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Abstract. The rapidly-warming Arctic is sensitive to perturbations in the surface energy budget, which can be caused by clouds 

and aerosols. However, the interactions between clouds and aerosols are poorly quantified in the Arctic, in part due to: (1) 

limited observations of vertical structure of aerosols relative to clouds and (2) ground-based observations often being 15 

inadequate for assessing aerosol impacts on cloud formation in the characteristically stratified Arctic atmosphere. Here, we 

present a novel evaluation of Arctic aerosol vertical distributions using almost 3 years’ worth of tethered balloon system (TBS) 

measurements spanning multiple seasons. The TBS was deployed at the U.S. Department of Energy Atmospheric Radiation 

Measurement Program’s facility at Oliktok Point, Alaska. Aerosols were examined in tandem with atmospheric stability and 

ground-based remote sensing of cloud macrophysical properties to specifically address the representativeness of near-surface 20 

aerosols to those at cloud base. Based on a statistical analysis of the TBS profiles, ground-based aerosol number concentrations 

were unequal to those at cloud base 86% of the time. Intermittent aerosol layers were observed 63% of the time due to poorly 

mixed below-cloud environments, mostly in the spring, causing a decoupling of the surface from the cloud layer. A uniform 

distribution of aerosol below cloud was observed only 14% of the time due to a well-mixed below-cloud environment, mostly 

during the fall. The equivalent potential temperature profiles of the below-cloud environment reflected the aerosol profile 89% 25 

of the time whereby a mixed or stratified below-cloud environment was observed during a uniform or layered aerosol profile, 

respectively. In general, a combination of aerosol sources, thermodynamic structure, and wet removal processes from clouds 

and precipitation likely played a key role in establishing observed aerosol vertical structure. Results such as these could be 

used to improve future parameterizations of aerosols and their impacts on Arctic cloud formation and radiative properties. 

1 Introduction 30 

Over the past decades, the Arctic has been observed to warm at a pace at least twice as fast as the rest of the planet, a 

phenomenon known as Arctic amplification (Jeffries et al., 2013; Overland et al., 2018). This warming has resulted in melting 
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of land and sea ice (Koenigk et al., 2020), which have consequential impacts on Arctic ecology (Arrigo and van Dijken, 2015; 

Gabric et al., 2018; Gamberg, 2019), socioeconomics among indigenous communities (Huntington et al., 2017; John et al., 

2004), commercial shipping operations (Stephenson et al., 2018), and global weather and climate patterns (Overland et al., 35 

2015; Tomas et al., 2016; Wei et al., 2017).  

The presence of atmospheric aerosols has been established as an important modulator of environmental change in the Arctic 

(Abbatt et al., 2019; Law and Stohl, 2007; Quinn et al., 2008), yet the magnitude of their effects—especially on clouds through 

nucleation of droplets and ice—is not well understood and thus contributes significantly to uncertainty in climate model 

simulations (Fridlind and Ackerman, 2018; Klein et al., 2009; Taylor et al., 2019; Zelinka et al., 2020). Aerosol properties 40 

have been measured at surface observatories around the Arctic for several decades (e.g., Barrie and Barrie, 1990; Bodhaine, 

1983; Freud et al., 2017; Maenhaut et al., 1989; Pacyna et al., 1984; Quinn et al., 2000; Quinn et al., 2009; Quinn et al., 2002; 

Schmeisser et al., 2018; Sharma et al., 2019; Uttal et al., 2016). From these observatories, we have learned that there is a strong 

seasonal evolution in the abundance and sources of aerosols—with significantly higher mass concentrations under the 

winter/spring “Arctic haze” phenomenon, as compared to the relatively pristine summer influenced by local biogenic emissions 45 

and intermittent transport of aerosols from lower latitude wildfires, and local sea spray aerosol in the fall (Croft et al., 2016; 

Garrett et al., 2010; Lange et al., 2018; Quinn et al., 2008; Quinn et al., 2009; Shaw, 1995; Udisti et al., 2016; Willis et al., 

2018; Winiger et al., 2019). From the perspective of aerosol-cloud interactions, the concentration, size, and composition of 

aerosols have been shown to play a significant role in augmenting the radiative effects of Arctic clouds with respect to both 

solar and infrared radiation (Garrett and Zhao, 2006; Lubin and Vogelmann, 2006, 2007, 2010; Maahn et al., 2017; Mauritsen 50 

et al., 2011). Numerous studies have demonstrated that the Arctic atmosphere is often highly stratified (Graversen et al., 2008; 

Persson et al., 2002) and that turbulent coupling between the surface and clouds is sporadic (Brooks et al., 2017). This 

stratification results in layering of aerosols that are not captured by surface observations (Brock et al., 2011; Fisher et al., 2010; 

Jacob et al., 2010; Matsui et al., 2011a; Matsui et al., 2011b; McNaughton et al., 2011). Although less common, unstable 

conditions occasionally exist whereby a well-mixed boundary layer can couple the surface to the cloud-mixed layer or the 55 

clouds are low enough for cloud-driven turbulence to couple the cloud mixed-layer and surface layer (Curry et al., 1988; Shupe 

et al., 2013; Sotiropoulou et al., 2014; Vüllers et al., 2020), with aerosol near the surface representative of those at cloud base 

due to vertical mixing. The contrasting and dynamic characteristics of the lower Arctic atmosphere, and the fact that most of 

preceding information on aerosols are gleaned from ground-based observations, motivate the need for profiling measurements 

to directly explore the vertical distributions of aerosols and their interactions with clouds. 60 

Remote sensing can be of value by filling in spatial gaps of vertical aerosol observations. While polar orbiting sensors offer 

valuable information on aerosol class and optical properties within the troposphere, they can be limited in that: (1) little to no 

aerosol vertically resolved data are available north of 82 ˚N (e.g., the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 

Observation or CALIPSO satellite); (2) signals become attenuated under optically thick clouds, casting a “shadow”; (3) they 
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have issues with surface brightness when masking clouds, especially over the high albedo frozen surfaces (Mei et al., 2013); 65 

(4) they may underestimate aerosol quantities and their radiative effects (Thorsen and Fu, 2015), especially in relatively pristine 

locations; and (5) the lowest couple hundred meters are affected by surface returns, prohibiting accurate measurements of 

lower boundary layer aerosol (Kim et al., 2017). Further, coverage at any given location occurs only once every 16 days for 

active sensors like Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar. Surface-based remote sensing tools 

such as lidars and sun photometers offer the advantage of providing continuous observations of the vertical distribution of 70 

aerosol and/or optical properties, yet they offer limited vertical resolution, are subject to lower altitude thresholds, are sensitive 

to low aerosol concentrations and the presence of cloud cover and precipitation, require assumptions regarding correction 

factors, and/or may struggle to capture quantifiable data such as aerosol number and size (e.g., Gui, 2016; Hoff, 1988; Kavaya 

and Menzies, 1985; Kovalev, 1995; Welton and Campbell, 2002). Further, sun photometers require solar radiance, and thus 

are not useful for much of the Arctic annual cycle.  75 

Manned aircraft have afforded valuable insight into aerosol sources, vertical structure, physiochemical properties, and aerosol-

cloud interactions dating back to the 1980s and 90s. Characterizing sources of aerosols and gases transported from midlatitude 

pollution and biomass burning sources during the springtime Arctic haze (Borys, 1989; Chuan, 1993; Herbert et al., 1993; 

Parungo et al., 1993; Parungo et al., 1990; Pilewskie and Valero, 1993; Schnell, 1984) and late summer (Browell et al., 1992; 

Gregory et al., 1992; Harriss et al., 1992) has been a central focus of earlier campaigns in the Alaskan Arctic. In the late 90s 80 

and 2000s, several aircraft campaigns in the Alaskan Arctic focused on assessing impacts of aerosols on Arctic mixed-phase 

clouds (AMPCs) in the spring (Curry et al., 2000; Fridlind et al., 2007) and fall (McFarquhar et al., 2007). The fourth 

International Polar Year (IPY; 2008)—a collaborative, international effort with intensive foci on the polar regions—involved 

several aircraft campaigns to characterize regional and transported aerosols and their impacts on clouds in the spring and 

summer in the North America Arctic (Brock et al., 2011; Lathem et al., 2013; McFarquhar et al., 2011; Wang et al., 2011; 85 

Zamora et al., 2016), European Arctic (Ancellet et al., 2014), and Greenland (Quennehen et al., 2011; Thomas et al., 2013). 

More recent spring and summertime aircraft campaigns in the North American (Creamean et al., 2018c; Maahn et al., 2017), 

European (Eirund et al., 2019; Liu et al., 2015; Wendisch et al., 2019; Young et al., 2017; Young et al., 2016a; Young et al., 

2016b), and Canadian Arctic sectors (Abbatt et al., 2019; Burkart et al., 2017; Leaitch et al., 2016; Schulz et al., 2019; Willis 

et al., 2019) involved a more comprehensive set of observations to assess spatiotemporal distributions of aerosols, their sources, 90 

and their impacts on cloud microphysics. While such Arctic airborne missions have yielded crucial information on aerosol 

sources and their impacts on clouds over the course of the last three decades, they are logistically and financially demanding, 

focus on relatively short intensive periods, and can be affected by fast-flying flow-induced issues (Spanu et al., 2020). 

Additionally, traditional manned aircraft are often not able to fly within hundreds of meters of the ground, therefore preventing 

them from providing critical information on near-surface aerosol properties and the surface-cloud interface.  95 
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To bridge the gap between aerosols at the surface and at altitudes attainable by manned aircraft, smaller platforms such at 

unmanned aerial and tethered balloon systems (UASs and TBSs, respectively) can be employed, and on a more routine basis 

than traditional manned aircraft. Aerosol size distributions, composition, biology, and/or cloud-relevant properties have been 

measured via UAS and TBS in several locations globally (Ardon-Dryer et al., 2011; Bryan et al., 2014; Creamean et al., 2018d; 

de Boer et al., 2016; Greenberg et al., 2009; Maletto et al., 2003; Marinou et al., 2019; Porter et al., 2020; Renard et al., 2016; 100 

Schrod et al., 2017; Siebert et al., 2004; Techy et al., 2010; Telg et al., 2017; Wehner et al., 2007), however, such observations 

are relatively sparse in the Arctic compared to lower latitudes. Balloon-borne observations of aerosols date back to the 1980s 

and 90s (Hofmann et al., 1990; Khattatov et al., 1994; Kondo et al., 1990; Suortti et al., 2001), yet these were focused on 

stratospheric aerosol. Recent technological and instrumentational advancements have afforded information on vertical 

distribution, size, and type of aerosol present in the Arctic boundary layer (Atkinson et al., 2013; Dagsson-Waldhauserova et 105 

al., 2019; Ferrero et al., 2019). Both TBSs and UASs have their advantages and disadvantages in terms of flight ceiling, 

profiling, retrievability, cost, operational logistics, and payload restrictions, but some major advantages of TBSs are their 

flexibility to profile and hover at desired altitudes and flight duration can be several hours depending on power availability for 

instrumentation. 

 Uncertainties in model representations of aerosol-cloud interactions, especially in the Arctic, are exacerbated when models 110 

attempt to simulate cloud-radiative interactions and the surface energy budget (Sedlar et al., 2020). This is in part due to the 

unique behaviour of AMPCs, which can persist for days within 1 km of the ground (Gierens et al., 2020; Morrison et al., 2012; 

Shupe, 2011; Shupe et al., 2011) and have been shown to increase surface temperature by almost 20 ˚C (Dimitrelos et al., 

2020). Additionally, persistent Arctic mixed-phase stratocumulus clouds, which typically have low liquid water amounts, are 

particularly sensitive to modulations from aerosols compared to thicker stratocumulus clouds at other latitudes (de Boer et al., 115 

2013; Eirund et al., 2019; Morrison et al., 2008; Norgren et al., 2018; Solomon et al., 2018). Therefore, both near-surface 

profiling and ground-based measurements equate to an ideal combination for investigating relationships between aerosols, 

clouds, and atmospheric state to address these issues and improve representation of aerosol impacts on Arctic cloud 

microphysics and radiative properties.  

In this paper, we provide some unique perspectives on the distribution of aerosol properties in the lower Arctic atmosphere 120 

collected using TBS at Oliktok Point, Alaska between spring 2016 and summer 2019 (de Boer et al., 2018; de Boer et al., 

2015; Dexheimer et al., 2019). Oliktok Point is a unique Arctic site as it has been shown to be influenced by aerosols from the 

local oilfield activities in addition to the other more ubiquitous Arctic aerosol sources (Creamean et al., 2018b; Creamean et 

al., 2018c; Maahn et al., 2017). These flights generally occurred between the months of May and October under various field 

campaigns, including the Inaugural Campaigns for ARM Research using Unmanned Systems (ICARUS; de Boer et al., 2018), 125 

Aerosol Vertical Profiling at Oliktok Point (AVPOP; Creamean et al., 2018a) and Profiling at Oliktok Point to Enhance Year 

of Polar Prediction (YOPP) Experiments (POPEYE; de Boer et al., 2019a; de Boer et al., 2019b). Using aerosol and 
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atmospheric state measurements from these systems, we attempt to answer the following question: Are ground based aerosol 

measurements representative of those at cloud level? We also address under which atmospheric conditions such links exist 

(i.e., cloud coupled or decoupled from the surface). Section 2 provides an overview of the platforms and sensors deployed as 130 

part of these campaigns. Section 3 includes information on aerosol vertical distribution, comparison with surface-based 

observations, and relationships between aerosol stratification and thermodynamic stratification. Finally, section 4 offers 

discussion on the impact of these measurements, as well as a summary of our findings. 

2 Measurements and methodology 

2.1 Flight characteristics 135 

TBS flights were conducted at the Department of Energy Atmospheric Radiation Measurement (DOE ARM) Program’s third 

Mobile Facility (AMF3) in Oliktok Point, Alaska (70.51°N, 149.86°W, 2 m above mean sea level (a.m.s.l.).; Figure 1a). 

Oliktok Point includes a restricted airspace area (R-2204) to enable TBS flights at AMF3 (for details, see de Boer et al., 2018; 

de Boer et al., 2015; Figure 1b). The dates, times, and flight hours for all TBS flights used from ICARUS, AVPOP, and 

POPEYE are provided in Table 1. Flights occurred to altitudes up to 1.5 km a.m.s.l. and with durations from 1 to 9 h in various 140 

atmospheric conditions including clear sky, broken to overcast clouds, rain, sleet, and snow (Dexheimer et al., 2019). Typical 

profiles included: (1) a gradual ascent, hovering at a desired altitude, then a gradual descent, (2) if already airborne, a gradual 

descent, hovering at a desired altitude, then gradual ascent, (3) quick ascent and descent, (4) quick ascent followed by hovering 

at a desired altitude, then quick descent, and (5) a stepwise path up or down. A flight consisted of one or a combination of 

these profiles, especially when a cloud was present and variable in terms of location throughout the flight (section 3.1). 145 

2.2 In-situ measurements 

2.2.1 Tethered balloon system (TBS) platform 

The TBS platform consisted of a helium-filled balloon, tether, and winch (see Dexheimer, 2018 for complete details). Two 

different balloons were used, including a 34 m3 helikite (Allsopp Helikites Ltd.) and a 79 m3 aerostat (SkyDoc™ and Drone 

Aviation Corp.). The helikite (Figure 1c) uses lighter-than-air principles to obtain its initial lift and a kite-like structure to 150 

achieve stability and dynamic lift, while the larger aerostat uses a skirt instead of a kite to achieve stability in flight (de Boer 

et al., 2018; Dexheimer, 2018; Dexheimer et al., 2019). The helikite was typically used for flights with desired altitudes up to 

700 m above the ground, had a maximum payload of < 10 kg, and could be operated in wind speeds < 11 m s-1. The aerostat 

was used when desired altitudes were > 600 m above ground, a heavier payload was needed (10 – 25 kg), but when surface 

wind speeds were < 8 m s-1 (Dexheimer, 2018). Several winches were employed, including: (1) a commercial, off-the-shelf 155 

electric winch (SkyDoc™) that has been modified at Sandia National Laboratories and integrated into a dedicated balloon 

trailer for both the aerostat and helikite (Figure 1c), (2) a hydraulic winch and pump that have been integrated into a dedicated 
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balloon trailer (Carolina Unmanned Vehicles, Inc.) for the helikite, or (3) a small electric winch (My-te) attached to a receiver 

on a truck for the helikite. The most used winch deployed > 2 km of Plasma® 12-strand synthetic rope, which has a minimum 

breaking strength of 2494 kg (Cortland Company, Inc.).  160 

2.2.2 Balloon-borne instrumentation 

The commercial sensors integrated into the ARM TBS platform and presented here included a Portable Optical Particle 

Spectrometer (POPS; Gao et al., 2016; Telg et al., 2017) (Handix Scientific LLC) for particle size distributions and a standard 

iMet-1-RSB radiosonde (International Met Systems, Inc.) for pressure, temperature, relative humidity, and GPS altitude and 

position. When GPS altitude data were not recorded or suspect, altitude was derived from the iMet pressure-based altitude 165 

retrievals. Total payload weight for the flight-ready POPS enclosure and radiosonde was approximately 6.3 kg. A condensation 

particle counter (CPC 3007; TSI, Inc.) was also commonly deployed with the POPS and iMet sensors for total particle 

concentrations (10 – 1000 nm), but those data are not presented here as our focus is on size-resolved aerosol number 

concentrations that are comparable to other aerosol sizing measurements (see next section). Up to two POPSs were suspended 

along the tether at different altitudes. One POPS was operated just below the balloon in order to reach the maximum possible 170 

altitude (Figure 1d). If a second POPS was deployed, it was generally located up to 100 meters lower than the top POPS to 

sample near the cloud base. The POPS measures particle size distributions from 140 nm to 3 μm with a 405-nm wavelength 

laser, has a maximum particle concentration of 1250 cm-3 (±10% accuracy), and a sample flow rate of 0.18 L min-1. It can 

function down to –40 ˚C with an additional heat sources for the laser and within the enclosure, thus operation is possible in the 

cold Arctic temperatures at Oliktok Point and in AMPCs. Optical particle counters (OPCs) similar to the POPS have been 175 

operated successfully via balloon in several previous studies all over the world (Creamean et al., 2018d; Greenberg et al., 2009; 

Hofmann, 1993; Hofmann et al., 1989; Iwasaka et al., 2003; Kim et al., 2003; Maletto et al., 2003; Renard et al., 2016; Siebert 

et al., 2004; Tobo et al., 2007; Wehner et al., 2007). 

2.2.3 Ground-based measurements 

The AMF3—which was installed at Oliktok Point in 2013 and will be relocated to the southeast U.S. in 2021 180 

(https://www.arm.gov/capabilities/observatories/amf)—includes a comprehensive collection of instrumentation for gases, 

aerosols, clouds, precipitation, atmospheric state, and thermodynamic structure. For the current work, we exploited continuous 

ground-based measurements of: (1) total aerosol concentrations in the ultrafine (3 nm – 10 μm) and fine (10 nm – 10 μm) 

modes using an ultrafine and fine condensation particle counter (CPCu and CPCf, respectively; TSI, Inc.); (2) aerosol size 

distributions from the ultra-high-sensitivity aerosol spectrometer (UHSAS; Droplet Measurement Technologies, Inc.; Uin, 185 

2016); (3) cloud base height from a ceilometer (Vaisala CL31; Morris, 2016); (4) cloud extent and macrophysics using the Ka-

band ARM Zenith Radar (KAZR; ProSensing, Inc.; Widener et al., 2012); (5) liquid water path from a 3-channel (23.8, 30, 89 

GHz) microwave radiometer system (MWR; Radiometrics, Inc.; Cadeddu, 2012); (6)  precipitation data from a NASA ground-

based precipitation imaging package (PIP; https://wallops-prf.gsfc.nasa.gov/Disdrometer/PIP/index.html); and (6) basic 
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surface meteorology including wind speed and direction from the aerosol observing system (AOSMET, which is part of the 190 

AOS measurement suite; Kyrouac, 2016). The UHSAS measures aerosol size distributions from 60 to 1000 nm, which has a 

140 to 1000 nm overlap with the POPS. When directly comparing data between the UHSAS and POPS, only number 

concentrations within this overlap region were used. The AOS inlet is positioned at a height of approximately 10 m above the 

ground. We employed a combination of the ceilometer and KAZR to establish cloud presence, base, and depth in order to 

classify when the POPS was measuring aerosol concentrations below, in, and above cloud.  195 

2.3 Data mining and availability 

All data from the POPS, iMet, CPCs, UHSAS, ceilometer, KAZR, MWR, PIP, and AOSMET were compiled into single data 

files per flight and are available on the DOE ARM Data Archive as an intensive operating period (IOP) product 

(https://adc.arm.gov/discovery/#/results/primary_meas_type_code::aerosconc/iopShortName::amf2018avpop/instrument_cat

egory_code::atmprof). To simplify data analysis, we identified parameters that are most relevant to addressing the question of 200 

whether ground based aerosol measurements are representative of those at cloud level, and merged them into a single product, 

where we aligned and, if needed, resampled timestamps indices. This product includes retrievals from in situ measurements 

on the tether (instrument payload altitude, relative humidity, temperature, potential temperature, equivalent potential 

temperature, particle number concentration, and particle mean diameter), in situ ground observations (precipitation rate and 

particle number concentration), ground-based remote sensing (cloud base and cloud top altitudes and liquid water path), and 205 

hybrid retrievals (particle number concentrations in the overlapping size range from the UHSAS and POPS). The data 

presented here have been re-processed from the POPS raw data retrieved from the instrument after each flight session. This 

step was necessary to improve the signal-to-noise ratio, which is particularly important in low-particle-number conditions 

encountered frequently in the Arctic, and to match detection limits of POPS and the UHSAS instruments. Data from one of 

the POPS (SN18) during May 2017 flights were omitted due to an instrument pump failure. These discrepancies were remedied 210 

after the May flights and observations from this sensor were re-integrated into the analysis. Lower atmospheric stability was 

determined using the thermodynamic measurements provided by the iMet sensors. Specifically, the equivalent potential 

temperature (𝜃E) was calculated using the Python MetPy package (May et al., 2020). With 𝜃E profiles available from the TBS, 

the variance in 𝜃E between the surface and cloud base was analysed to evaluate mixing in the lower atmosphere.  Since well-

mixed atmospheres should have a constant 𝜃E profile, increased variance would indicate some form of stratification within the 215 

column. Based on a statistical evaluation of this variance, a threshold of 0.25 was selected as a cut-off for distinguishing 

between well-mixed and stratified profiles. Unless otherwise indicated, data herein are presented in a.m.s.l. and universal 

coordinated time (UTC). 

Here, we describe definitions for key terms used throughout this paper. A “flight” corresponds to the entire duration of a TBS 

deployment, while a “profile” represents a segment of ascent or descent during the flights—there can be multiple profiles per 220 

flight (see example of how a flight is dissected into profiles in Figure 2). Specifically, a profile is defined by the measurements 
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in between the minimum and maximum altitude attained during each ascent/descent. We also compare aerosol concentrations 

at various vertical levels relative to the ground and to cloud height. “Ground” aerosol concentrations are defined as the POPS 

number concentrations averaged between 20 and 40 m of each profile—data below 20 m were removed due to aerosol 

contamination from the winch generator (i.e. spikes in POPS number concentration were typically observed below this 225 

altitude). POPS data quality at the “ground” was cross-checked with the UHSAS number concentrations in the overlapping 

size region (see section 3.1). “Cloud-base” aerosol concentrations are defined as POPS number concentrations averaged 

between the average cloud base height for each profile and 40 m below that altitude. “Below-cloud”, “in-cloud”, and “above-

cloud” aerosol is defined as the average number concentration of aerosol from the POPS from 20 m to the average cloud base 

height, the average cloud base height to average cloud top height, and average cloud top height to the maximum height of each 230 

profile, respectively.  

In total, 282 profiles were obtained. The TBS flew and collected POPS data at the ground and at cloud base for 63 of those 

282 profiles. Remaining profiles either did not reach cloud base or were profiles in or above cloud during the middle of the 

flight and did not descend to the ground. The 63 profiles were categorized into cases, including: (1) cases where the ground 

POPS concentrations = cloud-base POPS concentrations, (2) cases featuring decreasing or increasing POPS concentrations 235 

with height to cloud base height (called “gradients”), and (3) cases with intermittent layers of aerosol between the ground and 

cloud base height. Cases where “ground = cloud-base” were defined programmatically as when “cloud-base” POPS 

concentrations were within 10% of the “ground” POPS concentrations. This metric was used to determine whether ground-

based aerosol is representative of aerosol at cloud base. For cases where aerosol number concentrations at the ground did not 

equal those at cloud base, gradients and intermittent layers were identified visually. Ground = cloud-base cases were also 240 

visually checked to assure they belonged to the correct case category and that intermittent layers were not present. Some visual 

intervention was necessary for placement of profiles in their correct case categories. 𝜃E profiles were compared in tandem to 

the POPS profiles to identify if the boundary layer was thermodynamically well-mixed or stratified. A mixed or stratified 

boundary layer corresponded to 𝜃E within or outside of this variance threshold, respectively.  Profiles with missing or 

insufficient POPS or 𝜃E data were removed from statistical analyses (section 3.3). 245 

3 Results and discussion 

3.1 General atmospheric and ground-based aerosol conditions during TBS flights in Arctic Alaska  

TBS flights spanning the campaigns in Table 1 occurred over a range of atmospheric conditions, including clear sky (e.g. 10 

Jul 2018), cloud cover, and during precipitation events (examples shown in Figure 3). During cloudy periods, the TBS flew 

below, in, and above cloud when the cloud top was low enough for the TBS to fly through and the conditions allowed for it 250 

(e.g. 17 May and 17 Aug 2018). Substantial changes in cloud depth were often observed during flight periods due to 

precipitation or changes in atmospheric dynamics/mixing (e.g. 06 – 08 Aug 2017; 21, 23, and 25 Sep 2018). Cloud base was 



9 

 

observed to be as low as 72 m and as high as 7590 m but was 1132 m on average (median of 718 m) during the TBS profiles. 

Cloud top height ranged from 177 to 9800 m (average and median of 2443 and 1413 m, respectively). Precipitation occurred 

during 47 of the 282 total profiles. Ambient temperatures measured by the iMet sensors ranged from –12 to 23 ˚C during the 255 

flights (average and median of 4.7 and 3.2 ˚C, respectively). Often, temperature inversions were observed, and in combination 

with clouds, caused unique transitions in the vertical distributions of aerosol number concentrations (e.g., 21 Sep 2018) as 

discussed further herein. 

Number concentrations measured with the POPS at ground level (i.e., concentrations in the range of 20 – 40 m) were 

comparable to the UHSAS at the ground for the overlapping size range between the two instruments (Figure 4a): the average 260 

UHSAS to POPS ratio was 1.01 ± 0.9 (median of 0.77) indicating very good agreement between the two separate instruments 

during TBS flights. A side-by-side comparison was conducted on 01 Jul 2018 (i.e., the POPS was placed near the AOS inlet) 

and demonstrated good agreement in the overlapping size regions between the POPS and UHSAS (not shown), akin to previous 

in-depth comparison efforts which reported coincidence error of less than 25% (Mei et al., 2020). The POPS appeared to have 

slightly higher concentrations when greater than approximately 100 to 150 cm-3 (Figure 4b), however, both methods were still 265 

in good agreement even when including all the data measured by POPS between ground and cloud base (Figure 4c). Possible 

sources of disagreement could be due to: (1) the inlets (i.e., the UHSAS is on a stack inlet in which the air is humidity-

controlled to 40% versus the POPS, which has a small inlet directly exposed to ambient conditions), (2) concentrations were 

not corrected for aerosol loss in either instrument, and/or (3) proximity to very localized sources (e.g., the AMF3 generators 

or operations vehicle exhaust). 270 

3.2 Seasonal variability in aerosol vertical distributions 

Figure 5 demonstrates the transitions in number concentration and mean particle diameter during all TBS deployments. The 

highest concentrations were observed when the TBS flew well below cloud base in the summer (e.g., profiles 81 – 100, 180 – 

200, and 230 – 240), which is likely due to a combination of more prominent surface sources and separation of those sources 

from cloud base where scavenging of the aerosol could occur (Browse et al., 2012; Huang et al., 2010; Limbeck and Puxbaum, 275 

2000; Yum and Hudson, 2001). In general, the highest number concentrations of the smallest particles observed by the POPS 

were likely primary combustion particles from Prudhoe Bay oilfield emissions, which have been previously observed as a 

prominent source on the North Slope (Creamean et al., 2018c; Gunsch et al., 2017; Kirpes et al., 2020), and possibly to a lesser 

extent, growth of aerosols from new particle formation events (Kolesar et al., 2017). The TBS data agreed with the ground-

based UHSAS data whereby relatively high concentrations of particles within the size range (i.e., 60 nm – 1 μm) that would 280 

be expected from oilfield plumes (Gunsch et al., 2020) were observed, specifically when strong winds originated from the 

southeast (Figure 6) from where a high density of oil wells exists (Creamean et al., 2018c). The North Slope is also subject to 

local marine biological emissions that increase particle numbers starting in May and peak during the summer (specifically 

July) when sunlight hours and open water sources are at their maxima (Creamean et al., 2018b; Polissar et al., 2001; Quinn et 
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al., 2009; Quinn et al., 2002). This biological source could have contributed to the particles measured at Oliktok Point, but 285 

given the dominant wind direction, this was likely a minor influence during the summer months of the current study. However, 

the low concentrations of aerosol associated with easterly winds was likely a result of an influence from marine biological 

aerosol as demonstrated by Creamean et al. (2018b) in May 2017. Some of the largest particles were observed in low 

concentrations during the summer and relatively high concentrations in the fall (e.g., profiles 45 – 60, 120 -140, 260 – 270; 

Figure 5), presumably due to influences from supermicron sea salt aerosol when open water is present off the coast (May et 290 

al., 2016; Quinn et al., 2002). September was particularly influenced by marine sources given the low particle counts and 

easterly winds from over open ocean directly off the coast of Oliktok Point (Figure 1b), while October was likely influenced 

by a combination of supermicron sea salt and oilfield activities as the winds transitioned to predominantly originating from 

the Prudhoe Bay oil wells (Figure 6). Emissions from a local lead were visible during early July 2018 (e.g., profiles 81 – 100; 

Figure 5), indicating the high number concentrations observed during this period in part originated from the open water source, 295 

as supported by the predominantly easterly wind direction (97 degrees, on average during these days; Figure 6). The spring 

flights occurred in May—coincident with the timing of the initial breakup of the polar vortex (Stone et al., 2010) and calmer, 

easterly winds (Figure 6)—and were generally lower in concentration compared to the summer with average sizes spanning 

the full spectrum (Figure 5).  

The seasonal dependencies of aerosol number concentrations measured by TBS are summarized in Figure 7, with spring, 300 

summer, and fall corresponding to 9 (38), 27 (176), and 10 (68) flights (profiles), respectively. Specifically, we compare 

between aerosol concentrations at the ground, below-cloud, at cloud base, in-cloud, and above the cloud. In addition, we show 

average values for cloud base height and depth and the percentage of profiles during precipitation. Average number 

concentrations were highest in the summer at almost all vertical levels, particularly for below-cloud aerosol, which could be 

caused by: (1) a combination of sources including local oilfield emissions, local/regional biogenic aerosol production, and 305 

episodic regionally-transported aerosol from Siberian and Alaskan wildfires (Creamean et al., 2018c; Maahn et al., 2017; Stohl, 

2006), (2) inefficient below-cloud scavenging, and (3) insufficient wet removal via precipitation. The highest and deepest 

clouds were observed in the summer, in agreement with previous work on the North Slope (Shupe et al., 2011). Additionally, 

precipitation was much less prominent in the summer than spring or fall (11% of profiles had precipitation versus 24% and 

26% in spring and fall, respectively). In concert, these observations indicate there was likely less efficient scavenging of aerosol 310 

by clouds and precipitation in the summer as compared to other seasons. The spring did not have as high of concentrations of 

aerosol at all levels below cloud top as the summer, which could be a result of more efficient wet scavenging from clouds (i.e., 

they were lowest during the spring profiles) and precipitation. Another explanation could be that our “spring” flights occurred 

in May during the tail end of the Arctic haze, weakening of the polar vortex, and the very start of the transition into peak 

biological productivity from marine and terrestrial sources but prior to influences from regional wildfires (Creamean et al., 315 

2018b; Creamean et al., 2018c). Oilfield emissions are likely not responsible for the difference in the seasons since previous 

studies have indicated these emissions are persistent (Creamean et al., 2018c; Gunsch et al., 2020; Kolesar et al., 2017; Maahn 
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et al., 2017). The only exception is the above-cloud aerosol, which was highest during the spring compared to summer and 

fall—characteristic of long-range transported Arctic haze that typically resides in elevated layers in the free troposphere (Brock 

et al., 2011) and to a lesser degree, transported closer to the surface (Quinn et al., 2007). Capturing this below-cloud region 320 

further demonstrates the utility for TBS measurements in the lowest levels of the Arctic atmosphere. The lowest aerosol 

concentrations were measured during fall, probably due to: (1) limited influences from long-range transport, (2) less impact 

from regional fires, (3) reduction of sunlight yielding less biological productivity, and (4) wet scavenging by precipitation 

(26% of profiles occurred during precipitation).  

3.3 Relationships between aerosols, thermodynamics, and cloud structure 325 

In addition to variability in emissions, transport, and wet removal mechanisms, the stability of the atmosphere helps govern 

the vertical distribution of the aerosol population resulting from the major sources and sinks. Here, we mainly focus on the 

below-cloud environment to assess relationships between aerosol concentrations at the surface, in the boundary layer, and at 

cloud base. Profiles were classified into four separate cases based on the structure of POPS number concentration with height 

and atmospheric mixing (i.e., 𝜃E) below-cloud: (1) profiles with a well-mixed below-cloud environment (i.e., approximately 330 

constant 𝜃E) and consistent aerosol concentrations with height up to cloud base, (2) profiles with a stratified below-cloud 

environment and increasing or decreasing gradient in below-cloud aerosol, (3) profiles with a stratified below-cloud 

environment and intermittent aerosol layers between the ground and cloud base, and (4) outliers whereby no relationship 

between below-cloud thermodynamic structure and number concentrations existed. Only profiles with 𝜃E and POPS data are 

classified into the different cases (63 profiles total). These data are illustrated in Figure 8 as ratios of 𝜃E and POPS number 335 

concentrations at all altitudes within the below-cloud region as compared to their respective values at the ground. The cases 

where the ground aerosol was equivalent to the cloud-base aerosol concentrations under a well-mixed below-cloud 

environment (case 1) all fall at the 1:1 nexus of both parameters (i.e., 𝜃E and POPS number concentrations were both consistent 

in their below-cloud profiles from their ground values). There were very few profiles that fit the constraints of case 1 (8 

profiles) when a mixed layer existed in the below-cloud environment as shown by the very consistent 𝜃E with height. For cases 340 

whereby below-cloud stratification existed (46 profiles total), 𝜃E caused a gradient (increasing or decreasing aerosol number 

concentrations with height) or intermittent layers (1 or more layers or “spikes” with elevated number concentrations; aerosol 

layers existed at levels approximately equivalent to the locations of temperature inversions). Data from these cases fall along 

the “cross” evident in Figure 8. Interestingly, the outlier profiles (7 total) appeared to occur during well-mixed conditions (i.e., 

consistent 𝜃E with height) but had aerosol profiles with decreasing gradients (6 profiles with 𝜃E ratio ~ 1 and POPS ratio < 1) 345 

or decreasing gradients with an intermittent layer (1 profiles with 𝜃E ratio ~ 1 and POPS ratio < 1 but with “spikes”). The 

outliers spanned all seasons (1, 2, and 4 profiles for spring, summer, and fall, respectively), but typically occurred during 

conditions that had: (1) highly variable cloud base (i.e., large standard deviations with the minimum reaching down to near the 

surface, (2) a very low average cloud base (< 200 m), (3) high relative humidity at the surface, and/or (4) precipitation. One 

possible explanation is that as aerosols approached the highly variable or very low cloud bases due to activation into cloud 350 
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particles (i.e. scavenging), leaving a relatively thin layer of depletion (Hoffmann et al., 2015; Solomon et al., 2015). Another 

possible explanation is that local surface sources became dilute as they mixed upwards. The surface winds were north-easterly 

or westerly during most profiles (6), with 1 profile occurring during south-easterly winds. It is possible that some combination 

of source dilution and/or rapid changes in thermodynamic structure of the boundary layer from clouds, humidity, and 

precipitation originating from storm systems from predominantly over the Arctic Ocean causes the discrepancy between 355 

aerosol and thermodynamic profiles.  

The flight conditions and seasonality during the cases and outlier profiles are summarized in Figure 9. The TBS flew over a 

range of vertical coverage, including below (89% of all 282 profiles with POPS data), in (48%), and above cloud (25%). The 

conditions during the TBS flights were mostly cloudy (91%) and precipitation occurred during 17% of the 282 profiles (Figure 

9a). Cases where the concentrations of the aerosols at the ground were equivalent to those at cloud base (14% of the 63 profiles 360 

containing POPS measurements at the ground and cloud base), and cases with gradients (16%), and intermittent layers (63%) 

are shown in Figure 9b. Most of the aerosol was found below as compared to above cloud (38% of the profile subset had higher 

aerosol concentrations above cloud as opposed to 62% having higher concentrations below). The below-cloud environment 

(i.e., coupled/well-mixed versus decoupled/stratified) reflected the aerosol vertical structure (i.e., concentrations at the ground 

were similar or dissimilar to those just below cloud base) for most of the profiles (89%).  365 

The conditions and cases are further broken down into seasons (Figure 9c). The spring only had no profiles where the ground 

aerosol was equivalent to the cloud base in terms of number concentrations and was chiefly impacted by gradients (40% of the 

spring profiles with POPS observations at the ground and cloud base) and intermittent layers of aerosols (60%), which is 

expected from long-range transported haze aerosol. It is possible the relatively low and variable clouds (i.e., low mean cloud 

base heights with large standard deviations) in the spring (Figure 7) influenced the variable aerosol distributions, particularly 370 

the decreasing aerosol concentrations when approaching cloud base due to cloud scavenging of aerosol. The summer’s high 

aerosol number concentrations were likely a result of less efficient wet scavenging—relatively little precipitation (Figure 9c) 

in combination with higher clouds (Figure 7) during the summer flights. Additionally, aerosols were predominantly found in 

layers in the below-cloud environment, possibly due to a mixture of sources from regionally-transported wildfire, local oilfield, 

and marine biological emissions and inefficient below-cloud mixing (Figure 9c). Most cases where the ground-based aerosol 375 

concentrations were equivalent to those near cloud base existed in the fall when the below-cloud environment was mixed far 

more often than spring and summer. For the 63 profiles, precipitation was highest (lowest) in fall (summer), when the lowest 

(highest) aerosol concentrations were observed, indicating wet scavenging played a role in controlling the aerosol population 

below-cloud in combination with a reduction of aerosol sources in the fall. 
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4 Summary 380 

We present a summary of findings from routine TBS measurements of aerosol number concentrations in tandem with ground-

based measurements of aerosols, atmospheric state, and cloud macrophysical properties in northern Alaska from two 

consecutive years and during multiple seasons. To directly address the question posed regarding the representativeness of 

ground-based measurements of aerosols to those aloft, we compiled data from all TBS flights and disseminated into profiles, 

evaluating how the profiles were structured during each season and relative to cloud base. This representativeness was observed 385 

only 14% of the time, mostly during the fall months and infrequently during the late summer. The other 86% of the time, 

aerosol structure existed as increasing or decreasing gradients up to cloud base, or in intermittent layers in the below-cloud 

environment. The vertical distribution of the aerosols can be explained by a combination of known seasonal sources on the 

North Slope of Alaska and observed thermodynamic structure and wet scavenging from clouds and precipitation. These 

findings afford novel information on aerosol vertical structure in the Arctic, especially where traditional platforms such as 390 

remote sensing and manned aircraft fail to provide ample coverage. This study represents the first to directly evaluate intra-

seasonal aerosol vertical properties under the context of the below-cloud Arctic environment.  

Overall, the TBS is a useful tool that can fill in key observational gaps of aerosols by affording detailed information on aerosol 

profiles. In tandem with an understanding of common aerosol sources and auxiliary measurements on cloud and precipitation 

properties and atmospheric thermodynamic and kinematic structure, the vertical distribution of aerosol number can be 395 

explained. This detailed information is crucial for appropriately simulating aerosol-cloud interaction processes, which are 

especially challenging to model in the Arctic. DOE ARM aims to achieve a richer observational dataset of TBS aerosol 

measurements through plans for additional flights at a variety of locations and environments for the ARM program, including 

at ARM fixed sites and for major field campaigns, with deployments including filter sampling for offline aerosol chemical and 

microphysical property analyses. We recommend that future efforts by the more general Arctic aerosol community should 400 

focus on continuing routine observations of aerosol vertical structure in additional, diverse locations throughout the Arctic and 

during periods with more limited observations such as winter. Ongoing efforts, including the Alfred Wegener Institute (AWI) 

and Leibniz Institute for Tropospheric Research (TROPOS) TBS observations in the central Arctic during the year-long 

Multidisciplinary drifting Observatory for the Study of Arctic Climate expedition (MOSAiC; https://mosaic-expedition.org/) 

are extremely valuable to tackle the issue of limited in situ observational coverage of lower-atmospheric aerosol properties in 405 

the Arctic. Continued development of an enhanced dataset on aerosol vertical structure would be incredibly beneficial for 

improving representation of aerosol sources and interactions with clouds in the Arctic and beyond. More broadly, refining 

parameterizations and the general understanding of Arctic aerosol sources, transport, and removal via precipitation and cloud 

scavenging through enhanced observations will ultimately improve understanding of cloud formation processes and 

subsequent impacts on the delicate yet dynamic Arctic climate. 410 
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Table 1: Dates, times, and instruments flown during TBS flights presented in this study from the Inaugural Campaigns for ARM 

Research using Unmanned Systems (ICARUS), Aerosol Vertical Profiling at Oliktok Point (AVPOP) and Profiling at Oliktok Point 

to Enhance Year of Polar Prediction (YOPP) Experiments (POPEYE) flight campaigns at AMF3. 

Campaign Date Instruments flown Flight times (UTC) 

IC
A

R
U

S
 

18-May-2017 CPC, 2 POPS, iMet 

18:19 – 19:02 

20:33 – 22:11 

22:37 – 23:31 

23:38 – 00:42 

20-May-2017 CPC, 2 POPS, iMet 23:28 – 01:21 

21-May-2017 1 POPS, iMet 23:43 – 01:27 

23-May-2017 CPC, 2 POPS, iMet 

17:41 – 19:34 

19:34 – 21:20 

21:27 – 22:33 

24-May-2017 CPC, 2 POPS, iMet 11:40 – 15:10 

06-Aug-2017 CPC, 2 POPS, iMet 21:30 – 01:00 

07-Aug-2017 CPC, 2 POPS, iMet 
19:25 – 21:25 

21:39 – 22:47 

08-Aug-2017 CPC, 2 POPS, iMet 20:00 – 01:00 

10-Aug-2017 CPC, 2 POPS, iMet 23:40 – 02:00 

11-Aug-2017 CPC, 2 POPS, iMet 

18:45 – 19:35 

19:35 – 20:44 

20:45 – 22:33 

22:34 – 00:02 

15-Oct-2017 CPC, 2 POPS, iMet 22:35 – 01:45 

17-Oct-2017 CPC, 2 POPS, iMet 
19:48 – 20:24 

20:27 – 21:40 

19-Oct-2017 CPC, 1 POPS, iMet 23:40 – 00:50 

22-Oct-2017 CPC, 2 POPS, iMet 19:00 – 19:50 

A
V

P
O

P
 

14-May-2018 CPC, 1 POPS, iMet 

19:26 – 19:59 

20:33 – 21:43 

23:35 – 00:10 

15-May-2018 CPC, 1 POPS, iMet 

00:16 – 00:40 

19:26 – 20:00 

21:00 – 21:26 

21:26 – 21:40 

17-May-2018 CPC, 1 POPS, iMet 

17:00 – 17:40 

18:08 – 19:18 

22:20 – 00:53 

18-May-2018 CPC, 1 POPS, iMet 

17:25 – 17:55 

18:01 – 18:25 

18:26 – 18:50 

P
O

P
E

Y
E

 

01-Jul-2018 CPC, 2 POPS, iMet 22:30 – 01:34 

02-Jul-2018 CPC, 2 POPS, iMet 19:08 – 21:44 

03-Jul-2018 CPC, 1 POPS, iMet 

00:18 – 04:06 

17:15 –18:00 

18:04 –18:14 

18:23 –19:05 

19:06 –20:12 

20:13 –21:25 

21:26 –21:50 

07-Jul-2018 CPC, 1 POPS, iMet 
19:05 – 19:52 

22:15 – 00:30 
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09-Jul-2018 CPC, 1 POPS, iMet 
16:13 – 19:48 

21:09 – 22:54 

10-Jul-2018 CPC, 2 POPS, iMet 
01:13 – 04:33 

20:19 – 23:22 

24-Jul-2018 CPC, 1 POPS, iMet 23:11 – 00:07 

25-Jul-2018 CPC, 1 POPS, iMet 

00:09 – 00:58 

01:01 – 02:10 

23:30 – 01:13 

26-Jul-2018 CPC, 2 POPS, iMet 
19:30 – 21:25 

23:33 – 01:05 

27-Jul-2018 CPC, 1 POPS, iMet 

16:28 – 17:34 

17:40 – 18:10 

18:57 – 21:40 

22:18 – 23:40 

28-Jul-2018 CPC, 1 POPS, iMet 01:37 – 02:14 

29-Jul-2018 

CPC, 2 POPS, iMet 17:26 – 19:15 

CPC, 1 POPS, iMet 21:20 – 23:48 

CPC, 2 POPS, iMet 23:51 – 00:58 

30-Jul-2018 
CPC, 2 POPS, iMet 00:58 – 01:53 

CPC, 1 POPS, iMet 19:10 – 21:55 

31-Jul-2018 CPC, 2 POPS, iMet 
17:12 – 21:00 

21:01 – 22:34 

01-Aug-2018 CPC, 1 POPS, iMet 16:07 – 21:44 

02-Aug-2018 CPC, 1 POPS, iMet 20:48 – 23:10 

17-Aug-2018 CPC, 1 POPS, iMet 23:03 – 02:50 

18-Aug-2018 CPC, 1 POPS, iMet 
17:45 – 21:00 

22:00 – 23:05 

19-Aug-2018 CPC, 1 POPS, iMet 22:45 – 02:30 

20-Aug-2018 CPC, 1 POPS, iMet 

18:13 – 19:26 

19:40 – 20:40 

20:55 – 23:40 

24-Aug-2018 CPC, 1 POPS, iMet 18:12 – 18:42 

25-Aug-2018 CPC, 1 POPS, iMet 
16:58 – 19:48 

23:52 – 00:45 

21-Sep-2018 
CPC, 2 POPS, iMet 17:45 – 20:47 

CPC, 1 POPS, iMet 22:20 – 00:40 

23-Sep-2018 CPC, 1 POPS, iMet 
17:50 – 21:10 

21:30 – 00:08 

25-Sep-2018 CPC, 1 POPS, iMet 19:30 – 00:02 

26-Sep-2018 CPC, 2 POPS, iMet 21:10 – 00:55 

27-Sep-2018 CPC, 2 POPS, iMet 
18:50 – 21:00 

21:50 – 00:40 

28-Sep-2018 CPC, 1 POPS, iMet 
18:30 – 22:30 

23:03 – 23:35 

 

  425 



17 

 

 

 
Figure 1: Maps illustrating a) the location of Oliktok Point, Alaska and b) the scale (in nautical miles, nm) of the restricted airspace 

area (R-2204) set up for operation of the TBS and location of AMF3 (red triangle). The map was created using satellite imagery 

obtained through the © Google Earth Application Programming Interface. Also shown are images of the TBS (34 m3 helikite), 430 

including c) the Sandia National Laboratories winch trailer used for flight and d) a close-up of a typical instrument payload. Only 

the instruments mentioned in this manuscript are labelled.  
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Figure 2: Example of how flight profiles are defined from 09 Jul 2018. The red and green markers represent the minimum and 435 
maximum altitude of each profile, respectively, and thus define the start and end points of each profile. This example consisted of 6 

profiles for the entire flight time period. 
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 440 
Figure 3: Data from select flights from ICARUS, AVPOP, and POPEYE. Coloured lines show the altitude of the POPS instruments 

(left axes) where the colour scale represents aerosol number concentration. Days with two lines indicate both POPS were deployed 

and operational and demonstrate the relative location of each POPS on the tether. Orange lines represent the temperature measured 

by the iMet instruments (right axes) and like the POPS, some flights contained multiple iMet sensors. The dark grey markers 

represent cloud base as measured by the ground-based ceilometer and shaded lighter grey region indicates the location and depth 445 
of the clouds as measured by the KAZR radar. One clear-sky case is shown (10 Jul 2018). 
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Figure 4: a) The ratio of UHSAS to POPS aerosol number concentrations in the overlapping size range (130 – 1000 nm) and at the 

ground (defined as 20 – 40 m a.m.s.l.) versus altitude from all flights. Scatter plots of UHSAS versus POPS aerosol number 450 
concentrations for b) measurements at the ground and c) from the ground to cloud base (cloud base altitude varied for each flight). 

Data for b) and c) are coloured by altitude (note the different scales for each panel). Dashed lines show 1:1 line. 
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 455 
Figure 5: Image plots of POPS a) total number concentration and b) mean particle size during all profiles from the TBS deployments 

plotted by altitude. The colour scales represent number concentration and mean size, respectively. White regions indicate no data 

were obtained. The grey markers represent mean cloud base height during each profile. Profiles without cloud base shown either do 

not have cloud base data or cloud base is above 1.5 km a.m.s.l. 

  460 
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Figure 6: Ground-based, monthly-averaged wind direction at Oliktok Point from days where the TBS flew. The black numbers for 

the wind direction markers indicate the average wind speed (in m s-1). Coloured bars indicate the monthly-averaged aerosol number 

concentrations measured by the CPCf (10 nm – 10 μm), UHSAS (60 nm – 1 μm), and POPS (140 nm – 3 μm). The difference between 

the CPCu and CPCf is shown as the 3 – 10 nm particles. Note the CPCs and UHSAS/POPS are shown on different axes. The POPS 465 
concentrations are averaged from those measured at all below-cloud altitudes (20 m to cloud base) while remaining aerosol 

instruments and wind measurements were surface-based only (instrumentation included in the AMF3).   
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Figure 7: Seasonal breakdown of clouds, precipitation, and aerosol number concentration for the 282 profiles containing POPS data. 

(top) Average cloud altitude and percentage of profiles with precipitation during all TBS flight profiles per season estimated from 470 
the ceilometer, KAZR, and PIP. POPS total number concentrations during the spring, summer, and fall for all TBS flight profiles 

separated into regions at the ground (20 – 40 m), below-cloud (20 m to average cloud base height), cloud-base (the 40 m layer below 

average cloud base height), in-cloud (average cloud base height to average cloud top height), and above-cloud (average cloud-top 

height to maximum altitude) averaged per profile. The numbers above the bars represent the ratio of that region’s concentrations 

to the ground concentrations (i.e. to the green bar). Error bars indicate 95% confidence intervals.   475 



24 

 

 
Figure 8: Scatter plot of POPS aerosol number concentrations and 𝜃E relative to their ground values (20 – 40 m) for each profile. 

Data are from the 63 profiles containing POPS and 𝜃E throughout the entire below-cloud environment. Each point represents data 

from one altitude, thus there are several data points per profile. Data are grouped by case, including profiles where ground aerosol 

was equivalent to concentrations at cloud base under well-mixed conditions (9 profiles), profiles with intermittent layers of aerosol 480 
under stratified conditions (37 profiles), profiles with gradients in aerosol under stratified conditions (9 profiles), and outliers where 

the atmospheric stability/mixing cannot be used to explain the vertical distribution of the aerosol (7 profiles).  
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Figure 9: Statistics from all profiles with POPS data (282 total) during the ARM TBS campaigns, including a) when the POPS flew 485 
below, in, and above cloud and conditions during the flights (clear or cloudy), and precipitation. Out of the profiles that POPS was 

operational at cloud base and at the ground (63 total), b) shows cases where aerosol concentrations were equivalent and not equal 

at ground and cloud base. When not equal, cases are categorized into an increasing or decreasing gradient with height when 

intermittent layers were present, and cases where below-cloud mixing can explain the stratification of the aerosol. Also shown are 

cases where the POPS measured above and below cloud within the same profiles (42 total) and which cases had higher aerosol 490 
concentrations below and above cloud. c) shows various conditions by season from b). The number of cases is provided for a) and 

b). The number of profiles per season is provided in c). 
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