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Abstract. 

Based on the first measurements of gas-phase pyruvic acid (CH3C(O)C(O)OH) in the boreal forest, we derive effective 

emission rates of pyruvic acid and compare them with monoterpene emission rates over the diel cycle. Using a data-constrained 

box-model, we determine the impact of pyruvic acid photolysis on the formation of acetaldehyde (CH3CHO) and the peroxy 

radicals CH3C(O)O2, CH3O2 and HO2 during an autumn (IBAIRN) and summer (HUMPPA) campaign at the same site. The 15 

results are dependent on the photodissociation mechanism of pyruvic acid and we examine different scenarios in which the 

main photolysis products are either acetaldehyde or the CH3C(O)O2 radical, with different overall quantum yields. If CH3CHO 

is taken to be the main product (as presently recommended by evaluation panels) we find that pyruvic acid photolysis can be 

a dominant source of this aldehyde in the boreal forest with a contribution of 79 % (IBAIRN) and 94 % (HUMPPA) and may 

help explain the high acetaldehyde levels observed during HUMPPA. On the other hand, if photolysis leads mainly to the 20 

formation of radicals, the emission of pyruvic acid has a profound impact on the rates of formation of peroxy radicals (with a 

contribution of ~20–50 %) and shifts the onset of radical production to earlier in the morning when actinic flux is dominated 

by wavelengths that are too long to initiate efficient ozone photolysis but which are absorbed by pyruvic acid.  

 

1 Introduction 25 

Organic acids play a crucial role in tropospheric chemistry, impacting secondary organic aerosol formation, air quality and 

climate (Kanakidou et al., 2005; Hallquist et al., 2009). Pyruvic acid (CH3C(O)C(O)OH), an organic acid that is central in 

plant metabolism as part of the Krebs cycle (Walker, 1962), is found in tropospheric air in the gas phase as well as in the 

aerosol phase, especially in the boundary layer of vegetated regions. Gas-phase mixing ratios ranging from a few to several 

hundred parts per trillion (pptv) have been reported in various locations around the world, including the tropical rain forest, 30 
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boreal forest, rural areas with temperate forest, and regions influenced by urban outflow. A recent overview of existing 

measurements of gas-phase pyruvic acid is given by Eger et al. (2020).  

A major source of pyruvic acid is understood to be the photo-oxidation of isoprene, via the ozonolysis of methyl vinyl ketone 

and subsequent hydrolysis of the Criegee intermediates (Jacob and Wofsy, 1988; Grosjean et al., 1993; Paulot et al., 2009). 

Further potential sources are the photolysis of methylglyoxal (Raber and Moortgat, 1995), the gas-phase photo-oxidation of 5 

aromatics in the presence of NOx (Grosjean, 1984; Praplan et al., 2014), the aqueous-phase oxidation of methylglyoxal (Stefan 

and Bolton, 1999) and reactions taking place within biomass burning plumes (Andreae et al., 1987; Helas et al., 1992). In 

addition, pyruvic acid has been reported to be directly emitted from vegetation (Talbot et al., 1990; Jardine et al., 2010a; 

Jardine et al., 2010b; Eger et al., 2020). Compared to acetic acid, the presence of a second (non-acidic) carbonyl group imparts 

on pyruvic acid an absorption spectrum that extends from ultraviolet to visible wavelengths (see Fig. 1) and photolysis is a 10 

major sink of pyruvic acid in the boundary layer, with deposition and heterogeneous uptake to the aerosol phase also 

contributing to its removal. Photolysis of pyruvic acid in air results in a number of different radical and stable products (see 

Fig. 1), the major ones being acetaldehyde, HO2 and CH3C(O)O2 (more details are presented in Sect. 2.2.1). These products 

can have a significant impact on tropospheric chemistry, e.g. via the formation of peroxyacetyl nitrate (PAN), peracetic acid 

(PAA) and formaldehyde (HCHO).  15 

Global models have recently revealed discrepancies between simulated and measured acetaldehyde concentrations (Millet et 

al., 2010; Wang et al., 2019; Wang et al., 2020). Wang et al. (2020) reported CH3CHO mixing ratios that were up to a factor 

of 10 higher than global chemistry-transport model (EMAC) results in the marine boundary layer around the Arabian 

Peninsula, implying missing sources in remote and polluted regions. Wang et al. (2019) also found that models systematically 

underestimate CH3CHO compared to observations in the remote troposphere, implying a missing source of acetaldehyde. This 20 

finding was supported by the simultaneous measurement of PAA (for which acetaldehyde is a precursor in remote 

environments) and by the organic aerosol source of CH3CHO being insufficient to explain the results. Instead, Wang et al. 

(2019) suggested that CH3CHO arises from the degradation of gas‐phase organic compounds. Pyruvic acid, among other 

organic acids in the gas and aerosol phase, might be one of the compounds that transport and release acetaldehyde to the remote 

troposphere and its integration into global models might contribute to resolve discrepancies, especially in forested regions. 25 

Generally, field measurements as well as modelling and laboratory-based kinetic studies on pyruvic acid are limited and its 

impact on atmospheric chemistry is still poorly understood. In this study we highlight the potential role of pyruvic acid in the 

boreal forest, one of the largest terrestrial biomes on Earth. 

2 Experimental data and box model description 

The goal of this study is to quantify the impact of pyruvic acid on acetaldehyde and radical formation rates by using a data-30 

constrained, chemical box-model. For this purpose we make use of experimental data from two field studies, which were both 

performed in the Finish boreal forest at the “Station for Measuring Forest Ecosystem-Atmosphere Relations II” (SMEAR II) 
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in Hyytiälä (61.846 °N, 24.295 °E, 180 m above sea level, see Hari and Kulmala (2005)), an area that is mainly characterised 

by large biogenic (monoterpene-dominated) emissions and low NOx concentrations (Williams et al., 2011). An overview of 

the instruments used to measure trace-gases and other parameters relevant for this study is presented in Table S1 of the 

supplementary information. 

2.1. The IBAIRN and HUMPPA campaigns 5 

The IBAIRN campaign (Influence of Biosphere–Atmosphere Interactions on the Reactive Nitrogen budget) took place in 

September 2016, during the summer–autumn transition, and was characterised by frequent temperature inversions near ground 

level during night-time (Liebmann et al., 2018), which led to the accumulation of nocturnally emitted trace gases from 

vegetation. A detailed description of the campaign and the instrumental setup can be found elsewhere (Liebmann et al., 2018; 

Eger et al., 2020). Briefly, pyruvic acid was measured by a chemical ionisation quadrupole mass spectrometer with a detection 10 

limit (LOD) (10 s, 2σ) of 15 pptv (Eger et al., 2020). The sum of monoterpenes (henceforth referred to as MT) was measured 

by a PTR-ToF-MS and single monoterpenes were monitored by a GC-AED, described in detail by Liebmann et al. (2018). 

Despite some discrepancies related to instrument location and inhomogeneity in terpene emissions within the forest, both 

instruments were in reasonably good agreement throughout the campaign. Since we require a high temporal resolution for our 

simulation, we have used the PTR-ToF-MS dataset. Photolysis rate coefficients (Jpyr, JNO2, JO(1D) and JHCHO) were derived using 15 

actinic flux measurements from a spectral radiometer (METCON GmbH) and evaluated cross sections and quantum yields 

(Burkholder et al., 2015). Mixing layer (MXL) heights were derived by combining in-situ measurements made by a scanning 

Doppler lidar (Hellén et al., 2018) with results from the ECMWF ERA-Interim reanalysis (Dee et al., 2011) with a spatial 

resolution of ~80 km. Since the lidar was unable to resolve MXL heights < 60 m (as regularly experienced during nocturnal 

inversions), all values below this threshold have been set to 60 m, representing an upper limit. 20 

The summertime boreal forest field measurement intensive HUMPPA-COPEC took place at the same location in July and 

August 2010 and was characterised by unusually warm temperatures for this time of the year with exceptionally large emissions 

from the biosphere. A detailed description of the campaign and meteorological situation can be found in Williams et al. (2011). 

Insights into HOx and ROx chemistry are presented by Crowley et al. (2018) who suggested that di-carbonyl compounds, 

including pyruvic acid, could help explain the high production rates of radicals necessary to explain the observations of H2O2 25 

and PAA, especially during periods when the measurement site was impacted by biomass burning in Russia. 

2.2 Box model description 

The box model was developed with the goal of simulating the impact of pyruvic acid photolysis on formation rates of OH, 

HO2, CH3C(O)O2, CH3CHO, CH3O2, HCHO and CH3OOH over several diel cycles during the two field campaigns in the 

Finish boreal forest described above. In all model runs, the parameters directly constrained by the observations were the 30 

temperature, pressure, relative humidity (RH), the gas-phase concentrations of O3, NO, NO2, PAN, CO and monoterpenes, as 

well as the photolysis rate constants JO(1D), JNO2, JHCHO, JHONO and Jpyr. Depending on the campaign (IBAIRN or HUMPPA), 
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other parameters were additionally constrained (see Sect. 2.2.2 and 2.2.3). A complete reaction scheme is listed in Table S2 of 

the Supplement. Rate coefficients were taken from the IUPAC evaluations (IUPAC, 2020). The atmospheric methane 

concentration was set to a constant value of 1.8 ppmv. Non-methane alkanes, the degradation of which represents ~ 30–45 % 

of the acetaldehyde source globally (Millet et al., 2010) were constrained to 1000 pptv of ethane, 250 pptv of propane and 150 

pptv of n-butane, as found in similar environments in Finland (Hakola et al., 2006; Hellén et al., 2015).  5 

For the box model, programmed in FACSIMILE code (Curtis and Sweetenham, 1987), three different scenarios were 

investigated, in which the pyruvic acid chemistry listed in Table S2 was modified (see below) in order to examine the sensitivity 

of the model output to photolysis quantum yields. The box model simulated the field data at 10 min temporal resolution. 

2.2.1 Pyruvic acid loss rate and model scenarios 

Photolysis and dry deposition are considered the dominant loss terms for gas-phase pyruvic acid, as reaction with OH is slow 10 

(1.2 × 10-13 cm3 molecule-1 s-1 at 298 K) (Mellouki and Mu, 2003). Heterogeneous uptake to atmospheric aerosols is also 

calculated to be inefficient at this site, where particle surface area densities were of the order of 2  10-7 cm2 cm-3 and the 

particles contained a large organic fraction (Liebmann et al., 2019) that is likely to reduce the uptake coefficient compared to 

that measured for purely aqueous particles ( = 0.06, Eugene et al. (2018)).  

In Fig. 1 we present the wavelength resolved photolysis rates across the UV-absorption spectrum of pyruvic acid (assuming 15 

the overall photolysis quantum yield is 0.2) and a scheme showing possible routes to formation of acetaldehyde and radicals 

following its photolysis. The three most important photolysis channels are:  

CH3C(O)C(O)OH + h   CH3COH + CO2       (R1, 1) 

    CH3CO + HOCO      (R2, 2) 

    CH3C(O)OH + CO     (R3, 3) 20 

where i are branching ratios with 1 + 2 + 3 = 1. 

CH3CO and HOCO react rapidly in air to form peroxy radicals: 

CH3CO + O2 + M    CH3C(O)O2 + M       (R4) 

HOCO + O2    HO2 + CO      (R5) 

The methylhydroxycarbene product of R1 (CH3COH) is an unstable intermediate which can rearrange to form CH3CHO (R6) 25 

with branching ratio  or react with O2 to form HO2 and CH3CO (branching ratio 1-), which via R4, results in formation of 

CH3C(O)O2. 

CH3COH   CH3CHO      (R6, ) 

CH3COH + O2    CH3CO + HO2       (R7, 1-) 

The quantum yield of acetaldehyde formation (1) is thus equal to 1, where  is the overall quantum yield. The quantum 30 

yield of formation of CH3CO3 + HO2 (via R1/R7 and R2) is 2 + 1(1-). Direct formation of CH3C(O)OH in R3 has a 

quantum yield of 3.  
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For the calculation of the pyruvic acid photolysis rate constant (Jpyr) and photolysis products we used different scenarios A–C 

that reflect the large variability in quantum yields and branching ratios reported in the literature. They are outlined in the 

following and summarised in Table 1 along with the dominant photolysis products in air. In scenario A, which represents a 

reference for the other scenarios, we assumed that the overall quantum yield for pyruvic acid photolysis () is zero. As its 

reaction with OH is slow, setting Jpyr to zero effectively removes any contribution of pyruvic acid to acetaldehyde or radical 5 

generation. In scenario B we used pyruvic acid cross sections and quantum yields according to the UPAC recommendations 

(IUPAC, 2020), with an overall quantum yield of  = 0.2 and branching ratios 1 = 0.6, 2 = 0.35 and 3 = 0.05, favouring the 

formation of acetaldehyde. Scenario C is based on the quantum yields reported by Reed Harris et al. (2017) who suggest   = 

0.84 with 1 = 1 and  = 0.05, i.e. only two relevant product channels forming mainly CH3CO3 + HO2 (95%) and only low 

amounts of CH3CHO (5%). The comparison of scenarios B and C illustrates the sensitivity of the model output to the chosen 10 

quantum yields and branching ratios.  The plausibility of the scenarios is tested by comparing the results of our model runs 

with observations of acetaldehyde and PAA during HUMPPA. 

The deposition rate of pyruvic acid was calculated from kdep = vdep hMXL
-1 during day and kdep = 2 vdep hMXL

-1 during night 

(Shepson et al., 1992a), with the transition following the diel variation in the mixing layer height hMXL (see Fig. S1 in the 

Supplement). Further, as the two trace-gases have similar solubilities, we assumed that the deposition velocity of pyruvic acid 15 

is equal to that of H2O2, so that vdep = 8.4 cm s-1 during day and vdep = 0.8 cm s-1 during night, as derived by Crowley et al. 

(2018) for the same site. This resulted in a minimum dry-deposition loss rate constant of kdep = 0.9 × 10-4 s-1 during day and a 

maximum of kdep = 1.8 × 10-4 s-1 during night. 

2.2.2 IBAIRN simulation 

The simulation was initiated on 05.09.2016 but we analysed the model output only in the period 09–21.09.2016, as high-20 

resolution MT data was not available for the first campaign days. In addition to the parameters generally constrained in all 

model runs (see above), for IBAIRN the concentration of pyruvic acid was determined by the observations. The concentration 

of PAN, which is generally the most abundant of peroxy acetyl nitrates (PNs), was calculated from [PAN] = 0.9 × [PNs] 

(estimation based on observations by e.g. Shepson et al. (1992b), Roberts et al. (2004) and Roiger et al. (2011)). OH was 

calculated from the correlation of ground-level OH measurements with UVB radiation intensity at the Hyytiälä site (Petäjä et 25 

al., 2009; Hellén et al., 2018) with [OH] = 5.62 × 105 [UVB]0.62 molecule cm-3 when UVB is in units of W m-2.  

We added a constant value of 1.5 s-1 (accounting for unmeasured oxygenated VOCs) to the total OH reactivity (ROH), so that 

the simulated OH concentration approximately matched the OH concentration derived from the UVB measurement. 

2.2.3 HUMPPA simulation 

The simulation was initiated on 14.07.2010, the output was only used from 21.07.–08.08.2010 due to missing PAN data at the 30 

beginning of the campaign. In addition to the parameters generally constrained in all model runs (listed above), for HUMPPA 
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the concentrations of HCHO, HONO and CH3CHO were determined by the observations. However, due to a lack of 

experimental data, we estimated the pyruvic acid concentration based on measured MT mixing ratios and the relationship 

between pyruvic acid and MT emission rates derived from the IBAIRN analysis (which is discussed later in Sect. 3.1).  During 

HUMPPA, the site was impacted by a biomass burning plume on two occasions (26.07.–30.07.2010 and 07.08.–09.08.2010) 

and levels of CH3CN, CO, PAN, H2O2, PAA and several oxidised organics were considerably enhanced over normal 5 

conditions. We present results both including and excluding the biomass burning periods. 

3 Results and discussion 

In the following, we discuss the model output for the IBAIRN and HUMPPA campaigns with a focus on pyruvic acid emission 

rates and its impact on acetaldehyde and radical chemistry in the boundary layer of the boreal forest. 

3.1 Autumn campaign (IBAIRN): Pyruvic acid emission rate relative to monoterpenes 10 

In order to quantify the pyruvic acid emission rate (Epyr) during IBAIRN we assume that only photolysis and dry deposition 

contribute significantly to its overall loss rate (Sect. 2.2.1) and that pyruvic acid is in steady-state. The latter assumption is 

reasonable as its mean lifetime was (2 ± 0.5) h (for scenario B; shortest at night) and changes in the mixing ratio could reliably 

be reproduced by the simulation. Due to a homogeneous fetch at the measurement site we can neglect transport processes and 

Epyr is defined by Eq. (1), where [pyr]ss is the measured concentration, Jpyr is the photolysis rate constant of pyruvic acid, kdep 15 

is the first-order loss rate constant for its dry deposition, and hMXL is the well-mixed boundary layer height. 

𝐸pyr = [pyr]𝑠𝑠 (𝐽𝑝𝑦𝑟 + 𝑘𝑑𝑒𝑝) ℎMXL          (1) 

Epyr is effectively an emission rate normalised to the MXL height (hMXL) and has units of pptv s-1 m. As the photolysis is a 

substantial fraction of the overall losses of CH3C(O)C(O)OH, the choice of quantum yield  (scenarios A, B and C) directly 

impacts the calculated emission rate. The same calculation is performed for the monoterpenes (EMT) over the same period (and 20 

thus for the same MXL height). We note that hMXL controls not only the value of kdep but also directly affects the mixing ratios 

of both MTs and pyruvic acid for a given emission rate. The relative emission rate (Epyr / EMT) can be calculated from Eq. (2) 

where terms in square brackets are concentrations. 

𝐸pyr

𝐸MT
=  

[pyr]𝑠𝑠 (𝐽𝑝𝑦𝑟+𝑘𝑑𝑒𝑝)

[MT]𝑠𝑠 (𝑘OH[OH]+𝑘NO3[NO3]+𝑘O3[O3])
         (2) 

In the denominator, kOH, kNO3 and kO3 are rate coefficients for reaction of monoterpenes with OH, NO3 and O3, respectively. 25 

An average lifetime of MT of (4 ± 2) h (largest at night), resulting from reactions with OH, NO3 and O3 (see Table S2), was 

calculated from the mean MT composition measured by GC-AED (49 % α-pinene, 13 % β-pinene, 27 % Δ-carene, 3 % Δ -

limonene and 8 % camphene) and corresponding rate coefficients (Perring et al., 2013; Gaona-Colman et al., 2017; IUPAC, 

2020). 
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Note that the calculated emission rates are subject to substantial uncertainties arising from the measurement of pyruvic acid, 

MT, OH, O3, NO3, hMXL and Jpyr. In particular, the results are very sensitive to the estimated deposition velocity (vdep) of 

pyruvic acid which is an estimate based on the deposition velocity of H2O2 which itself has an uncertainty of ~ 90 % (Fischer 

et al., 2019). Further, our calculations are based on the assumption that the sources for pyruvic acid and MT emissions are 

evenly distributed and measurements made at ~ 8.5 m above the ground are representative of the entire boundary layer (i.e. 5 

that the boundary layer is well-mixed, including the very shallow boundary layer at night). A gradient in pyruvic acid mixing 

ratios at night cannot be ruled out, which would impact on our results. We estimate that the emission ratio (Epyr / EMT) in Eq. 

(2) is associated with an overall uncertainty of a factor ~2. 

A time series of pyruvic acid and MT mixing ratios along with the MXL heigth (hMXL) derived from a lidar measurement and 

from the ERA-Interim renanalysis is shown in Fig. S2 of the Supplementary Information. Whereas both MXL height datasets 10 

agree very well during the night when the MXL is shallow (usually < 100 m), the lidar data is on average a factor of ~2 lower 

during day and characterised by a much higher variability. For the derivation of the diel profile of hMXL (Fig. S1) we took an 

average of both datasets. The diel variation displayed in Fig. S2, with highest MT mixing ratios at night, is characteristic for 

this boreal forest site and has been observed in earlier studies (Hellén et al., 2018). 

In the following, we focus on the mean, diel profiles of Epyr, EMT, J-NO2, T and hMXL for the IBAIRN campaign, which are 15 

presented in Fig. 2. During September, the emission rate of pyruvic acid (Epyr) reaches its maximum a few hours after solar 

noon when the temperature peaks, similar to EMT. However, the amplitude of the day-to-night difference in Epyr is a factor of 

~3 smaller than observed for EMT. This could indicate that pyruvic acid emissions are less temperature-dependent than MT 

emissions (see below) and that other environmental factors might additionally play a role at this time of year.  

The emission rates of the MTs derived as described above show a large day-night variation with a factor ~20 larger values 20 

around noontime compared to midnight. This is significantly larger than the expected variation (factor 2–3) based on the 

average noon-to-midnight temperature difference of 10 K and the parameterisation of Guenther et al. (1993) whereby EMT ∞ 

exp(β(T – 297 K)) with β = 0.1 K-1 (which is in line in with the empirical value of β = 0.12 K-1 that was derived for this site in 

September by Hellén et al. (2018)). One potential reason for this discrepancy may be related to emissions in autumn from fresh 

leaf litter that significantly contribute to the observed mixing ratios (Hellén et al., 2018) and that the assumption of evenly 25 

distributed sources and a well-mixed boundary layer is not necessarily valid during night, especially during strong temperature 

inversions. 

Fig. S3 in the Supplement shows that the daytime emission of pyruvic acid relative to MT (Epyr / EMT) varies by a factor of ~ 

2, depending on the chosen scenario, whereas the nighttime emission ratio is only dependent on the deposition velocity of 

pyruvic acid. For further analysis we focus on the results from scenario B, using presently recommended photochemical 30 

parameters for pyruvic acid (IUPAC, 2020). On average (Epyr / EMT) ~ 0.6 with a minimum value of ~ 0.3 in the evening and 

a maximum value of ~ 1 in the early morning, indicating elevated pyruvic acid emissions relative to MT at night. To derive a 

T-dependent expression from the diurnal profile of the emission factor, we fit an exponential function to the plot of temperature 

versus Epyr / EMT (Fig. S4), yielding: 
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𝐸pyr = [0.28 + 3.17 × exp (
273−𝑇

4.24
)] × 𝐸MT        (3) 

We note that (like the values of Epyr) the temperature dependence derived is strongly influenced by the diel variation of the 

MXL height and thus carries significant uncertainty and may not be transferable to other locations or even times of the year.  

As our measurements of pyruvic acid in the boreal forest are the first to have been made, we cannot compare our relative 

emission ratio (Epyr / EMT) with previous measurements in the boreal environment. Instead, where possible, we derive the 5 

emission ratio from measurements of MTs, isoprene and pyruvic acid in warmer climates. Jardine et al. (2010b) performed 

measurements in an enclosed (glass dome) tropical forest biome at Biosphere 2 in Arizona, US, where they found maximum 

concentrations of 120 ppbv isoprene, 6 ppbv monoterpenes and 15 ppbv pyruvic acid. As the glass dome absorbed actinic 

wavelengths and prevented active photochemistry, the chemical loss processes for pyruvic acid, isoprene, and MT (including 

photolysis and reactions with OH, O3 and NO3 ) are negligible. Initially disregarding the deposition of isoprene and MT, we 10 

derive lower limits of (Epyr / Eiso) ~ 0.17 and (Epyr / EMT) ~ 4 (see Table 2). However, due to the presence of large concentrations 

of isoprene-consuming microbes in the soil of Biosphere 2, the isoprene loss rate via deposition may be enhanced, which will 

decrease the effective emission ratio (Epyr / Eiso). In addition, branch enclosure studies were performed on a mangifera indica 

(mango) tree within Biosphere 2, yielding mean fluxes (in nmol m-2 s-1) of 3.2 for isoprene, 0.09 for MT and 0.15 for pyruvic 

acid. Pyruvic acid emissions peaked during the day when temperature and photosynthetically active radiation (PAR) were 15 

highest and correlated very well with isoprene emissions and (to a certain extent) with MT emissions. Assuming that a mango 

tree is representative for the tropical vegetation, we derive emission ratio of (Epyr / Eiso ~ 0.05 and (Epyr / EMT) ~ 1.7 (see Table 

2), which is consistent with our estimations for the IBAIRN campaign. However, given that Talbot et al. (1990) observed great 

variability in pyruvic acid emission fluxes among five different tree species during measurements in the tropical Ducke Forest 

Reserve close to Manaus, Brazil, this agreement may, to some extent, be coincidental. Talbot et al. (1990) also reported a mean 20 

emission flux (derived from enclosure experiments) relative to isoprene of (Epyr / Eiso) ~ 0.003, which is about one order of 

magnitude smaller than in the study of Jardine et al. (2010b). In a further branch enclosure study by Jardine et al. (2010a) 

emissions from a creosotebush (Larrea divaricata), which is typically found in US drylands, were investigated. Average 

noontime branch emission rates (in µg C gdw-1 h-1) of 7.5, 10.4 and 0.2 for isoprene, MT and pyruvic acid resulted in relative 

emission ratios of (Epyr / Eiso) ~ 0.05 and (Epyr / EMT) ~ 0.07 for this mixed isoprene-MT-emitting species.  25 

The comparison with the few datasets available in the literature indicates that the variability of the emission factors (Epyr / EMT) 

and (Epyr / Eiso) among different plant species and different environments is large. In addition, a lack of pyruvic acid 

measurements over different seasons in the boreal forest means that we cannot exclude that the value we derive is biased by 

emissions (e.g., from ground-level, decaying plant-litter in September) that are peculiar to this season and environment. The 

conclusions we draw from our following analysis are therefore relevant for the autumnal boreal forest but require validation 30 

before being extended to other regions and seasons with confidence. 
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3.2 Contribution of pyruvic acid to acetaldehyde and radical formation 

To quantify the impact of pyruvic acid photolysis during IBAIRN, we identified the relative contributions of the processes 

forming OH, HO2, CH3C(O)O2, CH3CHO, HCHO and CH3OOH from our model runs, and compared scenario A (the reference 

run with no impact from pyruvic acid) with scenarios B and C. The campaign-averaged production rates are summarised in 

Table 3. 5 

Figure 3 illustrates the relative importance of the various pathways to OH formation and the resulting OH concentrations for 

the three different scenarios. On average, the main source of OH radicals was the direct formation from O3 photolysis (39 % 

in scenario B), followed by the reaction of HO2 with NO (30 %) and O3 + MT (25 %). The inclusion of pyruvic acid photolysis 

in the model increased the relative importance of the HO2 + NO reaction by 1 % (scenario B) or 6 % (scenario C) due to 

increased HO2 production. The overall OH production rate (13.1 × 105 molec cm-3 s-1 in scenario A, see Table 3) increases by 10 

2 % in scenario B or 13 % when considering scenario C.  

For HO2 (Fig. 4) the three major sources during IBAIRN were the reactions OH + CO (39 %), RO2 + NO (36 %), and CH3O2 

+ NO (19 %). In scenario B, pyruvic acid accounts for just 2 % of the total HO2 production (via R2 and R5, see Fig. 1) whereas 

in scenario C this increases to 14 % (via R1 and R7). The overall HO2 production rate (5.8 × 105 molec cm-3 s-1 in scenario A, 

see Table 3) increases by just 2 % in scenario B but by as much as 36 % in scenario C. Clearly, the combination of a high 15 

quantum yield of pyruvic acid photolysis and direct formation of radicals can have a significant impact on the HOx budget. As 

the photolysis of pyruvic acid occurs at wavelengths that are red-shifted compared to O3 photolysis, the model predicts that 

the onset of photochemical radical formation in scenario C is about 1 hour earlier than without pyruvic acid photolysis.  

Figure 5 summaries the results for CH3C(O)O2. The most important channel for CH3C(O)O2 production in Scenario A was by 

far the decomposition of PAN (95 %), followed by OH + CH3CHO (5 %). When comparing scenario B with A, the overall 20 

CH3C(O)O2 production rate is slightly increased due to the presence of pyruvic acid, with a contribution of 8 % directly arising 

from its photolysis (CH3C(O)C(O)OH + hν). In scenario C, the contribution from the photolysis of pyruvic acid increases to 

52 % and the overall CH3C(O)O2 production rate almost doubles. This would make pyruvic acid an important source of 

CH3C(O)O2 during the IBAIRN campaign. In scenario C we also see a clear shift in the onset of radical generation to earlier 

in the morning when actinic flux is dominated by wavelengths that are too long to initiate ozone photolysis but are absorbed 25 

by pyruvic acid. 

In the absence of pyruvic acid photolysis (scenario A), the production of acetaldehyde is dominated by the degradation of 

alkanes (n-butane, ethane, and propane). When including formation of CH3CHO via pyruvic acid photolysis in scenario B 

(Fig. 6), the contribution of the alkanes drastically decreases, and pyruvic acid becomes the dominant source of acetaldehyde 

(79 %) in this environment. The fractional contribution remains high (53 %) in scenario C even though CH3CHO is formed 30 

only at low yield (5 %) in this case. The pyruvic acid mixing ratios observed during IBAIRN would result in mean simulated 

acetaldehyde mixing ratios of ~115 pptv (Fig. 6d), which is reasonable for this site as shown in the HUMPPA dataset (Sect. 

3.3). 

https://doi.org/10.5194/acp-2020-975
Preprint. Discussion started: 20 October 2020
c© Author(s) 2020. CC BY 4.0 License.



10 

 

The three main sources of the CH3O2 radical in air are the reactions CH4 + OH, CH3C(O)O2 + HO2 and CH3C(O)O2 + NO, all 

preceding via formation of the CH3 radical, in the last two cases a result of decomposition of the unstable intermediate CH3CO2. 

The CH3O2 radical is a source of both the most abundant aldehyde (HCHO) and methyl hydroperoxide (CH3OOH) in the 

troposphere, the former preferentially formed at high NOX levels, the latter under low NOX conditions. As shown in Fig. 7, 

pyruvic acid photolysis increases the fraction of CH3O2 formed from CH3C(O)O2 to 5 % (scenario B) and 18 % (scenario C), 5 

with methane oxidation still accounting for most of the total production rate. In scenario C, the summed production rates of 

HCHO and CH3OOH are increased by 42 % each (Table 3). 

3.3 Summer campaign (HUMPPA): Contribution of pyruvic acid to acetaldehyde and CH3C(O)O2 formation  

As pyruvic acid was not measured during HUMPPA, we use the calculated mean emission rate of pyruvic acid relative to MT 

during IBAIRN (derived from Eq. 2, see Table 1) as an input parameter for the HUMPPA simulation to estimate the pyruvic 10 

acid mixing ratios (in steady state) shown in Fig. 8.  

Compared with IBAIRN, where [pyr] / [MT] ~ 0.3 on average, for HUMPPA the mean concentration ratio is ~ 1.6, which is 

mainly a consequence of the higher temperatures and larger MXL heights during the summertime HUMPPA campaign 

(especially at night) which result in lower pyruvic acid deposition rates. In addition, it is also influenced by the higher OH and 

O3 levels in summer (HUMPPA) which contribute to MT losses. The highest pyruvic acid mixing ratios are modelled for the 15 

night-time (lowest hMXL) and in periods impacted by biomass burning from Russia, which is indicated by elevated CO and 

HCN levels (periods highlighted in light blue). Coincidentally, the biomass burning periods were accompanied by high 

temperatures and high MT levels also. When excluding the biomass burning periods from the analysis, simulated pyruvic acid 

mixing ratios occasionally reach values up to ~ 2 ppbv with a mean campaign value of ~ 0.5 ppbv. 

Similar to the autumn campaign IBAIRN we can now quantify the contribution of pyruvic acid photolysis to the formation of 20 

acetaldehyde, peroxy radicals and PAA. Therefore, we compare Scenarios A with B and C (as for the IBAIRN simulation in 

Sect. 3.2), in this case focussing on the CH3C(O)O2 radical and on acetaldehyde as both are precursors to CH3C(O)OOH, 

which was measured during HUMPPA.  

In the absence of pyruvic acid photolysis (Scenario A), the production of acetaldehyde is dominated by n-butane, ethane, and 

propane. However, these globally important CH3CHO precursors are not sufficient to explain the acetaldehyde concentrations 25 

that were observed (Fig. 8). Another potential source is the direct biogenic emission from vegetation (see e.g. Rissanen et al. 

(2020), making up ~15 % of the total CH3CHO source (Millet et al., 2010). However, on a global scale (and also in Finland) 

these emissions are a factor of ~5 smaller than the photochemical production term and have thus been neglected in the 

simulation. By enabling formation of CH3CHO via pyruvic acid photolysis in Scenario B (see Fig. 9), the contribution of the 

alkanes reduces to 6 % and pyruvic acid becomes the dominant source of acetaldehyde (94 % in scenario B, 76 % in scenario 30 

C) during HUMPPA. Removing periods impacted by biomass burning plumes does not significantly change the overall 

conclusions (pyruvic acid contribution decreases by ~ 2 %). When comparing the time series of measured acetaldehyde mixing 

ratios with the model output (Fig. 8), we note that scenario B more closely reproduces the observations than scenario A which 
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greatly underpredicts the observed CH3CHO for much of the campaign.  We conclude that pyruvic acid photolysis represents 

a potentially important contribution to acetaldehyde mixing ratios in the boreal forest and possibly also on a global scale (above 

forested regions). 

The major source of acetylperoxy radical in Scenario A is the decomposition of PAN (93 %), with a minor contribution from 

the oxidation of acetaldehyde (7 %) (see Fig. 10). In Scenario B, the direct impact of pyruvic acid photolysis on CH3C(O)O2 5 

is 3 %, whereas the indirect impact from the formation of acetaldehyde and its subsequent oxidation via CH3CHO + OH is 

negligible. In contrast, in Scenario C, the direct contribution from the photolysis of pyruvic acid is 19 %, making pyruvic acid 

an important contributor to acetylperoxy radical generation in this environment and underlining the importance of dicarbonyls, 

as suggested by Crowley et al. (2018). However, the pyruvic acid mixing ratios alone (without other dicarbonyls) cannot 

explain the observed large PAA mixing ratios during HUMPPA (Crowley et al., 2018), especially during the biomass burning 10 

episodes. 

4 Conclusions  

Using pyruvic acid cross sections and quantum yields ( = 0.2) according to the IUPAC recommendations (scenario B in which 

the dominant photolysis products are CH3CHO + CO2), we identified pyruvic acid as an important source of acetaldehyde 

(CH3CHO) in both autumn (IBAIRN) and summer (HUMPPA) with a contribution of 79 % respectively 94 % to the overall 15 

production rate. Pyruvic acid may thus have contributed to the source of elevated mixing ratios of acetaldehyde observed 

during HUMPPA which could not be explained by the degradation of alkanes. Our results might also help to explain the 

discrepancies between modelled and observed CH3CHO mixing ratios in remote, forested regions where emissions of pyruvic 

acid may be significant. In contrast, under scenario B, the effect on OH, HO2, CH3C(O)O2 and HCHO formation rates during 

both campaigns is minor (< 10%). 20 

This picture changes drastically under scenario C, whereby the quantum yield is a factor of ~ 4 larger and formation of HO2 

and CH3C(O)O2 is preferred over CH3CHO. In both campaigns pyruvic acid now increases the overall HO2 production by ~ 

20–35 % and the overall HCHO production by ~ 25–40 %. In scenario C, pyruvic acid photolysis is comparable to PAN 

decomposition as source of CH3C(O)O2 during IBAIRN, also shifting the onset of radical production to earlier in the morning. 

The presence of pyruvic acid can partly explain the elevated PAA mixing ratios observed in HUMPPA, though other 25 

oxygenates might play a role as well, especially during biomass burning events (Crowley et al., 2018). 

In general, our results are strongly dependent on the chosen quantum yields and deposition velocities. To minimise the 

uncertainty in our calculations, there is an urgent need for further experimental work on the photochemistry of pyruvic acid. 

In addition, measurements of the deposition velocity of pyruvic acid in different environments are required to better constrain 

its lifetime and thus the impact of photolysis. Further, more enclosure studies will be necessary to investigate the dependence 30 

of pyruvic acid emission rates on different plant types and environmental conditions.  
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Table 1: Overview of different model scenarios for pyruvic acid. 

Scenario  1  2 3   Dominant 

products 

Jpyr [10-5 s-1] 

(day / night) 

kdep [10-5 s-1]  

(day / night) 

ktotal [10-5 s-1] 

(day / night) 

Epyr / EMT 

(average) 

A 0 -- -- -- -- --   0 / 0 9 / 18 9 / 18 0.58 

B 0.20 0.6 0.35 0.05 1 CH3CHO   3 / 0 9 / 18 12 / 18 0.62 

C 0.84 0.95 0 0.05 0.05 HO2 + CH3CO3 12 / 0 9 / 18 21 / 18 0.74 

 = photolysis quantum yield, i and  are branching ratios forming the dominant products. ki are loss rates of pyruvic acid, Epyr / EMT is the 

emission rate of pyruvic acid relative to MT. 

 

 5 

 

Table 2: Emission rate of pyruvic acid (Epyr) relative to isoprene (Eiso) and MT (EMT), derived from different field and enclosure 

studies. 

Reference Location Plant species (Epyr / Eiso) (Epyr / EMT) 

This study Hyytiälä, Finland Boreal forest ~ 20 0.62 

Talbot et al. (1990) Manaus, Brazil Tropical forest 0.003 - 

Jardine et al. (2010b) Biosphere 2, Arizona, US Tropical biome 0.17 4 

Jardine et al. (2010b) Biosphere 2, Arizona, US Mango tree 0.05 1.7 

Jardine et al. (2010a) Biosphere 2, Arizona, US Creosotebush 0.05 0.07 

 

 10 

 

 

 
Table 3. Mean production rates of OH, HO2, CH3C(O)O2, CH3CHO and CH3O2 during IBAIRN and HUMPPA. 

 15 

 Production rate in IBAIRN 

[105 molecule cm-3 s-1] 

Production rate in HUMPPA 

[105 molecule cm-3 s-1] 

Scenario A B C A B C 

OH 13.1 13.3 14.8 43.9 44.4 47.6 

HO2 5.8 5.9 7.9 34.7 35.6 41.7 

CH3CO3 1.2 1.2 2.2 17.3 17.9 21.6 

CH3CHO - - - 0.1 1.1 0.3 

CH3O2 1.2 1.2 1.7 4.7 4.9 6.0 
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Figure 1: Radical and stable products from the photolysis of pyruvic acid (including branching ratios i and ) along with the wavelength 

resolved photolysis rates (Jpyr in units of 10-6 s-1 nm-1) for 13.09.2016 at solar noon. Jpyr was calculated using a photolysis quantum yield of 

 = 0.2 and the absorption cross sections at 298 K preferred by IUPAC (2020). 5 
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Figure 2: Diel variation of the (MXL height-corrected) emission rates of pyruvic acid (Epyr, scenario B) and monoterpenes (EMT) along 

with Jpyr (yellow shaded), T and hMXL for the IBAIRN campaign. 
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Figure 3: Modelled relative source strength (averaged throughout the diel cycle) and concentration of OH (along with the relative 5 
photolysis rate Jpyr in yellow) during IBAIRN using scenarios A, B and C (Table 1). J = photolysis; PA = peroxyacetyl radical; MT = sum 

of monoterpenes.  
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Figure 4: Modelled relative source strength (averaged throughout the diel cycle) and concentration of HO2 (along with the relative 5 
photolysis rate Jpyr in yellow) during IBAIRN using scenarios A, B and C. 
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Figure 5: Modelled relative source strength (averaged throughout the diel cycle) and concentration of CH3C(O)O2 (along with the relative 5 
photolysis rate Jpyr in yellow) during IBAIRN using scenarios A, B and C. 
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Figure 6: Modelled relative source strength (averaged throughout the diel cycle) and concentration of CH3CHO (along with the relative 5 
photolysis rate Jpyr in yellow) during IBAIRN using scenarios A, B and C. 
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Figure 7: Modelled relative source strength (averaged throughout the diel cycle) of CH3O2 and concentration of CH3OOH (along with the 5 
relative photolysis rate Jpyr in yellow) during IBAIRN using scenarios A, B and C. 
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Figure 8: Upper panel: mixing ratio of MT (measured) and pyruvic acid (modelled, scenario B) during HUMPPA along with the 

photolysis rate Jpyr in grey. Lower panel: measured and modelled (scenarios A, B and C) acetaldehyde mixing ratios. Periods impacted by 5 
biomass burning plumes are highlighted in light blue.  
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Figure 9: Modelled relative source strength (averaged throughout the diel cycle) and concentration of CH3CHO during HUMPPA using 5 
scenarios A, B and C. 
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Figure 10: Modelled relative source strength (averaged throughout the diel cycle) and concentration of CH3C(O)O2 (along with the 5 
relative photolysis rate Jpyr in yellow) during HUMPPA using scenarios A, B and C. 
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