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Abstract. This study provides a comprehensive assessment of NO2 changes across the main European urban areas induced by 

the COVID-19 lockdown using satellite retrievals from the Tropospheric Monitoring Instrument (TROPOMI), surface site 30 
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measurements and simulations from the Copernicus Atmospheric Monitoring Service (CAMS) regional ensemble of air quality 

models. Some recent TROPOMI-based estimates of NO2 changes have neglected the influence of weather variability between 

the reference and lockdown periods. Here we provide weather-normalised estimates based on a machine learning method 

(gradient boosting) along with an assessment of the biases that can be expected from methods that omit the influence of 

weather. We also compare the weather-normalised satellite NO2 column changes with both weather-normalised surface NO2 35 

concentration changes and simulated changes by the CAMS regional ensemble, composed of 11 models, using recently 

published emission reductions induced by the lockdown. We show that Aall estimates show the same tendency on NO2 

reductions. Locations where the lockdown was stricter show stronger reductions and, conversely, locations where softer 

measures were implemented show milder reductions in NO2 pollution levels. Regarding Aaverage reductions, estimates based 

on either satellite observations (-23%), surface stations (-43%) or models (-32%) are presented, showing the importance of 40 

vertical sampling but also the horizontal representativeness. Surface station estimates are significantly changed when sampled 

to the TROPOMI overpasses (-37%) pointing out the importance of the variability in time of such estimates. Observation based 

machine learning estimates show a stronger temporal variability than the model-based estimates. 

 1.Introduction 

1.  45 

Nitrogen dioxide (NO2) is part of the nitrogen oxides(NO2; together with NO, a constituent of NOx (NOx=NO+NO2) 

isand a very well-established cause of poor air quality in the most urbanized and industrialized areas of the world. NO2 is 

harmful for living organisms over long term atmospheric concentration exposure. It also plays a major role in urban ozone 

formation and secondary aerosols which are also harmful for the living at high levels in the lower atmosphere (Lelieveld et al., 

2015; Myhre et al., 2013). According to the European Environment Agency (EEA 2020a) European main anthropogenic NOx 50 

sources are road transport (39%), energy production and distribution (16%), commercial, residential and households (14%), 

energy use in industry (12%), agriculture (8%), non-road transport (8%) and industrial processes and product use (3%). With 

an atmospheric lifetime typically below 1 day, NOx is relatively short-lived and is mainly controlled by photochemical 

reactions, so the majority of NOx does not get transported far downwind from its sources (Seinfeld and Pandis, 2006). Thus, 

near-surface NOx concentration is high over cities and densely populated areas and low otherwise. Besides emissions, the 55 

variability of NOx is strongly driven by meteorological conditions, especially atmospheric transport, vertical mixing and solar 

radiation that can favour or not their accumulation close to emission sources (Arya, 1999). For example, increased wind speed 

and higher planetary boundary layer height will increase the dispersion of NOx from the emission sources. Its short lifetime 

that is partly modulated by atmospheric conditions such as temperature and radiation combined with localized emission sources 

make NO2 an excellent proxy for detecting emission reductions, from both surface and satellite measurements. 60 

Formatted: Numbered + Level: 1 + Numbering Style: 1, 2, 3,
… + Start at: 1 + Alignment: Left + Aligned at:  0 cm +
Indent at:  0.63 cm

Formatted: Font: (Default) +Body (Times New Roman)

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript



3 
 

The worldwide outbreak of the coronavirus disease (COVID-19) that arose in late 2019 in China and spread around 

the world in early 2020 led many countries to take action in order to slow down the contamination growth rate of the virus. 

The so-called lockdowns severely restricted or banned movements of people, closed most public places and limited journeys 

to essential work commutes. Some measures started in China in late 2019 with stricter lockdowns in January 2020. In Europe, 

lockdown measures were implemented at various dates during February and March 2020. These lockdowns drastically reduced 65 

traffic and also activity levels in most industries (Guevara et al., 2020; Le Quéré et al., 2020). These sectors represent a large 

share of NOx emissions (51% according to EEA 2020a). Studying NO2 concentrations changes during the lockdown is 

therefore very important to assess the impact of such activity level reductions on the population pollution exposure. The 

COVID-19 lockdown is a unique opportunity to assess the impact of future pollution reduction measures, in particular the 

impact of drastic reductions on the road transport sector using combustion energy. 70 

The lockdowns are expected to have large effects on urban NO2 air pollution levels in conjunction with other 

modulating factors (i.e., weather conditions). The first quarter of 2020 had specific and highly variable meteorological 

conditions. The storm Ciara crossed over Europe in the second week of February followed by the Storm Dennis that also 

crossed Europe a week later. Both extratropical storms generated strong winds over the northern half of Europe (above 45°N) 

from February 9th, 2020 until February 18th, 2020. Strong wind situations, yet milder, over the Iberian Peninsula, the southern 75 

part of France and the northern part of Italy were also generated by Storms Karine and Myriam in the first week of March. 

Moreover, February and March 2020 displayed stronger positive temperatures anomalies over Europe in comparison with 

February and March 2019 (https://surfobs.climate.copernicus.eu/stateoftheclimate). Such weather anomalies however did not 

persist further during the second quarter of 2020. Accounting for the effect of such meteorological variations is very important 

to assess accurately the effect of COVID-19 related mobility restrictions on air pollution. Different approaches can be used to 80 

assess such pollution changes, based on different types of data such as: satellite observations, surface site observations and air 

quality models.. 

 Several studies used the recently launched (October 2017) Tropospheric Monitoring Instrument (TROPOMI, 

Veefkind et al., 2012) on board the Copernicus Sentinel-5 Precursor (S5P) satellite to showcase the NO2 reductions caused by 

the COVID-19 lockdowns. Due to the substantial interannual variability of meteorological conditions, the young age of the 85 

instrument prevents estimating a representative climatological baseline to be compared to NO2 levels observed during the 

lockdown period. Satellite based studies using TROPOMI comparing before and after lockdown periods (e.g., Wang et al., 

2020b) or comparing the lockdown period with its 2019 equivalent (e.g., Bauwens et al., 2020, Nakada et al., 2020, Zambrano-

Monserrate et al. (2020)) give little to no weight to the synoptic meteorological conditions and how they could potentially flaw 

the pollution change estimates. 90 

In contrast, Schiermeier (2020) mentioned the ‘weather factor’ early on in the COVID-19 crisis which can affect 

strongly the pollution levels.  And studies as for example Le et al. (2020) showed 2019 and 2020 TROPOMI NO2 comparisons 

but acknowledged the impact of weather anomalies on pollution levels. Only very recently a weather-normalisation technique 

has been applied to estimate NO2 changes due to the COVID-19 restrictions across cities in the US based on TROPOMI 
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(Goldberg et al., 2020). Also, insufficient importance and clarity are given about the fact that satellite data used in such analyses 95 

are conditioned by the cloud coverage, revisit frequency and quality flag. Ignoring or not acknowledging such information can 

also lead to flawed satellite based estimates and provide misleading information (https://atmosphere.copernicus.eu/flawed-

estimates-effects-lockdown-measures-air-quality-derived-satellite-observations). 

A number of studies used surface in-situ measurement sites. For example, Wang et al. (2020a) showed that lower 

emissions from motor vehicles and secondary industries were most likely responsible for the observed decreases of NO2 100 

concentrations in China during January-March 2020. Collivignarelli et al. (2020) showed using surface station measurements 

that major NO2 reductions occurred in Milan, a city that showed rapid increase of cases early in the European COVID-19 crisis 

(February 2020) and was one of the first cities to be put into lockdown in Europe. Past studies such as Carslaw and Taylor 

(2009) showed the usefulness and the importance of weather normalisation techniques for air pollution applications using 

surface observations, such as local air traffic activity impact on NO2 predictions. This was followed more recently by Grange 105 

et al. (2018, 2019) where machine learning techniques were used to perform weather normalisation for analysing trends and 

detecting the impact of policy measures on air quality. Built on this previous work, several studies made use of machine 

learning to estimate the impact of the COVID-19-related mobility restrictions on air pollution levels, taking into account the 

confounding effect of the meteorological variability. Using ML models fed with ERA5 reanalysis meteorological data,  

Accounting for the effect of the meteorological variability, Petetin et al. (2020), highlighted a strong reduction of surface NO2 110 

concentrations across most Spanish urban areas during the first weeks of lockdown. Similarly, Keller et al., 2020 assessed the 

NO2 pollution changes using surface measurements globally showing country dependent variations on reductions.  

Finally, The first quarter of 2020 had specific and very changing meteorological conditions. The storm Ciara crossed 

over Europe in the second week of February followed by the storm Dennis that also crossed Europe a week later. Both 

extratropical storms generated strong winds over the northern half of Europe (above 45°N) from February 9th, 2020 until 115 

February 18th, 2020. Strong wind situations, yet milder, over the Iberian Peninsula, the southern part of France and the northern 

part of Italy were also generated by storms Karine and Myriam in the first week of March. Moreover, February and March 

2020 displayed stronger positive temperatures anomalies over Europe in comparison with February and March 2019 

(https://surfobs.climate.copernicus.eu/stateoftheclimate). Such weather anomalies however did not persist further during the 

second quarter of 2020. aAir quality modelling prediction systems offer a valuable tool for  representing the evolution of 120 

pollutants in the atmosphere according to changes in emissions, physical processes and weather variabilityaccounting for 

changes in weather using numerical weather prediction data. The Copernicus Atmospheric Monitoring Service (CAMS) 

produces European air quality forecasts and analyses daily using an ensemble of 11 models and the European Centre for 

Medium-range Weather Forecasts (ECMWF) data as input ensuring unique reliability and quality (Marecal et al., 2015). Using 

scaling emission factors to account for lockdown measures such an ensemble of modelssystem can be used to estimate 125 

lockdown reductions on NO2 pollution (amongst other pollutants) and account for the weather variability (Colette et al., 2020, 

Guevara et al., 2020).  
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Several studies used the recently launched (October 2017) Tropospheric Monitoring Instrument (TROPOMI, 

Veefkind et al., 2012) on board the Copernicus Sentinel-5 Precursor satellite to showcase the NO2 reductions due to the 

COVID-19 lockdown. Due to the young age of the instrument it is impossible to work with a climatological baseline that 130 

would use at least several years to assess the lockdown reductions. Zambrano-Monserrate et al. (2020)A number of TROPOMI 

NO2 studies on COVID-19 lockdown reductions give little weight to the synoptic meteorological conditions and how they 

could potentially flaw the estimates.Often satellite data from 2020 are compared with data from 2019 sometimes over short 

time periods. For example, Muhammad et al. (2020), compared full March 2019 averages with the 14-25 March 2020 average 

for Europe, amongst other estimates for other regions. Bauwens et al. (2020) provided a more in-depth assessment of NO2 135 

column reduction estimates by using similar year to year methodology, i.e. comparing 2019 to 2020. A number of TROPOMI 

NO2 studies on COVID-19 lockdown reductions give little weight to the synoptic meteorological conditions and how they 

could potentially flaw the estimates. Zambrano-Monserrate et al. (2020) and Nakada et al., (2020) showed maps of TROPOMI 

for short time periods comparing 2020 with 2019 for Europe, Asia and South America with no clear quantitative and robust 

assessment of the underlying weather conditions. Wang et al. (2020b), used differences of TROPOMI NO2 images over China 140 

before and during the lockdown to illustrate the impact of the lockdown on air pollution, but do not emphasise on how those 

differences might be affected by differences in weather conditions. In contrast, Schiermeier (2020) mentioned the ‘weather 

factor’ early on in the COVID-19 crisis which can affect strongly the pollution levels.  And studies as for example Le et al. 

(2020) showed 2019 and 2020 TROPOMI NO2 comparisons but acknowledged the impact of weather anomalies on pollution 

levels. Only very recently a weather-normalization technique has been applied to estimate NO2 changes across cities in the US 145 

based on TROPOMI (Goldberg et al., 2020). Also, insufficient importance and clarity are given about the fact that satellite 

data used in such analyses are conditioned by the cloud coverage, revisit frequency and quality flag. Ignoring or not 

acknowledging such information can also lead to flawed satellite based estimates and provide misleading information 

(https://atmosphere.copernicus.eu/flawed-estimates-effects-lockdown-measures-air-quality-derived-satellite-observations). 

TIn this paper , we aims atto providing a comprehensive and comparative assessment of the impact of the first 150 

European COVID-19 lockdown on NO2 pollution levels over major European urban areas using: satellite observations, surface 

in-situ observations and air quality models. We firstly illustrate how misleading it can beis to ignore the influence of the 

weather variability when assessing the lockdown-induced changes of NO2 with TROPOMI. Then, in order to quantify these 

changes, we use ML-based weather-normalisation methods for estimating the “business as usual” (BAU) NO2 pollution levels 

that would have been observed without any lockdown measures, based on both TROPOMI NO2 tropospheric columns (Sect. 155 

2) and surface in-situ observations (Sect. 3). NO2 changes are then investigated with the CAMS regional ensemble (Sect. 4). 

We compare and discuss the three different approaches in Sect. 5 followed by conclusions in Sect. 6. 

consider non-weather normalized TROPOMI estimates for assessing changes in NO2 induced by lockdown measures. 

We focus on Europe and provide a method that accounts for weather variability or more broadly speaking estimates what 

TROPOMI would have measured in Spring 2020 under “business as usual” (BAU) emission forcing (i.e. without any lockdown 160 

measures) in section 2. We then aim to provide a comprehensive assessment of the European lockdown induced NO2 changes. 

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript



6 
 

We compare the satellite estimates against what can be inferred from surface observations that also account for weather 

variability in section 3. We compare also with model-based scenarios using ad hoc bottom-up emission inventories reflecting 

lockdown restrictive measures in section 4. We summarize and confront all the presented estimates in section 5. 

2. TROPOMI NO2 column estimateschanges 165 

2.1. Dataset and analysis periods 

We use the operational Copernicus Sentinel 5 Precursor (S5P) TROPOMI NO2 level 2 product, for which data have been 

available since 28 June 2018. These observations are tropospheric columns (from the surface to the top of the troposphere) 

with a pixel resolution of 5.5km by 3.5km since 6 August 2019 and 7km by 3.5km before. The instrument can have up to daily 

revisit at 13:30 mean local solar time upon clear sky condition. and in this study, The quality we are making use of a quality 170 

flag (qa) provided with the retrieval is used to select only good quality data (qa > 0.75), which the so called “qa” flag, and only 

selecting good quality data, i.e. qa > 0.75. This removes cloud-covered scenes, errors and problematic retrievals (Eskes et al., 

2019). TROPOMI data are binned We have binned the data on a regular 0.1° ́  x0.1° grid in order to perform statistical analyses 

and to facilitate the processing of timeseries for locations of interest, i.e., large European cities in this study (see section 2.2) 

as well as the comparison with other datasets such as the 0.1° ´ 0.1° 0.1°x 0.1° CAMS regional air quality models (Marecal et 175 

al., 2015) and the 9 km European Centre for Medium range Weather Forecasts (ECMWF) weather forecasts.  

 

In this study we consider February, March and April 2020 and 2019 to assess the changes seen in TROPOMI NO2 

columns due to COVID-19 restrictions over Europe. Even Although the lockdown conditions and dates vary between countries, 

theafter 15 March 2020 is here considered as a representative starting date of the European-wide lockdown, given that most 180 

European countries implemented their nation-wide social distancing measures along the 2-week period going from  can be 

considered as a European lockdown as in the middle of the approximate 2-week transition period (e.g. 9 March 2020 (in Italy) 

toand 23 March 2020 in the (United Kingdom (UK)). Two periods of the year are considered in this study: the pre-lockdown 

period going from 1 February to 15 March, and the lockdown period going from 16 March to 31 April. This study thus focuses 

on the most stringent period of the first European lockdown (since many countries then started to ease up their lockdown 185 

restrictions from the beginning of May onwards). 

We choose to limit our comparisons to the period up to the end of April as a large portion of countries eased up their 

lockdown restrictions from the beginning of May onwards. To have an equivalent pre-lockdown period we then include 1 

February until 15 March. Table 1 summarizes the periods considered in this study. 

 190 

Pre-lockdown Lockdown 

From 1 February until March 15 From March 16 until April 30 

Formatted: Indent: First line:  0 cm

Formatted: Indent: First line:  1.27 cm

Formatted: Subscript

Formatted: Indent: First line:  0 cm

Formatted: Justified

Formatted: Justified



7 
 

  

Table 1. Definition of the 2020 pre-lockdown and lockdown period over Europe considered in this study. Same dates 

are used for 2019 to perform the comparisons. 

 

In Figure 1, mean TROPOMI NO2 tropospheric columns the 0.1°x0.1° binned averages are displayed for the pre-lockdown 195 

and lockdown periods in 2020 and their equivalents in 2019. The comparison of pre-lockdown and lockdown averages for 

2020 only shows a decrease in Southern Europe but no clear reduction over more Northern latitudes (i.e., the United-Kingdom 

(UK), TThe Netherlands and Germany). In the corresponding 2019 pre-lockdown period much larger NO2 columns than in 

2020 are seen compared to 2020found. During this period of the year, the meteorological conditions over Northern Europe in 

2019 and 2020 were significantly different. A number of named extratropical cyclones (Storms Ciara, Denis, Karine and 200 

Myriam) combined with a strong positive anomaly in temperature occurred over Europe during February and early March 

2020, especially Western and Northern Europe., in February and early March 2020, while no sSuch anomalies in wind and 

temperature were not observed in 2019. Figure 2 shows the distribution of 10-meter wind speed,  and planetary boundary layer 

(PBL) height and 2-meter temperature  from the 9 km operational forecasts from the ECMWF Integrated Forecasting System 

(IFS) in both 2019 and 2020 for the pre-lockdown and lockdown periods at the S5P overpass times. Detail on how the PBL 205 

height is calculated can be found in the IFS documentation (part IV, chapter 3 in https://www.ecmwf.int/en/elibrary/19748-

part-iv-physical-processes). Before 15 March, theseThe two parameters show very different distributions before 15 March, 

with much lower values in 2019 than in 2020, i.e., less circulation and less vertical dilution with colder conditions of NO2. 

Such differences in meteorological conditions leading to an increase of d NO2 tropospheric columns in 2019 compared to 

2020. Conversely, dDuring the post-15 March period, the meteorological distributions are more similar  but still showing some 210 

much less differences. This illustrates the potential need for accounting for the meteorological effect when assessing the 

changes of NO2 tropospheric columns associated with the lockdown. 
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Figure 1. Average maps of the TROPOMI NO2 tropospheric columns (mol.m-2) for European pre-lockdown and 215 

lockdown periods in 2020 (a, b respectively) and corresponding periods in 2019 (c, d). Grey areas indicate where the 

number of revisits is strictly below 5.  
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 220 

Figure 2. Probability density functions of 10-meter wind speed (m.s-1, first rowtop), and planetary boundary layer 

(PBL) height (m, bottomsecond row), and 2-meter temperature (K, third row) from the ECMWF operational 

forecasts  for European periods before (a,b) and after 15 March (c,d), comparing 2020 to 2019. Distribution areis 

computed for urban areas above 0.5 Million inhabitants between 10°W,20°E,45°N and 60°N at the S5P overpasses 

times. N is the sample size for each distribution that can be multiplied by the relative frequency (in %) to obtain the 225 

absolute frequency. 



11 
 

2.2. Non- weather normalised changes of TROPOMI NO2 tropospheric column changess estimates 

Changes of NO2 tropospheric columns associated with the lockdown measures can be estimated by comparing NO2 levels 

observed during the lockdown period in 2020 with a given baseline. In this section, we compare the results obtained with 

twohree different baselines : (1) the NO2 levels observed during the pre-lockdown period in 2020 (hereafter referred to as the 230 

“before-during” approach), (2) the NO2 levels observed during the same period of the year in 2019 (hereafter referred to as the 

“year-to-year” approach). , and (3) an machine learning-based estimate of the business-as-usual NO2 levels that would have 

been observed during the lockdown period in 2020 in the absence of lockdown measures. We focus our study on largest 

European urban areas where the city population is exceeding 0.5 million inhabitants (according to the population database 

provided by https://simplemaps.com/data/world-cities), making a total of 100 locations. Assessing the changes of NO2 235 

tropospheric columns from satellite observations is more challenging over rural areas as the NO2 levels are much lower than 

over urban areas. Signal to noise ratio is significantly low in rural areas thus estimates are very sensitive to small changes in 

the tropospheric columns. We use the TROPOMI NO2 re-gridded 0.1° x 0.1° averages filtered according to relevant quality 

flags (see section 2.1)We  and choose the pixels closest to the European city centres and that have more than 5 data points per 

pre-lockdown and lockdown period. If this condition is not reached, the location is discarded from the analysis.   defined in 240 

Table 1. We first show the reduction estimates over Europe as calculated by examples of non-weather-normalized estimates. 

The “before-during” estimate corresponds to the difference between pre-lockdown and the lockdown periods median estimates. 

Figure 3 shows changes calculated in that way for 2020 (Fig. 3b) and equivalent in 2019 (Fig 3a) for comparisons. This method 

shows drastic NO2 reductions, byof more than 75% in 2020 for most of the Southern European large urban areass of Southern 

Europe. Reductions are not obvious over some of NNorthern European urban areas and show strong variations from one 245 

locationcity to another. For example, over the UK and Germany some urban areas show increases well above 30% while other 

urban areas show reductions even though the same lockdown measures were applied nationwide. AApplying the same method 

overto 2019 data, from 2019 is showing as strong decreases of NO2 levels overin many major European urban  areasareas 

between the corresponding pre-lockdown and lockdown periods. Such reductions in 2019 are obviously not expected. For 

these reasons, This illustrates that such “before-during” type of satellite estimatescomparisons do not provide a robust 250 

methodology  is misleading and unfit for assessing the effects of COVID-19 lockdown on European NO2 pollution levels. 

because it is very sensitive to seasonal variations of weather regimes and emissions. 
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Figure 3. “Before-during” estimates of TROPOMI-based estimates of tropospheric NO2 column change (%) for 255 

urban areas above 0.5 million inhabitants, in 2019 (a) and 2020 (b). computed using pre-lockdown period (from 1 

Feb. to 15 Mar.) and lockdown period (from 16 Mar. to 30 Apr.) comparison for 2019 and 2020 (a and b respectively). 

The diameter of the circles is proportional to the population count in each urban area. 

 

The “year-to-year” approach has been more widely used in scientific publications and web press releases and consists in 260 

is based on comparing 2020 to 2019 data over the period of interest. Figure 4 shows such “year-to-year” estimates, comparing 

the median values between 2020 and 2019, for the pre-lockdown (Fig. 4a) and lockdown (Fig. 4b) periods. During the 

lockdown an overall reduction is seen all over Europe with more moderate reductions over Southern Europe as compared to 

the “before-during” estimates (see Fig.gure 3b). Northern Europe changes do not show strong city dependent variations 

between urban areas as in the “before-during” method.  and Aan overall decrease is seen over most European locations, with 265 

strongest reductions  that is not as strong as in Southern  European countries (e.g., France, Spain or Italy) where lockdown 

measures were more stringent (according to the Oxford Coronavirus Government Response Tracker stringency index Hale et 

al., (2020)). However, looking at the pre-lockdown estimates, Northern Europe also shows drastic negative changes, that are 
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actually larger than during the lockdown period., where Ssuch deviations in pollution levels across Europe  from the BAU 

levels should not be expected in the case of attributing the impact of emission changes. The “year to year” method thus appears 270 

to be is strongly dependent on the interannual NO2 variability even in the BAU situation, where meteorology plays a crucial 

role. Although it respects the seasonality on NO2Therefore, , this method could stillan lead to large errors when assessing 

differences in NO2 levels and more generally the pollution level reductions due to the COVID-19 lockdown. 

 

 275 

 

Figure 4. “Year-to-year” estimates of TROPOMI tropospheric NO2 column change (%) for urban areas above 0.5 

million inhabitants, in 2019 (a) and 2020 (b). Satellite observation estimation of tropospheric NO2 column change (%) 

for urban areas with at least 0.5 million inhabitants computed using 2019 and 2020 (“year to year”) comparison for 

the pre-lockdown and lockdown periods (a and b respectively). The diameter of the circles is proportional to the 280 

population count in each urban area. 
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2.3. Weather normalised changes of TROPOMI NO2 tropospheric column changess estimates 

 

2.3.1. Methods 

 285 

The weather-normalisation method accounts for weather variability to estimate the net changes of NO2 induced by 

the lockdown in urban areas. We have simulated NO2 tropospheric columns as TROPOMI would have measured in BAU 

conditions for 2020, i.e., in the absence of lockdown restrictions. Using meteorological and air pollution predictors to build a 

simplified model for satellite tropospheric observation simulations or predictions for atmospheric composition have been used 

in previous studies (e.g., Worden et al., 2013, Barré et al., 2015). In this study, we use a novel approach for satellite observation 290 

simulation based on the Gradient Boosting Machine (GBM, Friedman, 2001) regressor technique. GBM is a popular decision 

tree-based ensemble method belonging to the boosting family. We use weather and air quality variables as predictors from the 

ECMWF and CAMS operational forecasts at 9 km and 0.1° resolutions respectively: 10-m wind speed and direction, 

PBLplanetary boundary layer height, 2-m temperature, surface relative humidity, geopotential at 500hPa, NO2 surface 

concentrations from the CAMS regional ensemble forecasts. The NO2 surface concentrations used here are obtained from the 295 

CAMS operational regional forecasts which (is business as usual information and are a different output from the simulations 

presented in section 4. In the CAMS forecasts product, no assimilation is performed and BAU emissions are used. Therefore, 

the NO2 surface concentrations used to train and make model predictions do not include lockdown effects and then are 

independent form the air quality model pollution changes estimates provided in section 4.) Additional, time and location 

parameters were also included in the set of predictors:but also latitude, longitude, population, Julian date (number of days since 300 

January 1st) and weekday (to reflect expected weekend/weekday effects). Quite similar machine learning (ML)-based 

approaches have already been successfully applied to in-situ surface AQ observations (e.g., Grange et al., 2018, 2019, Petetin 

et al., 2020). We use data from 1 January 2019 to 31 May 2019 as a training set and apply the model on 2020 to generate BAU 

predictions of BAU NO2 tropospheric columns. For validation purposes we have randomly split the data in a 90% and 10% 

share for training and test, respectively. We then train the model on using the training set only and leaving the test set for final 305 

evaluation. Hyper parameter tuning (see annex A for details) was performed using a grid search method with 5-fold cross-

validation and using the ranges indicated by Petetin et al. (2020) that set up a similar method using surface stations. In contrast 

Contrary to Petetin et al. (2020) that trained one ML model per surface air quality monitoring station, only one single ML 

model is trained here for all cities. This choice is motivated, by due to the small size of the dataset available (about 10,000 data 

points, see Table 12). After the hyperparameter tuning and evaluation of the model, the observation BAU predictions have 310 

been generated using 100% of the January-May 2019 dataset in order to use the maximum amount of data points possible.  

 MB  

[10-6mol.m-2] 

nMB 

[%] 

RMSE  

[10-6mol.m-2] 

nRMSE 

[%] 

PCC N 
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S5P  

training set 

0.00 +0.02 1.4 45.68 0.87 9,634 

S5P  

test set 

-0.04 -1.30 1.68 56.38 0.79 1,071 

 

Table 12. Performance of the machine learning predictions of NO2 tropospheric columns over all European urban 

areas included in the dataset. The training set and test set includes January-May 2019 and randomly sampled (90% 

and 10%) over that period. 315 

  

2.3.2. Results 

 Detailed scores of the performance of the gradient boosting regressor with respect to the real observations such as 

mean bias (MB), normalised mean bias (nMB), root-mean-square error (RMSE), normalised root-mean-square error (nRMSE) 

and the Pearson Correlation Coefficient (PCC) can be found in Table 12.  In order to check obvious cases of overfitting (i.e., 320 

when the GBM model is fitting too closely the data used for training and are thus lacking generalization skills regarding new 

data), results are shown for both training and testing datasets. The statistics on both training set, and test set show similar 

results such as low bias, good correlation but significant RMSE. The statistical performance obtained on the training set 

indicates Results indicate that there is no clear sign of overfitting in the predictions. Since TROPOMI data are available only 

from mid-2018, the training set is relatively small. For this reason, the predictions are featuring significant RMSE values and 325 

will have a large random error. Such RMSE values stay however in the range of surface site air quality MLmachine learning 

predictions as shown in Section 3 and Table 23. The low mean bias and high correlation values indicate that the main BAU 

NO2 tropospheric column variability is represented without large systematic errors. Subtracting the BAU NO2 simulated 

columns with the actual observed NO2 columns during the lockdown period (from 16 March 2020 to 30 April 2020) gives us 

an estimate of the reductions on the NO2 background levels  over the urban areas considered in this studyon the major European 330 

urban areas. Figure 5 provides an example of time series over Madrid that shows the behaviour of the GBM against the real 

observations for 2019 (the training period) and 2020 (the actual simulation period). In 2019, the GBM predictions follow the 

variations seen in the observations but do however show differences, either being above or under the observations. In 2020, a 

similar behaviour is observed until the lockdown date where the GBM prediction show consistently higher values than the 

observations but still following the same variations as the observations. This shows that the GBM predictions based on BAU 335 

predictors are performing realistically and account for BAU variations. This provides a method to assess the pollution changes 

due to lockdown restrictions using satellite data in more robust way than the “before-during” or “year-to-year” methods. 
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Figure 5. Example of time series over Madrid illustrating the performance of the machine learning NO2 columns 

predictions for February-March-April 2019 (top panel) and 2020 (bottom panel). 340 

 

Figure 65 shows the ML-based BAU equivalent estimates as in Fig. 3 and 4 for the pre-lockdown and lockdown 

periods. The estimates are based on the median value of the real observation minus simulated BAU observation distributions. 

As shown in table 1, the GBM performance shows large RMSE values and sometimes can generate strong differences due to 

the small training set used. We choose to display the median and not the mean as the ML estimates to as much as possible 345 

avoid the influence of potential are generating strong outliers in the estimates.  due to the small training set used. The pre-
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lockdowns ML estimates do not show as strong overall reductions as in the “year-to-year” (Fig. 4) or “before-during” (Fig. 3) 

estimates. A summary of the average and the standard deviation of the set of median estimates across all European urban areas 

considered is provided in Table 2 for each of the satellite methods. While both “year-to-year” and “before-during” methods 

showed substantial changes (24% and 30% respectively) of NO2 during the periods outside lockdown (i.e., in 2019 or before 350 

the lockdown in 2020) when low to no reduction should be expected, the ML-based weather-normalisation method provides 

changes closer to 0%, thus more realistic. 

The weather-normalisation method is not devoid of uncertainties and can, in particular, be affected by trends on NO2 

levels. With a known trend seen in NOx emissions of around 2 to 4% each year (EEA 2020a) and only one year to train the 

data, the ML method potentially estimates a stronger than expected overall reduction of around 8%. The “before-during” and 355 

the “year-to-year” approaches also show stronger reduction estimates on average during 2019 and the pre-lockdown period, 

respectively. Compared to the weather-normalisation approach, both methods also display a stronger standard deviation across 

cities than the weather-normalisation methods, which suggests substantial biases due to the omission of meteorological 

variability. 

In the case of the lockdown period the weather parameter distributions are much more similar between 2019 and 2020 360 

(Figure 2) and on average across Europe the “year-to-year” and weather-normalised estimates show results within in the same 

range in term of average (around -20%) and variability amongst the median estimates obtained in all urban areas (around 16%). 

This is however not the case for the “before-during” estimates which show much stronger variability between European urban 

areas (62%). The “before-during” estimates are then not reliable and the “year-to-year” is very dependent on the meteorological 

situation between 2019 and 2020. For this reason, the ML estimates are the most reliable and will be used solely for the rest 365 

of the study. Details of the ML estimates during the lockdown provided in Fig 6. are reported in the table in annex B. The NO2 

tropospheric column change estimates (median values per urban area) show on average a reduction of 23%, but urban areas 

that are known to have the most stringent measures (Hale et al., 2020) show much stronger reductions, e.g., Madrid 60%, 

Barcelona 59%, Turin 54%, Milan 49%. Lighter reductions can be observed in urban areas where less stringent measures were 

taken, e.g., Stockholm 17%. To check the robustness of such results, equivalent estimates are provided using surface stations 370 

and air quality models in section 3 and 4 and will be compared in section 5.  A summary of the results is provided in Table 3 

displaying the average and the standard deviation of NO2 changes across all European urban areas considered. The “before-

during” and the “year-to-year” approaches also show stronger reduction estimates on average during 2019 and the pre-

lockdown period, respectively. Such methods also display a stronger standard deviation across cities than the weather-

normalization methods, which suggests substantial biases in the former due to the omission of meteorological variability. 375 
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Figure 65.  TROPOMI-based estimation of tropospheric NO2 column change (%, relative to the BAU predictions) for 

urban areas with at least 0.5 million inhabitants computed based on ML-based the weather-normalisation method for 

the pre-lockdown and lockdown periods (a and b respectively). The diameter of the circles is proportional to the 380 

population count in each urban area. 

 

 Average (%) Standard Deviation (%) 

 “Before-during” [2019] -4034.45 4736.18 

 “Before-during” [2020] -2530.20 6255.55 

 “Year-to-year” [01/02 to 15/03] -2694.23 3128.42 

 “Year-to-year” [16/03 to 30/04] -1821.78 16.36 

Machine Learning [01/02 to 15/03] -8.27 165.85 

Machine Learning [16/03 to 30/04] -232.72 165.51 
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Table 23. Scores over all European urban areas included in the dataset for the different TROPOMI NO2 tropospheric 

columns change estimations. Average and standard deviation are calculated for all urban area resulting median 385 

estimates, i.e., the standard deviation is a metric of the inter urban area spread. 

 

The weather-normalization method is not devoid of uncertainties. While a value close to zero would be expected during 
the pre-lockdown period, the method estimates a slight overall reduction of around -8%, partly due to the shortage of 
training data. It does however perform much better than the year-to-year and before-during methods that estimate a 390 
-24% and -30% reduction, respectively, during the pre-lockdown period. In the case of the lockdown period the weather 
parameter distributions are much more similar between 2019 and 2020 (Figure 2) and on average across Europe the 
“year-to-year” and weather-normalized estimates show results in the same range. 

3. Surface station estimates 

 395 

3.1. Methods 

We have estimated the impact of the COVID-19 lockdown on surface NO2 pollution in European areas using the 

methodology introduced by Petetin et al. (2020), applied to up to date (i.e., partly unvalidated real-time) hourly NO2 data from 

the European Environmental Agency (EEA) AQ e-Reporting (EEA, 2020b). We first selected the urban/suburban background 

stations located within 0.1° from the city centres and applied the quality assurance and data availability screening described in 400 

Petetin et al. (2020), using the GHOST metadata (Globally Harmonised Observational Surface Treatment, Bowdalo et al., 

2020, in preparation). A total of 164 stations in 77 urban areas were selected. At each station (independently), we estimated 

the BAU business-as-usual NO2 mixing ratios that would have been observed during the lockdown period under an unchanged 

emission forcing. This was done using GBM models fed by meteorological inputs (2-m temperature, minimum and maximum 

2-m temperature, surface wind speed, normalised 10-m zonal and meridian wind speed components, surface pressure, total 405 

cloud cover, surface net solar radiation, surface solar radiation downwards, downward UV radiation at the surface and PBL 

boundary layer height) taken from the 31km horizontal resolution ERA5 reanalysis dataset (Hersbach et al., 2020) in addition 

to other time features (date index, Julian date, weekday, hour of the day). Using Tthe ERA5 reanalysis data set ishas a consistent 

model version over time but at coarserlower resolution (31km) in comparison to the ECMWF high resolution 9km operational 

forecasts used in the TROPOMI estimates (31 km versus 9 km).  410 

All GBM models were trained and tuned during the past 3 years (2017-2019) and tested in 2020 before the lockdown.  

Petetin et al. (2020) showed that such a duration for training the GBM models is generally sufficient for capturing the influence 

of the weather variability on surface NO2 mixing ratio. As discussed in more detail in Petetin et al. (2020), the date index 

feature here allows to limit the potential issues related to the presence of trends in the NO2 time series (between 2% to 4% 
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decrease per year, EEA 2020a). If a substantial trend exists, the GBM models will put more importance on this feature, which 415 

in practice will force the model to make NO2 mixing ratio predictions (in 2020) in the range of the values observed during the 

last part of the training dataset, ignoring the oldest training data. Thus, given the long-term reduction of NO2 happening as a 

result of policy measures across Europe, considering longer training periods is not expected to improve the performance of the 

GBM models. Using the last three years is long enough to capture weather variability at each site, but not too long with regards 

to long-term reduction of NO2 happening as a result of policy measures across Europe. In contrast, Contrary to Petetin et al. 420 

(2020) that predicted BAU NO2 at the daily scale but, the ML models developed here are predicting NO2 at the hourly scale 

(in order to get results collocated in time with TROPOMI overpasses, see below). We then deduced the weather-normalised 

NO2 changes due to the lockdown by comparing observed and ML-based BAU NO2 mixing ratios.  

3.2. Results 

Table 34 shows the overall performance of the GBM models on the training and test sets. Statistical results are similar 425 

to the TROPOMI NO2 GBM model. Biases are low and correlation is high and there is a significant RMSE. As explained in 

section 2.3.2, sStatistical scores in the training set and the test set suggest that there is no apparent sign of overfitting in the 

predictions and show reasonable performance. Note that the RMSE and PCC are deteriorated compared to the statistics 

obtained over Spain in Petetin et al. (2020), mainly due to the fact that we are here working at the hourly scale. This is 

demonstrated by the similar results as those of Petetin et al. (2020) that are obtained over this set of European cities when 430 

predicting NO2 at the daily scale (for the test dataset: nRMSE=28%, PCC=0.88, N=11,082). 

 

 

 MB 

[ppbv] 

nMB 

[%] 

RMSE 

[ppbv] 

nRMSE 

[%] 

PCC N 

Surface stations training set  

(2017-2019) 

0.0 0.0 5.53 40.88 0.84 4,048,696 

Surface stations test set  

(1 Jan 2020 – 15 Mar 2020) 

+0.95 +7.02 6.24 45.87 0.80 268,960 

 

Table 34. Performance of the MLmachine learning predictions of hourly NO2 surface mixing ratios over all European 435 

urban areas included in the dataset.  

 

 For a stricter comparison with the results discussed in Section 2., we provide two different estimates tTo account for 

the potential error due to the satellite sampling effect we provide two estimates: either with complete hourly sampling or 
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filtered according to with S5P satellite overpass time (13:30 local solar time) and qa filtering (clear sky only) sampling. for a 440 

stricter comparison with the results discussed in Section 2. Figure 76 displays relative change estimates, showing the median 

of the distributions for each European city above 0.5 million inhabitants. OverallOverall, the estimates for both samplings are 

broadly consistent, with mean NO2 reductionschanges of around -37% and -43% on average for the hourly sampling and the 

S5P overpass sampling, respectively (Table 34). Such surface station estimates also show geographical variations similar to 

the satellite estimates, with larger reductions corresponding to locations with more stringent lockdowns (i.e., Spain, Italy and 445 

France) and less stringent lockdowns (i.e., Sweden, Germany). For example, Madrid shows reductions of 61% and 60% using 

the hourly surface stations and the satellite time sampled surface stations, which are very similar to the satellite estimates. On 

the opposite Stockholm show very slight reduction of 8% and 3% with the two different estimates. Such values are different 

from the satellites estimates (reduction of 17%) and pointing out some uncertainty regarding the estimates in this area.  

Northern Europe (particularly Germany, Poland and the UK) displays larger NO2 reductions with the estimates at 450 

satellite overpass time. This points out a possible dependence with the time of the day in the pollution and emission reductions. 

In general, those NO2 relative changes based on surface in-situ concentrations are larger than the ones based on NO2 

tropospheric columns. Those two points are further discussed in section 5.This is expected as NO2 surface site measurement 

do not directly translates to the TROPOMI NO2 tropospheric column, which is the integrated NO2 content from the surface to 

about the 200hPa altitude. Due to the short lifetime of NO2, only marginal lockdown induced changes of free tropospheric 455 

NO2 contents are expected. Changes are mainly expected near-surface and within the PBL. Also, even if the stations are 

grouped within a 0.1° range from the city centres the representativeness of surface observations used might not be similar to a 

0.1°x0.1° pixel, depending on the surface station coverage on each city. This can also exacerbate the difference between surface 

and tropospheric columns reduction estimates. 

 460 

Formatted: Indent: First line:  1.27 cm

Formatted: Subscript

Formatted: Justified, Indent: First line:  1.27 cm



22 
 

 

Figure 76. Surface observation Weather normalised estimation of NO2 changes (%, relative to the BAU predictions) 

using surface observations during the lockdown period using business as usual (BAU) simulated observations for 

urban areas with at least 0.5 million inhabitants. Left-hand side (a) are the estimates using full hourly datasets and 

right-hand side (b) are the estimates using S5P overpass time sampled dataset. The diameter of the circles is 465 

proportional to the population count in each urban area. 

4. CAMS regional ensemble model estimates 

4.1. Methods 

 

Model estimates have been calculated using the CAMS European regional air quality forecasting framework, which 470 

is an ensemble of 11 models (CHIMERE, DEHM, EMEP MSC-W, EURAD-IM, GEM-AQ, Lotos-Euros, MATCH, MINNI, 

MONARCH, MOCAGE, SILAM, Marécal et al. 2015). These models are used to calculate multi-model median value which 

is the best performing quantity on average compared to individual models. Using such a multi-model approach is useful to 

minimize the imperfections in each model’s formulation. Operational evaluation and validation of the CAMS European 

ensemble against independent observations is performed and delivered routinely and can be accessed at 475 

https://atmosphere.copernicus.eu/index.php/regional-services.  

Two sets of models hindcasts have been conducted using two different emissions scenarios: BAU emissions and 

reduced COVID-19 lockdown emissions. The emission inventory used for the BAU reference simulation is the same that is 

used in the daily Regional Air Quality Forecasts of CAMS for Europe, i.e., CAMS-REG-AP (v3.1 for the reference year 2016, 

Granier et al., 2019). It is compiled by TNO (Netherlands Organisation for Applied Scientific Research) under the CAMS 480 

emission Service, based on official emissions reported by the countries to the EU (NEC Directive) and UNECE (LRTAP 

Convention /EMEP, ) (Kuenen et al., 2014; Granier et al., 2019). The spatial resolution of the emissions is 0.1° ´ x0.05° but 

later re-gridded at 0.1° ´ x0.1° to match the models’ grid. The alternative emission scenario, corresponding to the lockdown 
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period, was derived by combining the original CAMS-REG-AP inventory with a set of country- and sector-resolved reduction 

factors (Guevara et al., 2020). For the present work, time invariant emission reduction factors wherewere proposed by country 485 

and for three activity sectors: manufacturing industry, road transport, and aviation (landing and take-off cycles) that are reduced 

on average by 15.5%, 54% and 94%, respectively. These sectors were considered to be the most affected by changes in activity 

during lockdown (Le Quéré et al., 2020).  

The reduction factors were computed from collections of near-real time activity data, such as Google Community 

Mobility Reports (Google LLC, 2020) for road transport, airport statistics from Flightradar24 (2020) for aviation and electricity 490 

load information from ENTSO-E (2020) for industry. Results from Guevara et al., (2020) showed that during the most severe 

lockdown period (23 March to 26 April), estimated surface emission reductions at the European level were most important for 

NOx (33%) with road transport being the main contributor to total reductions in all cases (85% or more). Italy, France and 

Spain were the countries that experienced major NOx emission reductions (down to 50%), a result that is in line with the strong 

lockdown restrictions implemented by their corresponding governments. On the contrary, Sweden, for example, showed 495 

reductions of only 15% (on NOx) due to implementation of national recommendations instead of a state-enforced lockdown.  

More details about the emission scaling procedure using data and methodology from Guevara et al., 2020 can be found in 

Colette et al. (2020) where the resulting country and activity sector dependent reduction factors are provided for the EU28 

countries plus Norway and Switzerland. Values of the emission reduction factors per country within the European regional 

modelling domain and per activity sectors and are provided in annex C. For the main contributing sector, road transport, the 500 

largest reductions in emissions are observed in countries where lockdown restrictions were more stringent (according to the 

Oxford Coronavirus Government Response Tracker stringency index Hale et al., (2020)), such as Italy (75%), Spain (80%) 

and France (76%). 

The largest reductions are observed in those countries where lockdown restrictions were more stringent, such as Italy, 

Spain and France. All the models operated with the exact same setup as the CAMS regional operational production. The 505 

modelling domain covers Europe at 0.1° ́  x0.1° resolution. The meteorological and chemical boundary conditions are obtained 

from the Integrated Forecasting System (IFS) of ECMWF, which is the same system that provides part of the dataset for the 

ML-based estimations (see sections 23.1 and 32.2). The reference simulation was using the BAU anthropogenic emissions as 

described above and the lockdown scenario was using the same lockdown inventory, modulated by country and activity sectors. 

From the two sets of 11 model simulations the median at each grid point is calculated from an ensemble simulation (as is 510 

routinely done for the operational CAMS predictions, Marecal et al., 2015). Differences between the BAU ensemble and the 

lockdown scenarios ensemble are then used to calculate model reduction estimates.  

 

4.2. Results 

 515 

Figure 87 displays the relative change estimates for each European urban areacity  defined in section 2.2with more 

than half a million inhabitants. The estimates are , calculated usinging the medians of the full hourly distribution (Fig. 87a) 
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and of the distribution at qa filtered S5P overpasses times and dates only (Fig. 87b) at each urban area. As expected, urban 

areas in more stringentstricter lockdown countries (i.e., Spain, Italy, France) show the largest reductions (e.g., down to 60% 

in Madrid, see Figure 98) whereas urban areas with less stringent softer lockdown measures (i.e., Germany, Poland, Sweden) 520 

show milder reductions (e.g., around 16% in Stockholm, see Figure 8). The time sampling difference (hourly versus S5P 

overpass) does not affect the model estimates much, only few percent differences are seen for most of the European urban 

areas. On average, over the set of median estimates on each urban area the difference is small, with 30% for hourly estimates 

and 32% for S5P sampled estimates. This is expected as the emissions reduction estimates used to generate the lockdown 

scenario ensemble are set constant over time (daily and hourly). This point is further expanded in the next section where model 525 

estimates results are compared to the other types of estimates.. In comparison, the surface station estimates show more 

sensitivity to the time sampling. Table 4 summarises the overall European reduction estimates. On average, the S5P overpass 

sampling changes the estimates by around -6% for surface station estimates and -1.5% for model estimates. This could suggest 

a dependence between the time of day and the reduction level (e.g. traffic emissions are peaking daytime hence more reduction 

should be expected during the day). This topic needs to be further investigated.  530 

 

 

 

 

 535 
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Figure 87. Surface modelling estimation of NO2 changes (%, relative the BAU predictions) during the lockdown 

period in urban areas with at least 0.5 million inhabitants. Left-hand side (a) are the estimates using full hourly 

datasets and right-hand side (b) are the estimates using S5P overpass time sampled dataset. The diameter of the 

circles is proportional to the population count in each urban area. 540 

 

 

 Average (%) Standard Deviation (%) 

Surface Stations [hourly] -36.74 15.09 

Surface Stations [S5P sampling] -43.06 18.82 

CAMS model ensemble [hourly] -30.35 10.79 

CAMS model ensemble [S5P sampling] -31.82 11.97 

TROPOMI -22.72 15.51 

Table 4. Scores over all European urban areas included in the study for the different NO2 changes estimates: surface stations, 
model estimates and TROPOMI. Average and standard deviation are calculated for all urban area resulting estimates, i.e. the 
standard deviation is a metric of the inter urban area spread. 545 

5. Comparison of the three different types of estimates 

In table 4 and figure 9 we summarize the results of this study. Table 4 shows the average reduction of all the median 

estimates with the inter urban area variability over Europe. Figure 9 shows the distribution of the NO2 changes estimated along 

the lockdown period per urban area. This figure provides estimates equivalent to box plots where the median and the inter-

quartile range are displayed. For clarity, we choose to display on Fig. 9 only urban areas that are above 1 million inhabitants. 550 

The values of each estimates for all urban area considered in this study are given in the table in annex B.  
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The three types of estimates agree on identifying stronger reductions where more severe lockdown measures were 

implemented. As shown in Section 2 satellite estimates show a relationship between NO2 tropospheric columns reductions and 

the extent and generalization of restrictive measures in each country. A similar relationship is observed for surface sites and 

model estimates (Sections 3 and 4). The largest NO2 reduction estimates of around 50% to 60% for both surface and 555 

tropospheric column are found in Spanish, Italian and French urban areas. In countries that implemented softer lockdown 

measures urban areas show lower reductions, e.g., Germany, Netherland, Poland or Sweden. Although significant 

discrepancies exist between the satellite, surface and model estimates in urban areas such as for example Naples (Italy), Sofia 

(Bulgaria), Katowice (Poland), the three methods provide overall a consistent broad picture. This is remarkable to note 

particularly as satellite data are concerned and this result contributes to establish their usefulness for urban air quality and not 560 

only for atmospheric pollution in general. Having a range of three different types of estimates help us to provide pollution 

changes across Europe with a certain level of certainty. When all the estimates agree it is more likely that the values of reduction 

due to the lockdown implementations are reliable. Conversely, if the different types of estimates show discrepancies not as 

much confidence should be given to the reduction values. In certain urban areas the estimates show certainty as they are close 

to each other. In Fig. 8, Madrid, Turin and Milan, to mention few urban areas, show consistency between the different type of 565 

estimates expressing more certain. In other locations such as Sofia, Athens and Budapest, strong discrepancies indicate that 

the estimates could be uncertain. Average scores on table 4 shows that surface stations provide stronger reduction estimates 

and satellite estimates provide weaker reduction estimates. Model estimates are laying mostly in between and showing much 

less spread within a given urban area (bars in Fig. 9) and less variations between urban areas (standard deviation in Table 4). 

The origin of such differences can be various and are detailed below. 570 

Machine learning estimates that are observation based (satellite and surface stations) are showing more spread 

compared to the model estimates. In Fig 9. the inter-quartile ranges for the ML estimates are much larger than for the model 

estimates. A part of this difference in the spread is due to the variability representation. Machine learning observation-based 

estimates display more spread that includes a stronger variability than model estimates. Such large ranges show that there is a 

strong spread in the ML based estimates that is not seen in the model-based estimates. Model estimates are induced by emission 575 

country dependent reduction/scaling factors that are constant over time. In that case, the variability is induced by the changes 

in atmospheric conditions but not by changes in the emissions. The estimates from the ML approach can represent the transition 

into the lockdown where emission gradually decreased. This is contributing to the increased spread seen in the ML estimates. 

Scores from ML estimates (see table 1 and 3) also show significant RMSE that can add noise to the time series and then add 

to the resulting spread of the distributions. Stronger spread in TROPOMI estimates is likely due to the small training set used. 580 

Also, as time goes more TROPOMI data will be available to strengthen the reliability of the method. Disentangling the noise 

and the actual variability would need to be carefully done in further works.  

All the different estimates presented in this study are consistent in scales using 0.1° ´ 0.1° TROPOMI averaged pixels 

that match the CAMS forecasts and surface stations within a 0.1° range from the city centre. Some of the smaller urban areas 

considered in this study likely display a footprint that is finer than 0.1°, meaning that the urban pollution levels from the urban 585 
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area is mixed with low pollution background levels. This could cause the pollution changes in the gridded estimates to be 

weaker than expected in certain urban areas (e.g., Katowice, Budapest, Glasgow, etc.). Also, even if the urban/suburban 

background stations are selected, the in-situ surface observations sample the pollution levels within a 0.1° ´ 0.1° pixel given 

their location. This sampling might not be exactly representative of the average pollution footprint within the same pixel. This 

average is the information given by the models or the satellites. Such representativeness issues contribute to create 590 

discrepancies between the type of estimates and hence generate uncertainty. The differences seen in Fig. 9 between surface 

station estimates and gridded estimates (models and satellites) point out such possible representativeness issues. 

Representativeness is a difficult and important topic and deserves further research as it would require careful examination of 

the station’s locations in specific urban areas and also using higher resolution modelling than 10 km. 

Satellite overpass local times (13:30 local solar time) and presence of clouds in the measurement pixel can potentially 595 

influence the reduction estimates using TROPOMI data. We considered 1.5 months to compute the satellite reduction 

estimates. Overall, the sample size (S5P valid overpasses) in Fig. 9 ranges between 14 (Sevilla) and 37 (The Hague). On the 

same Fig. 9, surface sites and model estimates are displayed for hourly and S5P sampled estimates. Smaller or larger samples 

cannot really explain discrepancies between all the different estimates. Results however can be affected when the sample size 

becomes statistically very small and if shorter time periods (e.g., 1 or 2 weeks) are considered for satellite reduction estimates. 600 

Very small samples over the 6 weeks period were not considered in this study to avoid this effect. The effect of sampling also 

shows greater changes in the surface station estimates than in the model estimates. As mentioned above and seen in Fig 9. the 

surface station estimates provide more variability that account for hourly variations. The model estimates have fixed emission 

scaling factors for the entire lockdown period considered. The surface station estimates show more sensitivity to the time 

sampling than the model estimates. On average (see table 4), the S5P overpass sampling changes the estimates by around -6% 605 

for surface station estimates and only by -1.5% for model estimates. This suggest that the lockdown-induced reduction 

estimates depend upon the time of the day, i.e., when the road transport activity is peaking. The TROPOMI overpass time is 

13:30 local solar time which is potentially an active time for road transport in many urban areas.  

Finally, the tropospheric columns NO2 reduction estimates displayed in Fig. 9 are generally not as strong as the NO2 

surface estimates (sites and model). Some exceptions can be seen in certain Spanish (e.g., Barcelona, Madrid) and Italian (e.g., 610 

Milan, Turin) urban areas where column estimates are close to the surface estimates, but overall column reductions are weaker. 

With all urban areas considered, the satellite estimates show around 23% reduction on average, which is 10% to 20% less than 

the model and surface station estimates (see table 4). This can be expected as NO2 surface site measurements do not directly 

translate to the TROPOMI NO2 tropospheric column, which is the integrated NO2 content from the surface to about the 200hPa 

altitude. Due to the short lifetime of NO2 (around 12 hours), only small lockdown induced changes to the free tropospheric 615 

NO2 contents are expected. Changes are mainly expected near-surface and within the PBL. However, the different nature of 

the vertical sampling is likely to contribute to the differences between the relative reduction estimates from tropospheric 

columns versus surface concentrations. Further work will be needed to link quantitatively tropospheric columns and surface 
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levels variations, including sampling the model estimates using an observation operator commonly used in data assimilation 

and inverse modelling systems. This important work will be carried out in a further study. 620 

 

 Average (%) Standard Deviation (%) 

Surface Stations [hourly] -37 15 

Surface Stations [S5P sampling] -43 19 

CAMS model ensemble [hourly] -30 11 

CAMS model ensemble [S5P sampling] -32 12 

TROPOMI -23 16 

Table 4. Scores over all European urban areas included in the study for the different NO2 changes estimates: surface 

stations, model estimates and TROPOMI. Average and standard deviation are calculated for all urban area resulting 

estimates, i.e., the standard deviation is a metric of the inter urban area spread. 

6. Conclusions 625 

In this paper, we first show the importance of accounting for weather variability in satellite-based estimates of NO2 

changes due to the COVID-19 lockdown. While focusing over Europe and using the TROPOMI instrument, we show that the 

satellite estimates based on direct comparisons between different time periods without accounting for weather variability can 

be flawed and should not be used for this kind of assessment. To account for weather variability in satellite estimates, we use 

a recently developed methodology based on the gradient boosting machine learning technique. This methodology has proven 630 

to be efficient with surface sites to estimate lockdown induced changes over Spain (Petetin et al., 2020). We extended those 

surface estimates over Europe to compare with the satellite estimates. Finally, we included NO2 changes estimates predicted 

by the 11 models CAMS regional ensemble, using emission reduction factors representative of the lockdown period. By 

providing and comparing the three different methodologies we provided a comprehensive and complementary assessment of 

NO2 pollution level changes during the COVID-19 European lockdown. Providing such assessment of pollution changes when 635 

activity levels of keys emitting sectors are significantly reduced (i.e., road transport and industry) in lockdown conditions 

provides crucial information to accurately quantify the benefits of air quality policies implementations on such sectors.  

Main results show a consistent tendency of stronger reduction of NO2 where more stringent lockdown measures where 

implemented. On average the three types of estimates show a reduction of 23%, 43% and 30% for satellite, surface stations 

and model estimates, respectively. Differences are explained by the different nature the methods used, i.e., observation based 640 

versus model based, horizontal and vertical sampling, variability representation and time sampling. By providing an array of 

different methods we ensure that such pollution reduction estimates are reliable in certain urban areas and somewhat uncertain 

in others. Quantifying pollution changes accurately and insuring reliability is important for the impact on the COVID-19 

pandemic itself as several studies have investigated the correlation between the high level of COVID-19 mortality and 
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atmospheric pollution (e.g., Contincini et al. 2020, Ogen et al. 2020, Achebak et al., 2020). Feedbacks are then to be expected 645 

between the effects of short-term air pollution exposure on COVID-19 mortality and lockdown measures. Beyond the 

quantification of the impact of COVID-19-related restrictions on pollutant concentrations, the observation-based weather-

normalisation methodology used in this study is of general interest for assessing the impact of any type of emission changes 

(e.g., regulation and policy) on air quality (Grange et al., 2018, 2019) in the future.   

 650 
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Figure 9. Comparisons of the lockdown induced NO2 level changes estimates (%, relative to the BAU predictions) 

using different means and methodologies for European urban areas above 1 million inhabitants. Horizontal lines 
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represent the interquartile ranges (over the temporal variability), and the ticks are the median values using the full 

distribution per urban area. For readability, urban areas are ranked using the average between all median estimates. 655 

Summary and Discussions 

In this paper, we first show the importance of accounting for weather variability in satellite-based estimates of NO2 

changes due to the COVID-19 lockdown. While focusing over Europe and using the TROPOMI instrument, we show that the 

satellite estimates based on direct comparisons between different time periods without accounting for weather variability can 

be flawed and should not be used for this kind of assessments. To account for weather variability in satellite estimates, we use 660 

a recently developed methodology based on the gradient boosting machine learning technique. This methodology has proven 

to be efficient with surface sites to estimate lockdown induced changes over Spain (Petetin et al., 2020). We extended those 

surface estimates over Europe to compare with the satellite estimates. Finally, we included NO2 changes estimates predicted 

by the 11 models CAMS regional ensemble, using emission reduction factors representative of the lockdown period. By 

providing and comparing the three different methodologies we provided a comprehensive and complementary assessment of 665 

NO2 pollution level changes during the COVID-19 European lockdown. Providing such assessment is crucial to accurately 

quantify the lockdown pollution changes for air quality policy but also for the impact on the COVID-19 pandemic itself. 

Several studies have investigated the correlation between the high level of COVID-19 mortality and atmospheric pollution 

(e.g. Contincini et al. 2020, Ogen et al. 2020, Achebak et al., 2020). Feedbacks are then to be expected between the effects of 

short-term air pollution exposure on COVID-19 mortality and lockdown measures.  670 

In Figure 8 and Table 4 we summarize the results of this study. While Table 4 shows the average reduction with the 

inter urban area variability over Europe, Figure 8 shows the difference between the estimates per urban area. For clarity and 

relevance, we choose to display only urban areas that are above 1 million inhabitants. The three weather normalized estimates 

agree on identifying stronger reductions where more severe lockdown measures were implemented. As shown in Section 2 

satellite estimates show a relationship between NO2 tropospheric columns reductions and the extent and generalization of 675 

restrictive measures in each country. A similar relationship is observed for surface sites and model estimates (Sections 3 and 

4). The largest NO2 reduction estimates of around 50% to 60% for both surface and tropospheric column are found for Spanish, 

Italian and French urban areas concentrations. In countries that adopted softer lockdown measures urban areas show lower 

reductions, e.g. Germany, Netherland, Poland or Sweden. Although significant discrepancies exist between the satellite, 

surface and model estimates in urban areas such as for example Naples (Italy), Sofia (Bulgaria), Katowice (Poland), the three 680 

methods provide overall a consistent broad picture. This is remarkable to note particularly as satellite data are concerned and 

this result contributes to establish their usefulness for urban air quality and not only for atmospheric pollution in general. 

Machine learning observation-based estimates display more spread that includes a stronger variability than model 

estimates. In Figure 8, satellite and surface observation ML estimates show large interquartile ranges, with larger ranges with 

satellite for certain urban areas. Such large ranges show that there is a strong spread in the ML based estimates that is not seen 685 
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in the model-based estimates. Model estimates are induced by emission country dependent reduction/scaling factors that are 

constant over time. In that case variability is induced by the changes in atmospheric conditions but not by changes in the 

emissions. The estimates from the ML approach can represent the transition into the lockdown where emission gradually 

decreased. This is contributing to the increased spread seen in the ML estimates. Scores from ML estimates (see table 2 and 

4) also show significant RMSE that can add noise to the time series and then add to the resulting spread of the distributions. 690 

Stronger spread in TROPOMI estimates are likely due to the small training set used. Also, as time goes more TROPOMI data 

will be available to strengthen the reliability of the method. Disentangling the noise and the actual variability would need to 

be carefully done in further works. 

In all the different estimates presented above we tried to be consistent in scales using 0.1°x0.1° TROPOMI averaged 

pixels that match the CAMS forecasts and background stations within a 0.1° range from the city centre. Some urban areas 695 

considered in this study likely display a background footprint that is finer than 0.1°. The differences seen between surface 

station estimates and gridded estimates (models and satellites) point out such possible representativeness issues. Resolution 

representativeness is a difficult and important topic and deserves further research as it would require higher resolution 

modelling forecasts and an observation network at a resolution finer than 10km.  

Satellite overpass local times and presence of clouds in the measurement pixel can potentially influence the reduction 700 

estimates using TROPOMI data. We considered 1.5 months to compute the satellite reduction estimates. Overall the sample 

size (S5P valid overpasses) in Figure 8 ranges between 14 (Sevilla) and 37 (The Hague). On the same Figure 8, surface sites 

and model estimates are displayed for hourly and S5P sampled estimates. Smaller or larger samples cannot explain 

discrepancies between all the different estimates. Results however can be affected when the sample size becomes statistically 

very small and if shorter time periods (e.g. 1 or 2 weeks) are considered for satellite reduction estimates. Very small samples 705 

were not considered in this study. Sampling also shows greater changes in the surface station estimates than in the model 

estimates. This can suggest that the lockdown-induced reduction estimates could also depend upon the time of the day. Further 

and more detailed research is needed on this topic. 

Finally, tropospheric columns NO2 reduction estimates are mostly smaller than the NO2 surface estimates (sites and 

model). The different nature of the vertical sampling (tropospheric columns versus surface concentrations) affects the relative 710 

reduction estimates. Some exceptions can be seen in certain Spanish and Italian urban areas where column estimates are close 

to the surface estimates, but overall column reductions are weaker. Further work will be needed to link quantitatively 

tropospheric columns and surface levels variations. Including sampling the model estimates using an observation operator 

commonly used in data assimilation and inverse modelling systems. This important work will be carried out in a further study. 

 715 



33 
 

 



34 
 

Figure 8. Comparisons of the lockdown induced NO2 level changes estimates (%) using different means and 

methodologies for European urban areas above 1 million inhabitants. Horizontal lines represent the interquartile 

ranges and the ticks are the median values using the full distribution per urban area. For readability, urban areas are 

ranked using the average between the all median estimates. 720 
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Annex A. Gradient Boosting Regressor Tuning 

 740 

We have used TROPOMI data from 2019-01-01 to 2019-05-31 to train our machine learning simulator. We used the gradient 

boosting regressor function included in the scikit-learn python library. For validation purposes, the data set has been split 

between a training set (90% of the total dataset) and a test set (10% of the total dataset) using the train_test_split function. The 

hyperparameter tuning is then performed using the training set to generate the simulators and test set to find the best fit. 

Similarly, to Petetin et al. (2020) the learning rate was fixed to 0.05 and the number of features (max_features) is set to “sqrt”. 745 

In addition, the tuning of the gradient boosting regressor was done for the following hyperparameters using the grid search 

method. The following hyperparameters were tuned: the subsample (subsample :subsample: from 0.3 to 1.0 by 0.1 with a best 
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value of 0.9), the number of trees (n_estimators: from 50 to 1000 by 50 with a best value of 400) and the minimum sample in 

terminal leaves (min_samples_leaf : from 1 to 30 with a best value of 22). We use the default 5-fold cross-validation. We then 

test the final results on the test set in order ensure not overfitting. 750 

 

Links to the python libraries and functions: 

Scikit-learn python 

https://scikit-learn.org/stable/index.html 

Gradient boosting function 755 

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html 

Grid search hyperparameter tuning 

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html 

Random dataset splitting 

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html 760 

 

 
 

 

Annex BB. Lockdown induced NO2 changes estimates for each European urban area considered in this study 765 

 

Urban Area Country TROPOMI 
Estimates 

(%)  

N 
Revisits 

Model 
Estimates 

Hourly 
(%) 

Model 
Estimates 

S5P 
Sampled 

(%) 

Surface 
Station 

Estimates 
Hourly 

(%) 

Surface 
Station 

Estimates 
S5P 

Sampled 
(%) 

Amsterdam Netherlands -17.08 32 -17.93 -22.12   
Antwerp Belgium -23.04 36 -21.13 -24.98 -32.79 -30.28 
Athens Greece -11.13 28 -35.83 -36.06 -58.11 -67.5 

Barcelona Spain -58.53 29 -43.23 -39.10 -48.81 -54.09 
Bari Italy -20.13 33 -21.17 -18.29 -44.04 -27.54 
Basel Switzerland -32.58 37 -31.49 -38.33 -32.95 -38.78 

Belgrade Serbia 6.05 34 -19.86 -18.20   
Berlin Germany -37.71 30 -22.27 -20.29 -31.28 -39.73 
Bilbao Spain -21.29 19 -48.39 -50.45 -26.65 -15.36 

Birmingham UK -17.24 28 -32.62 -38.41 -30.92 -31.38 
Bonn Germany -4.55 35 -26.55 -29.04 -38.96 -61.62 

Bordeaux France -21.59 28 -46.87 -50.39   
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Bradford UK -24.36 26 -31.31 -33.66   
Braga Portugal -1.05 16 -42.93 -42.65   

Bremen Germany -37.36 34 -17.99 -19.56 -36.62 -49.47 
Brighton UK -22.21 31 -20.55 -23.51 -22.75 -27.09 
Bristol UK -19.47 30 -39.62 -43.63 -38.45 -38.54 

Brussels Belgium -29.32 32 -38.38 -44.20 -38.16 -42.67 
Bucharest Romania -22.58 31 -34.50 -33.11   
Budapest Hungary -16.18 34 -23.70 -26.36 -38.49 -63.53 
Bytom Poland -11.97 30 -25.22 -22.21   

Caerdydd UK -18.76 31 -35.60 -41.59 -57.81 -72.57 
Catania Italy -30.34 26 -35.08 -34.75   
Cologne Germany -25.04 36 -25.11 -24.74 -30.07 -53.41 

Dortmund Germany -10.67 36 -23.84 -23.65 -28.63 -48.38 
Dresden Germany -28.23 32 -21.82 -20.01 -29.26 -21.35 
Dublin Ireland -35.36 26 -21.27 -21.34 -49.05 -58.8 

Duisburg Germany -3.73 36 -18.18 -17.91   
Düsseldorf Germany -10.86 36 -25.13 -25.92 -26.82 -49.19 
Edinburgh UK -16.29 23 -27.72 -28.01 -38.95 -34.01 

Essen Germany -3.92 36 -19.18 -17.85 -25.68 -33.37 
Florence Italy -48.04 33 -46.88 -52.11 -52.79 -57.22 
Frankfurt Germany -24.24 34 -23.82 -24.94 -33.22 -46.9 
Gdańsk Poland -16.67 30 -10.72 -10.09 -23.07 -43.45 
Geneva Switzerland -57.27 34 -46.85 -48.78 -37.27 -29.81 
Genoa Italy -35.81 30 -27.19 -26.87   

Glasgow UK -29.81 23 -27.33 -29.33 -46.12 -56.41 
Gliwice Poland -23.30 32 -26.84 -25.04   

Göteborg Sweden -4.54 32 -10.18 -13.78 8.84 19.34 
Hamburg Germany -35.87 32 -14.66 -17.05 -31.01 -39.61 
Hannover Germany -19.02 33 -23.89 -24.86 -26.09 -29.14 
Helsinki Finland -27.91 24 -24.63 -24.38 -25.81 -23.97 
Katowice Poland -4.21 26 -24.03 -20.46 -39.22 -63.85 
Kraków Poland -11.70 30 -21.07 -20.98 -36.88 -49.36 
Leeds UK -10.98 25 -32.24 -34.30 -46.82 -47 

Leipzig Germany -22.63 36 -22.42 -22.65   
Lille France -17.46 34 -37.14 -40.67   

Lisbon Portugal -22.48 20 -42.92 -50.26 -38.9 -40.18 
Liverpool UK -3.72 29 -27.72    

Liège Belgium -0.44 34 -34.26 -34.95 -37.12 -39.66 
Łódź Poland -11.58 30 -29.03 -28.65 -23.69 -37.71 
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London UK -30.38 26 -29.02 -31.73 -26.74 -33.58 
Lyon France -49.43 35 -48.24 -52.33   

Madrid Spain -60.18 17 -56.28 -57.69 -61.38 -60.22 
Manchester UK -26.72 26 -36.51 -39.78 -38.94 -44.68 
Mannheim Germany -20.89 35 -23.09 -21.60 -33.04 -44.45 
Marseille France -55.24 28 -41.24 -39.14   

Milan Italy -49.13 29 -52.53 -59.50 -52.08 -49.89 
Munich Germany -21.72 32 -27.08 -29.57 -20.57 -7.93 
Málaga Spain 15.66 6 -50.30 -47.59 -63.08 -66.36 
Naples Italy -35.28 29 -34.91 -34.39 -69.36 -82 

Newcastle UK -30.01 22 -27.23 -30.15 -41.78 -53.53 
Nice France -33.82 24 -38.02 -36.72 -59.47 -60.87 

Nottingham UK -23.64 23 -34.84 -36.90 -44.84 -46.56 
Nuremberg Germany -6.95 31 -27.47 -28.10 -38.62 -45.64 

Oslo Norway -50.93 22 -20.18 -23.63   
Palermo Italy -38.72 26 -21.97 -22.73   

Paris France -29.37 34 -37.57 -43.43 -48.33 -53.28 
Porto Portugal -24.41 17 -49.84 -51.19   

Poznań Poland -26.43 31 -21.90 -22.05 -38.38 -55.64 
Prague Czechia -4.47 32 -15.75 -17.60 -19.74 -24.99 
Riga Latvia 5.06 30 -6.84 -7.27 -50.5 -84.04 
Rome Italy -39.55 30 -46.04 -52.95 -49 -45.74 

Rotterdam Netherlands -12.73 33 -21.09 -25.21 -26.62 -20.71 
Rouen France -23.40 35 -39.66 -45.61   

Saarbrücken Germany -24.24 38 -27.59 -26.57 -33.47 -37.49 
Salerno Italy -32.12 26 -42.88 -48.36 -61.57 -56.63 
Sarajevo Bosnia Herz. -28.87 26 -22.54 -20.07   
Sevilla Spain -39.64 14 -47.55 -50.90 -36.1 -38.74 

Sheffield UK -20.04 27 -29.98 -31.58 -24.87 -21.18 
Sofia Bulgaria -5.34 19 -35.06 -31.85 -45.72 -66.84 

Southend UK -26.99 29 -11.26 -11.11 -29.57 -37.41 
Stockholm Sweden -17.44 28 -16.72 -18.45 -8.11 -3.46 
Stuttgart Germany -29.26 36 -26.69 -29.23 -7.49 -3.73 

The Hague Netherlands -13.33 37 -20.57 -24.07 -25.54 -23.09 
Thessaloníki Greece -32.37 27 -35.97 -35.93   

Tirana Albania -24.05 26 -40.06 -40.78   
Toulouse France -15.56 24 -47.92 -50.72   

Turin Italy -54.29 28 -53.57 -60.29 -49.94 -52.44 
Utrecht Netherlands -20.40 33 -25.45 -29.52 -28.38 -30.9 
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Valencia Spain -33.54 22 -34.71 -32.98 -63.35 -70.83 
Vienna Austria -27.27 33 -20.78 -23.04 -34.07 -41.45 
Vilnius Lithuania 32.66 26 -25.18 -23.92 -50.6 -66.15 
Warsaw Poland -29.68 27 -24.83 -24.20 6.19 -14.19 

Wiesbaden Germany -26.34 33 -30.11 -31.35 -31.2 -43.57 
Wrocław Poland -27.53 34 -22.51 -21.09 -14.16 -26.8 

Wuppertal Germany -12.55 36 -24.56 -24.86 -27.35 -39.35 
Zagreb Croatia -15.52 32 -28.65 -29.98 -68.09 -81.39 

Zaragoza Spain -8.44 27 -44.85 -48.94 -47.12 -49.4 
Zürich Switzerland -13.09 36 -39.70 -43.27 -35.41 -43.96 

        
Annex C. Reduction factors (%) by country and activity sector corresponding to the lockdown period over the modelled 
European domain 

Country GNFR_B_Industry GNFR_F_RoadTransport GNFR_H_Aviation 

Albania -11,5 -77 
 

Austria 
 

-54 -96 

Belarus  -19  

Belgium -11,0 -63 -96 

Bosnia & Herz.  
 

-43 
 

Bulgaria -14,0 -48 -96 

Croatia -21,5 -65 -93 

Czechia -14,7 -41 -99 

Germany -11,5 -42 -87 

Denmark -17,3 -40 -97 

Estonia -15,2 -37 -92 

Finland -5,9 -53 -91 

France -29,0 -76 -94 

Georgia 
 

-75 
 

Great Britain -21,0 -67 -88 

Greece -14,9 -66 -91 

Hungary -12,8 -50 -95 

Ireland -12,6 -64 
 

Italy -18,9 -75 -93 

Latvia -12,7 -35 -99 

Lithuania -13,4 -47 -100 
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Luxembourg -11,2 -62 -86 

Macedonia -30,5 -49 -100 

Malta 
 

-48 
 

Moldova -21,5 -57  

Netherlands -27,1 -56 -91 

Norway -10,9 -38 -83 

Poland -12,3 -53 
 

Portugal -14,6 -73 
 

Romania -10,2 -62 -100 

Russia 
 

-38 
 

Serbia 
 

-57 
 

Slovakia -11,8 -51 -100 

Slovenia -10,7 -50 -91 

Spain -19,3 -80 -97 

Sweden -12,4 -31 -95 

Switzerland  -47 -95 

Turkey 
 

-87 
 

Ukraine 
 

-23 
 

AVG (+other) -15,5 -54 -94 
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