

1 **Isotopic compositions of atmospheric total gaseous mercury in ten Chinese cities and**
2 **implications for land surface emissions**

3

4 Xuewu Fu^{1,2}, Chen Liu^{1,3}, Hui Zhang^{1,3}, Yue Xu¹, Hui Zhang¹, Jun Li⁴, Xiaopu Lyu⁵, Gan Zhang⁴,
5 Hai Guo⁵, Xun Wang¹, Leiming Zhang⁶, Xinbin Feng^{1,2,3}

6 ¹State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences,
7 Guiyang, 550081, China

8 ²CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China

9 ³University of Chinese Academy of Sciences, Beijing, 100049, China

10 ⁴State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of
11 Sciences, Guangzhou, 510640, China

12 ⁵Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China

13 ⁶Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada,
14 Toronto, Ontario, Canada

15 Correspondence to: Xuewu Fu, fuxuewu@mail.gyig.ac.cn and Xinbin Feng, fengxinbin@vip.skleg.cn

16

17 **Abstract:**

18 Land surface emissions are an important source of atmospheric total gaseous mercury (TGM),
19 however, its role on the variations of TGM isotopic compositions and concentrations has not been
20 properly evaluated. In this study, TGM isotope compositions, a powerful tracer for sources and
21 transformation of Hg, were measured at ten urban sites and one rural site in China. TGM
22 concentrations were higher in summer than in winter in most cities except in Guiyang and
23 Guangzhou in the low latitudes. The summertime high TGM concentrations were coincided with
24 prevailing low TGM $\delta^{202}\text{Hg}$ and high TGM $\Delta^{199}\text{Hg}$ signatures. These seasonal patterns were in
25 contrast with those typically observed in rural areas in the Northern Hemisphere, suggesting
26 atmospheric oxidation chemistry, vegetation activity as well as residential coal combustion were not
27 likely the dominant mechanisms contributing to the TGM concentration and isotopic composition
28 seasonality in Chinese cities. The amplitudes of seasonal variations in TGM concentrations and
29 $\Delta^{199}\text{Hg}$ (or TGM $\delta^{202}\text{Hg}$) were significantly positively (or negatively) correlated with that of the
30 simulated soil GEM emission flux. These results suggest that the seasonal variations in TGM
31 isotopic compositions and concentrations in the ten Chinese cities were likely controlled by land
32 surface emissions that were observed or reported with highly negative $\delta^{202}\text{Hg}$ signatures.

33
34 **1. Introduction**

35 Mercury (Hg) is a toxic heavy metal pollutant of global concerns for ecological and human
36 health. Hg in the atmosphere includes three major forms: gaseous elemental mercury (GEM),
37 gaseous oxidized mercury (GOM), and particulate bound mercury (PBM). According to global Hg
38 models, GEM is the dominant form of total gaseous mercury (TGM = GEM + GOM, 88.8~92.9%)
39 and total Hg (88.8~92.8%) in the troposphere (Selin et al., 2007; Holmes et al., 2010; Horowitz et
40 al., 2017), and the fraction of GEM in total atmospheric Hg is thought to be much higher in the
41 planetary boundary layer (PBL) (e.g., on average >95%) than that in the free troposphere
42 (Swartzendruber et al., 2009; Lyman and Jaffe, 2012; Shah et al., 2016). GEM has a long
43 atmospheric residence time and can transport globally through the atmosphere (Obrist et al., 2018).
44 GEM can be deposited onto earth's surface by dry deposition or atmospheric oxidation followed by
45 wet and dry deposition. Once deposited, it could be transformed to methylmercury and subsequently
46 bio-accumulated in the food web, posing a threat to human health and the environment (Obrist et
47 al., 2018). GEM in the atmosphere can be derived from primary anthropogenic, natural and legacy
48 emissions. Land surface emissions are an important source of atmospheric GEM. Total GEM
49 emissions from global land surfaces, although not well constrained, are estimated to range from 600
50 to 2000 Mg/yr, which are in the similar magnitude as the global primary anthropogenic GEM
51 emissions (Selin et al., 2007; Holmes et al., 2010; Pirrone et al., 2010; Agnan et al., 2016). However,
52 to what extent the land surface emissions can contribute to the variations of GEM at local, regional,
53 and global scales has not been well understood.

55 TGM or GEM concentrations in urban areas are generally elevated as compared to rural areas
56 (Fu et al., 2015; Mao et al., 2016), which could be attributed to strong Hg emissions from primary
57 anthropogenic sources, urban surfaces (soil, pavement, building surface, dominantly referred to as
58 “legacy” emissions), and indoor Hg-containing products (Carpi and Chen, 2001; Feng et al., 2005;
59 Eckley and Branfireun, 2008; Rutter et al., 2009). A previous study in Mexico City, Mexico, based
60 on pollution rose and Concentration Field Analysis (CFA), suggested that highly elevated GEM
61 concentrations (mean = 7.2 ng m⁻³) were dominantly (81%) attributed to anthropogenic sources
62 (Rutter et al., 2009). The large percentage of anthropogenic source contributions, however, might
63 have been supplemented by volcanic emissions and re-emission of Hg previously deposited to urban
64 surfaces in anthropogenic source regions (Rutter et al., 2009). On the other hand, TGM
65 concentrations in New York, USA (mean = 3.90 ng m⁻³) and Nanjing, China (mean = 7.9 ng m⁻³)
66 were observed to be positively correlated with air temperature and/or the intensity of solar radiation,
67 implying that land surfaces emissions contributed to elevated TGM levels (Carpi and Chen, 2002;
68 Zhu et al., 2012). This hypothesis has not considered the atmospheric transport patterns and
69 temporal variations in anthropogenic emissions at local and regional scales and needs to be further
70 validated. GOM is a potential proxy of anthropogenic sources. However, GOM has a short
71 atmospheric residence time and could be also produced via in situ oxidation of GEM, making it
72 challenging to identify the contributions of anthropogenic source to TGM or GEM in many urban
73 areas using GOM observations (Lynam and Keeler, 2005; Peterson et al., 2009; Rutter et al., 2009).
74 Relative contributions from specific sources in urban areas could be also assessed by development
75 of TGM or GEM emission inventories of different source categories. For example, total GEM
76 emissions from soils in Guiyang, China were scaled up based on an empirical model and were in
77 the similar magnitude as that from anthropogenic sources (Feng et al., 2005). Such approaches,
78 however, are very limited in many urban areas in China and other countries worldwide. Therefore,
79 the understanding of the sources of TGM or GEM in urban areas is essentially limited and there is
80 a need to develop an additional tracer to identify the controls of specific sources on the variations
81 of TGM or GEM in urban areas.

82 Hg stable isotope is a rapidly growing tool for studying the biogeochemical cycle of Hg in the
83 environments (Blum and Johnson, 2017). Hg isotopes in surface-earth system can undergo both
84 mass-dependent fractionation (MDF, $\delta^{202}\text{Hg}$ signature) and mass-independent fractionation (MIF,
85 $\Delta^{199}\text{Hg}$, $\Delta^{201}\text{Hg}$ and $\Delta^{200}\text{Hg}$ signatures), which might be caused by specific or multiple sources and
86 transformation processes (Blum et al., 2014). [Previous studies found that Chinese coal-fired power](#)
87 [plants \(CFPP\) emitted GEM with slightly negative \$\delta^{202}\text{Hg}\$ \(mean = -0.26‰\) and significantly](#)
88 [negative \$\Delta^{199}\text{Hg}\$ \(mean = -0.26‰\) values \(Tang et al., 2017; Liu et al., 2019a\)](#). Based on the
89 observed isotopic compositions of global source materials, fractionation of Hg isotopes during

90 industrial processes, and global Hg emission inventory, Sun et al. (2016b) predicted a mean $\delta^{202}\text{Hg}$
91 of $-0.59\text{\textperthousand}$ and a mean $\Delta^{199}\text{Hg}$ of $-0.02\text{\textperthousand}$ for the global primary anthropogenic GEM emissions in
92 2010. On the other hand, isotopic compositions of indoor GEM and GEM emitted from urban
93 building surface were characterized by highly negative $\delta^{202}\text{Hg}$ (means = -1.54 to $-1.56\text{\textperthousand}$, $n = 2$) and
94 near-zero to slightly positive $\Delta^{199}\text{Hg}$ values (means = 0.00 to $0.17\text{\textperthousand}$, $n = 2$) (Jiskra et al., 2019a).
95 Isotopic compositions of GEM emitted from urban soils currently remain unknown. Global Hg
96 isotope models proposed this source would have highly negative $\delta^{202}\text{Hg}$ (e.g., $\sim-3.0\text{\textperthousand}$) and positive
97 $\Delta^{199}\text{Hg}$ signatures (e.g., $\sim 1.7\text{\textperthousand}$) (Sonke, 2011; Sun et al., 2019). Therefore, GEM emitted from
98 anthropogenic sources is probably isotopically distinguishable from that emitted from land surfaces
99 and indoor Hg-containing products, which provide an useful tracer for identification of TGM or
100 GEM sources in urban areas.

101 Previous studies have measured the isotopic compositions of TGM or GEM at many rural and
102 fewer urbanized sites in the Northern Hemisphere (Gratz et al., 2010; Sherman et al., 2010; Demers
103 et al., 2013; Demers et al., 2015; Enrico et al., 2016; Fu et al., 2016; Yu et al., 2016; Obrist et al.,
104 2017; Xu et al., 2017; Fu et al., 2018; Fu et al., 2019; Jiskra et al., 2019a; Jiskra et al., 2019b).
105 According to these studies, TGM or GEM isotopic compositions in urban areas showed a mean
106 $\delta^{202}\text{Hg}$ of $0.49 \pm 0.28\text{\textperthousand}$ and a mean $\Delta^{199}\text{Hg}$ of $0.02 \pm 0.04\text{\textperthousand}$ (1σ , $n = 4$), which were much lower
107 and higher, respectively, than the mean values observed in rural areas (mean $\delta^{202}\text{Hg} = 0.56 \pm 0.45\text{\textperthousand}$,
108 mean $\Delta^{199}\text{Hg} = -0.18 \pm 0.06\text{\textperthousand}$, 1σ , $n = 10$). The lower TGM $\delta^{202}\text{Hg}$ and higher $\Delta^{199}\text{Hg}$ signatures
109 in urban areas relative to rural areas were previously hypothesized to be mainly related to primary
110 anthropogenic emissions, whereas the effect of emission and re-emission of GEM from urban
111 surfaces was frequently neglected mainly because of the strong primary anthropogenic Hg
112 emissions and poor understanding of emission flux and isotopic signatures of GEM from land
113 surfaces in urban areas. It should be noted that many observational TGM $\delta^{202}\text{Hg}$ values in urban
114 areas (e.g., Beijing and Guiyang of China) or in urbanized and industrial plumes were far more
115 negative than that estimated for anthropogenic emissions ($-0.59\text{\textperthousand}$) (Sun et al., 2016b; Yu et al.,
116 2016; Fu et al., 2018). This indicates that primary anthropogenic emissions were not the exclusive
117 explanation for the highly negative TGM $\delta^{202}\text{Hg}$ signatures in the urban atmosphere.

118 In this study, TGM concentrations and isotopic compositions were measured in ten Chinese
119 cities in summer and winter 2018, providing a unique opportunity for studying the spatial and
120 seasonal variations in TGM concentrations and isotopic compositions in urban areas of China.
121 Isotopic compositions of GEM emitted from soils were also measured in two Chinese cities, and
122 together with data in literature were used to investigate the role of land surface emissions in the
123 seasonal and spatial variations in TGM concentrations and isotopic compositions in major Chinese
124 cities. The findings in this study are helpful for a better understanding of the sources of atmospheric

125 TGM in urban areas of China, and knowledge gained emphasizes the need to mitigate surface Hg
126 emissions during implementation of the Minamata Convention.

127 **2. Methods**

128 **2.1 Study sites**

129 Ten cities including Beijing, Shijiazhuang, Jinan in northern China, Lanzhou in northwestern
130 China, Zhengzhou and Wuhan in central China, Shanghai in eastern China, Chengdu and Guiyang
131 in southwestern China, and Guangzhou in southern China were selected for measuring TGM
132 concentrations and isotopic compositions (Figure S1). These cities are located in different
133 geographical regions of China, which were potentially characterized by specific source emission
134 patterns, climate, and atmospheric chemistry. The designated investigations in these cities may
135 therefore provide a comprehensive information on the variations of TGM concentrations and
136 isotopic compositions in mega cities of China, and help to explore the major factors influencing the
137 atmospheric Hg in Chinese cities. Site locations, information of the ten cities, and sampling periods
138 are given in Table S1. Briefly, these cities have populations of 3.75 to 21.54 million in urban areas.
139 Fractions of the urban and buildup land area out of the total land area of a $1^\circ \times 1^\circ$ grid surrounding
140 the sampling sites ranged from 4.9% to 41.1% (mean = 22.5%), whereas the remaining land surfaces
141 are mainly croplands, barren lands, open grassland, open shrublands, and open forests (range from
142 35.6% to 82.3% with a mean of 57.5%) (Figure S2 and Table S1). In each of the ten cities, one
143 sampling site was selected for measuring TGM concentrations and isotopic compositions. The
144 sampling sites are generally located in heavily commercial and residential areas in all the cities and
145 with no major industrial Hg emission sources within 2 km of the sampling sites. All the
146 measurements were conducted on building roofs at elevations of >10 m. In order to investigate the
147 shift of GEM isotopic compositions in urban areas relative to that in remote areas due to local
148 urbanized emissions, a same type of measurements was also conducted at the rural Waliguan
149 Baseline Observatory in northwestern China (Mt. Waliguan), which belongs to the World
150 Meteorological Organization's (WMO) Global Atmospheric Watch (GAW) network (Figure S1).

151 **2.2 Sampling of TGM**

152 In this study, chlorine-impregnated activated carbon (CLC, 0.5 g) traps were used to collect
153 atmospheric TGM samples (Fu et al., 2014). A schematic diagram of the sampling system is shown
154 in Figure S3. Briefly, particles in ambient air were firstly removed using a Teflon filter (47 mm
155 diameter; $0.2 \mu\text{m}$ pore size) at the inlet of the sampling system, and then ambient TGM were trapped
156 onto the CLC traps at a flow rate of $\sim 2.5 \text{ L min}^{-1}$ using a Teflon coated Mini diaphragm vacuum
157 pump (N89 KTDC, KNF Inc.). The sampling flow rate was adjusted using a needle valve installed
158 at the outlet of the vacuum pump. The inlet of the sampling system was about 1.5 m above surface
159 ground. Daily (24 h) continuous sampling of TGM at each urban site lasted for approximately one

160 week in the winter and summer of 2018, respectively (Daily samples, Table S1). The wintertime
161 samplings were conducted from 5 to 15 January 2018 simultaneously in Beijing, Shijiazhuang, Jinan,
162 Lanzhou, and Zhengzhou, and from 18 to 27 January 2018 simultaneously in Shanghai, Chengdu,
163 Wuhan, Guiyang, and Guangzhou. The summertime samplings were conducted from 29 June to 7
164 July 2018 simultaneously in Shijiazhuang, Jinan, Zhengzhou, Guiyang, and Guangzhou, and from
165 27 July to 10 August 2018 simultaneously in Beijing, Lanzhou, Shanghai, Wuhan, and Chengdu.
166 TGM samples were also continuously collected from 19 November 2014 to 19 February 2015 at Mt.
167 Waliguan with a sampling duration of 10 day. After field sampling, CLC traps were sealed carefully
168 and kept in sealed polypropylene crisper before sample processing for Hg isotope analysis.

169 GOM concentrations are generally elevated in Chinese urban areas due to local primary
170 anthropogenic emissions (Fu et al., 2015). Previous studies showed that GOM measured using
171 Tekran 2537/1130/1135 system on average accounted for 0.37 to 0.50% of TGM in Guiyang, Beijing,
172 and Shanghai, China, while the daily GOM fractions in TGM ranged from 0.04 to 1.58% in Guiyang
173 (Table S2) (Fu et al., 2011; Duan et al., 2017; Zhang et al., 2019). It is likely that the Tekran system
174 could underestimate GOM concentrations by approximately 3-fold with respect to that measured by
175 other recently developed methods (e.g., cation exchange membranes (CEM) or nylon membranes)
176 (Huang et al., 2013; Gustin et al., 2015; Gustin et al., 2019). To date, GOM has not been measured
177 by CEM or nylon membranes in Chinese urban areas. If adjusting GOM concentrations by a factor
178 of 3, the above-mentioned mean GOM fractions would be increased to 1.1-1.5% in Guiyang, Beijing,
179 and Shanghai, and these values are similar to those observed in Reno, Nevada, USA based on the
180 CEM method (mean GOM fraction of 2.7%) (Gustin et al., 2019). Mean $\delta^{202}\text{Hg}$ and $\Delta^{199}\text{Hg}$ of TGM
181 in urban areas of this study ranged from -0.96 to -0.24‰ and -0.12 to -0.01‰, respectively.
182 Assuming that the isotope composition of GOM resemble those of primary anthropogenic emissions
183 (e.g., $\delta^{202}\text{Hg} = -0.77\text{\textperthousand}$, $\Delta^{199}\text{Hg} = -0.06\text{\textperthousand}$) (Sun et al., 2016b), a maximum GOM fraction of TGM
184 (5%) would lead to negligible shifts in TGM $\delta^{202}\text{Hg}$ (-0.03 to 0.01‰) and $\Delta^{199}\text{Hg}$ (-0.003 to
185 0.003‰). Therefore, TGM isotopic composition measured in this study would not be biased
186 significantly by GOM compounds. The interchange use of the terms “TGM” or ‘GEM’ in this and
187 previous studies would not confound significantly the intercomparison of isotopic composition.

188 2.3 Sample processing and TGM analysis

189 Before the analysis of Hg concentration and isotopic composition, TGM collected on CLC
190 traps were preconcentrated into 5 mL of 2HNO₃/1HCl mixed acid solution (40%) following
191 previous studies (Biswas et al., 2008; Sun et al., 2013; Fu et al., 2014). Trapping solution Hg
192 concentrations were measured by Tekran 2500 Hg analyzer following US EPA Method 1631
193 (USEPA, 2002). TGM concentrations of the samples were calculated using Eq. (1):

$$194 \text{TGM} = \frac{C \times V_{\text{solution}}}{V_{\text{gas}}} \quad (1)$$

195 where TGM is the atmospheric TGM concentration in ng m^{-3} , C is the Hg concentration in trap
 196 solution in ng mL^{-1} , V_{solution} is the volume of trap solution in mL, and V_{gas} is the cumulative sampling
 197 air volume in m^3 . Full procedural blanks of field sampling and preconcentration were measured at
 198 each sampling site and in each season by combustion of sealed field CLC traps (containing 0.5 g
 199 CLC) prepared before field sampling. The mean Hg concentration in these sealed field blanks was
 200 $0.20 \pm 0.09 \text{ ng}$ (1σ , $n = 27$, Table S3), which was negligible (<5%) compared to the Hg in trapping
 201 solutions of samples. Breakthrough tests showed that 96.7 to 99.6% (mean = $98.9 \pm 0.9\%$, 1σ , $n =$
 202 10) of TGM in ambient air could be collected by the CLC traps in our experiment setting (Table S3).
 203 Recoveries of the preconcentration were tested by combustion of Lichen CRM (BCR 482), which
 204 showed a mean value of $92.5 \pm 3.9\%$ (1σ , $n = 6$, Table S3). Standard additions of Hg^0 vapor (5 to
 205 25 ng, produced by SnCl_2 reduction of diluted NIST 3133 solutions) to CLC traps at the 2.5 L min^{-1}
 206 sampling flow rate showed a mean recovery of $93.2 \pm 11.8\%$ (1σ , $n = 11$, Table S3) for the sampling
 207 and preconcentration method. These tests indicate that the above method is reliable and efficient for
 208 measuring TGM concentrations and isotopic compositions.

209 2.4 TGM isotope analysis

210 Prior to isotope analysis, the concentrations of Hg in trap solution were diluted to 0.5 or 1.0 ng
 211 mL^{-1} using the $2\text{HNO}_3/1\text{HCl}$ mixed acid solution (20%). Isotope ratios of Hg in diluted trap
 212 solutions were measured by cold vapor-multicollector inductively coupled plasma mass
 213 spectrometry (CV-MC-ICPMS) using a Nu Plasma (Nu Instruments) and a Neptune (Thermo Fisher
 214 Scientific) in the Institute of Geochemistry, CAS (Guiyang, China) (Fu et al., 2019). TGM Isotopic
 215 compositions were calculated following Equation (2) and (3) (Blum and Bergquist, 2007):

$$216 \quad \delta^{xxx}\text{Hg}_{\text{TGM}}(\text{\textperthousand}) = \left[\frac{\left(\frac{^{xxx}\text{Hg}}{^{198}\text{Hg}} \right)_{\text{sample}}}{\left(\frac{^{xxx}\text{Hg}}{^{198}\text{Hg}} \right)_{\text{NIST 3133}}} - 1 \right] \times 1000 \quad (2)$$

217 where $\delta^{xxx}\text{Hg}_{\text{TGM}}$ are the MDF signatures of TGM in per mil (‰), xxx is the mass number of Hg
 218 isotopes (199, 200, 201, 202, and 204), $(^{xxx}\text{Hg}/^{198}\text{Hg})_{\text{sample}}$ is the isotope ratios for TGM samples,
 219 and $(^{xxx}\text{Hg}/^{198}\text{Hg})_{\text{NIST 3133}}$ is the isotope ratios for the bracketing NIST 3133 standard (concentrations
 220 matched within 10% of the sample trapping solution Hg concentrations).

$$221 \quad \Delta^{xxx}\text{Hg}_{\text{TGM}}(\text{\textperthousand}) = \delta^{xxx}\text{Hg}_{\text{TGM}} - \beta \times \delta^{202}\text{Hg}_{\text{TGM}} \quad (3)$$

222 Where $\Delta^{xxx}\text{Hg}_{\text{TGM}}$ are the MIF signatures of TGM isotopes ^{199}Hg , ^{200}Hg , ^{201}Hg , and ^{204}Hg in per mil
 223 (‰), and β values are 0.252, 0.5024, 0.752, and 1.493 for isotopes ^{199}Hg , ^{200}Hg , ^{201}Hg , and ^{204}Hg ,
 224 respectively (Blum and Bergquist, 2007).

225 Isotopic compositions of NIST 3177 Hg standard ($n = 30$), Lichen CRM (BCR 482, $n = 6$), and
226 standard additions of NIST 3133 Hg to CLC traps ($n = 11$) (Table S3) were analyzed periodically
227 during TGM isotope analysis, and the results were consistent with previously reported values or the
228 original values of the NIST 3133 Hg standard (Table S3) (Enrico et al., 2016; Sun et al., 2016a;
229 Blum and Johnson, 2017). In the present study, we report the analytical uncertainties (2σ) of TGM
230 isotopic compositions as the 2σ values of the sample replicates when they are higher than the 2σ
231 values of standard addition of NIST 3133 Hg to CLC traps. When the 2σ values of the sample
232 replicates were lower than the standard additions of NIST 3133 Hg to CLC traps, 2σ values of the
233 standard additions of NIST 3133 Hg to CLC traps were used to represent the 2σ of TGM isotopic
234 compositions.

235

236 **2.5 Ancillary Parameters and statistical methods**

237 Data for concentrations of ozone (O_3) and carbon monoxide (CO) during the sampling periods
238 were extracted from national air quality monitoring stations (<http://106.37.208.233:20035/>) located
239 within 1.5 km of the sites, with the exception of the sampling site in Guangzhou (4.1 km).
240 Normalized difference vegetation index (NDVI) around the sampling sites ($1^\circ \times 1^\circ$) was obtained
241 from the NASA Earth Observations (NEO, <https://neo.sci.gsfc.nasa.gov/>).

242 In order to investigate the effect of soil emissions on the variations in TGM concentrations and
243 isotopic compositions, GEM exchange flux between soil and atmosphere at $1^\circ \times 1^\circ$ resolution at
244 each sampling site in July and January were extracted from the gridded land surface emission
245 inventory in China simulated for 2013, which has a spatial resolution of ~ 36 km and a monthly
246 temporal resolution (Figure S1) (Wang et al., 2016). This model established a new scheme for
247 estimating soil-atmosphere GEM flux which have taken account the effect of photochemical and
248 nonphotochemical reduction of Hg(II) in soil, diffusion of Hg^0 from soil to atmosphere, as well as
249 the temperature, moisture, organic matter contents, PH, Hg concentration, bulk density, and land
250 cover of soils, etc. [more details in Wang et al., 2016]. Note that the simulated surface emission
251 inventory does not include GEM emissions from pavement, building surface and indoor Hg-
252 containing products. These sources are in close proximity to the sampling sites (Figure S2), and
253 their effect is also interpreted in Section 3.4.

254 Daily isotopic compositions of GEM emitted from hillslope barren soil in Guiyang (114.269°
255 E, 30.488° N) and from agricultural soil in Wuhan (114.269° E, 30.488° N) from 29 July to 3 August
256 2019 and from 24 to 27 August 2019, respectively, by measuring the GEM isotopic compositions at
257 the inlet and outlet of a dynamic flux chamber, followed by a calculation based on the binary mixing
258 model (Eq. 4 and 5):

$$259 \delta^{xxx}GEM_{emission} = (\delta^{xxx}GEM_{outlet} \times GEM_{outlet} - \delta^{xxx}GEM_{inlet} \times GEM_{inlet}) \div (GEM_{outlet} - GEM_{inlet}) \quad (4)$$

260 $\Delta^{xxx}\text{GEM}_{\text{emission}} = (\Delta^{xxx}\text{GEM}_{\text{outlet}} \times \text{GEM}_{\text{outlet}} - \Delta^{xxx}\text{GEM}_{\text{inlet}} \times \text{GEM}_{\text{inlet}}) \div (\text{GEM}_{\text{outlet}} - \text{GEM}_{\text{inlet}})$ (5)

261 where xxx corresponds to the mass number of Hg isotopes (199, 200, 201, 202 (not for MIF
262 signature), and 204), $\delta^{xxx}\text{GEM}_{\text{outlet}}$ and $\Delta^{xxx}\text{GEM}_{\text{outlet}}$ are the MDF and MIF values of GEM at the
263 outlet, respectively, $\delta^{xxx}\text{GEM}_{\text{inlet}}$ and $\Delta^{xxx}\text{GEM}_{\text{inlet}}$ are the MDF and MIF values of GEM at the inlet,
264 respectively, and $\text{GEM}_{\text{outlet}}$ and $\text{GEM}_{\text{inlet}}$ are the GEM concentrations measured at the outlet and
265 inlet, respectively.

266 Linear regression analysis was performed with IBM SPSS Statistics using the forced entry
267 method.

268 **3. Results and Discussion**

269 **3.1 TGM concentrations**

270 Mean TGM concentrations at the urban sites during the study periods ranged from 2.34 to 4.56
271 ng m⁻³ (n = 10) with a mean ($\pm 1\sigma$) of 3.08 ± 0.79 ng m⁻³ (Figure 1). These values were 1.5 to 3.0
272 times higher than the mean background value of 1.51 ng m⁻³ in 2014 in the Northern Hemisphere
273 obtained from the Global Mercury Observation System (GMOS) (Sprovieri et al., 2016), and 1.2 to
274 2.4 times higher than the mean value of 1.94 ± 0.64 ($\pm 1\sigma$) ng m⁻³ at urban sites in North America
275 and Europe (Mao et al., 2016). Mean TGM concentrations observed at some urban sites were,
276 however, 44-55% lower than previously reported mean values for earlier years, e.g., 4.19 ng m⁻³ in
277 Shanghai in 2014, 8.88 ng m⁻³ in Guiyang in 2010, and 4.60 ng m⁻³ in Guangzhou in 2011 (Chen et
278 al., 2013; Fu and Feng, 2015; Duan et al., 2017), likely due to a combination of several factors such
279 as decreased anthropogenic emissions (Liu et al., 2019b), different sampling locations even inside
280 the same city, and different sampling times and durations of the year. The declining TGM
281 concentration (by 40%) in recent years (2014-2016) has indeed been reported in Chongming Island,
282 Shanghai (Tang et al., 2018), which has been mostly attributed to reduced anthropogenic Hg
283 emissions in China. Such emission reductions would impact more on urban than rural areas in
284 atmospheric TGM (Liu et al., 2019b).

285 **3.2 TGM isotopic compositions**

286 Figure 2 shows the isotopic compositions of daily TGM samples collected at the ten urban and
287 one rural sites. Large variations in daily TGM isotopic compositions were observed with values
288 ranging from -1.68 to $0.63\text{\textperthousand}$ for $\delta^{202}\text{Hg}$ and from -0.23 to $0.10\text{\textperthousand}$ for $\Delta^{199}\text{Hg}$ (Figure 2 and Table
289 S4). Mean TGM $\delta^{202}\text{Hg}$ values were the lowest in Guiyang ($-0.96 \pm 0.42\text{\textperthousand}$, 1σ), Lanzhou ($-0.70 \pm$
290 $0.35\text{\textperthousand}$, 1σ), and Chengdu ($-0.68 \pm 0.44\text{\textperthousand}$, 1σ) in southwestern and northwestern China, followed
291 by Wuhan (mean = $-0.68 \pm 0.23\text{\textperthousand}$, 1σ) and Zhengzhou (mean = $-0.55 \pm 0.24\text{\textperthousand}$, 1σ) in central China,
292 Shijiazhuang ($-0.54 \pm 0.44\text{\textperthousand}$, 1σ) and Jinan ($-0.50 \pm 0.42\text{\textperthousand}$, 1σ) in northern China, coastal
293 Guangzhou ($-0.44 \pm 0.17\text{\textperthousand}$, 1σ) in southern China, coastal Shanghai ($-0.32 \pm 0.35\text{\textperthousand}$, 1σ) in eastern

294 China, and was the highest in Beijing ($-0.24 \pm 0.24\text{\textperthousand}$, 1σ) in Northern China (Figure 1 and Table
295 S5). Much smaller spatial variations were seen in mean TGM $\Delta^{199}\text{Hg}$ than TGM $\delta^{202}\text{Hg}$. The highest
296 mean TGM $\Delta^{199}\text{Hg}$ were observed in Guiyang ($-0.01 \pm 0.06\text{\textperthousand}$, 1σ) and Chengdu ($-0.01 \pm 0.03\text{\textperthousand}$,
297 1σ), whereas values at the other urban sites ranged from -0.12 to $-0.04\text{\textperthousand}$ ($n = 8$). Mean TGM $\delta^{202}\text{Hg}$
298 ($-0.16 \pm 0.16\text{\textperthousand}$, 1σ) (or $\Delta^{199}\text{Hg} = -0.10 \pm 0.04\text{\textperthousand}$, 1σ) value measured at rural Mt. Waliguan in
299 winter were higher (or lower) than that in most cities in winter, with the exception of $\delta^{202}\text{Hg}$ in
300 Beijing and Shanghai (means = -0.09 to $-0.07\text{\textperthousand}$, $n = 2$) and $\Delta^{199}\text{Hg}$ in Shijiazhuang, Jinan, and
301 Shanghai (means = -0.11 to $0.17\text{\textperthousand}$, $n = 3$), where TGM concentrations were low (means = 1.88 to
302 2.12 ng m^{-3}) and comparable to that at rural Mt. Waliguan (Table S5). Mean TGM $\Delta^{200}\text{Hg}$ values at
303 the urban sites were all indistinguishable from zero (-0.03 to $0.02\text{\textperthousand}$, $n = 10$, Table S5), a
304 phenomenon that is similar to previous observations in urban areas in China and USA (means = -0.01 to $0.01\text{\textperthousand}$, $n = 4$) (Gratz et al., 2010; Yu et al., 2016; Xu et al., 2017). Therefore, we do not
305 further interpret the MIF of even-mass Hg isotopes in this study.

307 Mean values of TGM $\delta^{202}\text{Hg}$ and $\Delta^{199}\text{Hg}$ in this study were similar to those reported at urban
308 sites of China in previous studies, e.g., negative $\delta^{202}\text{Hg}$ (means = -0.73 to $-0.08\text{\textperthousand}$, $n = 3$) and close
309 to zero $\Delta^{199}\text{Hg}$ (means = -0.03 to $0.04\text{\textperthousand}$, $n = 3$) in Beijing, Xi'an, and Guiyang (Yu et al., 2016; Xu
310 et al., 2017). On the other hand, mean TGM $\delta^{202}\text{Hg}$ values in this study were 0.44 to $1.60\text{\textperthousand}$ lower
311 than the values reported for rural areas of China (mean = $0.20 \pm 0.40\text{\textperthousand}$, 1σ , $n = 3$) and North
312 America and Europe (mean = $0.71 \pm 0.39\text{\textperthousand}$, 1σ , $n = 7$), whereas mean TGM $\Delta^{199}\text{Hg}$ values were
313 0.02 to $0.18\text{\textperthousand}$ higher than the means in rural areas of China (mean = $-0.14 \pm 0.05\text{\textperthousand}$, 1σ) and North
314 America and Europe (mean = $-0.20 \pm 0.05\text{\textperthousand}$, 1σ) (Figure 2) (Gratz et al., 2010; Demers et al., 2013;
315 Demers et al., 2015; Enrico et al., 2016; Fu et al., 2016; Obrist et al., 2017; Fu et al., 2018; Fu et al.,
316 2019; Jiskra et al., 2019b). Apparently, atmospheric TGM is isotopically distinguishable between
317 urban and rural sites and between different regions of the world, providing a potentially valuable
318 tracer for understanding the sources and transformations of atmospheric Hg at local, regional, and
319 global scales. As shown in Figure 2, some of the daily TGM isotopic compositions (i.e., $\delta^{202}\text{Hg}$ and
320 $\Delta^{199}\text{Hg}$ signatures) fell in-between the end-member TGM isotopic compositions estimated for
321 anthropogenic TGM emissions and observed from background areas, suggesting mixed influences
322 on TGM isotopic compositions between anthropogenic emissions and background atmospheric pool
323 (Demers et al., 2015; Fu et al., 2016; Xu et al., 2017; Fu et al., 2018). There were, however, many
324 exceptions with daily TGM isotopic compositions outside the above-mentioned range, e.g., with
325 $\delta^{202}\text{Hg}$ lower than $-0.75\text{\textperthousand}$ or $\Delta^{199}\text{Hg}$ higher than $-0.01\text{\textperthousand}$ (Figure 2). Thus, additional sources and
326 environmental processes should have also contributed to the variations in TGM isotopic
327 compositions in urban environments of China.

328 **3.3 TGM isotopic compositions estimated for urbanized source end-members and measured
329 for soil emissions**

330 Mean TGM concentrations at the urban sites (2.37 to 4.56 ng m⁻³, n = 10) were highly elevated
331 compared to the background value (~1.5 ng m⁻³) in the Northern Hemisphere (Sprovieri et al., 2016).
332 This could be attributed to local and regional Hg sources including Hg emissions from primary
333 anthropogenic sources, land surfaces (e.g., soil, building, and pavement), and indoor Hg-containing
334 products. As shown in Figure 2, TGM isotopic compositions in the cities were probably controlled
335 by a binary physical mixing between the regional-scale background and the key end-member
336 sources in the cities, which could be likely associated with the local and regional emission sources.
337 Here we use a linearized binary physical mixing diagram to estimate the mean isotopic signature of
338 the urbanized source end-members by extrapolating the 1/TGM_{mean} to zero (where TGM is mostly
339 derived from urbanized sources) (Figure 3), which showed $\delta^{202}\text{Hg}$ and $\Delta^{199}\text{Hg}$ values of
340 approximately $-1.16 \pm 0.15\text{\textperthousand}$ and $0.05 \pm 0.02\text{\textperthousand}$ (1σ), respectively.

341 The estimated $\delta^{202}\text{Hg}$ (or $\Delta^{199}\text{Hg}$) for urbanized emissions was much lower (or much higher)
342 than the $\delta^{202}\text{Hg}$ of $-0.26\text{\textperthousand}$ (or $\Delta^{199}\text{Hg}$ of $-0.26\text{\textperthousand}$) for GEM emitted from CFPP in China (Tang et
343 al., 2017; Liu et al., 2019a). The isotopic signatures of other anthropogenic emission sectors in China
344 have not been appropriately constrained. Sun et al. (2016b) estimated a mean $\delta^{202}\text{Hg}$ of $-0.59\text{\textperthousand}$ and
345 a mean $\Delta^{199}\text{Hg}$ of $-0.02\text{\textperthousand}$ for the global anthropogenic GEM emissions in 2010. Our estimate of
346 $\delta^{202}\text{Hg}$ and $\Delta^{199}\text{Hg}$ for the urbanized sources were, however, $0.57\text{\textperthousand}$ lower and $0.07\text{\textperthousand}$ higher than
347 their predicted value for anthropogenic emissions, respectively. A recent study by Jiskra et al. (2019a)
348 showed highly negative $\delta^{202}\text{Hg}$ (means = -1.54 to $-1.56\text{\textperthousand}$, n = 2) and high $\Delta^{199}\text{Hg}$ values (means =
349 0.00 to $0.17\text{\textperthousand}$, n = 2) for GEM in air impacted by Hg emissions from building surface and indoor
350 sources, and these values seemed to support, to some extent, the estimated negative $\delta^{202}\text{Hg}$ and close
351 to zero $\Delta^{199}\text{Hg}$ signatures of urbanized sources in the present study.

352 Soil emissions are potentially an important source of atmospheric TGM in urban areas (Feng
353 et al., 2005; Agnan et al., 2016), and GEM emission fluxes from urban soils were reported to be
354 approximately one order of magnitude higher than that from pavement and building surface (Gabriel
355 et al., 2006; Eckley and Branfireun, 2008). The sampling sites in the present study were largely
356 surrounded by cropland and sparsely vegetated soils (Figure S2), and it is therefore important to
357 investigate their effects on the variations in TGM concentrations and isotopic compositions. The
358 measured mean GEM emission fluxes from soils in Guiyang and Wuhan in summer were $35.9 \pm$
359 32.6 (1σ , n = 5) and 9.8 ± 5.3 (1σ , n = 3) ng m⁻² h⁻¹, respectively. The mean $\delta^{202}\text{Hg}$ and $\Delta^{199}\text{Hg}$
360 values of GEM emitted from soils were $-2.16 \pm 0.60\text{\textperthousand}$ and $-0.27 \pm 0.15\text{\textperthousand}$ (1σ , n = 5), respectively,
361 in Guiyang, and were $-1.07 \pm 0.86\text{\textperthousand}$ and $-0.01 \pm 0.52\text{\textperthousand}$ (1σ , n = 3), respectively, in Wuhan (Figure
362 S4). These values suggest that the isotopic compositions of soil GEM emissions in urban areas of
363 China likely have highly negative $\delta^{202}\text{Hg}$ values, similar to that of GEM emitted from building

364 surface and indoor Hg-containing products (Jiskra et al., 2019a). We thus hypothesize that soil,
365 building surface, and indoor Hg-containing products emissions contributed to the highly negative
366 TGM $\delta^{202}\text{Hg}$ values observed in this study. Based on the estimated $\delta^{202}\text{Hg}$ values of urbanized
367 source end-member (mean = -1.16‰), anthropogenic emissions (mean = -0.59‰), and GEM
368 emitted from soils, building surface and indoor Hg-containing products (mean = -1.57‰) in this
369 and previous studies (Sun et al., 2016b; Jiskra et al., 2019a), we estimate that the contribution of
370 soil, building surface and indoor Hg-containing products emissions to the TGM in the ten cities was
371 approximately equal to that of primary anthropogenic emissions (48% versus 52%). We caution that,
372 due to the fact that the isotopic signatures of GEM emitted from many anthropogenic sources and
373 land surfaces in China have not been well constrained, such a preliminary assessment should have
374 large uncertainties. However, our estimate is overall consistent with previous studies on GEM
375 emission fluxes from land surfaces and anthropogenic sources in Chinese urban areas. For example,
376 previous studies on GEM emission fluxes from urban surfaces in China showed a mean value of
377 $83.2 \pm 170 \text{ ng m}^{-2} \text{ h}^{-1}$ (1σ , $n = 39$) (Fang et al., 2004; Feng et al., 2005; Wang et al., 2006; Fu et al.,
378 2012), which was relatively higher than the mean anthropogenic GEM flux ($48.4 \pm 48.1 \text{ ng m}^{-2} \text{ h}^{-1}$,
379 1σ , $n = 10$) in the ten investigated cities (Table S5) (AMAP/UNEP, 2013). The findings in this and
380 previous studies therefore suggest that soil, building surface, and indoor Hg-containing products
381 emissions would play an important role in regulating the TGM concentrations and isotopic
382 compositions in urban areas of China, which is further discussed in the following section.

383 **3.4 Effect of surface emissions on seasonal variations in TGM concentrations and isotopic 384 compositions**

385 Strong seasonal variations in the mean TGM concentrations and isotopic compositions were
386 observed for most cities (Figure 4). The mean TGM concentrations and $\Delta^{199}\text{Hg}$ values were
387 relatively higher in summer than winter in most cities except for the two (Guiyang and Guangzhou)
388 in the low latitudes that showed an opposite trend. On the contrary, the mean TGM $\delta^{202}\text{Hg}$ showed
389 lower values in summer than winter in all the cities except southernmost Guangzhou that showed
390 no seasonal difference. The seasonal variations in TGM concentrations and $\delta^{202}\text{Hg}$ in the present
391 study were consistent with previous findings generated from year-round continuous observations in
392 China, e.g., higher summertime TGM in Beijing and Shanghai (Zhang et al., 2013; Duan et al.,
393 2017), higher wintertime TGM in Guiyang and Guangzhou (Feng et al., 2004; Chen et al., 2013),
394 and lower summer $\delta^{202}\text{Hg}$ in Guiyang and Xi'an (Yu et al., 2016; Xu et al., 2017).

395 The summertime higher TGM concentrations observed in most cities in the present study was
396 in contrast to the observations in most rural areas in China as well as in other regions in the Northern
397 Hemisphere, which frequently showed lower TGM or GEM concentrations in summer than in
398 winter (Fu et al., 2015; Mao et al., 2016; Jiskra et al., 2018). Studies on the seasonal variations in

399 TGM or GEM isotopic compositions in rural areas are currently limited. A recent study at rural Mt.
400 Changbai, northeastern China showed higher TGM $\delta^{202}\text{Hg}$ values in summer than winter (Fu et al.,
401 2019), which is opposite to the seasonal variations in TGM $\delta^{202}\text{Hg}$ at most urban sites in the present
402 study. Such a summertime lower TGM or GEM and higher $\delta^{202}\text{Hg}$ pattern in rural areas should be
403 mainly attributed to increasing atmospheric oxidation and vegetation uptake of GEM as well as
404 decreasing residential coal combustion (Sprovieri et al., 2016; Horowitz et al., 2017; Jiskra et al.,
405 2018; Fu et al., 2019; Sun et al., 2019). The seasonality in atmospheric oxidation chemistry,
406 vegetation activity and residential coal combustion should be similar between urban and rural areas
407 in China, as reflected by the seasonality in O_3 (representing atmospheric oxidation chemistry),
408 NDVI (representing vegetation activity), and CO (dominantly (40%) originates from residential coal
409 combustion) (Jiskra et al., 2018; Zheng et al., 2018), which showed summertime higher O_3
410 concentrations and NDVI and lower CO concentrations at most urban sites (Figure S5). Therefore,
411 the contrasting seasonal variations in TGM concentrations and isotopic compositions at most urban
412 sites with respect to rural sites provided evidence that summertime enhanced emissions in these
413 cities probably outbalanced the effect of seasonal variations in atmospheric oxidation chemistry,
414 vegetation activity, and residential coal combustion.

415 Traditionally, local and regional anthropogenic emissions are thought to dominate the TGM or
416 GEM pollution in urban areas of China (Lin et al., 2010). A recent study showed quantitatively
417 comparable coal combustion Hg emission in China between winter and summer (Gao et al., 2019).
418 Seasonal-resolution Hg emission inventories for other anthropogenic sources (e.g., productions of
419 cement, iron and steel, aluminum and non-ferrous metals) in China have not been established. Based
420 on the monthly production data of these source materials, we estimated that there is no strong
421 seasonality in total Hg emissions from these sources (Table S6). [Prevailing wind directions during](#)
422 [the wintertime and summertime sampling campaigns were similar Jinan, Lanzhou, Zhengzhou, and](#)
423 [Shanghai, but were different in other remaining cities \(Figure S6\).](#) Variations in predominant wind
424 directions would change the relationships between receptor and regional anthropogenic emissions,
425 which could further influence the TGM levels and isotopic compositions in these cities. Given the
426 similarity in wintertime and summertime prevailing wind directions in some cities and consistent
427 summertime lower CO concentrations in most cities, it is postulated that the variations in local
428 anthropogenic emissions and transport of regional anthropogenic emissions were not likely the main
429 cause for the seasonal variations in TGM concentrations and isotopic compositions.

430 We found that the amplitudes of seasonal variations in TGM concentrations ($(\text{TGM}_{\text{summer}} -$
431 $\text{TGM}_{\text{winter}})/\text{TGM}_{\text{summer}}$) and $\Delta^{199}\text{Hg}$ values ($\Delta^{199}\text{Hg}_{\text{summer}} - \Delta^{199}\text{Hg}_{\text{winter}}$) were both significantly
432 positively correlated with latitude of the cities (ANOVA, R^2 were 0.85 and 0.66 for TGM and
433 $\Delta^{199}\text{Hg}$, respectively, $p < 0.01$ for both, Figure 5A and C), whereas the seasonal $\delta^{202}\text{Hg}$ amplitudes

434 $(\delta^{202}\text{Hg}_{\text{summer}} - \delta^{202}\text{Hg}_{\text{winter}})$ were significantly negatively correlated with latitude (ANOVA, $R^2 = 0.46$, $p < 0.01$, Figure 5B). This indicates the seasonality in TGM concentrations and isotopic compositions were likely related to weather- and climate-dependent (e.g., solar radiation and air temperature) sources and/or atmospheric processes.

438 GEM emission fluxes from soil, building surface and pavement in urban areas are highly related to solar radiation and temperature and frequently peak in summer in the Northern Hemisphere (Gabriel et al., 2006; Eckley and Branfireun, 2008). Studies on the seasonal variations in GEM emissions from building surface and pavement are not available in Chinese urban areas, but are expected to be similar to that of soil GEM emission (Gabriel et al., 2006). Therefore, using simulated seasonal soil GEM emission data is generally adequate to interpret the effect of surface GEM emission on the seasonal variations in TGM concentrations and isotopic compositions. As shown in Figure 6A, a significant positive correlation was observed between the seasonal amplitudes of TGM concentration and simulated soil GEM emission flux $((\text{flux}_{\text{July}} - \text{flux}_{\text{January}})/\text{flux}_{\text{July}})$, indicating enhanced surface GEM emission is responsible for the summertime increase of TGM concentrations at most urban sites. Negative seasonal TGM magnitudes were observed in Guiyang and Guangzhou in the low latitudes where there is a small summertime increase of soil GEM emission fluxes (Figure 6A). We postulate that the effect of surface emission on the seasonal variations in TGM concentrations in Guiyang and Guangzhou was likely outbalanced by other factors, e.g., seasonal variations in atmospheric oxidization chemistry, vegetation activity, and residential coal combustion.

454 Site-specific mean TGM $\delta^{202}\text{Hg}$ and $\Delta^{199}\text{Hg}$ values were calculated for summer and winter sampling campaigns separately, and then values at all the sampling sites were correlated with their respective simulated soil GEM emission fluxes. A significant negative correlation was obtained between TGM $\delta^{202}\text{Hg}$ and simulated soil emission (ANOVA, $R^2 = 0.43$, $p < 0.01$, Figure 6B). As mentioned above, the isotopic compositions of GEM emitted from urban surfaces were characterized by highly negative $\delta^{202}\text{Hg}$ values (mean = $-1.57\text{\textperthousand}$). Thus, high surface GEM emissions should shift TGM $\delta^{202}\text{Hg}$ towards negative values. A weak positive correlation was observed between mean TGM $\Delta^{199}\text{Hg}$ and simulated soil GEM emission fluxes (ANOVA, $R^2 = 0.21$, $p < 0.05$, Figure 6B), suggesting that high surface GEM emissions led to a slightly positive shift of TGM $\Delta^{199}\text{Hg}$. Seasonal amplitudes of $\delta^{202}\text{Hg}$ (or $\Delta^{199}\text{Hg}$) in the ten cities were significantly negatively (or positively) correlated with seasonal amplitudes of simulated soil GEM emission flux (ANOVA, R^2 of 0.54 or 0.63, $p < 0.01$ for both, Figure S7), suggesting the dominant role of surface GEM emissions on the seasonal variations in TGM isotopic compositions.

467 It should be noted that indoor TGM also have highly negative $\delta^{202}\text{Hg}$ ($-1.56\text{\textperthousand}$, $n = 1$) and positive $\Delta^{199}\text{Hg}$ ($0.17\text{\textperthousand}$, $n = 1$) values (Jiskra et al., 2019a), but this source is not likely a dominant

469 one contributing to the seasonal variations in TGM isotopic compositions. Indoor TGM
470 concentrations in urban areas can be highly elevated mainly due to evaporation of GEM from Hg-
471 containing products (e.g., spills of liquid mercury in thermometers, fluorescent light and Hg
472 switches) in the absence of sunlight (Carpi and Chen, 2001; Baughman, 2006). This source is
473 expected to yield $\Delta^{199}\text{Hg}/\Delta^{201}\text{Hg}$ slopes of ~ 1.6 in TGM isotopic compositions due to nuclear
474 volume effect (NVE) (Zheng and Hintelmann, 2010; Ghosh et al., 2013). As shown in Figure S8, a
475 York bivariate linear regression between TGM $\Delta^{199}\text{Hg}$ and $\Delta^{201}\text{Hg}$ in the studied cites showed a
476 slope of 1.01 ± 0.10 (1σ), which is consistent with that of soil GEM emissions (1.09 ± 0.06 , 1σ , Figure
477 S7) and that of photoreduction of Hg(II) to GEM (~ 1.0) (Blum et al., 2014), but much lower than
478 that predicted for indoor GEM sources, suggesting that seasonal variations in TGM isotopic
479 compositions were unlikely dominated by indoor emission sources.

480 Hence, we can conclude that the seasonal variations in TGM concentrations and isotopic
481 compositions in the ten cities were likely controlled by surface emission sources. However, it is
482 currently difficult to determine which of surface emission sources (e.g., soil, pavement, or building
483 surface) was more important. As discussed earlier, GEM emitted from these sources were
484 characterized by similar isotopic signatures and are difficult to be distinguished. GEM emissions
485 flux data from pavement and building surface in Chinese urban areas are very limited. A previous
486 study in Toronto, Canada and Austin, USA reported that GEM emission fluxes from soils were on
487 average 8 times higher than those from pavement and building surface (Eckley and Branfireun,
488 2008). This, together with the large fraction of cropland and sparsely vegetated soils area in the total
489 urban land area (mean = 57%, Table S1), indicates soil emissions were likely more important than
490 building surface and pavement emissions at a regional scale (e.g., the size of $1^\circ \times 1^\circ$ surrounding the
491 sampling sites). However, given that building surface and pavement emissions sources were in close
492 proximity to the sampling sites (Figure S2), their contributions to atmospheric TGM budget may
493 exceed those of soil emission sources locally. Therefore, further studies and approaches are needed
494 to better constrain the contributions of local and regional land surface emissions to TGM variations
495 at specific sites.

496 **3.5 Conclusions and implications**

497 TGM concentrations in Chinese urban areas were generally highly elevated, which was
498 traditionally thought to be mainly attributed to primary anthropogenic emissions (Lin et al., 2010;
499 Fu et al., 2015). Due to the implementation of aggressive air pollution control measures in China
500 since 2014, primary anthropogenic Hg emissions within or surrounding many Chinese cities are
501 expected to have been reduced noticeably in recent years (Liu et al., 2019b). Land surface Hg
502 emissions are also an important source of atmospheric Hg (Selin et al., 2007; Holmes et al., 2010;
503 Pirrone et al., 2010; Agnan et al., 2016). Therefore, questions have emerged as to whether land

504 surface emissions become important in the variations in TGM concentrations and isotopic
505 compositions in Chinese urban areas. The present study suggests that surface GEM emissions likely
506 dominated the seasonal variations in TGM concentrations and isotopic compositions in most cities.
507 GEM emissions from land surface are generally higher in summer and characterized by significantly
508 negative $\delta^{202}\text{Hg}$ signatures, and therefore are able to cause increasing TGM concentrations and a
509 negative shift of TGM $\delta^{202}\text{Hg}$ in summer in Chinese cities. Therefore, we suggest that land surface
510 emissions should be incorporated in future studies to interpret the cycling (or fractionation) of TGM
511 (or TGM isotopes) in urban areas and/or other regions with strong land surface GEM emissions.

512 China has been regarded as the world's strongest source region of anthropogenic Hg emissions.
513 Since the Chinese Economic Reform in 1978, more than 13000 Mg of Hg have been released into
514 the atmosphere from anthropogenic sources (Wu et al., 2016). Large fractions (35 to 49%) of these
515 emitted Hg were in the form of short-lived particulate bound and oxidized Hg, and would have
516 deposited quickly to areas close to sources such as urbanized and industrial areas, which should
517 have increased Hg contents in land surface substrates. The combining effects of global warming and
518 increased substrate Hg contents would induce increasing surface emissions, blunting the benefits of
519 anthropogenic Hg emission control in China. Therefore, future studies should be conducted in
520 systematically assessing the negative effects of increasing soil Hg emissions in a changing
521 environment (anthropogenic emission, climate, and land use change) during the implementation of
522 the Minamata Convention. Possible strategies should also be considered to mitigate surface Hg
523 emissions, and together with the effective controls of anthropogenic emissions, to eventually reduce
524 the threats of Hg to human health and the environment.

525 **Data Availability:**

526 All the dataset used in this study can be found in Supporting information.

527 **Author contribution:**

528 X.W.F., G.Z., J.L., H.G., and X.B.F. initiated the project and designated the field experiments.
529 X.W.F., C.L., H.Z., Y.X., H.Z., X.P.L. carried out the field sampling. C.L. and H.Z. performed the
530 laboratory analysis. X.W.F. prepared the manuscript with contributions from all co-authors.

531 **Acknowledgements:**

532 This work was funded by the “National Key R&D Program of China (2017YFC0212001)”, the
533 Chinese Academy of Sciences (ZDBS-LY-DQC029 and 2017443), the National Nature Science
534 Foundation of China (41622305), and the K.C. Wong Education Foundation. We also thank
535 Guangcai Zhong, Shuhao Dong, Baoxin Li, Shizhen Zhao, Bolun Zhang, Jiao Tang, Hongxing Jiang,

536 Buqing Xu, Yu Wang, Dawen Yao, Fengwen Huang, Kun Nie, Lingxi Zhan, Jiaying Wang, Liuyuan
537 Zhao, and Zhanxiang Wang who have contributed to the sampling of TGM.

538 **Competing interests:**

539 The authors declare that they have no conflict of interest.

540 **Supporting information:**

541 • Supporting Information Figure S1-S8
542 • Supporting Information Table S1-S6

543

544 **References:**

545 Agnan, Y., Le Dantec, T., Moore, C. W., Edwards, G. C., and Obrist, D.: New Constraints on Terrestrial
546 Surface Atmosphere Fluxes of Gaseous Elemental Mercury Using a Global Database,
547 Environmental Science & Technology, 50, 507-524, 10.1021/acs.est5b04013, 2016.

548 AMAP/UNEP: Geospatially distributed mercury emissions dataset 2010v1, in, 2013.

549 Baughman, T. A.: Elemental mercury spills, Environ Health Persp, 114, 147-152, 10.1289/ehp.7048,
550 2006.

551 Biswas, A., Blum, J. D., Bergquist, B. A., Keeler, G. J., and Xie, Z. Q.: Natural mercury isotope variation
552 in coal deposits and organic soils, Environmental Science & Technology, 42, 8303-8309, Doi
553 10.1021/Es801444b, 2008.

554 Blum, J. D., and Bergquist, B. A.: Reporting of variations in the natural isotopic composition of mercury,
555 Anal Bioanal Chem, 388, 353-359, DOI 10.1007/s00216-007-1236-9, 2007.

556 Blum, J. D., Sherman, L. S., and Johnson, M. W.: Mercury isotopes in earth and environmental sciences,
557 Annu Rev Earth Pl Sc, 42, 249-269, 10.1146/annurev-earth-050212-124107, 2014.

558 Blum, J. D., and Johnson, M. W.: Recent Developments in Mercury Stable Isotope Analysis, Reviews in
559 Mineralogy & Geochemistry, 82, 733-757, 2017.

560 Carpi, A., and Chen, Y.-f.: Gaseous Elemental Mercury as an Indoor Air Pollutant, Environmental Science
561 & Technology, 35, 4170-4173, 10.1021/es010749p, 2001.

562 Carpi, A., and Chen, Y. F.: Gaseous elemental mercury fluxes in New York City, Water Air Soil Poll, 140,
563 371-379, Doi 10.1023/A:1020198025725, 2002.

564 Chen, L. G., Liu, M., Xu, Z. C., Fan, R. F., Tao, J., Chen, D. H., Zhang, D. Q., Xie, D. H., and Sun, J. R.:
565 Variation trends and influencing factors of total gaseous mercury in the Pearl River Delta-A
566 highly industrialised region in South China influenced by seasonal monsoons, Atmos Environ,
567 77, 757-766, DOI 10.1016/j.atmosenv.2013.05.053, 2013.

568 Demers, J. D., Blum, J. D., and Zak, D. R.: Mercury isotopes in a forested ecosystem: Implications for
569 air-surface exchange dynamics and the global mercury cycle, Global Biogeochem Cy, 27, 222-
570 238, Doi 10.1002/Gbc.20021, 2013.

571 Demers, J. D., Sherman, L. S., Blum, J. D., Marsik, F. J., and Dvonch, J. T.: Coupling atmospheric mercury
572 isotope ratios and meteorology to identify sources of mercury impacting a coastal urban-
573 industrial region near Pensacola, Florida, USA, Global Biogeochem Cy, 29, 1689-1705, 2015.

574 Duan, L., Wang, X. H., Wang, D. F., Duan, Y. S., Cheng, N., and Xiu, G. L.: Atmospheric mercury speciation
575 in Shanghai, China, Sci Total Environ, 578, 460-468, 2017.

576 Eckley, C. S., and Branfireun, B.: Gaseous mercury emissions from urban surfaces: Controls and

577 spatiotemporal trends, Appl Geochem, 23, 369-383,
578 <https://doi.org/10.1016/j.apgeochem.2007.12.008>, 2008.

579 Enrico, M., Le Roux, G., Marusczak, N., Heimburger, L. E., Claustres, A., Fu, X. W., Sun, R. Y., and Sonke,
580 J. E.: Atmospheric Mercury Transfer to Peat Bogs Dominated by Gaseous Elemental Mercury
581 Dry Deposition, Environmental Science & Technology, 50, 2405-2412,
582 10.1021/acs.est.5b06058, 2016.

583 Fang, F. M., Wang, Q. C., and Li, J. F.: Urban environmental mercury in Changchun, a metropolitan city
584 in Northeastern China: source, cycle, and fate, Sci Total Environ, 330, 159-170, DOI
585 10.1016/j.scitotenv.2004.04.006, 2004.

586 Feng, X. B., Shang, L. H., Wang, S. F., Tang, S. L., and Zheng, W.: Temporal variation of total gaseous
587 mercury in the air of Guiyang, China, J Geophys Res-Atmos, 109, Artn D03303, Doi
588 10.1029/2003jd004159, 2004.

589 Feng, X. B., Wang, S. F., Qiu, G. A., Hou, Y. M., and Tang, S. L.: Total gaseous mercury emissions from
590 soil in Guiyang, Guizhou, China, J Geophys Res-Atmos, 110, Artn D14306, Doi
591 10.1029/2004jd005643, 2005.

592 Fu, X., Yang, X., Tan, Q., Ming, L., Lin, T., Lin, C.-J., Li, X., and Feng, X.: Isotopic Composition of Gaseous
593 Elemental Mercury in the Marine Boundary Layer of East China Sea, Journal of Geophysical
594 Research: Atmospheres, 123, 7656-7669, 10.1029/2018JD028671, 2018.

595 Fu, X., Zhang, H., Liu, C., Zhang, H., Lin, C.-J., and Feng, X.: Significant Seasonal Variations in Isotopic
596 Composition of Atmospheric Total Gaseous Mercury at Forest Sites in China Caused by
597 Vegetation and Mercury Sources, Environmental Science & Technology, 53, 13748-13756,
598 10.1021/acs.est.9b05016, 2019.

599 Fu, X. W., Feng, X. B., Qiu, G. L., Shang, L. H., and Zhang, H.: Speciated atmospheric mercury and its
600 potential source in Guiyang, China, Atmos Environ, 45, 4205-4212, DOI
601 10.1016/j.atmosenv.2011.05.012, 2011.

602 Fu, X. W., Feng, X. B., Zhang, H., Yu, B., and Chen, L. G.: Mercury emissions from natural surfaces highly
603 impacted by human activities in Guangzhou province, South China, Atmos Environ, 54, 185-
604 193, DOI 10.1016/j.atmosenv.2012.02.008, 2012.

605 Fu, X. W., Heimburger, L. E., and Sonke, J. E.: Collection of atmospheric gaseous mercury for stable
606 isotope analysis using iodine- and chlorine-impregnated activated carbon traps, J Anal Atom
607 Spectrom, 29, 841-852, Doi 10.1039/C3ja50356a, 2014.

608 Fu, X. W., and Feng, X. B.: Variations of atmospheric total gaseous mercury concentrations for the
609 sampling campaigns of 2001/2002 and 2009/2010 and implications of changes in regional
610 emissions of atmospheric mercury, Bull Miner Petr Geochem, in press (in Chinese), 2015.

611 Fu, X. W., Zhang, H., Yu, B., Wang, X., Lin, C. J., and Feng, X. B.: Observations of atmospheric mercury
612 in China: a critical review, Atmos Chem Phys, 15, 9455-9476, 10.5194/acp-15-9455-2015, 2015.

613 Fu, X. W., Marusczak, N., Wang, X., Gheusi, F., and Sonke, J. E.: Isotopic Composition of Gaseous
614 Elemental Mercury in the Free Troposphere of the Pic du Midi Observatory, France,
615 Environmental Science & Technology, 50, 5641-5650, 10.1021/acs.est.6b00033, 2016.

616 Gabriel, M. C., Williamson, D. G., Zhang, H., Brooks, S., and Lindberg, S.: Diurnal and seasonal trends
617 in total gaseous mercury flux from three urban ground surfaces, Atmos Environ, 40, 4269-4284,
618 DOI 10.1016/j.atmosenv.2006.04.004, 2006.

619 Gao, W. D., Jiang, W., and Zhou, M. M.: The spatial and temporal characteristics of mercury emission
620 from coal combustion in China during the year 2015, Atmos Pollut Res, 10, 776-783,

621 10.1016/j.apr.2018.12.005, 2019.

622 Ghosh, S., Schauble, E. A., Couloome, G. L., Blum, J. D., and Bergquist, B. A.: Estimation of nuclear
623 volume dependent fractionation of mercury isotopes in equilibrium liquid-vapor evaporation
624 experiments, *Chem Geol*, 336, 5-12, 2013.

625 Gratz, L. E., Keeler, G. J., Blum, J. D., and Sherman, L. S.: Isotopic composition and fractionation of
626 mercury in Great Lakes precipitation and ambient air, *Environmental Science & Technology*, 44,
627 7764-7770, Doi 10.1021/Es100383w, 2010.

628 Gustin, M. S., Amos, H. M., Huang, J., Miller, M. B., and Heidecorn, K.: Measuring and modeling
629 mercury in the atmosphere: a critical review, *Atmos Chem Phys*, 15, 5697-5713, DOI
630 10.5194/acp-15-5697-2015, 2015.

631 Gustin, M. S., Dunham-Cheatham, S. M., and Zhang, L.: Comparison of 4 Methods for Measurement of
632 Reactive, Gaseous Oxidized, and Particulate Bound Mercury, *Environmental Science &*
633 *Technology*, 53, 14489-14495, 10.1021/acs.est.9b04648, 2019.

634 Holmes, C. D., Jacob, D. J., Corbitt, E. S., Mao, J., Yang, X., Talbot, R., and Slemr, F.: Global atmospheric
635 model for mercury including oxidation by bromine atoms, *Atmos Chem Phys*, 10, 12037-12057,
636 DOI 10.5194/acp-10-12037-2010, 2010.

637 Horowitz, H. M., Jacob, D. J., Zhang, Y. X., Dibble, T. S., Slemr, F., Amos, H. M., Schmidt, J. A., Corbitt, E.
638 S., Marais, E. A., and Sunderland, E. M.: A new mechanism for atmospheric mercury redox
639 chemistry: implications for the global mercury budget, *Atmos Chem Phys*, 17, 6353-6371, 2017.

640 Huang, J. Y., Miller, M. B., Weiss-Penzias, P., and Gustin, M. S.: Comparison of gaseous oxidized Hg
641 measured by KCl-coated denuders, and Nylon and Cation exchange Membranes,
642 *Environmental Science & Technology*, 47, 7307-7316, Doi 10.1021/Es4012349, 2013.

643 Jiskra, M., Sonke, J. E., Obrist, D., Bieser, J., Ebinghaus, R., Myhre, C. L., Pfaffhuber, K. A., Wangberg, I.,
644 Kyllonen, K., Worthy, D., Martin, L. G., Labuschagne, C., Mkololo, T., Ramonet, M., Magand, O.,
645 and Dommergue, A.: A vegetation control on seasonal variations in global atmospheric
646 mercury concentrations, *Nat Geosci*, 11, 244-+, 10.1038/s41561-018-0078-8, 2018.

647 Jiskra, M., Maruszak, N., Leung, K. H., Hawkins, L., Prestbo, E., and Sonke, J. E.: Automated Stable
648 Isotope Sampling of Gaseous Elemental Mercury (ISO-GEM): Insights into GEM Emissions from
649 Building Surfaces, *Environmental Science & Technology*, 53, 4346-4354,
650 10.1021/acs.est.8b06381, 2019a.

651 Jiskra, M., Sonke, J. E., Agnan, Y., Helming, D., and Obrist, D.: Insights from mercury stable isotopes on
652 terrestrial-atmosphere exchange of Hg(0) in the Arctic tundra, *Biogeosciences*, 16, 4051-4064,
653 10.5194/bg-16-4051-2019, 2019b.

654 Lin, C. J., Pan, L., Streets, D. G., Shetty, S. K., Jang, C., Feng, X., Chu, H. W., and Ho, T. C.: Estimating
655 mercury emission outflow from East Asia using CMAQ-Hg, *Atmos Chem Phys*, 10, 1853-1864,
656 2010.

657 Liu, H. W., Diao, X., Yu, B., Shi, J. B., Liu, Q., Yin, Y. G., Hu, L. G., Yuan, C. G., and Jiang, G. B.: Effect of air
658 pollution control devices on mercury isotopic fractionation in coal-fired power plants, *Chem
659 Geol*, 517, 1-6, 10.1016/j.chemgeo.2019.04.019, 2019a.

660 Liu, K. Y., Wu, Q. R., Wang, L., Wang, S. X., Liu, T. H., Ding, D., Tang, Y., Li, G. L., Tian, H. Z., Duan, L.,
661 Wang, X., Fu, X. W., Feng, X. B., and Hao, J. M.: Measure-Specific Effectiveness of Air Pollution
662 Control on China's Atmospheric Mercury Concentration and Deposition during 2013-2017,
663 *Environmental Science & Technology*, 53, 8938-8946, 10.1021/acs.est.9b02428, 2019b.

664 Lyman, S. N., and Jaffe, D. A.: Formation and fate of oxidized mercury in the upper troposphere and

665 lower stratosphere, *Nat Geosci*, 5, 114-117, 10.1038/NGEO1353, 2012.

666 Lynam, M. M., and Keeler, G. J.: Automated speciated mercury measurements in Michigan,
667 *Environmental Science & Technology*, 39, 9253-9262, Doi 10.1021/Es040458r, 2005.

668 Mao, H. T., Cheng, I., and Zhang, L. M.: Current understanding of the driving mechanisms for
669 spatiotemporal variations of atmospheric speciated mercury: a review, *Atmos Chem Phys*, 16,
670 12897-12924, 2016.

671 Obrist, D., Agnan, Y., Jiskra, M., Olson, C. L., Colegrove, D. P., Hueber, J., Moore, C. W., Sonke, J. E., and
672 Helming, D.: Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution,
673 *Nature*, 547, 201-204, 10.1038/nature22997, 2017.

674 Obrist, D., Kirk, J. L., Zhang, L., Sunderland, E. M., Jiskra, M., and Selin, N. E.: A review of global
675 environmental mercury processes in response to human and natural perturbations: Changes
676 of emissions, climate, and land use, *Ambio*, 47, 116-140, 10.1007/s13280-017-1004-9, 2018.

677 Peterson, C., Gustin, M., and Lyman, S.: Atmospheric mercury concentrations and speciation measured
678 from 2004 to 2007 in Reno, Nevada, USA, *Atmos Environ*, 43, 4646-4654, DOI
679 10.1016/j.atmosenv.2009.04.053, 2009.

680 Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., Mason, R., Mukherjee, A.
681 B., Stracher, G. B., Streets, D. G., and Telmer, K.: Global mercury emissions to the atmosphere
682 from anthropogenic and natural sources, *Atmos Chem Phys*, 10, 5951-5964, DOI 10.5194/acp-
683 10-5951-2010, 2010.

684 Rutter, A. P., Snyder, D. C., Stone, E. A., Schauer, J. J., Gonzalez-Abraham, R., Molina, L. T., Marquez, C.,
685 Cardenas, B., and de Foy, B.: In situ measurements of speciated atmospheric mercury and the
686 identification of source regions in the Mexico City Metropolitan Area, *Atmos Chem Phys*, 9,
687 207-220, 2009.

688 Selin, N. E., Jacob, D. J., Park, R. J., Yantosca, R. M., Strode, S., Jaegle, L., and Jaffe, D.: Chemical cycling
689 and deposition of atmospheric mercury: Global constraints from observations, *J Geophys Res-
690 Atmos*, 112, 1-14, Artn D02308, Doi 10.1029/2006jd007450, 2007.

691 Shah, V., Jaegle, L., Gratz, L. E., Ambrose, J. L., Jaffe, D. A., Selin, N. E., Song, S., Campos, T. L., Flocke, F.
692 M., Reeves, M., Stechman, D., Stell, M., Festa, J., Stutz, J., Weinheimer, A. J., Knapp, D. J.,
693 Montzka, D. D., Tyndall, G. S., Apel, E. C., Hornbrook, R. S., Hills, A. J., Riemer, D. D., Blake, N. J.,
694 Cantrell, C. A., and Mauldin, R. L.: Origin of oxidized mercury in the summertime free
695 troposphere over the southeastern US, *Atmos Chem Phys*, 16, 1511-1530, 10.5194/acp-16-
696 1511-2016, 2016.

697 Sherman, L. S., Blum, J. D., Johnson, K. P., Keeler, G. J., Barres, J. A., and Douglas, T. A.: Mass-
698 independent fractionation of mercury isotopes in Arctic snow driven by sunlight, *Nat Geosci*,
699 3, 173-177, Doi 10.1038/NGeo758, 2010.

700 Sonke, J. E.: A global model of mass independent mercury stable isotope fractionation, *Geochim
701 Cosmochim Ac*, 75, 4577-4590, DOI 10.1016/j.gca.2011.05.027, 2011.

702 Sprovieri, F., Pirrone, N., Bencardino, M., D'Amore, F., Carbone, F., Cinnirella, S., Mannarino, V., Landis,
703 M., Ebinghaus, R., Weigelt, A., Brunke, E. G., Labuschagne, C., Martin, L., Munthe, J., Wangberg,
704 I., Artaxo, P., Morais, F., Barbosa, H. D. J., Brito, J., Cairns, W., Barbante, C., Dieguez, M. D.,
705 Garcia, P. E., Dommergue, A., Angot, H., Magand, O., Skov, H., Horvat, M., Kotnik, J., Read, K.
706 A., Neves, L. M., Gawlik, B. M., Sena, F., Mashyanov, N., Obolkin, V., Wip, D., Bin Feng, X., Zhang,
707 H., Fu, X. W., Ramachandran, R., Cossa, D., Knoery, J., Marusczak, N., Nerentorp, M., and
708 Norstrom, C.: Atmospheric mercury concentrations observed at ground-based monitoring sites

709 globally distributed in the framework of the GMOS network, *Atmos Chem Phys*, 16, 11915-11935, 2016.

710

711 Sun, G., Sommar, J., Feng, X., Lin, C.-J., Ge, M., Wang, W., Yin, R., Fu, X., and Shang, L.: Mass-dependent
712 and -independent fractionation of mercury isotope during gas-phase oxidation of elemental
713 mercury vapor by atomic Cl and Br, *Environmental Science & Technology*, 50, 9232-9241,
714 10.1021/acs.est.6b01668, 2016a.

715 Sun, R. Y., Enrico, M., Heimburger, L. E., Scott, C., and Sonke, J. E.: A double-stage tube furnace-acid-
716 trapping protocol for the pre-concentration of mercury from solid samples for isotopic analysis,
717 *Anal Bioanal Chem*, 405, 6771-6781, DOI 10.1007/s00216-013-7152-2, 2013.

718 Sun, R. Y., Streets, D. G., Horowitz, H. M., Amos, H. M., Liu, G. J., Perrot, V., Toutain, J. P., Hintelmann,
719 H., Sunderland, E. M., and Sonke, J. E.: Historical (1850–2010) mercury stable isotope inventory
720 from anthropogenic sources to the atmosphere, *Elem. Sci. Anth.*, 4, 1-15,
721 <http://doi.org/10.12952/journal.elementa.000091>, 2016b.

722 Sun, R. Y., Jiskra, M., Amos, H. M., Zhang, Y. X., Sunderland, E. M., and Sonke, J. E.: Modelling the
723 mercury stable isotope distribution of Earth surface reservoirs: Implications for global Hg
724 cycling, *Geochim Cosmochim Ac*, 246, 156-173, 10.1016/j.gca.2018.11.036, 2019.

725 Swartzendruber, P. C., Jaffe, D. A., and Finley, B.: Development and First Results of an Aircraft-Based,
726 High Time Resolution Technique for Gaseous Elemental and Reactive (Oxidized) Gaseous
727 Mercury, *Environmental Science & Technology*, 43, 7484-7489, Doi 10.1021/Es901390t, 2009.

728 Tang, S., Feng, C., Feng, X., Zhu, J., Sun, R., Fan, H., Wang, L., Li, R., Mao, T., and Zhou, T.: Stable isotope
729 composition of mercury forms in flue gases from a typical coal-fired power plant, Inner
730 Mongolia, northern China, *J Hazard Mater*, 328, 90-97,
731 <http://dx.doi.org/10.1016/j.jhazmat.2017.01.014>, 2017.

732 Tang, Y., Wang, S. X., Wu, Q. R., Liu, K. Y., Wang, L., Li, S., Gao, W., Zhang, L., Zheng, H. T., Li, Z. J., and
733 Hao, J. M.: Recent decrease trend of atmospheric mercury concentrations in East China: the
734 influence of anthropogenic emissions, *Atmos Chem Phys*, 18, 8279-8291, 2018.

735 USEPA: Method 1631, Revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor
736 Atomic Fluorescence Spectrometry, United States Environmental Protection Agency, 10-46,
737 2002.

738 Wang, D. Y., He, L., Shi, X. J., Wei, S. Q., and Feng, X. B.: Release flux of mercury from different
739 environmental surfaces in Chongqing, China, *Chemosphere*, 64, 1845-1854, DOI
740 10.1016/j.chemosphere.2006.01.054, 2006.

741 Wang, X., Lin, C. J., Yuan, W., Sommar, J., Zhu, W., and Feng, X. B.: Emission-dominated gas exchange
742 of elemental mercury vapor over natural surfaces in China, *Atmos Chem Phys*, 16, 11125-11143,
743 2016.

744 Wu, Q. R., Wang, S. X., Li, G. L., Liang, S., Lin, C. J., Wang, Y. F., Cai, S. Y., Liu, K. Y., and Hao, J. M.:
745 Temporal Trend and Spatial Distribution of Speciated Atmospheric Mercury Emissions in China
746 During 1978-2014, *Environmental Science & Technology*, 50, 13428-13435, 2016.

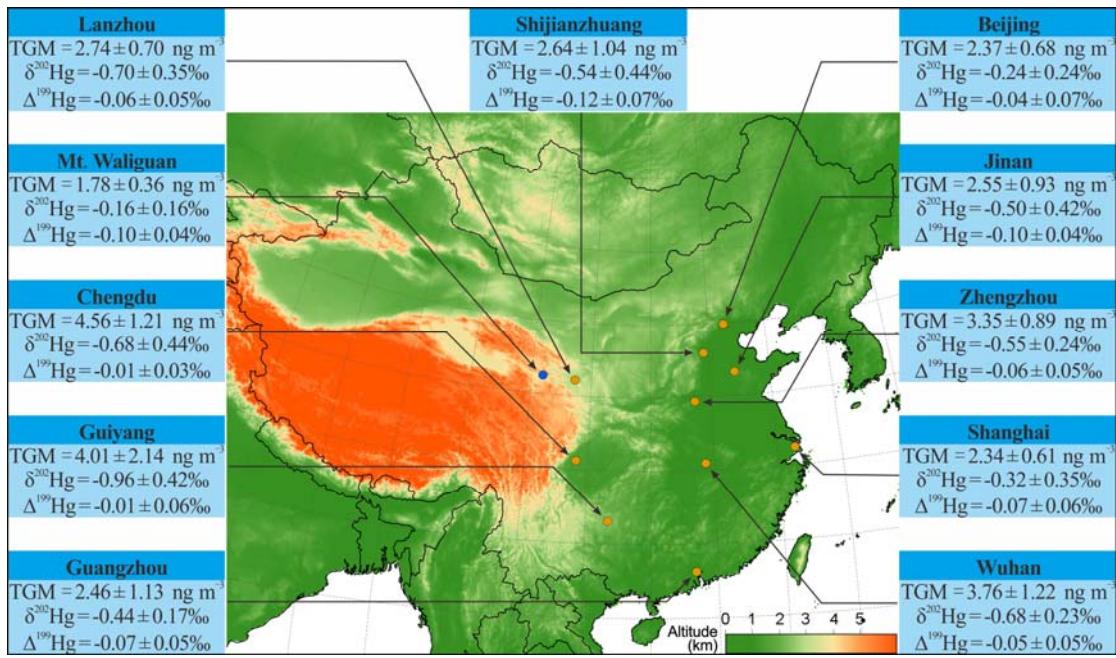
747 Xu, H., Sonke, J. E., Guinot, B., Fu, X., Sun, R., Lanzanova, A., Candaudap, F., Shen, Z., and Cao, J.:
748 Seasonal and Annual Variations in Atmospheric Hg and Pb Isotopes in Xi'an, China, *Environ Sci
749 Technol*, 51, 3759-3766, 10.1021/acs.est.6b06145, 2017.

750 Yu, B., Fu, X., Yin, R., Zhang, H., Wang, X., Lin, C.-J., Wu, C., Zhang, Y., He, N., Fu, P., Wang, Z., Shang, L.,
751 Sommar, J., Sonke, J. E., Maurice, L., Guinot, B., and Feng, X.: Isotopic Composition of
752 Atmospheric Mercury in China: New Evidence for Sources and Transformation Processes in Air

753 and in Vegetation, Environmental Science & Technology, 50, 9262-9269,
754 10.1021/acs.est.6b01782, 2016.

755 Zhang, H., Wang, Z. W., Wang, C. J., and Zhang, X. S.: Concentrations and gas-particle partitioning of
756 atmospheric reactive mercury at an urban site in Beijing, China, Environ Pollut, 249, 13-23,
757 10.1016/j.envpol.2019.02.064, 2019.

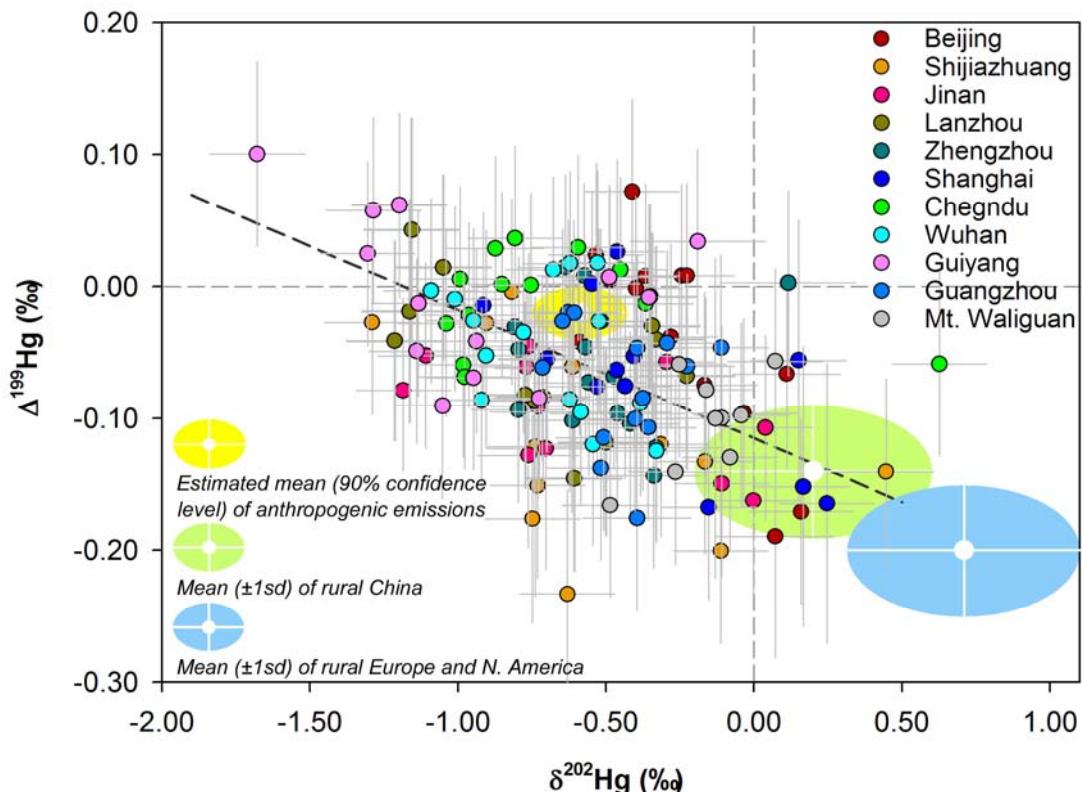
758 Zhang, L., Wang, S. X., Wang, L., and Hao, J. M.: Atmospheric mercury concentration and chemical
759 speciation at a rural site in Beijing, China: implications of mercury emission sources, Atmos
760 Chem Phys, 13, 10505-10516, DOI 10.5194/acp-13-10505-2013, 2013.


761 Zheng, B., Tong, D., Li, M., Liu, F., Hong, C. P., Geng, G. N., Li, H. Y., Li, X., Peng, L. Q., Qi, J., Yan, L., Zhang,
762 Y. X., Zhao, H. Y., Zheng, Y. X., He, K. B., and Zhang, Q.: Trends in China's anthropogenic
763 emissions since 2010 as the consequence of clean air actions, Atmos Chem Phys, 18, 14095-
764 14111, 10.5194/acp-18-14095-2018, 2018.

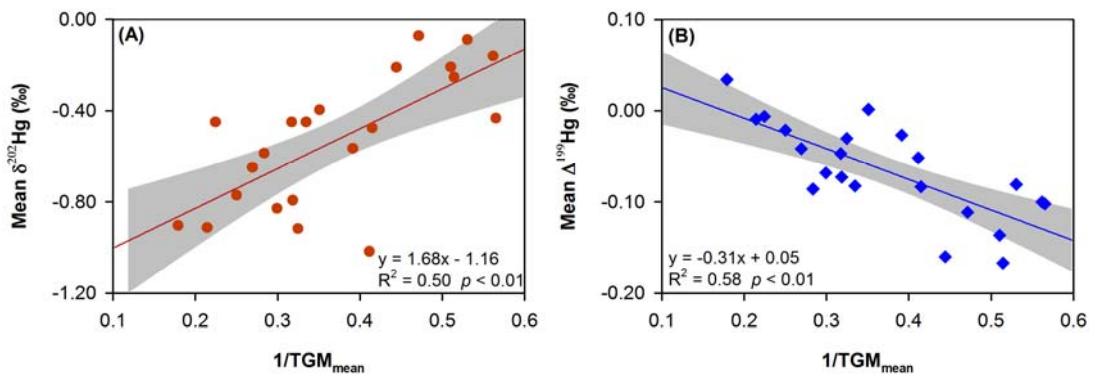
765 Zheng, W., and Hintelmann, H.: Nuclear Field Shift Effect in Isotope Fractionation of Mercury during
766 Abiotic Reduction in the Absence of Light, J Phys Chem A, 114, 4238-4245, 2010.

767 Zhu, J., Wang, T., Talbot, R., Mao, H., Hall, C. B., Yang, X., Fu, C., Zhuang, B., Li, S., Han, Y., and Huang,
768 X.: Characteristics of atmospheric Total Gaseous Mercury (TGM) observed in urban Nanjing,
769 China, Atmos Chem Phys, 12, 12103-12118, DOI 10.5194/acp-12-12103-2012, 2012.

770


771

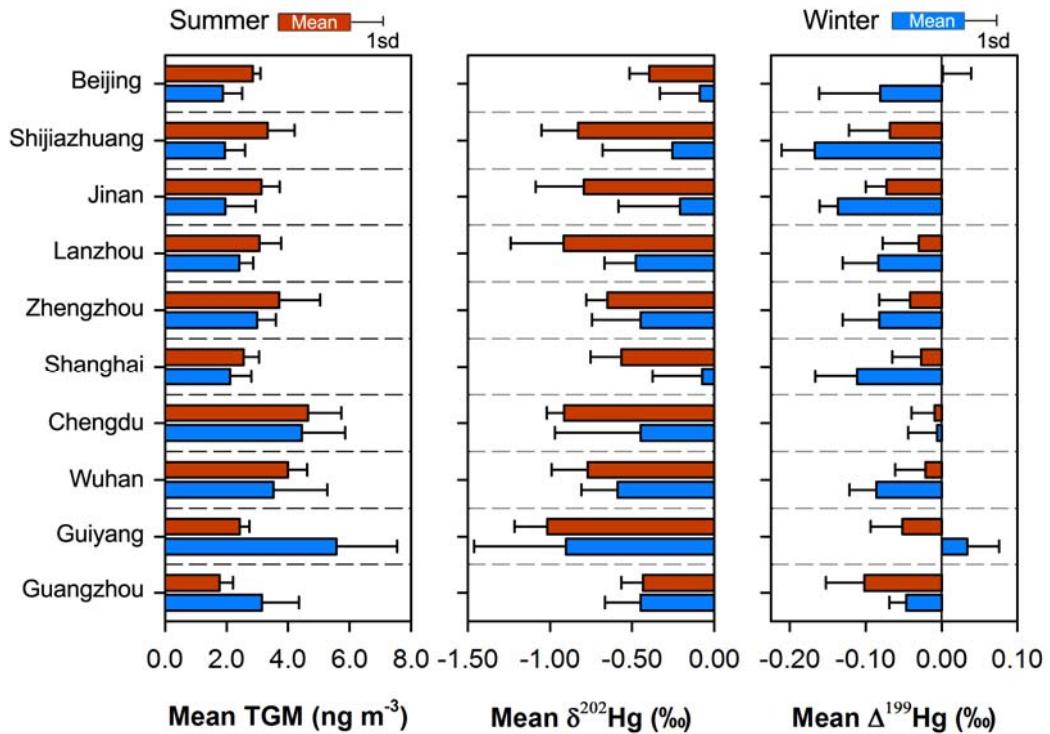
772


773 Figure 1 TGM mean concentrations ($\pm 1\sigma$), $\delta^{202}\text{Hg}$ ($\pm 1\sigma$) and $\Delta^{199}\text{Hg}$ values ($\pm 1\sigma$) at the ten urban
 774 sites (brown cycle) and one rural site (blue cycle) in China during the whole study periods.
 775

776

777

778 Figure 2 Mass-dependent ($\delta^{202}\text{Hg}$) and mass-independent ($\Delta^{199}\text{Hg}$) signatures of daily TGM
 779 samples collected in the present study (circle) with error bars representing 2σ analytical uncertainty.
 780 The shaded areas are the literature-based mean ($\pm 1\sigma$) $\delta^{202}\text{Hg}$ and $\Delta^{199}\text{Hg}$ of TGM or GEM measured
 781 in rural areas of China (light green) and Europe and North America (light blue) as well as those
 782 estimated for anthropogenic emissions (yellow) (Gratz et al., 2010; Sherman et al., 2010; Demers
 783 et al., 2013; Demers et al., 2015; Enrico et al., 2016; Fu et al., 2016; Yu et al., 2016; Obrist et al.,
 784 2017; Xu et al., 2017; Fu et al., 2018; Fu et al., 2019; Jiskra et al., 2019a; Jiskra et al., 2019b).
 785 Dotted line represents the linear regression between TGM $\delta^{202}\text{Hg}$ and $\Delta^{199}\text{Hg}$ measured in the
 786 present study (ANOVA, $R^2 = 0.38, p < 0.01$).
 787
 788


789

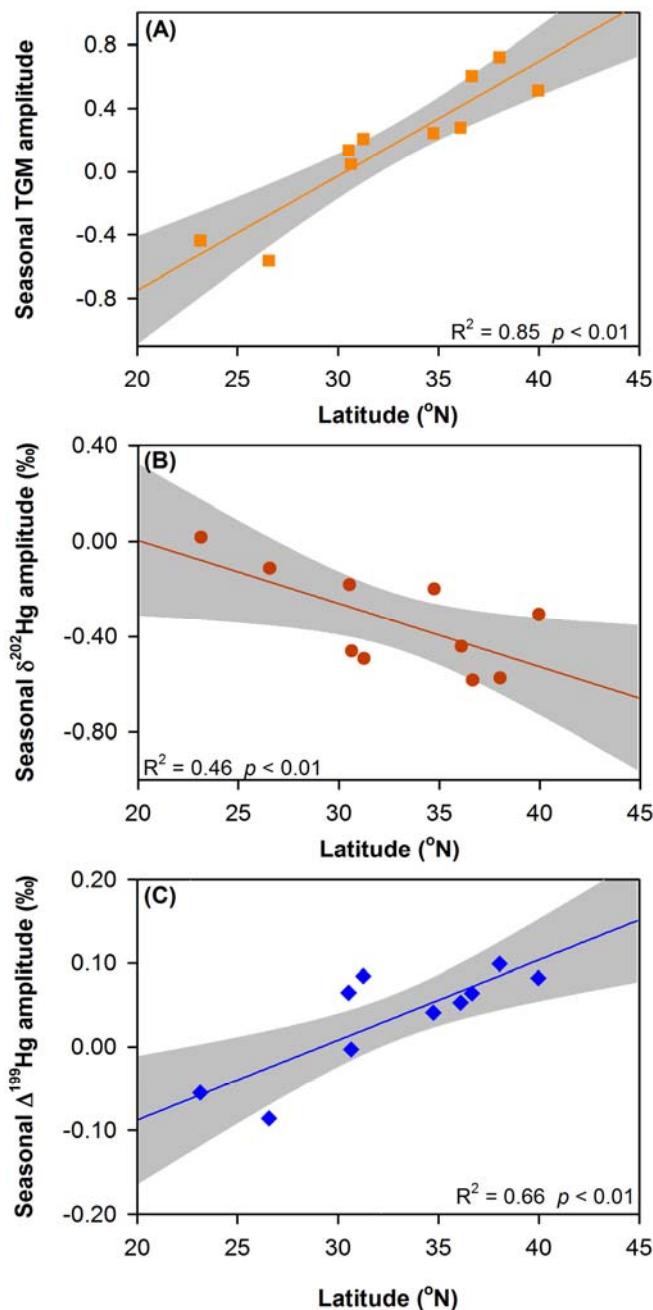
790 Figure 3 (A) mean $\delta^{202}\text{Hg}$ versus $1/\text{TGM}_{\text{mean}}$ and (B) mean $\Delta^{199}\text{Hg}$ versus $1/\text{TGM}_{\text{mean}}$ diagrams suggesting
 791 a physical binary mixing between the regional-scale background and urbanized source end-member.
 792 Lines represent the linear regression of the data and shaded gray area are the 95% confidence area
 793 of the regression.

794

795

796

797

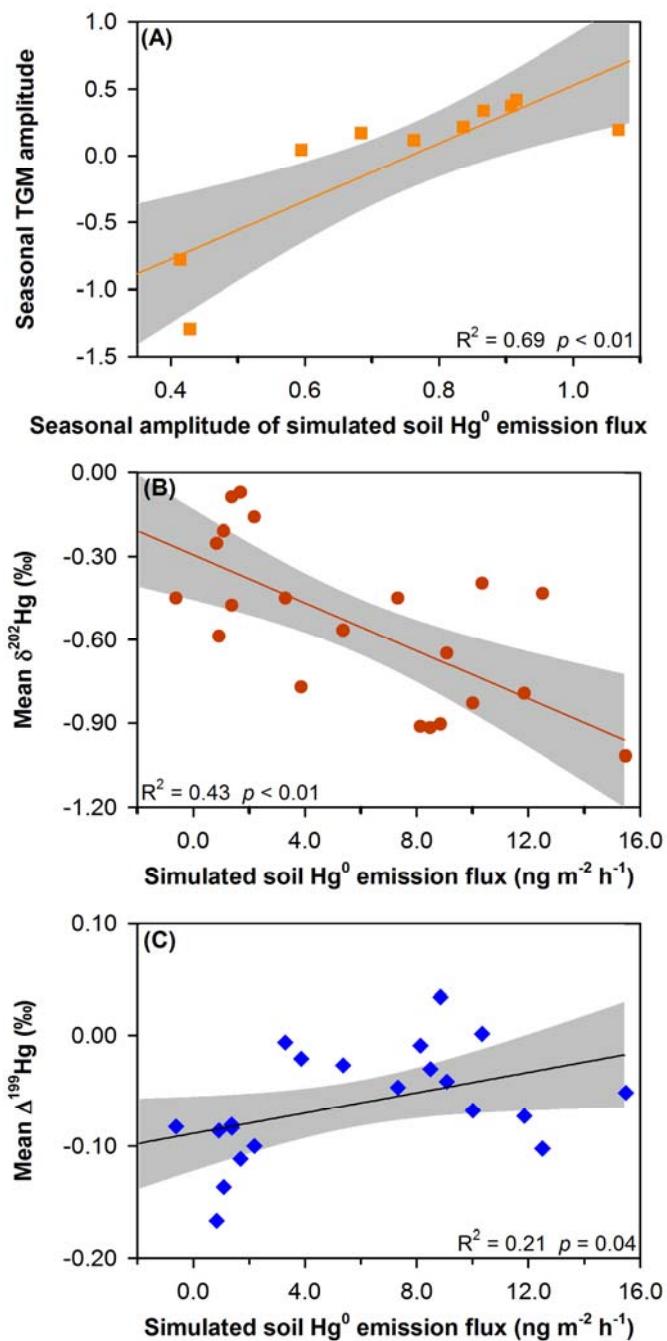

Figure 4 Summertime and wintertime means of TGM concentrations (A), TGM $\delta^{202}\text{Hg}$ (B), and TGM $\Delta^{199}\text{Hg}$ (C) in the ten Chinese cities. Error bars represent 1σ .

798

799

800

801



802

803 Figure 5 Latitude dependence of the seasonal variations in TGM concentrations and isotopic
 804 compositions in the ten Chinese cities. (A) Seasonal amplitude of TGM concentrations ((TGM_{summer}
 805 - TGM_{winter})/TGM_{summer}) versus latitude. (B) Seasonal amplitude of $\delta^{202}\text{Hg}$ values ($\delta^{202}\text{Hg}_{\text{summer}}$ -
 806 $\delta^{202}\text{Hg}_{\text{winter}}$) versus latitude. (C) Seasonal amplitude of $\Delta^{199}\text{Hg}$ values ($\Delta^{199}\text{Hg}_{\text{summer}}$ - $\Delta^{199}\text{Hg}_{\text{winter}}$)
 807 versus latitude. Lines represent the linear regression of the data and shaded gray area are the 95%
 808 confidence area of the regression.

809

810

811

Figure 6 Effect of soil Hg^0 (GEM) emissions on variations in TGM concentrations and isotopic compositions at the sampling sites in this study. Linear regressions between (A) seasonal TGM amplitude and seasonal amplitude of simulated soil Hg^0 emissions flux, (B) mean TGM $\delta^{202}\text{Hg}$ and simulated soil Hg^0 emissions flux, and (C) mean TGM $\Delta^{199}\text{Hg}$ and simulated soil Hg^0 emissions flux. Lines represent the linear regression of the data and shaded gray area are the 95% confidence area of the regression. Simulated soil Hg^0 emissions fluxes are from Wang et al.(2016).

812

813

814

815

816

817

818

819

820