: (1) the NO2 levels observed during the pre-lockdown period in 2020 (hereafter referred to as the “before-

during” approach), (2) the NO2 levels observed during the same period of the year in 2019 (hereafter referred to as the “year-

to-year” approach). We focus our study on the largest European urban areas for which the city population is exceeding 0.5 180 

million inhabitants (according to the population database provided by https://simplemaps.com/data/world-cities), resulting in 

a total of 100 locations. Assessing the changes of NO2 tropospheric columns from satellite observations is more challenging 

over rural areas as the NO2 levels are much lower than over urban areas. Because of the much lower NO2 tropospheric column 

values over rural areas, the relative estimates of pollution reduction are very sensitive to small changes in the tropospheric 

columns and therefore also to instrument noise. We choose the observations with footprints closest to the European city centres 185 

and with more than 5 data points per pre-lockdown and lockdown period. If this condition is not reached, the location is 

discarded from the analysis.  The “before-during” estimate corresponds to the difference between the pre-lockdown and the 

lockdown period median estimates. Figure 3 shows changes calculated for 2020 (Fig. 3b) and the equivalent for 2019 (Fig 3a) 

for comparison. This method shows drastic NO2 reductions by more than 75% in 2020 for most of the southern European large 

urban areas. Reductions are, however, not obvious over northern European urban areas and show strong variations from one 190 

location to another. For example, over the UK and Belgium, some urban areas show increases well above 30%, while other 

urban areas show reductions even though the same lockdown measures were applied nationwide. Applying the same method 

over 2019, a similar strong decrease of NO2 levels over many major European urban areas is visible. Such reductions in 2019 

are not expected in relation to COVID-19 lockdown measures. Therefore, such “before-during” type of satellite-based 

estimates do not provide a robust methodology for assessing the effects of COVID-19 lockdown on European NO2 pollution 195 

levels.  
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Figure 3. “Before-during” estimates of TROPOMI tropospheric NO2 column change (%) for urban areas above 0.5 

million inhabitants, in 2019 (a) and 2020 (b). The diameter of the circles is proportional to the population count in 

each urban area. 200 

 

The “year-to-year” approach has been more widely used in scientific publications and web news articles and consists of 

comparing observations from 2020 to observations from 2019 over the period of interest. Figure 4 shows such “year-to-year” 

estimates, comparing the median values between 2020 and 2019, for the pre-lockdown (Fig. 4a) and lockdown (Fig. 4b) 

periods. During the lockdown, an overall reduction is seen all over Europe with more moderate reductions over southern 205 

Europe compared to the “before-during” estimates (see Fig. 3b). Changes over northern Europe do not show strong variations 

between the various urban areas as was visible in the “before-during” method. An overall decrease is seen over most European 

locations, with the strongest reductions in European countries (e.g., France, Spain or Italy), where lockdown measures were 

more stringent (according to the Oxford Coronavirus Government Response Tracker stringency index Hale et al., (2020)). 

However, looking at the pre-lockdown estimates, northern Europe also shows drastic negative changes, that are larger than 210 

during the lockdown period. Such changes in pollution levels across Europe should not be expected if only the impact of 

emission changes was considered. The “year to year” method thus appears to be strongly dependent on the interannual NO2 

variability, where meteorology plays a crucial role. Although it respects the seasonality on NO2, this method could still lead 

to large errors when assessing differences in NO2 levels and more generally the pollution level reductions due to the COVID-

19 lockdown. 215 

 
Figure 4. “Year-to-year” estimates of TROPOMI tropospheric NO2 column change (%) for urban areas above 0.5 

million inhabitants, in 2019 (a) and 2020 (b). The diameter of the circles is proportional to the population count in 

each urban area. 
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2.3. Weather-normalised changes of TROPOMI NO2 tropospheric columns 220 

2.3.1. Methods 

 

Weather-normalisation methods account for weather variability to more accurately estimate the net changes of NO2 

induced by the lockdown in urban areas. Previous studies have used meteorological and air pollution predictors to build 

simplified models for the simulation of satellite observations or to generate predictions of atmospheric composition (e.g., 225 

Worden et al., 2013, Barré et al., 2015). In this study, we use a novel approach for the simulation of TROPOMI satellite 

observations under BAU conditions, i.e., in the absence of lockdown restrictions, based on the Gradient Boosting Machine 

(GBM, Friedman, 2001) regressor technique. GBM is a popular decision tree-based ensemble method belonging to the 

boosting family. For the predictors, we use the following weather and air quality variables from the ECMWF and CAMS 

operational forecasts at 9 km and 0.1° resolutions, respectively: 10-m wind speed and direction, PBL height, 2-m temperature, 230 

surface relative humidity, geopotential at 500hPa, and NO2 surface concentrations from the CAMS regional ensemble 

forecasts. The NO2 surface concentrations used here are obtained from the CAMS operational regional forecasts, which are 

based on business-as-usual emission information and are therefore different from the simulations presented in section 4. In the 

CAMS regional forecast product, there is also no assimilation of observations to constrain the forecasts. Therefore, the NO2 

surface concentrations used to train and make model predictions do not include lockdown effects and are independent of the 235 

air quality model pollution change estimates provided in section 4. Additionally, the following time and location variables 

were also included in the set of predictors: latitude, longitude, population, Julian date (number of days since January 1st) and 

weekday (to reflect expected weekend/weekday effects). A quite similar machine learning (ML)-based approaches have 

already been successfully applied to in-situ surface AQ observations (e.g., Grange et al., 2018, 2019, Petetin et al., 2020). We 

use data from 1 January 2019 to 31 May 2019 as a training set and apply the model to 2020 to generate simulations of BAU 240 

NO2 tropospheric columns. For validation purposes, we have randomly split the input data in a 90% and 10% share for training 

and testing, respectively. Hyperparameter tuning (see annex A for details) was performed using a grid search method with 5-

fold cross-validation and using the ranges indicated by Petetin et al. (2020). In contrast to Petetin et al. (2020), who trained 

one ML model per surface air quality monitoring station, only one single ML model is trained here for all cities. This choice 

is motivated by the small size of the available training dataset (about 10,000 data points, see Table 1). After the hyperparameter 245 

tuning and evaluation of the model, the BAU observation simulations have been generated using 100% of the January-May 

2019 dataset to use the maximum amount of data points possible.  

 MB  

[10-6mol.m-2] 

nMB 

[%] 

RMSE  

[10-6mol.m-2] 

nRMSE 

[%] 

PCC N 

S5P  

training set 

0.00 +0.02 1.4 45.68 0.87 9,634 
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S5P  

test set 

-0.04 -1.30 1.68 56.38 0.79 1,071 

 

Table 1. Performance of the machine learning simulations of NO2 tropospheric columns over all European urban 

areas included in the dataset. The training set and testing set cover January-May 2019 and are randomly sampled 250 

(90% and 10%, respectively) over that period. Shown are the mean bias (MB), normalised mean bias (nMB), root-

mean-square error (RMSE), normalised root-mean-square error (nRMSE), Pearson correlation coefficient (PCC) 

and the number of data points (N). 

2.3.2. Results 

 Detailed scores of the performance of the gradient-boosting regressor with respect to TROPOMI observations, such 255 

as mean bias (MB), normalised mean bias (nMB), root-mean-square error (RMSE), normalised root-mean-square error 

(nRMSE) and the Pearson Correlation Coefficient (PCC), can be found in Table 1. In order to check for obvious cases of 

overfitting (i.e., when the GBM model is fitting the data used for training too closely and is thus lacking generalization skills 

regarding new data), results are shown for both training and testing datasets. The statistics for the training set and the testing 

set show similar results, such as low bias, good correlation, but significant RMSE values. The statistical performance obtained 260 

for the training set indicates that there is no clear sign of overfitting in the predictions. Since TROPOMI data are only available 

from mid-2018 onwards, the training set is relatively small. For this reason, the predictions are featuring significant RMSE 

values and will have a large random error. The RMSE values stay, however, within a similar range as for the surface site air 

quality ML predictions, as shown in Section 3 and Table 2. The low mean bias and high correlation values indicate that the 

main BAU NO2 tropospheric column variability is represented without large systematic errors. Subtracting the BAU NO2 265 

simulated columns from the actual observed NO2 columns during the lockdown period (from 16 March 2020 to 30 April 2020) 

gives us an estimate of the reductions in the NO2 background levels over the urban areas considered in this study. Figure 5 

provides an example of a time series over Madrid that shows the behaviour of the GBM against the real observations for 2019 

(the training period) and 2020 (the actual simulation period). In 2019, the GBM predictions follow the variations seen in the 

observations but do, however, also show differences, either being above or below the observations. In 2020, similar behaviour 270 

is observed until the lockdown date where the GBM predictions show consistently higher values than the observations, but 

still, follow the same variations as the observations. This shows that the GBM predictions based on BAU predictors are 

performing realistically and account for the variability in the BAU scenario. This therefore, provides a method to assess the 

pollution changes due to lockdown restrictions using satellite data more robustly than the “before-during” or “year-to-year” 

methods. 275 
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Figure 5. Example of a time series over Madrid illustrating the performance of the machine learning NO2 column 

predictions for February-March-April 2019 (top panel) and the same period in 2020 (bottom panel). 

 

Figure 6 shows the equivalent estimates as in Fig. 3 and 4 for the pre-lockdown and lockdown periods using the ML-280 

based BAU estimates as the baseline. The estimates of the NO2 changes are based on the median value of the real observation 

minus the simulated BAU observation distributions. As shown in Table 1, the GBM performance shows large RMSE values 

which can sometimes result in significant outliers due to the small training set used. We choose to display the median to avoid 

the influence of potential outliers in the estimates as much as possible. The pre-lockdown ML-based estimates do not show as 
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strong of an overall reduction as in the “year-to-year” (Fig. 4) or “before-during” (Fig. 3) estimates. A summary of the average 285 

and the standard deviation of the set of median estimates across all the considered European urban areas is provided in Table 

2 for each of the satellite methods. While both “year-to-year” and “before-during” methods showed substantial changes (24% 

and 30% respectively) of NO2 during the periods outside lockdown (i.e., in 2019 or before the lockdown in 2020) when low 

to no reduction should be expected, the ML-based weather-normalisation method provides changes closer to 0%, which are 

considered to be more realistic. 290 

The weather-normalisation method is not devoid of uncertainties and can, in particular, be affected by trends in NO2 

levels. With a known trend seen in European NOx emissions of around 2 to 4% per year (EEA, 2020a) and only one year to 

train the data, the ML method potentially provides a stronger than expected overall reduction of around 8%. The “before-

during” and the “year-to-year” approaches also show stronger reduction estimates on average during 2019 and the pre-

lockdown period, respectively. The latter two methods also display a stronger standard deviation across cities than the weather-295 

normalisation method, which suggests substantial local biases due to the omission of the meteorological variability. 

When we consider the lockdown period, the weather parameter distributions are much more similar between 2019 

and 2020 (Figure 2) than is the case for the pre-lockdown period, and on average, across Europe, the “year-to-year” and 

weather-normalised estimates show results within the same range in terms of mean (around -20%) and variability amongst the 

median estimates obtained for all urban areas (around 16%). This is, however, not the case for the “before-during” estimates, 300 

which show much stronger variability between European urban areas (62%). The “before-during” estimates are therefore not 

reliable and the “year-to-year” method is very dependent on the differences in the meteorological situations between 2019 and 

2020. For this reason, the ML estimates are the most reliable and will be used solely for the rest of this study. Details of the 

ML estimates during the lockdown provided in Fig 6 are reported in the table in annex B. The NO2 tropospheric column change 

estimates (median values per urban area) show on average a reduction of 23%, but urban areas that are known to have the most 305 

stringent measures (Hale et al., 2020) show much stronger reductions, e.g., Madrid 60%, Barcelona 59%, Turin 54%, and 

Milan 49%. Lighter reductions can be observed in urban areas where less stringent measures were taken, e.g., Stockholm 17%. 

To check the robustness of these results, equivalent estimates are provided using surface stations and air quality models in 

section 3 and 4 and will be compared in section 5.  



 

14 
 

 310 
Figure 6.  TROPOMI-based estimation of tropospheric NO2 column change (%, relative to the BAU predictions) for 

urban areas with at least 0.5 million inhabitants computed using the ML-based weather-normalisation method for the 

pre-lockdown and lockdown periods (a and b respectively). The diameter of the circles is proportional to the 

population count in each urban area. 

 315 

 Mean (%) Standard Deviation (%) 

 “Before-during” [2019] -40 47 

 “Before-during” [2020] -25 62 

 “Year-to-year” [01/02 to 15/03] -26 31 

 “Year-to-year” [16/03 to 30/04] -18 16 

Machine Learning [01/02 to 15/03] -8 16 

Machine Learning [16/03 to 30/04] -23 16 

 

Table 2. Scores over all European urban areas included in the dataset for the different TROPOMI NO2 tropospheric 

columns change estimates. Mean and standard deviation are calculated for the median estimates of all urban areas 

considered in the study, i.e., the standard deviation is a metric of the inter-urban area spread. 

3. Surface station estimates 320 

3.1. Methods 

We have estimated the impact of the COVID-19 lockdown on surface NO2 pollution in European areas using the 

methodology introduced by Petetin et al. (2020), applied to up-to-date (i.e., partly unvalidated real-time) hourly NO2 data from 

the European Environmental Agency (EEA) AQ e-Reporting (EEA, 2020b). We first selected the urban/suburban background 

stations located within 0.1° from the city centres and applied the quality assurance and data availability screening described in 325 
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Petetin et al. (2020), using the GHOST metadata (Globally Harmonised Observational Surface Treatment, Bowdalo et al., 

2020, in preparation). A total of 164 stations in 77 urban areas was selected. At each station (independently), we estimated the 

BAU NO2 mixing ratios that would have been observed during the lockdown period under an unchanged emission forcing. 

This was done using GBM models fed with meteorological inputs (2-m temperature, minimum and maximum 2-m temperature, 

surface wind speed, normalised 10-m zonal and meridian wind speed components, surface pressure, total cloud cover, surface 330 

net solar radiation, surface solar radiation downwards, downward UV radiation at the surface and PBL height) taken from the 

31 km horizontal resolution ERA5 reanalysis dataset (Hersbach et al., 2020) in addition to other time features (date index, 

Julian date, weekday, hour of the day). The ERA5 reanalysis data set is a consistent model version over time but at coarser 

resolution in comparison to the ECMWF high-resolution operational forecasts used in the TROPOMI estimates (31 km versus 

9 km).  335 

All GBM models were trained and tuned with data for the past 3 years (2017-2019) and tested with data from 2020 

before the lockdown. Petetin et al. (2020) showed that such duration for training the GBM models is generally sufficient for 

capturing the influence of the weather variability on surface NO2 mixing ratios. As discussed in more detail in Petetin et al. 

(2020), the date index feature here allows limiting the potential issues related to the presence of trends in the NO2 time series 

(between 2% to 4% decrease per year, EEA 2020a). If a substantial trend exists, the GBM models will put more importance 340 

on this feature, which in practice will force the model to make NO2 mixing ratio predictions (in 2020) in the range of the values 

observed during the last part of the training dataset, ignoring the oldest training data. Thus, given the long-term reduction of 

NO2 resulting from policy measures across Europe, considering longer training periods is not expected to improve the 

performance of the GBM models. In contrast to Petetin et al. (2020), who predicted BAU NO2 at a daily scale, the ML models 

developed here are predicting NO2 at an hourly scale (in order to get results collocated in time with TROPOMI overpasses; 345 

see also below). We then deduced the weather-normalised NO2 changes due to the lockdown by comparing observed and ML-

based BAU NO2 mixing ratios.  

3.2. Results 

Table 3 shows the overall performance of the GBM models on the training and test data sets. Statistical results are 

similar to the TROPOMI NO2 GBM model. Biases are low and correlation is high and there is a significant RMSE. As 350 

explained in section 2.3.2, statistical scores in the training set and the test set suggest that there is no apparent sign of overfitting 

in the predictions showing reasonable performance. Note that the RMSE and PCC are deteriorated compared to the statistics 

obtained over Spain in Petetin et al. (2020), mainly due to the fact that we are here working with hourly estimates. This is 

demonstrated by similar results as those of Petetin et al. (2020) that are obtained over this set of European cities when predicting 

NO2 at the daily scale (for the test dataset: nRMSE=28%, PCC=0.88, N=11,082). 355 
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 MB 

[ppbv] 

nMB 

[%] 

RMSE 

[ppbv] 

nRMSE 

[%] 

PCC N 

Surface stations training set  

(2017-2019) 

0.0 0.0 5.53 40.88 0.84 4,048,696 

Surface stations test set  

(1 Jan 2020 – 15 Mar 2020) 

+0.95 +7.02 6.24 45.87 0.80 268,960 

 

Table 3. Performance of the ML predictions of hourly NO2 surface mixing ratios over all European urban areas 

included in the dataset.  

 360 

 For a stricter comparison with the results discussed in Section 2, we provide two different estimates to assess the 

satellite sampling effect: i) using all hourly values or ii) filtered according to the S5P satellite overpass time (13:30 local solar 

time) and ‘qa’ filtering (clear-sky only). Figure 7 displays relative change estimates, showing the median of the distributions 

for each European city above 0.5 million inhabitants. Overall, the estimates for both sampling strategies are broadly consistent, 

with NO2 reductions of around 37% and 43% on average for the hourly sampling and the S5P overpass sampling, respectively 365 

(Table 3). The surface station estimates also show geographical variations similar to the satellite estimates, with larger 

reductions corresponding to locations with more stringent lockdowns (i.e., Spain, Italy and France) and less stringent 

lockdowns (i.e., Sweden, Germany). For example, Madrid shows reductions of 61% and 60% using the hourly surface stations 

and the satellite overpass time sampled surface stations, which are very similar to the satellite estimates. In contrast, Stockholm 

shows very small reductions of 8% and 3%, respectively. These latter values are different from the satellite-based estimates 370 

(reduction of 17%) and point out some uncertainty regarding the estimates in this area.  

Northern Europe (particularly Germany, Poland and the UK) displays larger NO2 reductions with the estimates at 

satellite overpass time. This points out a possible dependence on the time of the day in the emission and pollution reductions. 

In general, those NO2 relative changes based on the surface in-situ observations are larger than the ones based on satellite NO2 

tropospheric columns. These two points are further discussed in section 5. 375 
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Figure 7. Weather-normalised estimation of NO2 changes (%, relative to the BAU predictions) using surface 

observations during the lockdown period using business as usual (BAU) simulated observations as the baseline for 

urban areas with at least 0.5 million inhabitants. The left-hand side (a) shows the estimates using full hourly datasets 

and the right-hand side (b) shows the estimates using the S5P overpass time sampled dataset. The diameter of the 380 

circles is proportional to the population in each urban area. 

4. CAMS regional ensemble model estimates 

4.1. Methods 

 

Model estimates have been calculated using the CAMS European regional air quality forecasting framework, which 385 

is an ensemble of 11 models (Marécal et al. 2015). These models are used to calculate multi-model median values, which is 

the best performing quantity on average compared to individual models. Using such a multi-model approach is useful to 

minimize the imperfections in each model formulation. Operational evaluation and validation of the CAMS European 

ensemble against independent observations is performed and delivered routinely and can be accessed at 

https://atmosphere.copernicus.eu/index.php/regional-services.  390 

Two sets of model hindcasts have been conducted using two different emission scenarios: BAU emissions and 

reduced COVID-19 lockdown emissions. The emission inventory used for the BAU reference simulation is the same that is 

used in the daily Regional Air Quality Forecasts of CAMS for Europe, i.e., the CAMS-REG-AP dataset (v3.1 for the reference 

year 2016, Granier et al., 2019). It is compiled by TNO (Netherlands Organisation for Applied Scientific Research) under the 

CAMS emission service, based on official emissions reported by the countries to the EU (NEC Directive) and UNECE (LRTAP 395 

Convention /EMEP, Kuenen et al., 2014). The spatial resolution of the emissions is 0.1° ´ 0.05° but re-gridded to 0.1° ´ 0.1° 

to match the models’ grid. The alternative emission scenario, corresponding to the lockdown period, was derived by combining 

the original CAMS-REG-AP inventory with a set of country- and sector-resolved reduction factors (Guevara et al., 2020). For 
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the present work, time-invariant emission reduction factors were used by country and for three activity sectors: manufacturing 

industry, road transport, and aviation (landing and take-off cycles) that are reduced on average by 15.5%, 54% and 94%, 400 

respectively. These sectors were considered to be the most affected by changes in activity during lockdown (Le Quéré et al., 

2020).  

The reduction factors were computed from collections of near-real-time activity data, such as Google Community 

Mobility Reports (Google LLC, 2020) for road transport, airport statistics from Flightradar24 (2020) for aviation and electricity 

load information from ENTSO-E (2020) for the industry sector. Results from Guevara et al., (2020) showed that during the 405 

most severe lockdown period (23 March to 26 April), estimated surface emission reductions at the European level were most 

important for NOx (33%) with road transport being the main contributor to total reductions in all cases (85% or more). Italy, 

France and Spain were the countries that experienced major NOx emission reductions (down to 50%), a result that is in line 

with the strong lockdown restrictions implemented by their respective governments. On the contrary, Sweden, for example, 

showed reductions of only 15% (on NOx) due to the implementation of national recommendations instead of a state-enforced 410 

lockdown. More details about the emission scaling procedure using the data and methodology from Guevara et al., 2020 can 

be found in Colette et al. (2020) where the resulting country and activity sector dependent reduction factors are provided for 

the EU28 countries plus Norway and Switzerland. Values of the emission reduction factors per country within the European 

regional modelling domain and per activity sector are provided in annex C. For the main contributing sector, road transport, 

the largest reductions in emissions are observed in countries where lockdown restrictions were more stringent (according to 415 

the Oxford Coronavirus Government Response Tracker stringency index Hale et al., (2020)), such as Italy (75%), Spain (80%) 

and France (76%). 

All the models operated with the same setup as the CAMS regional operational production. The modelling domain 

covers Europe at 0.1° ́  0.1° resolution. The meteorological and chemical boundary conditions are obtained from the Integrated 

Forecasting System (IFS) of ECMWF, which is the same system that provides part of the dataset for the ML-based estimations 420 

(see sections 2 and 3). The baseline simulation was using the BAU anthropogenic emissions as described above and the 

lockdown scenario was using the lockdown-adjusted inventory, modulated by country and activity sectors. From the two sets 

of 11 model simulations, the median at each grid point is calculated from an ensemble simulation (as is routinely done for the 

operational CAMS predictions, Marecal et al., 2015). Differences between the BAU ensemble and the lockdown scenario 

ensemble are then used to calculate NO2 reduction estimates.  425 

 

4.2. Results 

 

Figure 8 displays the relative change estimates for each European urban area defined in section 2.2. The estimates are 

calculated using the median of the full hourly distribution (Fig. 8a) and of the distribution at ‘qa’-filtered S5P overpass times 430 

and dates only (Fig. 8b) for each urban area. As expected, urban areas in more stringent lockdown countries (i.e., Spain, Italy, 

France) show the largest reductions (e.g., down to 60% in Madrid, see Figure 9), whereas urban areas with less stringent 
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lockdown measures (i.e., Germany, Poland, Sweden) show smaller reductions (e.g., around 16% in Stockholm, see Figure 8). 

The time sampling difference (hourly versus S5P overpass) does not affect the model estimates much, only differences of a 

few per cent are seen for most of the European urban areas. On average, over the set of median estimates for each urban area, 435 

the difference is small with 30% for hourly estimates and 32% for S5P sampled estimates. This is expected as the emission 

reduction estimates used to generate the lockdown scenario ensemble are set constant over time (daily and hourly). This point 

is further expanded in the next section where model estimate results are compared to the other types of estimates.  

 
Figure 8. Air quality modelling estimates of surface NO2 changes (%, relative to the BAU predictions) during the 440 

lockdown period in urban areas with at least 0.5 million inhabitants. The left-hand side (a) shows the estimates using 

full hourly datasets and the right-hand side (b) shows the estimates using the S5P overpass time sampled dataset. The 

diameter of the circles is proportional to the population in each urban area. 

5. Comparison of the three different types of estimates 

In table 4 and figure 9 we summarize the results of this study. Table 4 shows the average reduction of all the median 445 

estimates together with the inter-urban area variability over Europe. Figure 9 shows the distribution of the NO2 changes 

estimated for the lockdown period per urban area. This figure provides estimates equivalent to box plots where the median and 

the inter-quartile range are displayed. For clarity, we chose to display only urban areas that are above 1 million inhabitants. 

The values of each estimate for all urban areas considered in this study are given in the table in annex B.  

The three types of weather-normalised estimates agree on identifying stronger reductions where more severe 450 

lockdown measures were implemented. As shown in Section 2, satellite-based estimates show a relationship between NO2 

tropospheric column reductions and the extent and generalization of restrictive measures in each country. A similar relationship 

is observed for surface sites and model estimates (Sections 3 and 4). The largest NO2 reduction estimates of around 50% to 

60% for both surface and tropospheric columns are found in Spanish, Italian and French urban areas. In countries that 

implemented softer lockdown measures, urban areas show smaller reductions, e.g., Germany, Netherlands, Poland and 455 



 

20 
 

Sweden. Although significant discrepancies exist between the satellite-, surface- and model-based estimates in urban areas 

such as Naples (Italy), Sofia (Bulgaria), Katowice (Poland), the three methods provide an overall consistent picture. It is 

remarkable to note that this result contributes to establishing the usefulness of satellite-based estimates for urban air quality 

and not only for atmospheric pollution in general. Having a range of three different types of estimates helps to provide estimates 

of pollution changes across Europe with a certain level of certainty. When all the estimates agree, it is more likely that the 460 

values of reduction due to the lockdown implementations are reliable. Conversely, if the different types of estimates show 

discrepancies, less confidence should be given to the reduction estimates. In Fig. 8, Madrid, Turin and Milan, to mention a few 

urban areas, show consistency between the different types of estimates expressing more certainty in the results. In other 

locations such as Sofia, Athens and Budapest, strong discrepancies indicate that the estimates could be uncertain. Average 

scores in table 4 show that surface station observations provide stronger reduction estimates and that satellite-based estimates 465 

provide weaker reduction estimates. Model estimates are mostly in between and show much less spread within a given urban 

area (bars in Fig. 9) and less variation between urban areas (standard deviation in Table 4). The origin of such differences can 

vary and is detailed below. 

Machine learning estimates that are observation-based (satellite and surface stations) are showing more spread 

compared to the model estimates. In Figure 9 the interquartile ranges for the observation-based ML estimates are much larger 470 

than for the model estimates. Such large ranges show that there is a strong spread in the ML-based estimates that is not seen 

in the model-based estimates. Model estimates are based on country-dependent emission reduction/scaling factors that are 

constant over time. The variability is induced by the changes in atmospheric conditions, but not by changes in the emissions. 

The estimates from the ML approach can represent the transition into the lockdown where emissions gradually decreased. This 

is contributing to the increased spread seen in the ML estimates. Scores from ML estimates (see table 1 and 3) also show 475 

significant RMSE that can add noise to the time series and add to the resulting spread of the distributions. A stronger spread 

in TROPOMI estimates is likely due to the small training set used. Disentangling the noise and the actual variability would 

need to be carefully done in future work.  

All the different estimates presented in this study are consistent in their spatial scale using 0.1° ´ 0.1° TROPOMI 

averaged pixels that match the CAMS forecasts and surface stations within a 0.1° range from the city centre. Some of the 480 

smaller urban areas considered in this study likely have a footprint that is smaller than 0.1°, meaning that high pollution levels 

from the urban area are mixed with low pollution background levels. This could cause the pollution changes in the gridded 

estimates to be weaker than expected in certain urban areas (e.g., Katowice, Budapest, Glasgow, etc.). Also, even if the 

urban/suburban background stations are selected, the in-situ surface observations sample the pollution levels within a 0.1° ´ 

0.1° pixel given their location. This sampling might not be exactly representative of the average pollution footprint within the 485 

same pixel. This average is the information given by the models or the satellites. These representativeness issues contribute to 

creating discrepancies between the type of estimates and hence generate uncertainty. The differences seen in Fig. 9 between 

surface station estimates and gridded estimates (models and satellites) point out such possible representativeness issues. 
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Representativeness is a difficult and important topic and deserves further research as it would require careful examination of 

the stations’ locations in specific urban areas and also using higher-resolution modelling than 10 km. 490 

Satellite overpass times (13:30 local solar time) and the presence of clouds in the measurement pixel can potentially 

influence the reduction estimates from the TROPOMI data. We considered 1.5 months to compute the satellite reduction 

estimates. Overall, the sample size (S5P valid overpasses) in Fig. 9 ranges between 14 (Sevilla) and 37 (The Hague). In the 

same Figure 9, surface sites and model estimates are displayed for hourly and S5P sampled estimates. Smaller or larger samples 

cannot really explain discrepancies between all the different estimates. Results, however, can be affected when the sample size 495 

becomes statistically very small and if shorter time periods (e.g., 1 or 2 weeks) are considered for satellite reduction estimates. 

Very small samples over the 6-week period were not considered in this study to avoid this effect. The sampling effect also 

shows greater changes in the surface station estimates than in the model estimates. As mentioned above and seen in Figure 9 

the surface station estimates provide more variability that accounts for hourly variations. The model estimates have fixed 

emission scaling factors for the entire lockdown period. The surface station estimates show more sensitivity to the time 500 

sampling than the model estimates. On average (see table 4), the S5P overpass sampling changes the estimates by around -6% 

for surface station estimates and only by -1.5% for model estimates. This suggests that the lockdown-induced reduction 

estimates depend upon the time of the day, i.e., those times when the road transport activity is peaking.  

Finally, the reduction estimates for tropospheric NO2 columns displayed in Figure 9 are generally not as strong as the 

NO2 surface estimates (observations and model). Some exceptions can be seen in certain Spanish (e.g., Barcelona, Madrid) 505 

and Italian (e.g., Milan, Turin) urban areas, where column estimates are close to the surface estimates, but overall column 

reductions are weaker. With all urban areas considered, the satellite estimates show around 23% reduction on average, which 

is 10% to 20% less than the model and surface station estimates (see table 4). This can be expected as NO2 surface site 

measurements do not directly translate to the TROPOMI NO2 tropospheric column, which is the integrated NO2 content from 

the surface to about the 200hPa altitude. Due to the short lifetime of NO2 (around 12 hours), only small lockdown-induced 510 

changes to the free tropospheric NO2 contents are expected. Changes are mainly expected near-surface and within the PBL. 

Therefore, the different nature of the vertical sampling is likely to contribute to the differences between the relative reduction 

estimates from tropospheric columns versus surface concentrations. Further work will be needed to link quantitatively the 

tropospheric column and surface-level variations, including sampling the model estimates using an observation operator 

commonly used in data assimilation and inverse modelling systems. This important work will be carried out in a further study. 515 

 

 Mean (%) Standard Deviation (%) 

Surface Stations [hourly] -37 15 

Surface Stations [S5P sampling] -43 19 

CAMS model ensemble [hourly] -30 11 

CAMS model ensemble [S5P sampling] -32 12 
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TROPOMI -23 16 

Table 4. Scores over all European urban areas included in the study for the different NO2 change estimates: based on 

surface observations, model estimates and TROPOMI observations. Mean and standard deviation are calculated for 

all urban area resulting estimates, i.e., the standard deviation is a metric of the inter-urban area spread. 

6. Conclusions 520 

In this paper, we first show the importance of accounting for weather variability in satellite-based estimates of NO2 

changes due to the COVID-19 lockdown. While focusing on Europe and using the Sentinel-5p/TROPOMI instrument, we 

show that the satellite estimates based on direct comparisons between different time periods without accounting for weather 

variability can be flawed and should not be used for this kind of assessment. To account for weather variability in satellite 

estimates, we use a recently developed methodology based on the gradient boosting machine learning technique. This 525 

methodology has proven to be efficient with surface sites to estimate lockdown induced changes over Spain (Petetin et al., 

2020). We extended those surface estimates over Europe to compare with the satellite estimates. Finally, we included estimates 

of NO2 changes using the 11-model CAMS regional ensemble, using emission reduction factors representative of the lockdown 

period. By providing and comparing the three different methodologies we provided a comprehensive and complimentary 

assessment of NO2 pollution level changes during the COVID-19 European lockdown. These assessments of pollution changes, 530 

when activity levels of key emitting sectors are significantly reduced (i.e., road transport and industry) in lockdown conditions, 

also provide crucial information to accurately quantify the benefits of the potential implementation of air quality policies for 

these emission sectors.  

Main results show a consistent tendency of stronger reduction of NO2 where more stringent lockdown measures were 

implemented. On average, the three types of estimates show a reduction of 23%, 43% and 30% for satellite, surface stations 535 

and model estimates, respectively. Differences are explained by the different nature of the methods used, i.e., observation-

based versus model-based, horizontal and vertical sampling, variability representation and time sampling. By providing an 

array of different methods we provide an indication of how reliable the pollution reduction estimates are for the various urban 

areas considered in this study. Accurately quantifying the pollution changes is also important for the impact of these pollution 

reductions on the COVID-19 pandemic itself. Several studies have investigated the correlation between the high level of 540 

COVID-19 mortality and atmospheric pollution (e.g., Contincini et al. 2020, Ogen et al. 2020, Achebak et al., 2020). Feedbacks 

are then to be expected between the effects of short-term air pollution exposure on COVID-19 mortality and lockdown 

measures. Beyond the quantification of the impact of COVID-19-related restrictions on pollutant concentrations, the 

observation-based weather-normalisation methodology used in this study is of general interest for assessing the impact of any 

type of emission changes (e.g., regulation and policy) on air quality (Grange et al., 2018, 2019) in the future.   545 
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Figure 9. Comparisons of the lockdown-induced NO2 change estimates (%, relative to the BAU predictions) using 

different methodologies for European urban areas above 1 million inhabitants. Horizontal lines represent the 
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interquartile ranges (over the temporal variability), and the ticks are the median values using the full distribution per 550 

urban area. For readability, urban areas are ranked using the average between all median estimates. 
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Annex A. Gradient Boosting Regressor Tuning 

We have used TROPOMI data from 2019-01-01 to 2019-05-31 to train our machine learning simulator. We used the gradient 565 

boosting regressor function included in the scikit-learn python library. For validation purposes, the data set has been split 

between a training set (90% of the total dataset) and a test set (10% of the total dataset) using the train_test_split function. The 

hyperparameter tuning is then performed using the training set to generate the simulators and test set to find the best fit. 

Similarly, to Petetin et al. (2020) the learning rate was fixed to 0.05 and the number of features (max_features) is set to “sqrt”. 

In addition, the tuning of the gradient boosting regressor was done for the following hyperparameters using the grid search 570 

method. The following hyperparameters were tuned: the subsample (subsample: from 0.3 to 1.0 by 0.1 with the best value of 

0.9), the number of trees (n_estimators: from 50 to 1000 by 50 with the best value of 400) and the minimum sample in terminal 

leaves (min_samples_leaf: from 1 to 30 with the best value of 22). We use the default 5-fold cross-validation. We then test the 

final results on the test set in order to ensure not overfitting. 

 575 

Links to the python libraries and functions: 

Scikit-learn python 

https://scikit-learn.org/stable/index.html 

Gradient boosting function 

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html 580 

Grid search hyperparameter tuning 
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https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html 

Random dataset splitting 

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html 

Annex B. Lockdown induced NO2 changes estimates for each European urban area considered in this study 585 

 

Urban Area Country TROPOMI 
Estimates 

(%)  

N 
Revisits 

Model 
Estimates 

Hourly 
(%) 

Model 
Estimates 

S5P 
Sampled 

(%) 

Surface 
Station 

Estimates 
Hourly 

(%) 

Surface 
Station 

Estimates 
S5P 

Sampled 
(%) 

Amsterdam Netherlands -17 32 -18 -22   
Antwerp Belgium -23 36 -21 -25 -33 -30 
Athens Greece -11 28 -36 -36 -58 -67 

Barcelona Spain -59 29 -43 -39 -49 -54 
Bari Italy -20 33 -21 -18 -44 -28 
Basel Switzerland -33 37 -31 -38 -33 -39 

Belgrade Serbia 6 34 -20 -18   
Berlin Germany -38 30 -22 -20 -31 -40 
Bilbao Spain -21 19 -48 -50 -27 -15 

Birmingham UK -17 28 -33 -38 -31 -31 
Bonn Germany -5 35 -27 -29 -39 -62 

Bordeaux France -22 28 -47 -50   
Bradford UK -24 26 -31 -34   

Braga Portugal -1 16 -43 -43   
Bremen Germany -37 34 -18 -20 -37 -49 
Brighton UK -22 31 -21 -24 -23 -27 
Bristol UK -19 30 -40 -44 -38 -39 

Brussels Belgium -29 32 -38 -44 -38 -43 
Bucharest Romania -23 31 -34 -33   
Budapest Hungary -16 34 -24 -26 -38 -64 
Bytom Poland -12 30 -25 -22   

Caerdydd UK -19 31 -36 -42 -58 -73 
Catania Italy -30 26 -35 -35   
Cologne Germany -25 36 -25 -25 -30 -53 

Dortmund Germany -11 36 -24 -24 -29 -48 
Dresden Germany -28 32 -22 -20 -29 -21 
Dublin Ireland -35 26 -21 -21 -49 -59 
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Duisburg Germany -4 36 -18 -18   
Düsseldorf Germany -11 36 -25 -26 -27 -49 
Edinburgh UK -16 23 -28 -28 -39 -34 

Essen Germany -3 36 -19 -18 -26 -33 
Florence Italy -48 33 -47 -52 -53 -57 
Frankfurt Germany -24 34 -24 -25 -33 -47 
Gdańsk Poland -17 30 -11 -10 -23 -43 
Geneva Switzerland -57 34 -47 -49 -37 -30 
Genoa Italy -36 30 -27 -27   

Glasgow UK -30 23 -27 -29 -46 -56 
Gliwice Poland -23 32 -27 -25   

Göteborg Sweden -5 32 -10 -14 8 19 
Hamburg Germany -36 32 -15 -17 -31 -40 
Hannover Germany -19 33 -24 -25 -26 -29 
Helsinki Finland -28 24 -25 -24 -26 -24 
Katowice Poland -4 26 -24 -20 -39 -64 
Kraków Poland -12 30 -21 -21 -37 -49 
Leeds UK -11 25 -32 -34 -47 -47 

Leipzig Germany -23 36 -22 -23   
Lille France -17 34 -37 -41   

Lisbon Portugal -22 20 -43 -50 -39 -40 
Liverpool UK -4 29 -28    

Liège Belgium 0 34 -34 -35 -37 -40 
Łódź Poland -12 30 -29 -29 -24 -38 

London UK -30 26 -29 -32 -27 -34 
Lyon France -49 35 -48 -52   

Madrid Spain -60 17 -56 -58 -61 -60 
Manchester UK -27 26 -37 -40 -39 -45 
Mannheim Germany -21 35 -23 -22 -33 -44 
Marseille France -55 28 -41 -39   

Milan Italy -49 29 -52 -59 -52 -50 
Munich Germany -22 32 -27 -30 -21 -8 
Málaga Spain 16 6 -50 -48 -63 -66 
Naples Italy -35 29 -35 -34 -69 -82 

Newcastle UK -30 22 -27 -30 -42 -54 
Nice France -34 24 -38 -37 -59 -61 

Nottingham UK -24 23 -35 -37 -45 -47 
Nuremberg Germany -7 31 -27 -28 -39 -46 

Oslo Norway -51 22 -20 -24   
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Palermo Italy -39 26 -22 -23   
Paris France -29 34 -38 -43 -48 -53 
Porto Portugal -24 17 -50 -51   

Poznań Poland -26 31 -22 -22 -38 -56 
Prague Czechia -4 32 -16 -18 -20 -25 
Riga Latvia 5 30 -7 -7 -50 -84 
Rome Italy -40 30 -46 -53 -49 -46 

Rotterdam Netherlands -13 33 -21 -25 -27 -21 
Rouen France -23 35 -40 -46   

Saarbrücken Germany -24 38 -28 -27 -33 -37 
Salerno Italy -32 26 -43 -48 -62 -57 
Sarajevo Bosnia Herz. -29 26 -23 -20   
Sevilla Spain -40 14 -48 -51 -36 -39 

Sheffield UK -20 27 -30 -32 -25 -21 
Sofia Bulgaria -5 19 -35 -32 -46 -67 

Southend UK -27 29 -11 -11 -30 -37 
Stockholm Sweden -17 28 -17 -18 -8 -3 
Stuttgart Germany -29 36 -27 -29 -7 -4 

The Hague Netherlands -13 37 -21 -24 -26 -23 
Thessaloníki Greece -32 27 -36 -36   

Tirana Albania -24 26 -40 -41   
Toulouse France -16 24 -48 -51   

Turin Italy -54 28 -54 -60 -50 -52 
Utrecht Netherlands -20 33 -25 -30 -28 -31 

Valencia Spain -34 22 -35 -33 -63 -71 
Vienna Austria -27 33 -21 -23 -34 -41 
Vilnius Lithuania 32 26 -25 -24 -51 -66 
Warsaw Poland -30 27 -25 -24 6 -14 

Wiesbaden Germany -26 33 -30 -31 -31 -44 
Wrocław Poland -28 34 -22 -21 -14 -27 

Wuppertal Germany -13 36 -25 -25 -27 -39 
Zagreb Croatia -16 32 -29 -30 -68 -81 

Zaragoza Spain -8 27 -45 -49 -47 -49 
Zürich Switzerland -13 36 -40 -43 -35 -44 
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Annex C. Reduction factors (%) by country and activity sector corresponding to the lockdown period over the modelled 
European domain 590 

Country GNFR_B_Industry GNFR_F_RoadTransport GNFR_H_Aviation 

Albania -11.5 -77 
 

Austria 
 

-54 -96 

Belarus  -19  

Belgium -11.0 -63 -96 

Bosnia & Herz.  
 

-43 
 

Bulgaria -14.0 -48 -96 

Croatia -21.5 -65 -93 

Czechia -14.7 -41 -99 

Germany -11.5 -42 -87 

Denmark -17.3 -40 -97 

Estonia -15.2 -37 -92 

Finland -5.9 -53 -91 

France -29.0 -76 -94 

Georgia 
 

-75 
 

Great Britain -21.0 -67 -88 

Greece -14.9 -66 -91 

Hungary -12.8 -50 -95 

Ireland -12.6 -64 
 

Italy -18.9 -75 -93 

Latvia -12.7 -35 -99 

Lithuania -13.4 -47 -100 

Luxembourg -11.2 -62 -86 

Macedonia -30.5 -49 -100 

Malta 
 

-48 
 

Moldova -21.5 -57  

Netherlands -27.1 -56 -91 

Norway -10.9 -38 -83 

Poland -12.3 -53 
 

Portugal -14.6 -73 
 

Romania -10.2 -62 -100 
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Russia 
 

-38 
 

Serbia 
 

-57 
 

Slovakia -11.8 -51 -100 

Slovenia -10.7 -50 -91 

Spain -19.3 -80 -97 

Sweden -12.4 -31 -95 

Switzerland  -47 -95 

Turkey 
 

-87 
 

Ukraine 
 

-23 
 

AVG (+other) -15.5 -54 -94 
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