

1 **Turbulence-permitting air pollution simulation for the** 2 **Stuttgart metropolitan area**

3 Thomas Schwitalla*¹, Hans-Stefan Bauer¹, Kirsten Warrach-Sagi¹, Thomas Bönisch², Volker
4 Wulfmeyer¹

5 ¹ Institute of Physics and Meteorology, University of Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany.

6 ² High-Performance Computing Center Stuttgart (HLRS), Nobelstrasse 19, 70569 Stuttgart, Germany

7
8 *Correspondence to:* Thomas Schwitalla (thomas.schwitalla@uni-hohenheim.de)

9
10 **Abstract.** Air pollution is one of the major challenges in urban areas. It can have a major impact on human health
11 and society and is currently a subject of several litigations at European courts. Information on the level of air
12 pollution is based on near surface measurements, which are often irregularly distributed along the main traffic
13 roads and provide almost no information about the residential areas and office districts in the cities. To further
14 enhance the process understanding and give scientific support to decision makers, we developed a prototype for
15 an air quality forecasting system (AQFS) within the EU demonstration project “Open Forecast”.

16 For AQFS, the Weather Research and Forecasting model together with its coupled chemistry component (WRF-
17 Chem) is applied for the Stuttgart metropolitan area in Germany. Three model domains from 1.25 km down to a
18 turbulence permitting resolution of 50 m were used and a single layer urban canopy model was active in all
19 domains. As demonstration case study the 21 January 2019 was selected which was a heavy polluted day with
20 observed PM₁₀ concentrations exceeding 50 µg m⁻³.

21 Our results show that the model is capable to reasonably simulate the diurnal cycle of surface fluxes and 2-m
22 temperatures as well as evolution of the stable and shallow boundary layer typically occurring in wintertime in
23 Stuttgart. The simulated fields of particulates with a diameter of less than 10 µm (PM₁₀) and Nitrogen dioxide
24 (NO₂) allow a clear statement about the most heavily polluted areas apart from the irregularly distributed
25 measurement sites. Together with information about the vertical distribution of PM₁₀ and NO₂ from the model,
26 AQFS will serve as a valuable tool for air quality forecast and has the potential of being applied to other cities
27 around the world.

28 **1. Introduction**

29 Currently more than 50 % of the global population live in cities whereas the United Nations (UN) expect a further
30 increase by about 10 % in 2030 (UN, 2018). The UN also expect that in 2030 34% of the world population will
31 reside in cities with more than 500 000 inhabitants.

32 Due to a strong increase of road traffic in major European cities (Thunis et al., 2017), pollution limits are often
33 violated in larger cities. E.g. for particulate matter with particle diameters less than 10 µm (PM₁₀), the critical value
34 is an annual mean concentration of 20 µg m⁻³ or a daily mean value of 50 µg m⁻³ (WHO, 2005). For Nitrogen
35 dioxide (NO₂) the critical values are 200 µg m⁻³ and 40 µg m⁻³ as daily and annual mean values, respectively.

36 The violation of these pollution limits can lead to health and environmental problems and is currently part of several
37 litigations e.g. at the German Federal Administrative Court dealing with possible driving bans for non low-
38 emission vehicles. The basis for these litigations are mostly few local, unevenly distributed observations which .
39 In combination with special meteorological conditions like winter time thermal inversion layers it can be
40 misleading to conclude about the overall air quality in the city only from single observations. According to e.g.
41 the German Federal Immission Control Ordinance¹ it is sufficient that traffic related measurements are
42 representative for a section of 100 m, but this is not representative for the commercial and office districts in the
43 cities that are suffering from traffic control in case of fine dust alerts and residential areas. Namely in residential
44 areas health protection action plans require representative air quality measures.

45 Therefore, it becomes important to apply a more scientifically valid approach by applying coupled atmospheric
46 and chemistry models to predict air quality. Regional and global atmospheric models like the Weather Research
47 and Forecasting (WRF) model (Skamarock et al., 2019), the Consortium for Small Scale modeling (COSMO;
48 Baldauf et al., 2011), the Icosahedric Nonhydrostatic model (ICON; Zängl et al., 2015), or the Regional Climate
49 Model system (RegCM4; Giorgi et al., 2012) are often used to force offline chemistry transport models like
50 CHIMERE (Mailler et al., 2017), LOTOS-EUROS (Manders et al., 2017), EUReopean Air Pollution Dispersion
51 (EURAD; Memmesheimer et al., 2004), and Model for OZone And Related chemical Tracers (MOZART)
52 (Brasseur et al., 1998; Horowitz et al., 2003).

53 Several studies showed that combining an atmospheric model with an online coupled chemistry component is a
54 suitable tool for air quality and pollution modeling in urban areas at the convection permitting (CP) resolution
55 (Fallmann et al., 2014; Kuik et al., 2016; Zhong et al., 2016; Kuik et al., 2018; Huszar et al., 2020) .

56 Compared to chemical transport models, coupled models like WRF-Chem (Grell et al., 2005), COSMO-ART
57 (Vogel et al., 2009), ICON-ART (Rieger et al., 2015), and the Integrated Forecasting System (IFS) MOZART
58 (Flemming et al., 2015) allow for a direct interaction of aerosols with radiation leading to a better representation
59 of the energy balance closure at the surface as it would be the case when applying an offline chemistry model.

60 As usually the terrain and land cover over urban areas show fine scale structures which are not resolved even by a
61 CP resolution, there is a need for turbulence permitting (TP) simulations with horizontal grid increments of a few
62 hundred meters or even less. Important features are, e.g., urban heat island effects (Fallmann et al., 2014; Fallmann
63 et al., 2016; García-Díez et al., 2016; Li et al., 2019) and local wind systems like mountain and valley winds due
64 to differential heating (Corsmeier et al., 2011; e.g. Jin et al., 2016). Also, micro- and mesoscale wind systems can
65 develop due to urban structures and the heterogeneity of the land surface. It is well known that TP simulations are
66 a promising tool to further enhance the understanding of processes in the atmospheric boundary layer (Heinze et
67 al., 2017b; Panosetti et al., 2016; Heinze et al., 2017a; Bauer et al., 2020) in urban areas (Nakayama et al., 2012;
68 Maronga et al., 2019; Maronga et al., 2020).

69 In order to further enhance the quality of the simulations, building and urban canopy models (UCM) are developed
70 (Martilli et al., 2002; Kusaka and Kimura, 2004; Salamanca and Martilli, 2010; Maronga et al., 2019; Scherer et
71 al., 2019; Teixeira et al., 2019). The main purpose of UCMs is to provide a better description of the lower

¹https://www.gesetze-im-internet.de/bimschv_39/anlage_3.html

72 boundaries over urban areas such as building, roof and road geometries and their interactions with atmospheric
73 water vapor, wind, and radiation.

74 With the EU-funded project Open Forecast (<https://open-forecast.eu/en/>) it was intended to develop a prototype
75 for an air quality forecasting system (AQFS) for the Stuttgart metropolitan area in southwest Germany. Open
76 Forecast is a demonstration project to show the potential of open data combined with supercomputer resources to
77 create new data products for European citizens and public authorities. The long-term goal is to provide end users
78 and political decision-makers a useful tool, particularly considering further urbanization, heat island effects as well
79 as potential driving restrictions due to recent EU decisions on emission limits.

80 For our AQFS we use the WRF-Chem NWP model (Grell et al., 2005; Skamarock et al., 2019) as the WRF model
81 is extensively evaluated over Europe at different time scales and horizontal resolutions (San José et al., 2013;
82 Warrach-Sagi et al., 2013; Milovac et al., 2016; Lian et al., 2018; Molnár et al., 2019; Bauer et al., 2020; Coppola
83 et al., 2020; Schwitalla et al., 2020). It can easily be set up in a nested configuration over all regions of the Earth.
84 Compared to PALM-4U model, the nested model domains are driven by the full atmospheric and chemical
85 information from the parent domain along its lateral boundaries. Also, it contains well-characterized combinations
86 of parameterizations of turbulence and cloud microphysics in the outer domain that are consistent with the inner
87 TP domains where the high-quality cloud parameterization remains. No switch between different model systems
88 is required, which is expected to provide a great advantage with respect to the skill of air pollution and
89 meteorological forecasts.

90 To enhance the forecast skill, suitable variational and ensemble-based data assimilation systems are already in
91 place to further improve the meteorological initial conditions (Barker et al., 2012; Zhang et al., 2014; Kawabata et
92 al., 2018; Thundathil et al., 2020) and the chemical initial conditions (Chen et al., 2019; Sun et al., 2020) but this
93 is beyond the scope of our study.

94 The Parallelized Large-Eddy Simulation Model (PALM) model (Maronga et al., 2015) is another widely used TP
95 simulation model over Europe. PALM did not include the full interaction between land-surface, radiation, cloud
96 microphysics and chemistry during the performance of our study. The very recent version 6.0 of PALM-4U
97 (PALM for urban applications) (Maronga et al., 2020) is expected to contain a fully coupled chemistry module
98 (Khan et al., 2020).

99 Fallmann et al. (2016) and Kuik et al. (2016) performed air quality simulations with WRF-Chem over the cities of
100 Berlin and Stuttgart on a CP resolution down to 1km and less than 40 model levels. They used the TNO-MACC
101 emission inventory (Kuenen et al., 2014) which is available as an annual totals on a 7 km x 7 km resolution. As
102 the topography of Stuttgart is very complex, the AQFS applies the WRF-Chem model on a turbulence permitting
103 horizontal resolution using 100 model levels to account for the shallow boundary layer occurring during
104 wintertime. In addition, we applied a local emission data set from the Baden-Württemberg State Institute for the
105 Environment, Survey and Nature Conservation available as annual mean on a horizontal resolution of 500 m x 500
106 m to resolve fine-scale emission structures.

107 Our study focuses on the methodology how to set up a AQFS prototype by using WRF-Chem and its application
108 to a typical wintertime situation in the Stuttgart metropolitan area. The manuscript is set up as follows: section 2
109 describes the design of our AQFS model system on the turbulence permitting resolution of 50 m followed by a

110 description of the selected case study. Section 4 shows the results including a discussion, sect. 5 summarizes our
111 work and provides an outlook on potential future enhancements of the AQFS prototype.

112 **2. AQFS design**

113 **2.1. WRF model set-up**

114 For our AQFS, we selected the Advanced Research WRF-Chem model in version 4.0.3 (Grell et al., 2005;
115 Skamarock et al., 2019). To reach the targeted resolution of 50 m, three model domains have been applied with
116 horizontal resolutions of 1250 m, 250 m, and 50 m and encompasses 800*800 grid cells in the outer domain and
117 601*601 grid cells in the two inner TP domains. The reasons to start with a resolution of 1250 m in the outermost
118 domain is 1) to avoid the application of a convection parametrization which can deteriorate the model results (Prein
119 et al., 2015; Coppola et al., 2020), 2) that the model starts to partially resolve turbulent structures whilst a PBL
120 parametrization is still necessary (Honnert and Masson, 2014; Honnert et al., 2020), and 3) to reach the target
121 resolution with a nesting ratio of 5:1. The areas of model domain 1 and 3 are shown in Fig. 1.

122 As seen from Fig. 1b, the Stuttgart metropolitan area is characterized by an elevation variation of more than 300
123 m. The lowest elevation is approx. 220 m in the basin while the highest elevation reaches up to 570 m. As the main
124 traffic roads are in the basin, especially during wintertime this often leads to a worsening of the air quality as the
125 surrounding prevents an air mass exchange due to the stationary temperature inversion.

126 For the WRF model system land cover and soil texture fields are not available at resolutions higher than 500m.
127 Therefore we reclassified land cover data from the Copernicus CLC 2012 data set (European Union, 2012),
128 available on a resolution of 100 m, from the original 44 categories to the categories applied in the WRF model for
129 the simulations of the outer 2 domains. For the innermost model domain, we incorporated the most recent high-
130 resolution land-cover data set from the Baden-Württemberg State Institute for the Environment (LUBW), which
131 is derived from Landsat (Butcher et al., 2019) in 2010 and is available at 30 m resolution (<https://udo.lubw.baden-wuerttemberg.de/public/>) This data set was also reclassified to the corresponding land cover categories used in
133 WRF and is shown in Fig. 2.

134 The resolution of the provided default Food and Agriculture Organization of the United Nations (FAO) soil texture
135 data is only 10 km, therefore we used soil texture data from the International Soil Reference and Information
136 Centre (ISRIC) SoilGrids project (Hengl et al., 2014; Hengl et al., 2015). These data are available on a resolution
137 of 250 m. Terrain information was provided by the National Center for Atmospheric Research (NCAR) derived
138 from the Global multi-resolution terrain elevation data 2010 (GMTED2010) data set (Danielson and Gesch, 2011)
139 for domain 1. As the horizontal resolution of the GMTED2010 data set is 1 km, the 3" gap-filled Shuttle Radar
140 Topography Mission (SRTM) data set (Farr et al., 2007) is used for domain 2. As this resolution is still too coarse
141 for our targeted resolution of 50 m, the Digital Elevation model Europe (EU-DEM; European Union, 2017),
142 available at a resolution of 25 m, is used for the innermost domain.

143 In our set-up, we use 100 vertical levels for all domains using the traditional terrain following coordinate system
144 in WRF; 20 of the levels are distributed in the lowest 1100 m above ground level (AGL). All domains apply the
145 Noah-MP land surface model (Niu et al., 2011; Yang et al., 2011), the revised MM5 surface layer scheme based
146 on Monin-Obukhov similarity theory (Jiménez et al., 2012), the Thompson 2-moment cloud microphysics scheme
147 (Thompson et al., 2008) and the Rapid Radiative Transfer Model for GCMs (RRTMG; Iacono et al., 2008) for

148 parametrizing longwave and shortwave radiation. Due to the coarser resolution of the outermost domain, we
149 applied the Yonsei University (YSU; Hong et al., 2006) planetary boundary layer (PBL) parametrization in D01
150 only. As suggested by the WRF user guide, we applied the sub-grid turbulent stress option for momentum
151 (Kosovic, 1997) in domains two and three. The complete namelist settings are provided in the supplement.

152 The more sophisticated Building Effect Parameterization (BEP; Martilli et al., 2002) is not applied as this scheme
153 does not work with our selection of parametrizations. Instead, the single layer urban canopy model (UCM) (Kusaka
154 and Kimura, 2004) is selected to improve the representation of the urban canopy layer and the surface fluxes. The
155 parameters needed by the UCM are read in from the lookup table URBPARAM.TBL which was adjusted for the
156 Stuttgart area following Fallmann (2014).

157 Atmospheric chemistry is parametrized by the Regional Acid Deposition Model 2nd generation (RADM2) model
158 (Stockwell et al., 1990). RADM2 features more than 60 chemical species and more than 135 chemical reactions
159 including photolysis. Aerosols are represented by the Modal Aerosol Dynamics Model for Europe (MADE) and
160 Secondary Organic Aerosol Model (SORGAM) scheme (Ackermann et al., 1998; Schell et al., 2001) considering
161 size distributions, nucleation, coagulation, and condensational growth. The combination of RADM2_MADE-
162 SORGAM is a computationally efficient approach and is widely used for simulations over Europe (Forkel et al.,
163 2015; Mar et al., 2016). To further enhance vertical mixing of CO to higher altitudes during nighttime over urban
164 grid cells, the if-statements in the dry deposition driver of WRF-Chem at lines 690 and 707 have been deleted
165 according as shown in the supplement of Kuik et al. (2018).

166 Compared to a previous study from (Fallmann et al., 2016), who performed simulations over the Stuttgart
167 metropolitan area using WRF-Chem on a CP resolution of 3 km, or the study of (Kuik et al., 2016) who performed
168 a three month simulation at different resolutions over Berlin, simulations on the TP resolution provide a much
169 more realistic representation of the land-cover structures (see Fig. 2 in this paper and e.g. Fig. 2b in Fallmann et
170 al. (2016)). As the climate in the Stuttgart metropolitan area is strongly influenced by the topography, we are
171 convinced that our special combination of a TP resolution and high-resolution emission data (see section 2.3) will
172 lead to a better understanding and prediction of the air pollution situation in this area.

173 Currently, air pollution modeling with WRF-Chem is a computationally expensive task. Depending on the number
174 of output variables and frequency (5 min in our study), a 24 h simulation currently takes around 36 h wall clock
175 time. For future experiments it is worth to try the I/O quilting option in combination with PNetCDF which should
176 considerably reduce the time spent on I/O.

177 While the WRF model itself is ready for hybrid parallelism (MPI + OpenMP), the WRF-Chem model can only be
178 used with MPI. If WRF-Chem could be enhanced for additional OpenMP capabilities, this would lead to an
179 increase in computation speed almost linear with the number of OpenMP threads.

180 Due to the complexity of the chemistry model in combination with the very high horizontal resolution and the
181 calm meteorological conditions, the adaptive model time step option was chosen instead of a fixed time step.
182 Model output is available in 5 min intervals for the innermost model domain.

183 Our single day case study on the turbulence permitting (TP) scale is designed to serve as a test bed to set up an air
184 quality forecasting system prototype for the Stuttgart metropolitan area. For process studies, the model chain itself
185 can be applied to other areas over the globe as long as 1) detailed land cover and soil texture data are available, 2)

186 high-resolution emission data not only from traffic are available. The new model system can be even applied in a
187 forecast and warning mode, if near real time emission data exist. As the computational demands of applying WRF-
188 Chem on the TP scale are very high, access to an HPC system is a prerequisite.

189 **2.2. Model initialization**

190 The meteorological initial and boundary conditions were provided by the operational ECMWF integrated
191 forecasting system (IFS) analysis on model levels. The IFS is a global model with 9 km horizontal resolution and
192 applies a sophisticated four-dimensional variational (4DVAR) data assimilation system (Bonavita et al., 2016).
193 The data have been retrieved from the ECMWF Meteorological Archival and Retrieval System (MARS) and were
194 interpolated to a resolution of 0.05°.

195 The initialization and provision of the boundary conditions of the chemistry of the model is done with data from
196 the Whole Atmosphere Community Climate Model (WACCM; Marsh et al., 2013) using the Model for Ozone and
197 Related Chemical Tracers (MOZART) conversion tool MOZBC (Pfister et al., 2011). As the resolution of
198 WACCM is very coarse, the input data was enhanced by the ECMWF Copernicus Atmosphere Monitoring Service
199 (CAMS) reanalysis data set on 60 model levels and 40 km horizontal resolution (Inness et al., 2019).

200 **2.3. Emission data**

201 The emission data set used in this study is a combination of three products. Global input data sets containing
202 coarse resolution emissions from different sources are obtained from the BRAMS numerical modeling system
203 (Freitas et al., 2017). The PREP-CHEM-SRC tool (Freitas et al., 2011) is then applied as pre-processor to convert
204 these emissions to the appropriate WRF units and interpolate the data onto the WRF model grid.

205 As global emission data sets have a very coarse resolution in space and time, higher resolution emission data for
206 Europe from the Copernicus Atmosphere Monitoring Service (CAMS; Copernicus) CAMS-REG-AP product
207 became available (Granier et al., 2019). Its resolution is approx. 7x7 km and it is based on total annual emissions
208 from 2016. This product provides emissions of PM₁₀, PM_{2.5}, SO₂, CO, NO_x, and CH₄ and contains sources from
209 different sectors, separated into ten different categories following the Gridded Nomenclature For Reporting
210 (GNFR; Granier et al., 2019).

211 The third emission data set (BW-EMISS) deployed in our study was obtained from the Baden-Württemberg State
212 Institute for the Environment (LUBW). This data set contains annual mean emissions from different sectors
213 following the GNFR classification and is currently available only until 2014 and has a horizontal resolution of 500
214 m. Unfortunately, more recent quality-controlled data sets were not available when our study was performed. It is
215 expected that annual emissions for 2018 will become available by mid of 2021.

216 As CAMS-REG-AP and BW-EMISS only contain annual sums or annual mean values, a temporal decomposition
217 was applied for both data sets following Denier van der Gon et al. (2011). Depending on the GNFR code, the data
218 are first projected onto the corresponding month, followed by the corresponding day of the week and the hour of
219 the day. A similar approach was performed e.g. in Resler et al. (2020, under review) for the city of Prague. After
220 finishing the decomposition, the data are converted to the corresponding units and interpolated onto the WRF
221 model grid using the Earth System Modeling Framework (ESMF; Valcke et al., 2012) interpolation utilities.

222 Figure 3 shows an example of the NO₂ emissions derived from the CAMS-REG-AP product (left) and the emission
223 data derived from the LUBW data set (right) on January 21, 2019 at 07 UTC.

224 Due to its much higher horizontal resolution, the BW-EMISS data set (Fig. 3b) shows much more detailed
225 structures for the NO₂ emissions which are mainly caused by road traffic. The average emissions for this particular
226 time step are 2 mol km⁻² h⁻¹ for the CAMS-REG-AP data set and 7 mol km⁻² h⁻¹ for the BW-EMISS data set.

227 In addition, the following adjustments have been performed: 1) NO_x emissions from forest grid cells have been
228 reduced by 90 %, 2) Road traffic NO_x emissions were transformed into 90 % NO and 10 % NO₂ emissions
229 following Kuik et al. (2018) 3) All emissions from Stuttgart airport were reduced by 90 % during the nighttime
230 flight ban between 00 UTC and 04 UTC as well as after 21 UTC.

231 The WRF-Chem model only ingests one emission data set per species, hence emissions from the different GNFR
232 categories have been accumulated to a single emission data set before performing the simulation. Figure 4
233 summarizes all necessary steps and the complete data and workflow of the AQFS prototype.

234 **2.4. Observations**

235 We used data from three meteorological stations (Stuttgart-Schnarrenberg (48.8281°N 9.2°E, elevation 314 m),
236 Stuttgart Airport (48.6883°N 9.2235°E, elevation 375 m), and Institute of Physics and Meteorology (IPM) at the
237 University of Hohenheim (48.716°N 9.213°E, elevation 407 m) to validate the simulated 2m temperatures; data
238 are available every 10 minutes. The locations are indicated by the black dots in Fig. 1b. In addition, the radiosonde
239 data from Stuttgart-Schnarrenberg were used.

240 **3. Case study description**

241 For our study, we selected 21 January 2019. This day was characterized as “fine dust alarm” situation (Stuttgart
242 Municipality and German Meteorological Service (DWD), 2019) which is defined by a combination of the
243 following criteria:

- 244 1. Expected daily maximum PM₁₀ concentration at Stuttgart Neckartor (NT in Fig. 1b) is higher than 30 µg
245 m⁻³
- 246 2. No rain on the following day
- 247 3. 10-m wind speed less than 3 m s⁻¹ from south to northwest directions (180-330 °)
- 248 4. Nocturnal atmospheric inversion
- 249 5. Mixing layer depth less than 500 m during the day
- 250 6. Daily average 10-m wind speed less than 3 m s⁻¹ from all directions

251 A sufficient criterion is a higher PM₁₀ concentration following (1). If (1) is not fulfilled, then (2) and (3) together
252 with either (4) and/or (5) has to be fulfilled. If only (4) or (5) is fulfilled, then (6) has to be considered. For our
253 case study, the criteria 1-5 were fulfilled.

254 The thick lines in Fig. 5 shows the observed PM₁₀ and NO₂ concentrations at several stations in our model domain.
255 From Fig. 5a the high NO₂ concentrations at Neckartor and Hohenheimer Strasse occurring after sunrise can be
256 clearly identified. While these measurements are taken next to main roads, the other stations show considerably
257 lower NO₂ concentrations throughout the day. The PM₁₀ concentrations (Fig. 5b) show extremely high values at

258 Neckartor exceeding $100 \mu\text{g m}^{-3}$ around noon time and the evening rush hour which clearly meets the main criteria
259 of the “fine dust alarm situation”. The other stations, which are not directly taken near main roads with heavy
260 traffic show considerably lower PM_{10} concentrations around $40 \mu\text{g m}^{-3}$.

261 This day was a typical winter weather situation. Central Europe was located at the east flank of a blocking high
262 pressure system located over the East Atlantic together with moderate to low horizontal geopotential gradients and
263 resulting weak winds at 500 hPa in southwestern Germany (Fig. 6a).

264 Near surface temperatures are below freezing level, between 1000 and 850 hPa very light easterly winds
265 characterize the flow, and a dry layer is present around 925 hPa (Fig. 6b). Above 850 hPa, the wind direction
266 rapidly changes to westerly directions, but the wind speeds remain below 5 m s^{-1} (see Fig. 7a).

267 The inversion between the two air masses inhibits vertical mixing leading to higher concentrations of aerosols in
268 the lowest few hundred meters above ground (AGL) and preventing air mass exchange aloft. This inversion is
269 further enhanced by the special orography of Stuttgart city (see later Fig. 15).

270 4. Results and Discussion

271 4.1. Meteorological quantities

272 Figure 7a shows a Skew-T diagram of the model initial conditions (black line) at Stuttgart-Schnarrenberg valid at
273 00 UTC 21 January 2019 in comparison with the observations (red line).

274 The initial conditions agree well with the sounding showing a weak temperature inversion around 900 hPa with
275 high relative humidity values up to 650 hPa. The observed and simulated lifting condensation level is 940 hPa and
276 the integrated water vapor (PWAT) is 8 mm. Wind speed and direction agree with the observations showing a
277 wind shear above 850 hPa associated with low wind speeds of less than 5 m s^{-1} .

278 To further evaluate the stratification conditions during the day, Figure 7b shows the observed and simulated
279 temperature, dew point, and wind profiles at 11 UTC. The vertical structure of the observation and the simulation
280 has an almost perfect agreement. The temperature inversion layer at 910 hPa is well captured although the
281 simulated temperatures below the inversion are too high by about 1.5 K. The humidity profile (expressed as
282 dewpoint profile) is also very well captured with the largest moisture content below 870 hPa. Wind speed and
283 direction above 850 hPa agree well with the observation throughout the atmosphere. In regard of the vertical model
284 resolution, the wind situation in the lowest 1000 m AGL is also reasonably represented.

285 Figure 8 exemplarily shows the simulated 2-m temperature together with 10-m wind velocities at 12 UTC (noon
286 time) to display the complexity of the Stuttgart metropolitan area.

287 The 2-m temperatures show a daytime warming of downtown Stuttgart and the Neckar Valley while still
288 temperature slightly below 0°C are present at higher elevations (blue colors in Fig. 8). The wind situation is very
289 complex due to weak wind speeds in combination with a shallow boundary layer (see later Fig. 16) but the wind
290 flow along the upper Neckar river (south of 48.75°) is strongly pronounced. After sunset, wind speed starts to
291 decrease and the channeling effect along the Neckar weakens (not shown).

292 Figure 9 shows an evaluation of the diurnal cycle of 2-m temperatures at the three measurement sites
293 Schnarrenberg, IPM and airport. Sunrise is at 07 UTC and sunset at 16 UTC and the model data are averaged over

294 5 grid cells around the measurement site to take into account that even a simulation with 50 m resolution cannot
295 fully capture the local conditions at the measurement site. The northern station Schnarrenberg shows a lower
296 temperature throughout the day than the other two stations, which are situated 3 km apart at a similar elevation.
297 The temperature is about 1 K colder during the day and 0.5 K colder during the night.

298 At Schnarrenberg, the observed diurnal cycle is reasonably well simulated with WRF. Between 00 and 15 UTC, a
299 warm temperature bias of 1 K is present in the simulation, which turns into a small negative bias after sunset. At
300 IPM, the simulation shows a cold bias until 04 UTC turning into a warm bias as the strong temperature drop is not
301 simulated until 06:30 UTC. After 09 UTC until sunset the simulated temperature agrees well with the observations
302 while later a cold bias of around 1 K is present.

303 For the airport station, the model stays too warm with a positive bias of almost 2 K between 05 and 09 UTC.
304 During the further course of the day, the bias reduces to 1 K at noon while after sunset it turns into a negative bias
305 of 1 K.

306 A possible reason for the larger differences at the airport and IPM before (after) sun rise (sun set) is the observed
307 occurrence of low stratus or fog. At the beginning of the simulation, cloud coverage was reported by 5—7 octas
308 (broken clouds) over Schnarrenberg and the airport at approx. 500 m AGL (not shown) while after 04 UTC the
309 low level clouds started to diminish at Schnarrenberg first leading to a strong cooling until the early morning which
310 is seen as a temperature decrease in the observations shown in Fig. 9. The temperature drop at Schnarrenberg and
311 IPM is also simulated but with a delay of approx. 2 h. A reason for this delayed temperature drop could be a
312 simulated thin cloud layer around 1000 m AGL which is present in the lower left and partly the lower right quadrant
313 of the model domain. This cloud layer slowly moves in a southeasterly direction and starts to dissolve around 06
314 UTC.

315 During the evening transition and the following night, the low stratus is developing again at the measurement sites
316 with a ceiling of 500 m AGL but is not simulated and thus contributes to a stronger cooling in the model. Another
317 contributing factor to the delayed cloud dissipation could be the turbulence spin-up time (Kealy et al., 2019), but
318 this is beyond the scope of this study.

319 Although no measurements of sensible heat and ground heat fluxes are available, diurnal cycles of the fluxes at
320 the locations IPM, Schnarrenberg, airport, and Schlossplatz were investigated. Figure 10 shows the simulated
321 surface sensible heat and ground heat flux at the four sites.

322 The sensible heat flux (Fig. 10a) shows a typical diurnal cycle with fluxes around zero before (after) sunrise
323 (sunset). During the day, the model simulates typical wintertime sensible heat fluxes between 40 and 100 W/m²
324 (e.g. Zieliński et al., 2018), which nicely shows a dependency on the different underlying land cover types. Lower
325 sensible heat fluxes occur over the sparsely vegetated surface at the airport as compared to the cropland station
326 IPM while the urban locations Schnarrenberg and Schlossplatz shows interjacent values. As the algorithm to
327 diagnose the 2-m temperature in NOAHMP is rather complex, no clear correlation between SH and the 2-m
328 temperature shown in Fig. 9 can be made. The latent heat fluxes (not shown) are almost zero at Schnarrenberg and
329 less than 10 W m⁻² at the other two locations due to cold and dry winter conditions

330 The simulated ground heat flux (Fig. 10b) shows an interesting behavior. Until sunrise, the simulated GRDFLX at
331 the airport and IPM shows fluctuations around -50 W m⁻² indicating some low levels clouds in accordance with

332 the too high simulated 2-m temperatures shown in Fig. 9. During the further course of the day, IPM and airport
333 show a clear diurnal cycle with maximum values between 100 and 170 W m⁻² reflected in the highest surface
334 temperatures during the day (not shown).

335 At Schnarrenberg, most of the time the ground heat flux is less than zero indicating a cooling of the soil, while
336 between 12 UTC and 16 UTC small positive values are simulated. As Schnarrenberg is categorized as low density
337 residential (category 31) with an urban fraction of 0.5 and the UCM is applied here, energy is mainly stored in the
338 urban canopy layer instead of being transferred into the soil. At Schlossplatz (high-density residential) the ground
339 heat flux shows a similar shape but with a larger amplitude as compared to Schnarrenberg.

340 As this day was characterized by a shallow PBL and a temperature inversion, it is worth to investigate the PBL
341 evolution during the day. Figures 11a, bshow time-height cross sections of potential temperature at IPM (top) and
342 Schnarrenberg (bottom).

343 Both locations are characterized by a very stable shallow boundary layer until 09 UTC with a depth of less than
344 200 m. Between 03 and 09 UTC the temperatures at Schnarrenberg are up to 1.5 K colder near the surface (Fig. 9)
345 resulting in a stronger potential temperature gradient up to 400 m AGL compared to the IPM location. During the
346 day, the boundary layer height increases to 400 m above ground as indicated by the constant potential temperature
347 (e.g. Bauer et al., 2020) which is a typical value for European winter conditions (Seidel et al., 2012; Wang et al.,
348 2020). The PBL heights are also visible by the potential temperature gradients ($\Delta\theta$) shown in Figs. 11c, d. During
349 the morning hours, a very shallow boundary layer was simulated at Schnarrenberg (blue colors in Fig. 11c) while
350 at IPM some fluctuations are present. During daytime, $\Delta\theta$ nicely shows the PBL height evolution up to 400 m
351 AGL, while after sunset the PBL collapses to a very stable layer again (dark blue colors in Figs. 11c, d) with
352 heights between 50—100 m AGL. Calculating the gradient Richardson number (Ri; Chan, 2008) (not shown) and
353 assuming a threshold of 0.25 for a turbulent PBL (Seidel et al., 2012; Lee and Wekker, 2016) leads to similar
354 results After sunset around 15:30 UTC the boundary layer collapses to a night-time stable boundary layer and a
355 temperature inversion occurred again.

356 **4.2. Air quality**

357 The most relevant air pollutants for air quality considerations in cities are NO₂ and PM₁₀. Sources for these are
358 mainly truck supply, transit, and commuter traffic through the city as well as advection from motorways south,
359 west, and northwest of Stuttgart.

360 As the incorporated emissions are from 2014 and are based on annual values, it cannot be expected that the model
361 exactly matches the observed concentrations. For instance, the actual traffic, the sequence of traffic lights and
362 traffic congestions of this particular day cannot be realistically represented. In addition, all diagnosed or prognostic
363 chemical quantities are only available on model levels (with the lowest model half level being at ~15 m above
364 ground) but according to studies of Glaser et al. (2003) and Samad et al. (2020) the concentrations of PM₁₀ and
365 NO₂ are often constant up to 150—200 m AGL during daytime.

366 We start with the discussion of the simulated horizontal distributions followed by vertical cross sections of NO₂
367 and PM₁₀.

368 **4.2.1 Horizontal distribution**

369 Figure 12 shows the horizontal distribution of the NO_2 concentration at the lowest model half level (~ 15 m AGL)
370 at the four timesteps 07:30 UTC, 12 UTC, 18 UTC and 23 UTC 21 January 2019.

371 At 7:30 UTC the morning traffic rush hour is visible in the NO_2 concentrations in Fig. 12a. High NO_2
372 concentrations of more than $80 \mu\text{g m}^{-3}$ are simulated along the motorway A81 in the northwest of the domain, over
373 the airport and over downtown Stuttgart. In the Neckar Valley the concentrations exceed $120 \mu\text{g m}^{-3}$. At noon time
374 (Fig. 12b), when turbulence is fully evolved (Fig. 11), the simulated NO_2 concentrations are less than $30 \mu\text{g m}^{-3}$
375 on average apparently due to vertical mixing of NO_2 (see next section). In the evening (Fig. 12c) the simulated
376 NO_2 concentrations increase again showing values of more than $100 \mu\text{g m}^{-3}$ over the airport and more than $150 \mu\text{g}$
377 m^{-3} in downtown Stuttgart and the Neckar Valley due to road and air traffic. The high morning concentrations
378 along the northwestern motorway are not reached since the wind speed increases and the near surface winds turn
379 towards a westerly direction. According to the emission data set converted by the temporal factors, the evening
380 traffic spreads over a longer time. During the night (Fig. 12d), NO_2 accumulates in the Stuttgart basin as well as
381 the Neckar Valley due to the very low nocturnal boundary layer height of less than 200 m capped by an atmospheric
382 inversion (Fig. 11).

383 Compared to the observed NO_2 concentrations (Fig. 5a), the simulated concentrations during the peak traffic times
384 are too high at Arnulf-Klett Platz, Neckartor and Hohenheimer Strasse. Possible reasons are that either the traffic
385 is reduced and/or that the vehicle emission classification have been improved since 2014. Another contributing
386 factor could be that the vertical mixing near the surface is too weak during sunrise and sunset while it appears
387 slightly too strong during daytime as indicated by the very low simulated NO_2 concentrations.

388 Apart from NO_2 , the concentration of PM_{10} is an important parameter for air quality considerations and is the
389 decisive factor for proclaiming a “fine dust alarm” situation in Stuttgart (Stuttgart Municipality and German
390 Meteorological Service (DWD), 2019).

391 Figure 13 shows the horizontal distribution of PM_{10} for the same time steps as shown in Fig 12.

392 During the morning traffic (Fig. 13a), PM_{10} accumulates in the Stuttgart basin as this is an area with heavy traffic
393 during the morning and an atmospheric inversion is present (Fig. 7). Interestingly, the high NO_2 concentrations
394 along the motorway (Fig. 12a) do not lead to very high PM_{10} concentrations potentially due to chemical transitions
395 caused by low temperatures.

396 During daytime when turbulence is fully evolved, the concentration of PM_{10} decreases to less than $20 \mu\text{g m}^{-3}$ due
397 to vertical mixing and horizontal transport (see next section). After sunset (Fig. 13c) PM_{10} starts to accumulate
398 again in the Stuttgart basin showing concentrations between $35\text{--}40 \mu\text{g m}^{-3}$. During the night (Fig. 13d) PM_{10}
399 accumulates over a large part of the model domain as the nocturnal boundary layer is very shallow, an inversion
400 layer is present 200 m AGL and the wind direction changes from north to west. In the configuration we use in our
401 study, PM_{10} is a diagnostic variable which is a sum of the $\text{PM}_{2.5}$ concentration (which is around $26 \mu\text{g m}^{-3}$ at 23
402 UTC) and the other prognostic aerosol species. As the night is very cold with temperatures far below freezing and
403 the humidity is very high, the high concentrations could imply a very (too) strong deposition or be the result of
404 dense fog formation due to weak near-surface winds.

405 4.2.2 Vertical distribution of NO_2 and PM_{10}

406 In addition to the horizontal distribution of near surface NO_2 and PM_{10} , TP simulations with a fine vertical
407 resolution also enable qualitative insights into the vertical distribution of pollutants. Figure 14 shows West-East

408 cross sections at Neckartor (Fig. 1b) during the morning rush hour and at noon time. Neckartor is one of the
409 heaviest traffic locations in the Stuttgart city area.

410 The NO_2 concentration during the morning rush hour shows an accumulation along the motorway (red arrow in
411 Fig. 14a) and in the region around Neckartor (white arrow in Fig. 14a) with concentrations exceeding $100 \mu\text{g m}^{-3}$
412 as the atmospheric inversion prevents exchange with the layers above (Fig. 7). The vertical extent of concentrations
413 higher than $30 \mu\text{g m}^{-3}$ is about 200 m AGL with a strong reduction above.

414 During noon time (Fig. 14b), the simulated NO_2 concentration is much lower (less than $30 \mu\text{g m}^{-3}$) as turbulence
415 leads to a stronger mixing throughout the boundary layer up to 400 m AGL which is in accordance with the
416 simulated potential temperature timeseries shown in Fig. 11.

417 Figure 15a displays the simulated PM_{10} concentrations during the morning rush hour. Similar like for NO_2 , higher
418 concentrations of more than $25 \mu\text{g m}^{-3}$ is simulated along the motorway and in the Stuttgart basin. During the day,
419 PM_{10} is vertically mixed showing a clear gradient around 800 m above sea level (ASL) (Fig. 15b) while
420 concentrations remain between 10-20 $\mu\text{g m}^{-3}$ within the boundary layer.

421 Apart from the West-East cross sections it is also worthwhile to investigate the vertical temporal evolution of NO_2
422 and PM_{10} concentrations. Therefore, Fig. 16 shows time height cross sections of NO_2 (top) and PM_{10} (bottom) at
423 Neckartor.

424 Well visible are the high simulated NO_2 and PM_{10} concentrations during the morning rush hour with peak values
425 of more than $120 \mu\text{g m}^{-3}$ NO_2 and more than $40 \mu\text{g m}^{-3}$ PM_{10} . The high concentrations of NO_2 and PM_{10} are present
426 up to around 150-200 m AGL. During daytime, turbulence efficiently mixes the pollutants up to higher altitude
427 and the near surface concentrations are quickly reduced. During the evening when the very shallow boundary layer
428 has developed again and evening traffic commences, the particle concentrations increase, and peak values of more
429 than $30 \mu\text{g m}^{-3}$ are simulated below 100 m AGL.

430

431 5. Summary and conclusion

432 This paper describes the setup of an AQFS prototype using WRF-Chem for the Stuttgart Metropolitan area.
433 Because of the complex topography in this region, this simulation system requires a very high horizontal resolution
434 down to the turbulence permitting scale to represent all orographic and land cover features.

435 For the development of this prototype 21 January 2019 served as test case as this was a typical winter day with an
436 atmospheric inversion. In addition, this day was characterized as “fine dust alarm” situation where the PM_{10}
437 concentration at the station Neckartor in the Stuttgart basin was expected to exceed $30 \mu\text{g m}^{-3}$
438 (http://www.stadtklima-stuttgart.de/stadtklima_filestorage/download/luft/Feinstaubwerte-2019_AN.pdf). The
439 model setup encompassed three domains down to a turbulence permitting resolution of 50 m.

440 The initial conditions were provided by the ECMWF operational analysis, the CAMS reanalysis and WACCM
441 model for background chemistry. Emission data sets from CAMS-REG-AP and high-resolution data with 500 m
442 resolution from LUBW were combined to be used in the AQFS. As current emission data sets only provide annual
443 totals or means, a temporal decomposition following TNO was applied (Denier van der Gon et al., 2011).

444 For this case study, we focused on the results with respect to 2-m temperature, surface fluxes and boundary layer
445 evolution as well as horizontal and vertical distributions of NO_2 and PM_{10} .

446 Our results revealed that despite the complex topography in Stuttgart, the model is in general capable to simulate
447 a realistic diurnal cycle of 2-m temperatures although, compared to observations, differences of up to 1 K occur.
448 Apparently the model has difficulties with the dissolution of low stratus clouds between 03 and 06 UTC which
449 was also reported in the work of Steeneveld et al. (2015) resulting in a warm 2-m temperature bias during the
450 morning. Although no measurements are available, the surface sensible heat fluxes show a clear diurnal cycle with
451 the magnitude clearly depending on the underlying land cover type. The low simulated ground heat flux and its
452 fluctuations between 00 UTC and sunrise partially confirm the fog dissolution issue but more test cases are needed
453 for a more detailed investigation. Over grid cells where the single layer UCM is active, most of the ground heat
454 flux is stored in the canopy layer thus not transferred into the soil. The high vertical resolution of 100 levels enables
455 a realistic representation of the nocturnal and daytime temperature inversion with an accompanying shallow
456 boundary layer of less than 400 m during the day.

457 The simulation of PM₁₀ shows an exceedance of the 30 $\mu\text{g m}^{-3}$ concentration threshold close to the Neckartor
458 station and also fulfills the other fine dust alarm criteria shown in section 3. Compared to the usually unevenly
459 distributed air quality measurements, the AQFS allows further insights into the spatio-temporal pollutant
460 distribution. The horizontal distributions of NO₂ and PM₁₀ at this particular day clearly indicate the main polluted
461 areas along the motorways and in the Stuttgart basin. The special orography of Stuttgart with its basin favors the
462 accumulation of NO₂ and PM₁₀ in the morning and evening while the pollutants are well mixed to around 200-400
463 m AGL when the boundary layer is fully evolved.

464 The simulation also shows that pollutants can be advected from the motorway A81 towards Stuttgart, depending
465 on the wind situation, potentially leading to an increase of the NO₂ and partially PM₁₀ concentrations in the
466 Stuttgart basin. As can be seen from Figs. 12 and 13, the Neckar Valley can also have a large impact on the
467 pollutant concentration in the Stuttgart basin in case an atmospheric inversion together with prevailing easterly
468 winds is present.

469 This is, to our knowledge, the first study of applying WRF-Chem on a TP resolution for an urban area. To derive
470 more robust conclusions with respect to air pollution, more cases studies with different weather situations during
471 winter and summer time are necessary. Nevertheless, our evaluation gives the following indications to further
472 improve the quality of such simulations:

- 473 I. Applying high spatial and temporal resolution gridded emission data from all pollution sources in near
474 real time to avoid extrapolating annual emissions to individual days.. This will help to enhance the
475 simulation of the diurnal cycles of chemical species.
- 476 II. Improving the chemical background e.g. by applying higher resolution products from the CAMS
477 European Air quality project (Marécal et al., 2015). This will help to have a more detailed structure of
478 the chemical constituents beneficial for subsequent downscaling simulations.
- 479 III. Using a longer spin-up period and applying a larger TP model domain to further improve the spin-up of
480 turbulence in the model
- 481 IV. Considering vertical distribution of surface emissions (e.g. Bieser et al., 2011; Guevara et al., 2020)
- 482 V. Considerably increase the number of pollutant measurements to allow more robust conclusions

483 The AQFS has a great potential for urban planning applications. For example, land cover could be changed from
484 urban low density to urban high density to investigate the impact of urban re-densification e.g. on temperature and

485 air quality. Although no BEP can be applied on the TP resolution with our combination of parameterizations,
486 changes of the parameters required for the single layer UCM offer the opportunity to perform sensitivity analysis
487 with respect to different building heights, urban greening effects (Fallmann et al., 2016), or anthropogenic heating
488 (Karlický et al., 2020). Recently, Lin et al. (2020) developed an interface to use output from high-resolution WRF
489 simulations to force PALM 6.0 in an offline mode which could be another tool in the future to study microscale
490 structures in urban areas.

491 In the future, more emphasis should also be put on an improvement of the I/O (e.g. by means of quilting) and
492 additional OpenMP capabilities in WRF-Chem. However simulations with WRF-Chem at the TP resolution will
493 still require around 1500-2000 compute cores for operational use due to the small numerical time step necessary.

494 Although air quality modeling on the TP scale is a very challenging and computationally expensive task, we are
495 convinced that the AQFS will have a great potential to further improve process understanding and will certainly
496 help politicians to make decisions on a more scientifically valid basis.

497 **Code and data availability**

498 The WRF-Chem code version 4.0.3 can be downloaded from <https://github.com/wrf-model/WRF/archive/v4.0.3.tar.gz>. ECMWF analysis data can be obtained from <https://apps.ecmwf.int/archive-catalogue/?type=an&class=od&stream=oper&expver=1> (last access: 26 August 2020). The user's affiliation needs
499 to belong to an ECMWF member state to benefit from these data sets. Due to restrictions on the input data sets for
500 this simulation, the data can only be made available upon special request from the corresponding author.
501

503 **Author Contributions**

504 TS prepared all emission data, set up the model and performed the simulation supported by HSB. HSB reclassified
505 the CORINE land use data set. KWS and TB conceived the idea and coordinated the project with VW. TS prepared
506 all figures and wrote the manuscript with input from all authors. All authors equally contributed to the scientific
507 discussion and helped to shape the research.

508 **Video Supplement**

509 The video shows the simulated diurnal evolution of the NO₂ concentration (Schwitalla, 2021a) and PM₁₀
510 concentration (Schwitalla, 2021b) over the Stuttgart metropolitan area.

511 **Competing interests**

512 The authors declare that they have no conflict of interest.

513 **Acknowledgements**

514 This study has been performed within the EU-funded project *Open Forecast* (Action number 2017-DE-IA-0170).
515 We acknowledge ECMWF for providing analysis data from the operational IFS and CAMS reanalysis. The
516 Emissions of atmospheric Compounds and Compilation of Ancillary Data (ECCAD) system is acknowledged for
517 providing the CAMS-REG-AP Emission data set. We acknowledge the use of the WRF-Chem preprocessor tool
518 MOZBC, provided by the Atmospheric Chemistry Observations and Modeling Lab (ACOM) of NCAR. The
519 Baden-Württemberg State Institute for the Environment (LUBW) is highly acknowledged for providing high-

520 resolution annual emission data and for the high-resolution land cover data. Joachim Ingwersen from the
521 Department of Biogeophysics at the University of Hohenheim is acknowledged for converting the soil texture data.
522 Joachim Fallmann from the University of Mainz is acknowledged for providing the necessary code enhancement
523 of the dry deposition driver module to correctly couple the urban canopy model. The simulation was performed
524 on the national supercomputer Cray XC40 Hazel Hen at the High Performance Computing Center Stuttgart
525 (HLRS) within the WRFSCALE project. We acknowledge the editor Ronald Cohen and both anonymous referees
526 for their valuable comments to improve the quality of the paper.

527 **References**

528 Ackermann, I. J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F. S., and Shankar, U.:
529 Modal aerosol dynamics model for Europe, *Atmospheric Environment*, 32, 2981–2999,
530 [https://doi.org/10.1016/S1352-2310\(98\)00006-5](https://doi.org/10.1016/S1352-2310(98)00006-5), 1998.

531 Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., and Reinhardt, T.:
532 Operational Convective-Scale Numerical Weather Prediction with the COSMO Model:
533 Description and Sensitivities, *Mon. Wea. Rev.*, 139, 3887–3905,
534 <https://doi.org/10.1175/MWR-D-10-05013.1>, 2011.

535 Barker, D., Huang, X.-Y., Liu, Z., Auligné, T., Zhang, X., Rugg, S., Ajjaji, R., Bourgeois, A., Bray,
536 J., Chen, Y., Demirtas, M., Guo, Y.-R., Henderson, T., Huang, W., Lin, H.-C., Michalakes, J.,
537 Rizvi, S., and Zhang, X.: The Weather Research and Forecasting Model's Community
538 Variational/Ensemble Data Assimilation System: WRFDA, *Bull. Amer. Meteor. Soc.*, 93,
539 831–843, <https://doi.org/10.1175/BAMS-D-11-00167.1>, 2012.

540 Bauer, H.-S., Muppa, S. K., Wulfmeyer, V., Behrendt, A., Warrach-Sagi, K., and Späth, F.:
541 Multi-nested WRF simulations for studying planetary boundary layer processes on the
542 turbulence-permitting scale in a realistic mesoscale environment, *Tellus A: Dynamic
543 Meteorology and Oceanography*, 72, 1–28,
544 <https://doi.org/10.1080/16000870.2020.1761740>, 2020.

545 Bieser, J., Aulinger, A., Matthias, V., Quante, M., and van der Denier Gon, H. A. C.: Vertical
546 emission profiles for Europe based on plume rise calculations, *Environmental pollution*
547 (Barking, Essex 1987), 159, 2935–2946, <https://doi.org/10.1016/j.envpol.2011.04.030>,
548 2011.

549 Bonavita, M., Hólm, E., Isaksen, L., and Fisher, M.: The evolution of the ECMWF hybrid data
550 assimilation system, *Q.J.R. Meteorol. Soc.*, 142, 287–303,
551 <https://doi.org/10.1002/qj.2652>, 2016.

552 Brasseur, G. P., Hauglustaine, D. A., Walters, S., Rasch, P. J., Müller, J.-F., Granier, C., and Tie,
553 X. X.: MOZART, a global chemical transport model for ozone and related chemical tracers:
554 1. Model description, *J. Geophys. Res.*, 103, 28265–28289,
555 <https://doi.org/10.1029/98JD02397>, 1998.

556 Butcher, G., Barnes, C., and Owen, L.: Landsat: The cornerstone of global land imaging, *GIM
557 International*, January/February 2019, 31–35, available at:
558 <http://pubs.er.usgs.gov/publication/70202363>, 2019.

559 Chan, P. W.: Determination of Richardson number profile from remote sensing data and its
560 aviation application, *IOP Conf. Ser.: Earth Environ. Sci.*, 1, 12043,
561 <https://doi.org/10.1088/1755-1315/1/1/012043>, 2008.

562 Chen, D., Liu, Z., Ban, J., Zhao, P., and Chen, M.: Retrospective analysis of 2015–2017
563 wintertime PM_{2.5} in China: response to emission regulations and the role of meteorology,
564 *Atmos. Chem. Phys.*, 19, 7409–7427, <https://doi.org/10.5194/acp-19-7409-2019>, 2019.

565 Copernicus: Copernicus official website, <https://atmosphere.copernicus.eu/>, last access: 21
566 July 2020.

567 Coppola, E., Sobolowski, S., Pichelli, E., Raffaele, F., Ahrens, B., Anders, I., Ban, N., Bastin, S.,
568 Belda, M., Belusic, D., Caldas-Alvarez, A., Cardoso, R. M., Davolio, S., Dobler, A.,
569 Fernandez, J., Fita, L., Fumiere, Q., Giorgi, F., Goergen, K., Güttler, I., Halenka, T.,
570 Heinzeller, D., Hodnebrog, Ø., Jacob, D., Kartsios, S., Katragkou, E., Kendon, E., Khodayar,
571 S., Kunstmann, H., Knist, S., Lavín-Gullón, A., Lind, P., Lorenz, T., Maraun, D., Marelle, L.,
572 van Meijgaard, E., Milovac, J., Myhre, G., Panitz, H.-J., Piazza, M., Raffa, M., Raub, T.,
573 Rockel, B., Schär, C., Sieck, K., Soares, P. M. M., Somot, S., Srnec, L., Stocchi, P., Tölle, M.,
574 H., Truhetz, H., Vautard, R., Vries, H. de, and Warrach-Sagi, K.: A first-of-its-kind multi-
575 model convection permitting ensemble for investigating convective phenomena over
576 Europe and the Mediterranean, *Clim Dyn*, 55, 3–34, <https://doi.org/10.1007/s00382-018-4521-8>, 2020.

577 Corsmeier, U., Kalthoff, N., Barthlott, C., Aoshima, F., Behrendt, A., Di Girolamo, P.,
578 Dorninger, M., Handwerker, J., Kottmeier, C., Mahlke, H., Mobbs, S. D., Norton, E. G.,
579 Wickert, J., and Wulfmeyer, V.: Processes driving deep convection over complex terrain:
580 a multi-scale analysis of observations from COPS IOP 9c, *Q.J.R. Meteorol. Soc.*, 137, 137–
581 155, <https://doi.org/10.1002/qj.754>, 2011.

582 Danielson, J. J. and Gesch, D. B.: Global multi-resolution terrain elevation data 2010
583 (GMTED2010), Open-File report, 2011.

584 Denier van der Gon, H., Hendriks, C., Kuenen, J., Segers, A., and Visschedijk, A.: Description
585 of current temporal emission patterns and sensitivity of predicted AQ for temporal
586 emission patterns: EU FP7 MACC deliverable report D_D-EMIS_1.3, TNO report, 2011.

587 European Union: Copernicus Land Monitoring Service 2017, European Environment Agency,
588 2017.

589 European Union: Copernicus Land Monitoring Service 2012, European Environment Agency,
590 2012.

591 Fallmann, J.: Numerical simulations to assess the effect of urban heat island mitigation
592 strategies on regional air quality, PhD Thesis, Universität zu Köln, Cologne, 2014.

593 Fallmann, J., Forkel, R., and Emeis, S.: Secondary effects of urban heat island mitigation
594 measures on air quality, *Atmospheric Environment*, 125, 199–211,
595 <https://doi.org/10.1016/j.atmosenv.2015.10.094>, 2016.

596 Fallmann, J., Emeis, S., and Suppan, P.: Mitigation of urban heat stress – a modelling case
597 study for the area of Stuttgart, *DIE ERDE – Journal of the Geographical Society of Berlin*,
598 144, 202–216, <https://doi.org/10.12854/erde-144-15>, 2014.

599 Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M.,
600 Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin,
601 M., Burbank, D., and Alsdorf, D.: The Shuttle Radar Topography Mission, *Rev. Geophys.*,
602 45, <https://doi.org/10.1029/2005RG000183>, 2007.

603 Flemming, J., Huijnen, V., Arteta, J., Bechtold, P., Beljaars, A., Blechschmidt, A.-M.,
604 Diamantakis, M., Engelen, R. J., Gaudel, A., Inness, A., Jones, L., Josse, B., Katragkou, E.,

606 Marecal, V., Peuch, V.-H., Richter, A., Schultz, M. G., Stein, O., and Tsikerdeksis, A.:
607 Tropospheric chemistry in the Integrated Forecasting System of ECMWF, *Geosci. Model*
608 *Dev.*, 8, 975–1003, <https://doi.org/10.5194/gmd-8-975-2015>, 2015.

609 Forkel, R., Balzarini, A., Baró, R., Bianconi, R., Curci, G., Jiménez-Guerrero, P., Hirtl, M.,
610 Honzak, L., Lorenz, C., Im, U., Pérez, J. L., Pirovano, G., San José, R., Tuccella, P., Werhahn,
611 J., and Žabkar, R.: Analysis of the WRF-Chem contributions to AQMEII phase2 with
612 respect to aerosol radiative feedbacks on meteorology and pollutant distributions,
613 *Atmospheric Environment*, 115, 630–645,
614 <https://doi.org/10.1016/j.atmosenv.2014.10.056>, 2015.

615 Freitas, S. R., Longo, K. M., Alonso, M. F., Pirre, M., Marecal, V., Grell, G., Stockler, R., Mello,
616 R. F., and Sánchez Gárita, M.: PREP-CHEM-SRC – 1.0: a preprocessor of trace gas and
617 aerosol emission fields for regional and global atmospheric chemistry models, *Geosci.*
618 *Model Dev.*, 4, 419–433, <https://doi.org/10.5194/gmd-4-419-2011>, 2011.

619 Freitas, S. R., Panetta, J., Longo, K. M., Rodrigues, L. F., Moreira, D. S., Rosário, N. E., Silva
620 Dias, P. L., Silva Dias, M. A. F., Souza, E. P., Freitas, E. D., Longo, M., Frassoni, A., Fazenda,
621 A. L., Santos e Silva, C. M., Pavani, C. A. B., Eiras, D., França, D. A., Massaru, D., Silva, F. B.,
622 Santos, F. C., Pereira, G., Camponogara, G., Ferrada, G. A., Campos Velho, H. F., Menezes,
623 I., Freire, J. L., Alonso, M. F., Gárita, M. S., Zarzur, M., Fonseca, R. M., Lima, R. S., Siqueira,
624 R. A., Braz, R., Tomita, S., Oliveira, V., and Martins, L. D.: The Brazilian developments on
625 the Regional Atmospheric Modeling System (BRAMS 5.2): an integrated environmental
626 model tuned for tropical areas, *Geosci. Model Dev.*, 10, 189–222,
627 <https://doi.org/10.5194/gmd-10-189-2017>, 2017.

628 García-Díez, M., Lauwaet, D., Hooyberghs, H., Ballester, J., Ridder, K. de, and Rodó, X.:
629 Advantages of using a fast urban boundary layer model as compared to a full mesoscale
630 model to simulate the urban heat island of Barcelona, *Geosci. Model Dev.*, 9, 4439–4450,
631 <https://doi.org/10.5194/gmd-9-4439-2016>, 2016.

632 Giorgi, F., Coppola, E., Solmon, F., Mariotti, L., Sylla, M. B., Bi, X., Elguindi, N., Diro, G. T.,
633 Nair, V., Giuliani, G., Turuncoglu, U. U., Cozzini, S., Gütler, I., O'Brien, T. A., Tawfik, A. B.,
634 Shalaby, A., Zakey, A. S., Steiner, A. L., Stordal, F., Sloan, L. C., and Brankovic, C.: RegCM4:
635 model description and preliminary tests over multiple CORDEX domains, *Clim. Res.*, 52,
636 7–29, <https://doi.org/10.3354/cr01018>, 2012.

637 Glaser, K., Vogt, U., Baumbach, G., Volz-Thomas, A., and Geiss, H.: Vertical profiles of O₃ NO
638 2 NO x VOC, and meteorological parameters during the Berlin Ozone Experiment
639 (BERLIOZ) campaign, *J. Geophys. Res.*, 108, <https://doi.org/10.1029/2002JD002475>,
640 available at: <https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2002JD002475>,
641 2003.

642 Granier, C., Darras, S., Denier van der Gon, H., Doubalova, J., Elguindi, N., Galle, B., Gauss,
643 M., Guevara, M., Jalkanen, J.-P., Kuenen, J., Liousse, C., Quack, B., Simpson, D., and
644 Sindelarova, K.: The Copernicus Atmosphere Monitoring Service global and regional
645 emissions (April 2019 version), 2019.

646 Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and Eder,
647 B.: Fully coupled “online” chemistry within the WRF model, *Atmospheric Environment*,
648 39, 6957–6975, <https://doi.org/10.1016/j.atmosenv.2005.04.027>, 2005.

649 Guevara, M., Jorba, O., Tena, C., van der Denier Gon, H., Kuenen, J., Elguindi-Solomon, N.,
650 Darras, S., Granier, C., and Pérez García-Pando, C.: CAMS-TEMPO: global and European
651 emission temporal profile maps for atmospheric chemistry modelling, 2020.

652 Heinze, R., Moseley, C., Böske, L. N., Muppa, S. K., Maurer, V., Raasch, S., and Stevens, B.:
653 Evaluation of large-eddy simulations forced with mesoscale model output for a multi-
654 week period during a measurement campaign, *Atmos. Chem. Phys.*, 17, 7083–7109,
655 <https://doi.org/10.5194/acp-17-7083-2017>, 2017a.

656 Heinze, R., Dipankar, A., Henken, C. C., Moseley, C., Sourdeval, O., Trömel, S., Xie, X.,
657 Adamidis, P., Ament, F., Baars, H., Barthlott, C., Behrendt, A., Blahak, U., Bley, S., Brdar,
658 S., Brueck, M., Crewell, S., Deneke, H., Di Girolamo, P., Evaristo, R., Fischer, J., Frank, C.,
659 Friederichs, P., Göcke, T., Gorges, K., Hande, L., Hanke, M., Hansen, A., Hege, H.-C.,
660 Hoose, C., Jahns, T., Kalthoff, N., Klocke, D., Kneifel, S., Knippertz, P., Kuhn, A., van Laar,
661 T., Macke, A., Maurer, V., Mayer, B., Meyer, C. I., Muppa, S. K., Neggers, R. A. J., Orlandi,
662 E., Pantillon, F., Pospichal, B., Röber, N., Scheck, L., Seifert, A., Seifert, P., Senf, F., Siligam,
663 P., Simmer, C., Steinke, S., Stevens, B., Wapler, K., Weniger, M., Wulfmeyer, V., Zängl, G.,
664 Zhang, D., and Quaas, J.: Large-eddy simulations over Germany using ICON: a
665 comprehensive evaluation, *Q.J.R. Meteorol. Soc.*, 143, 69–100,
666 <https://doi.org/10.1002/qj.2947>, 2017b.

667 Hengl, T., Heuvelink, G. B. M., Kempen, B., Leenaars, J. G. B., Walsh, M. G., Shepherd, K. D.,
668 Sila, A., MacMillan, R. A., Mendes de Jesus, J., Tamene, L., and Tondoh, J. E.: Mapping Soil
669 Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current
670 Predictions, *PloS one*, 10, e0125814, <https://doi.org/10.1371/journal.pone.0125814>,
671 2015.

672 Hengl, T., Jesus, J. M. de, MacMillan, R. A., Batjes, N. H., Heuvelink, G. B. M., Ribeiro, E.,
673 Samuel-Rosa, A., Kempen, B., Leenaars, J. G. B., Walsh, M. G., and Gonzalez, M. R.:
674 SoilGrids1km--global soil information based on automated mapping, *PloS one*, 9,
675 e105992, <https://doi.org/10.1371/journal.pone.0105992>, 2014.

676 Hong, S.-Y., Noh, Y., and Dudhia, J.: A New Vertical Diffusion Package with an Explicit
677 Treatment of Entrainment Processes, *Mon. Wea. Rev.*, 134, 2318–2341,
678 <https://doi.org/10.1175/MWR3199.1>, 2006.

679 Honnert, R. and Masson, V.: What is the smallest physically acceptable scale for 1D
680 turbulence schemes?, *Front. Earth Sci.*, 2, 27, <https://doi.org/10.3389/feart.2014.00027>,
681 2014.

682 Honnert, R., Efstathiou, G. A., Beare, R. J., Ito, J., Lock, A., Neggers, R., Plant, R. S., Shin, H. H.,
683 Tomassini, L., and Zhou, B.: The Atmospheric Boundary Layer and the “Gray Zone” of
684 Turbulence: A Critical Review, *J. Geophys. Res. Atmos.*, 125,
685 <https://doi.org/10.1029/2019JD030317>, 2020.

686 Horowitz, L. W., Walters, S., Mauzerall, D. L., Emmons, L. K., Rasch, P. J., Granier, C., Tie, X.,
687 Lamarque, J.-F., Schultz, M. G., Tyndall, G. S., Orlando, J. J., and Brasseur, G. P.: A global
688 simulation of tropospheric ozone and related tracers: Description and evaluation of
689 MOZART, version 2, *J. Geophys. Res.*, 108, n/a-n/a,
690 <https://doi.org/10.1029/2002JD002853>, 2003.

691 Huszar, P., Karlický, J., Ďoubalová, J., Šindelářová, K., Nováková, T., Belda, M., Halenka, T.,
692 Žák, M., and Pišot, P.: Urban canopy meteorological forcing and its impact on ozone and

693 PM_{2.5}: role of vertical turbulent transport, *Atmos. Chem. Phys.*, 20, 1977–2016,
694 <https://doi.org/10.5194/acp-20-1977-2020>, 2020.

695 Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W.
696 D.: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative
697 transfer models, *J. Geophys. Res.*, 113, <https://doi.org/10.1029/2008JD009944>, 2008.

698 Inness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A.-M.,
699 Dominguez, J. J., Engelen, R., Eskes, H., Flemming, J., Huijnen, V., Jones, L., Kipling, Z.,
700 Massart, S., Parrington, M., Peuch, V.-H., Razinger, M., Remy, S., Schulz, M., and Suttie,
701 M.: The CAMS reanalysis of atmospheric composition, *Atmos. Chem. Phys.*, 19, 3515–
702 3556, <https://doi.org/10.5194/acp-19-3515-2019>, 2019.

703 Jiménez, P. A., Dudhia, J., González-Rouco, J. F., Navarro, J., Montávez, J. P., and García-
704 Bustamante, E.: A Revised Scheme for the WRF Surface Layer Formulation, *Mon. Wea.
705 Rev.*, 140, 898–918, <https://doi.org/10.1175/MWR-D-11-00056.1>, 2012.

706 Jin, L., Li, Z., He, Q., Miao, Q., Zhang, H., and Yang, X.: Observation and simulation of near-
707 surface wind and its variation with topography in Urumqi, West China, *J Meteorol Res.*,
708 30, 961–982, <https://doi.org/10.1007/s13351-016-6012-3>, 2016.

709 Karlický, J., Huszár, P., Nováková, T., Belda, M., Švábik, F., Ďoubolová, J., and Halenka, T.: The
710 'urban meteorology island': a multi-model ensemble analysis, 2020.

711 Kawabata, T., Schwitalla, T., Adachi, A., Bauer, H.-S., Wulfmeyer, V., Nagumo, N., and
712 Yamauchi, H.: Observational operators for dual polarimetric radars in variational data
713 assimilation systems (PolRad VAR v1.0), *Geosci. Model Dev.*, 11, 2493–2501,
714 <https://doi.org/10.5194/gmd-11-2493-2018>, 2018.

715 Kealy, J. C., Efthathiou, G. A., and Beare, R. J.: The Onset of Resolved Boundary-Layer
716 Turbulence at Grey-Zone Resolutions, *Boundary-Layer Meteorol.*, 171, 31–52,
717 <https://doi.org/10.1007/s10546-018-0420-0>, 2019.

718 Khan, B., Banzhaf, S., Chan, E. C., Forkel, R., Kanani-Sühring, F., Ketelsen, K., Kurppa, M.,
719 Maronga, B., Mauder, M., Raasch, S., Russo, E., Schaap, M., and Sühring, M.:
720 Development of an atmospheric chemistry model coupled to the PALM model system
721 6.0: Implementation and first applications, *Geosci. Model Dev.*,
722 <https://doi.org/10.5194/gmd-2020-286>, 2020.

723 Kosovic, B.: Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number
724 boundary layers, *J. Fluid Mech.*, 336, 151–182,
725 <https://doi.org/10.1017/S0022112096004697>, 1997.

726 Kuenen, J. J. P., Visschedijk, A. J. H., Jozwicka, M., and van der Denier Gon, H. A. C.: TNO-
727 MACC_II emission inventory; a multi-year (2003–2009) consistent high-resolution
728 European emission inventory for air quality modelling, *Atmos. Chem. Phys.*, 14, 10963–
729 10976, <https://doi.org/10.5194/acp-14-10963-2014>, 2014.

730 Kuik, F., Kerschbaumer, A., Lauer, A., Lupascu, A., Schneidemesser, E. von, and Butler, T. M.:
731 Top-down quantification of NO x emissions from traffic in an urban area using a high-
732 resolution regional atmospheric chemistry model, *Atmos. Chem. Phys.*, 18, 8203–8225,
733 <https://doi.org/10.5194/acp-18-8203-2018>, 2018.

734 Kuik, F., Lauer, A., Churkina, G., van der Denier Gon, H. A. C., Fenner, D., Mar, K. A., and
735 Butler, T. M.: Air quality modelling in the Berlin–Brandenburg region using WRF-Chem

736 v3.7.1: sensitivity to resolution of model grid and input data, *Geosci. Model Dev.*, 9,
737 4339–4363, <https://doi.org/10.5194/gmd-9-4339-2016>, 2016.

738 Kusaka, H. and Kimura, F.: Coupling a Single-Layer Urban Canopy Model with a Simple
739 Atmospheric Model: Impact on Urban Heat Island Simulation for an Idealized Case, *JMSJ*,
740 82, 67–80, <https://doi.org/10.2151/jmsj.82.67>, 2004.

741 Lee, T. R. and Wekker, S. F. J. de: Estimating Daytime Planetary Boundary Layer Heights over
742 a Valley from Rawinsonde Observations at a Nearby Airport: An Application to the Page
743 Valley in Virginia, United States, *J. Appl. Meteor. Climatol.*, 55, 791–809,
744 <https://doi.org/10.1175/JAMC-D-15-0300.1>, 2016.

745 Li, Z., Zhou, Y., Wan, B., Chung, H., Huang, B., and Liu, B.: Model evaluation of high-
746 resolution urban climate simulations: using the WRF/Noah LSM/SLUCM model (Version
747 3.7.1) as a case study, *Geosci. Model Dev.*, 12, 4571–4584, <https://doi.org/10.5194/gmd-12-4571-2019>, 2019.

749 Lin, D., Khan, B., Katurji, M., Bird, L., Faria, R., and Revell, L. E.: WRF4PALM v1.0: A Mesoscale
750 Dynamical Driver for the Microscale PALM Model System 6.0, 2020.

751 Mailler, S., Menut, L., Khvorostyanov, D., Valari, M., Couvidat, F., Siour, G., Turquety, S.,
752 Briant, R., Tuccella, P., Bessagnet, B., Colette, A., Létinois, L., Markakis, K., and Meleux, F.:
753 CHIMERE-2017: from urban to hemispheric chemistry-transport modeling, *Geosci. Model
754 Dev.*, 10, 2397–2423, <https://doi.org/10.5194/gmd-10-2397-2017>, 2017.

755 Manders, A. M. M., Builtjes, P. J. H., Curier, L., van der Denier Gon, H. A. C., Hendriks, C.,
756 Jonkers, S., Kranenburg, R., Kuenen, J. J. P., Segers, A. J., Timmermans, R. M. A.,
757 Visschedijk, A. J. H., Wichink Kruit, R. J., van Pul, W. A. J., Sauter, F. J., van der Swaluw, E.,
758 Swart, D. P. J., Douros, J., Eskes, H., van Meijgaard, E., van Ulft, B., van Velthoven, P.,
759 Banzhaf, S., Mues, A. C., Stern, R., Fu, G., Lu, S., Heemink, A., van Velzen, N., and Schaap,
760 M.: Curriculum vitae of the LOTOS–EUROS (v2.0) chemistry transport model, *Geosci.
761 Model Dev.*, 10, 4145–4173, <https://doi.org/10.5194/gmd-10-4145-2017>, 2017.

762 Mar, K. A., Ojha, N., Pozzer, A., and Butler, T. M.: Ozone air quality simulations with WRF-
763 Chem (v3.5.1) over Europe: model evaluation and chemical mechanism comparison,
764 *Geosci. Model Dev.*, 9, 3699–3728, <https://doi.org/10.5194/gmd-9-3699-2016>, 2016.

765 Marécal, V., Peuch, V.-H., Andersson, C., Andersson, S., Arteta, J., Beekmann, M.,
766 Benedictow, A., Bergström, R., Bessagnet, B., Cansado, A., Chéroux, F., Colette, A.,
767 Coman, A., Curier, R. L., van der Denier Gon, H. A. C., Drouin, A., Elbern, H., Emili, E.,
768 Engelen, R. J., Eskes, H. J., Foret, G., Friese, E., Gauss, M., Giannaros, C., Guth, J., Joly, M.,
769 Jaumouillé, E., Josse, B., Kadygrov, N., Kaiser, J. W., Krajsek, K., Kuenen, J., Kumar, U.,
770 Liora, N., Lopez, E., Malherbe, L., Martinez, I., Melas, D., Meleux, F., Menut, L., Moinat,
771 P., Morales, T., Parmentier, J., Piacentini, A., Plu, M., Poupkou, A., Queguiner, S.,
772 Robertson, L., Rouïl, L., Schaap, M., Segers, A., Sofiev, M., Tarasson, L., Thomas, M.,
773 Timmermans, R., Valdebenito, Á., van Velthoven, P., van Versendaal, R., Vira, J., and Ung,
774 A.: A regional air quality forecasting system over Europe: the MACC-II daily ensemble
775 production, *Geosci. Model Dev.*, 8, 2777–2813, <https://doi.org/10.5194/gmd-8-2777-2015>, 2015.

777 Maronga, B., Gryschka, M., Heinze, R., Hoffmann, F., Kanani-Sühring, F., Keck, M., Ketelsen,
778 K., Letzel, M. O., Sühring, M., and Raasch, S.: The Parallelized Large-Eddy Simulation
779 Model (PALM) version 4.0 for atmospheric and oceanic flows: model formulation, recent

780 developments, and future perspectives, *Geosci. Model Dev.*, 8, 2515–2551,
781 <https://doi.org/10.5194/gmd-8-2515-2015>, 2015.

782 Maronga, B., Banzhaf, S., Burmeister, C., Esch, T., Forkel, R., Fröhlich, D., Fuka, V., Gehrke, K.
783 F., Geletič, J., Giersch, S., Gronemeier, T., Groß, G., Heldens, W., Hellsten, A., Hoffmann,
784 F., Inagaki, A., Kadasch, E., Kanani-Sühring, F., Ketelsen, K., Khan, B. A., Knigge, C., Knoop,
785 H., Krč, P., Kurppa, M., Maamari, H., Matzarakis, A., Mauder, M., Pallasch, M., Pavlik, D.,
786 Pfafferott, J., Resler, J., Rissmann, S., Russo, E., Salim, M., Schrempf, M., Schwenkel, J.,
787 Seckmeyer, G., Schubert, S., Sühring, M., Tils, R. von, Vollmer, L., Ward, S., Witha, B.,
788 Wurps, H., Zeidler, J., and Raasch, S.: Overview of the PALM model system 6.0, *Geosci.
789 Model Dev.*, 13, 1335–1372, <https://doi.org/10.5194/gmd-13-1335-2020>, 2020.

790 Maronga, B., Gross, G., Raasch, S., Banzhaf, S., Forkel, R., Heldens, W., Kanani-Sühring, F.,
791 Matzarakis, A., Mauder, M., Pavlik, D., Pfafferott, J., Schubert, S., Seckmeyer, G., Sieker,
792 H., and Winderlich, K.: Development of a new urban climate model based on the model
793 PALM – Project overview, planned work, and first achievements, *metz*, 28, 105–119,
794 <https://doi.org/10.1127/metz/2019/0909>, 2019.

795 Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J.-F., Calvo, N., and Polvani, L. M.:
796 Climate Change from 1850 to 2005 Simulated in CESM1(WACCM), *J. Climate*, 26, 7372–
797 7391, <https://doi.org/10.1175/JCLI-D-12-00558.1>, 2013.

798 Martilli, A., Clappier, A., and Rotach, M. W.: An Urban Surface Exchange Parameterisation for
799 Mesoscale Models, *Boundary-Layer Meteorology*, 104, 261–304,
800 <https://doi.org/10.1023/A:1016099921195>, 2002.

801 Memmesheimer, M., Friese, E., Ebel, A., Jakobs, H. J., Feldmann, H., Kessler, C., and Piekorz,
802 G.: Long-term simulations of particulate matter in Europe on different scales using
803 sequential nesting of a regional model, *IJEP*, 22, 108,
804 <https://doi.org/10.1504/IJEP.2004.005530>, 2004.

805 Nakayama, H., Takemi, T., and Nagai, H.: Large-eddy simulation of urban boundary-layer
806 flows by generating turbulent inflows from mesoscale meteorological simulations,
807 *Atmosph. Sci. Lett.*, 13, 180–186, <https://doi.org/10.1002/asl.377>, 2012.

808 Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K.,
809 Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The community Noah land surface model
810 with multiparameterization options (Noah-MP): 1. Model description and evaluation with
811 local-scale measurements, *J. Geophys. Res.*, 116, <https://doi.org/10.1029/2010JD015139>,
812 2011.

813 Panosetti, D., Böing, S., Schlemmer, L., and Schmidli, J.: Idealized Large-Eddy and Convection-
814 Resolving Simulations of Moist Convection over Mountainous Terrain, *J. Atmos. Sci.*, 73,
815 4021–4041, <https://doi.org/10.1175/JAS-D-15-0341.1>, 2016.

816 Pfister, G. G., Parrish, D. D., Worden, H., Emmons, L. K., Edwards, D. P., Wiedinmyer, C.,
817 Diskin, G. S., Huey, G., Oltmans, S. J., Thouret, V., Weinheimer, A., and Wisthaler, A.:
818 Characterizing summertime chemical boundary conditions for airmasses entering the US
819 West Coast, *Atmos. Chem. Phys.*, 11, 1769–1790, <https://doi.org/10.5194/acp-11-1769-2011>, 2011.

820 Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K., Keller, M., Tölle, M.,
821 Gutjahr, O., Feser, F., Brisson, E., Kollet, S., Schmidli, J., van Lipzig, N. P. M., and Leung, R.:
822 A review on regional convection-permitting climate modeling: Demonstrations,

824 prospects, and challenges, *Rev. Geophys.*, 53, 323–361,
825 <https://doi.org/10.1002/2014RG000475>, 2015.

826 Resler, J., Eben, K., Geletič, J., Krč, P., Rosecký, M., Sühring, M., Belda, M., Fuka, V., Halenka,
827 T., Huszár, P., Karlický, J., Benešová, N., Ďoubalová, J., Honzáková, K., Keder, J.,
828 Nápravníková, Š., and Vlček, O.: Validation of the PALM model system 6.0 in real urban
829 environment; case study of Prague-Dejvice, Czech Republic, *Geosci. Model Dev.*,
830 <https://doi.org/10.5194/gmd-2020-175>, 2020, under review.

831 Rieger, D., Bangert, M., Bischoff-Gauss, I., Förstner, J., Lundgren, K., Reinert, D., Schröter, J.,
832 Vogel, H., Zängl, G., Ruhnke, R., and Vogel, B.: ICON-ART 1.0 – a new online-coupled
833 model system from the global to regional scale, *Geosci. Model Dev.*, 8, 1659–1676,
834 <https://doi.org/10.5194/gmd-8-1659-2015>, 2015.

835 Salamanca, F. and Martilli, A.: A new Building Energy Model coupled with an Urban Canopy
836 Parameterization for urban climate simulations—part II. Validation with one dimension
837 off-line simulations, *Theor Appl Climatol*, 99, 345–356, <https://doi.org/10.1007/s00704-009-0143-8>, 2010.

838 Samad, A., Vogt, U., Panta, A., and Uprety, D.: Vertical distribution of particulate matter,
839 black carbon and ultra-fine particles in Stuttgart, Germany, *Atmospheric Pollution
840 Research*, 11, 1441–1450, <https://doi.org/10.1016/j.apr.2020.05.017>, 2020.

841 Schell, B., Ackermann, I. J., Hass, H., Binkowski, F. S., and Ebel, A.: Modeling the formation of
842 secondary organic aerosol within a comprehensive air quality model system, *J. Geophys.
843 Res.*, 106, 28275–28293, <https://doi.org/10.1029/2001JD000384>, 2001.

844 Scherer, D., Antretter, F., Bender, S., Cortekar, J., Emeis, S., Fehrenbach, U., Gross, G., Halbig,
845 G., Hasse, J., Maronga, B., Raasch, S., and Scherber, K.: Urban Climate Under Change
846 [UC]2 – A National Research Programme for Developing a Building-Resolving
847 Atmospheric Model for Entire City Regions, *metz*, 28, 95–104,
848 <https://doi.org/10.1127/metz/2019/0913>, 2019.

849 Schwitalla, T.: Simulation of NO₂ concentration over the Stuttgart metropolitan area, TIB AV-
850 Portal, <https://doi.org/10.5446/50923>, 2021a.

851 Schwitalla, T.: Simulation of PM10 concentration over the Stuttgart metropolitan area, TIB
852 AV-Portal, <https://doi.org/10.5446/50924>, 2021b.

853 Seidel, D. J., Zhang, Y., Beljaars, A., Golaz, J.-C., Jacobson, A. R., and Medeiros, B.:
854 Climatology of the planetary boundary layer over the continental United States and
855 Europe, *J. Geophys. Res.*, 117, n/a-n/a, <https://doi.org/10.1029/2012JD018143>, 2012.

856 Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W., Powers, J.
857 G., Duda, M. G., Barker, D. M., and Huang, X.-Y.: A Description of the Advanced Research
858 WRF Model Version 4, 2019.

859 Steeneveld, G. J., Ronda, R. J., and Holtslag, A. A. M.: The Challenge of Forecasting the Onset
860 and Development of Radiation Fog Using Mesoscale Atmospheric Models, *Boundary-
861 Layer Meteorol*, 154, 265–289, <https://doi.org/10.1007/s10546-014-9973-8>, 2015.

862 Stockwell, W. R., Middleton, P., Chang, J. S., and Tang, X.: The second generation regional
863 acid deposition model chemical mechanism for regional air quality modeling, *J. Geophys.
864 Res.*, 95, 16343, <https://doi.org/10.1029/JD095iD10p16343>, 1990.

865

866 Stuttgart Municipality and German Meteorological Service (DWD): Requirements for fine
867 dust situations, <https://feinstaubalarm.stuttgart.de/img/mdb/item/584405/119353.pdf>,
868 last access: 20 August 2020, 2019.

869 Sun, W., Liu, Z., Chen, D., Zhao, P., and Chen, M.: Development and application of the
870 WRFDA-Chem three-dimensional variational (3DVAR) system: aiming to improve air
871 quality forecasting and diagnose model deficiencies, *Atmos. Chem. Phys.*, 20, 9311–9329,
872 <https://doi.org/10.5194/acp-20-9311-2020>, 2020.

873 Teixeira, J. C., Fallmann, J., Carvalho, A. C., and Rocha, A.: Surface to boundary layer coupling
874 in the urban area of Lisbon comparing different urban canopy models in WRF, *Urban
875 Climate*, 28, 100454, <https://doi.org/10.1016/j.uclim.2019.100454>, 2019.

876 Thompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D.: Explicit Forecasts of Winter
877 Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a
878 New Snow Parameterization, *Mon. Wea. Rev.*, 136, 5095–5115,
879 <https://doi.org/10.1175/2008MWR2387.1>, 2008.

880 Thundathil, R., Schwitalla, T., Behrendt, A., Muppa, S. K., ADAM, S., and Wulfmeyer, V.:
881 Assimilation of Lidar Water Vapour Mixing Ratio and Temperature Profiles into a
882 Convection-Permitting Model, *JMSJ*, <https://doi.org/10.2151/jmsj.2020-049>, 2020.

883 Thunis, P., Degraeuwe, B., Pisoni, E., Trombetti, M., Peduzzi, E., Belis, C. A., Wilson, J., and
884 Vignati, E.: Urban PM2.5 atlas: Air quality in European cities, *JRC science for policy report*,
885 28804, Publications Office, Luxembourg, 1 online resource, 2017.

886 UN: The World's Cities in 2018, United Nations, 2018.

887 Valcke, S., Balaji, V., Craig, A., DeLuca, C., Dunlap, R., Ford, R. W., Jacob, R., Larson, J.,
888 O'Kuinghtons, R., Riley, G. D., and Vertenstein, M.: Coupling technologies for Earth
889 System Modelling, *Geosci. Model Dev.*, 5, 1589–1596, <https://doi.org/10.5194/gmd-5-1589-2012>, 2012.

890 Vogel, B., Vogel, H., Bäumer, D., Bangert, M., Lundgren, K., Rinke, R., and Stanelle, T.: The
891 comprehensive model system COSMO-ART – Radiative impact of aerosol on the state of
892 the atmosphere on the regional scale, *Atmos. Chem. Phys.*, 9, 8661–8680,
893 <https://doi.org/10.5194/acp-9-8661-2009>, 2009.

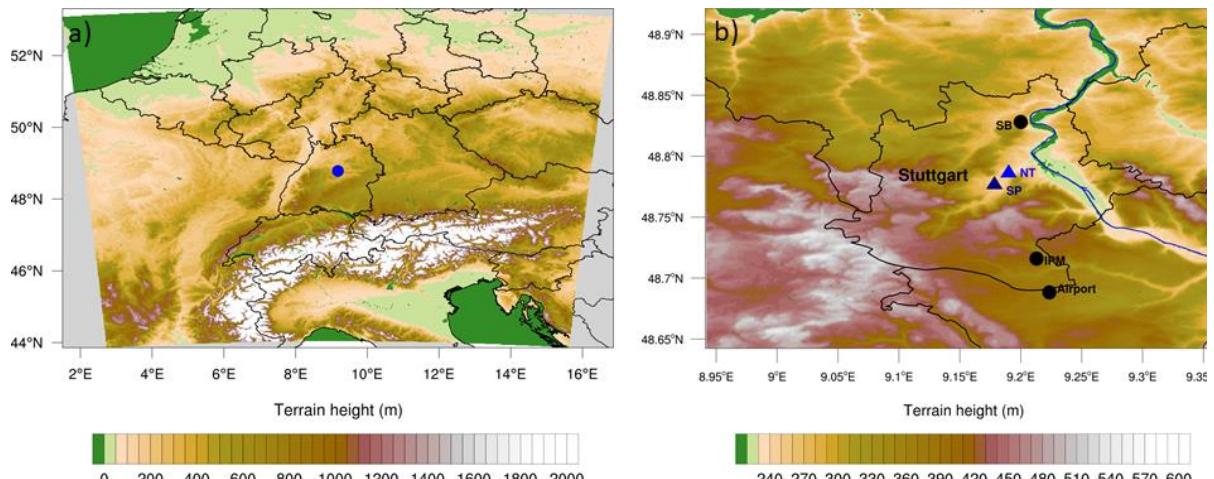
894 Wang, D., Stachlewska, I. S., Song, X., Heese, B., and Nemuc, A.: Variability of the Boundary
895 Layer Over an Urban Continental Site Based on 10 Years of Active Remote Sensing
896 Observations in Warsaw, *Remote Sensing*, 12, 340, <https://doi.org/10.3390/rs12020340>,
897 2020.

898 WHO: WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur
899 dioxide. Global update 2005., 2005.

900 Yang, Z.-L., Niu, G.-Y., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Longuevergne, L.,
901 Manning, K., Niyogi, D., Tewari, M., and Xia, Y.: The community Noah land surface model
902 with multiparameterization options (Noah-MP): 2. Evaluation over global river basins, *J.
903 Geophys. Res.*, 116, <https://doi.org/10.1029/2010JD015140>, 2011.

904 Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The ICON (ICOahedral Non-hydrostatic)
905 modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical
906 core, *Q.J.R. Meteorol. Soc.*, 141, 563–579, <https://doi.org/10.1002/qj.2378>, 2015.

907 Zhang, X., Huang, X.-Y., Liu, J., Poterjoy, J., Weng, Y., Zhang, F., and Wang, H.: Development
908 of an Efficient Regional Four-Dimensional Variational Data Assimilation System for WRF,


910 Journal of Atmospheric and Oceanic Technology, 31, 2777–2794,
911 <https://doi.org/10.1175/JTECH-D-13-00076.1>, 2014.

912 Zhong, M., Saikawa, E., Liu, Y., Naik, V., Horowitz, L. W., Takigawa, M., Zhao, Y., Lin, N.-H.,
913 and Stone, E. A.: Air quality modeling with WRF-Chem v3.5 in East Asia: sensitivity to
914 emissions and evaluation of simulated air quality, *Geosci. Model Dev.*, 9, 1201–1218,
915 <https://doi.org/10.5194/gmd-9-1201-2016>, 2016.

916 Zieliński, M., Fortuniak, K., Pawlak, W., and Siedlecki, M.: Long-term Turbulent Sensible-
917 Heat-Flux Measurements with a Large-Aperture Scintillometer in the Centre of Łódź,
918 Central Poland, *Boundary-Layer Meteorol.*, 167, 469–492,
919 <https://doi.org/10.1007/s10546-017-0331-5>, 2018.

920

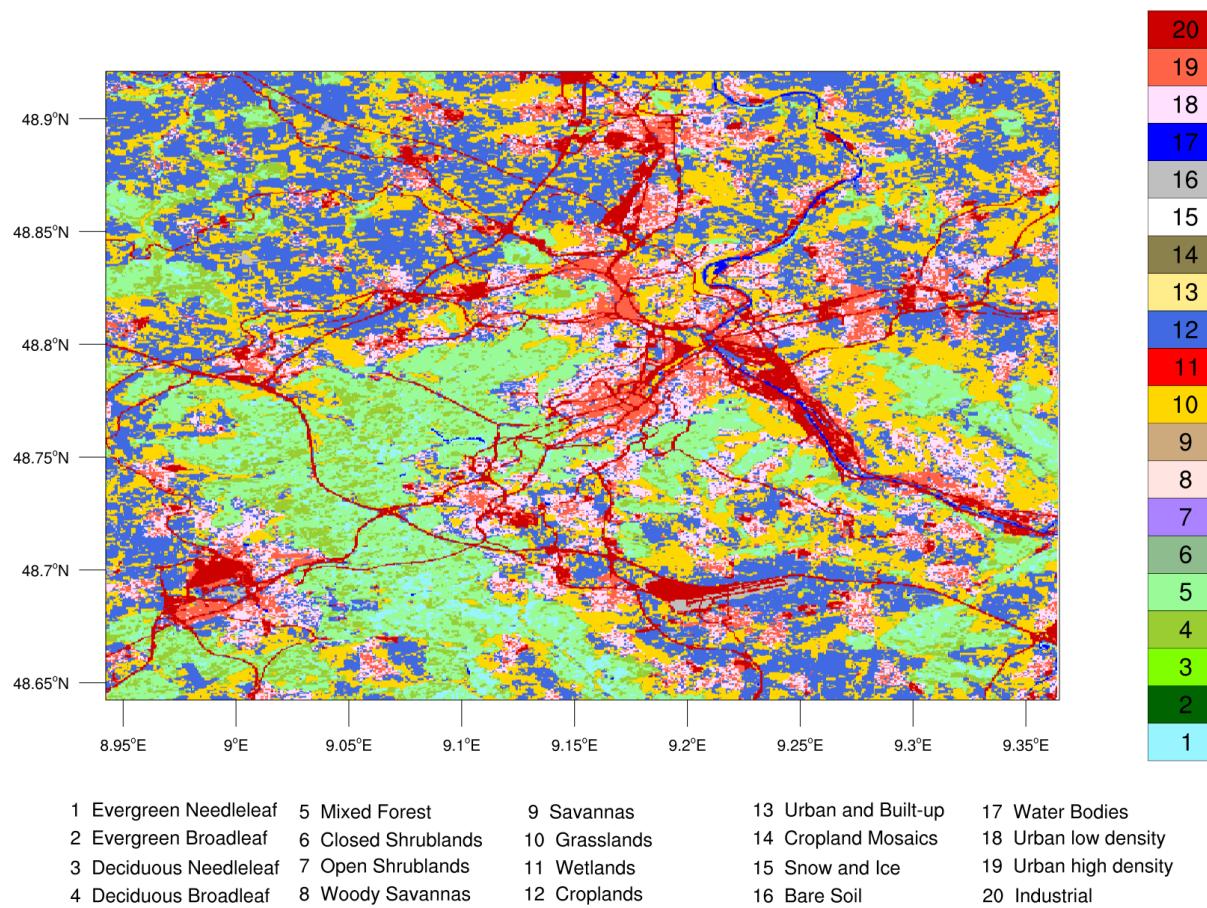

921

Figure 1: Model domain 1 (a) and domain 3 (b). The blue dot in (a) denotes Stuttgart. Black dots in (b) show the location of the meteorological measurement sites. The diamonds in (b) denotes the Neckartor (NT) and Schlossplatz (SP) locations and the blue contour line denotes the Neckar River (River data © OpenStreetMap contributors 2020. Distributed under a Creative Commons BY-SA License).

922

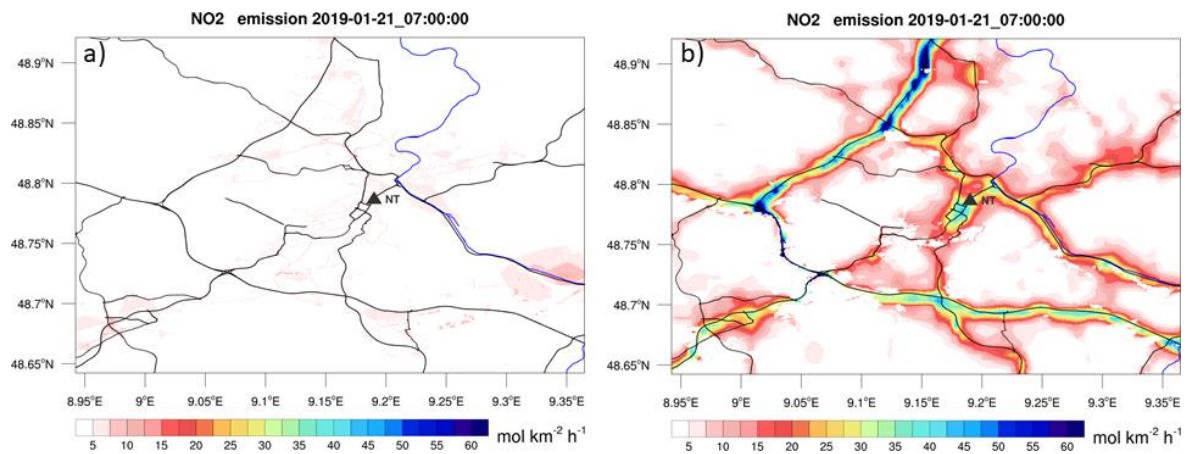

923

Figure 2: Land cover data from the Baden-Württemberg State Institute for the Environment (LUBW) reclassified for WRF in the innermost domain at a resolution of 50 m.

924

925

Figure 3: NO₂ emissions valid at 07 UTC on January 21, 2019. (a) shows the emissions derived from the CAMS-REG-AP data set and (b) shows the emissions derived from the BW-EMISS data set (Map Data © OpenStreetMap contributors 2020. Distributed under a Creative Commons BY-SA License).

926

927

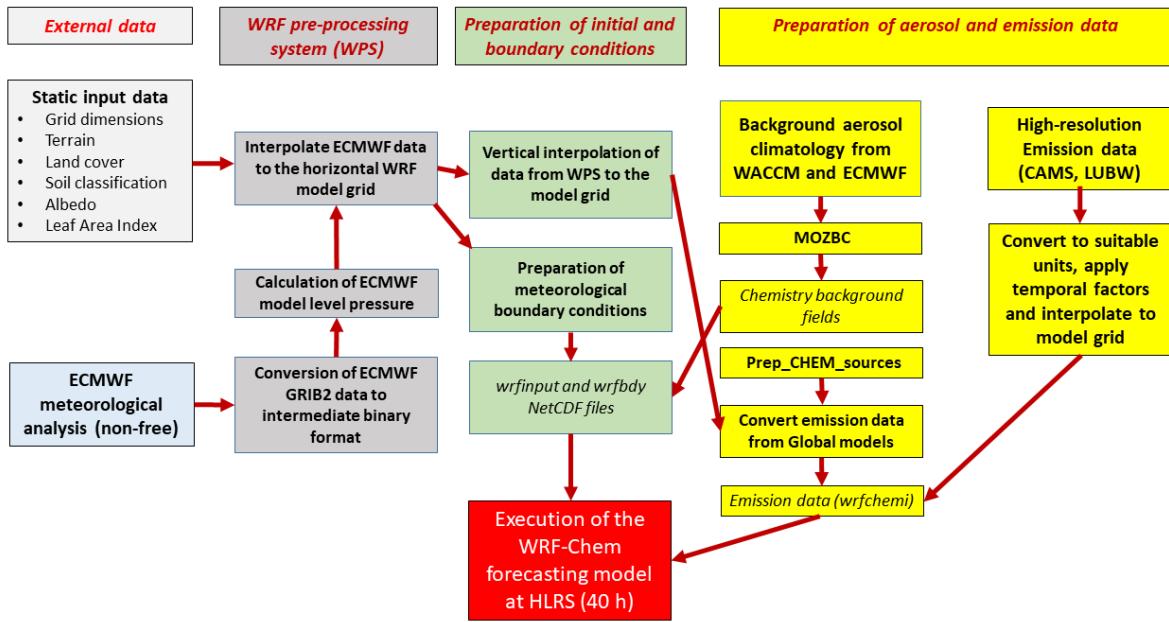


Figure 4: Workflow of the AQFS prototype system.

928

929

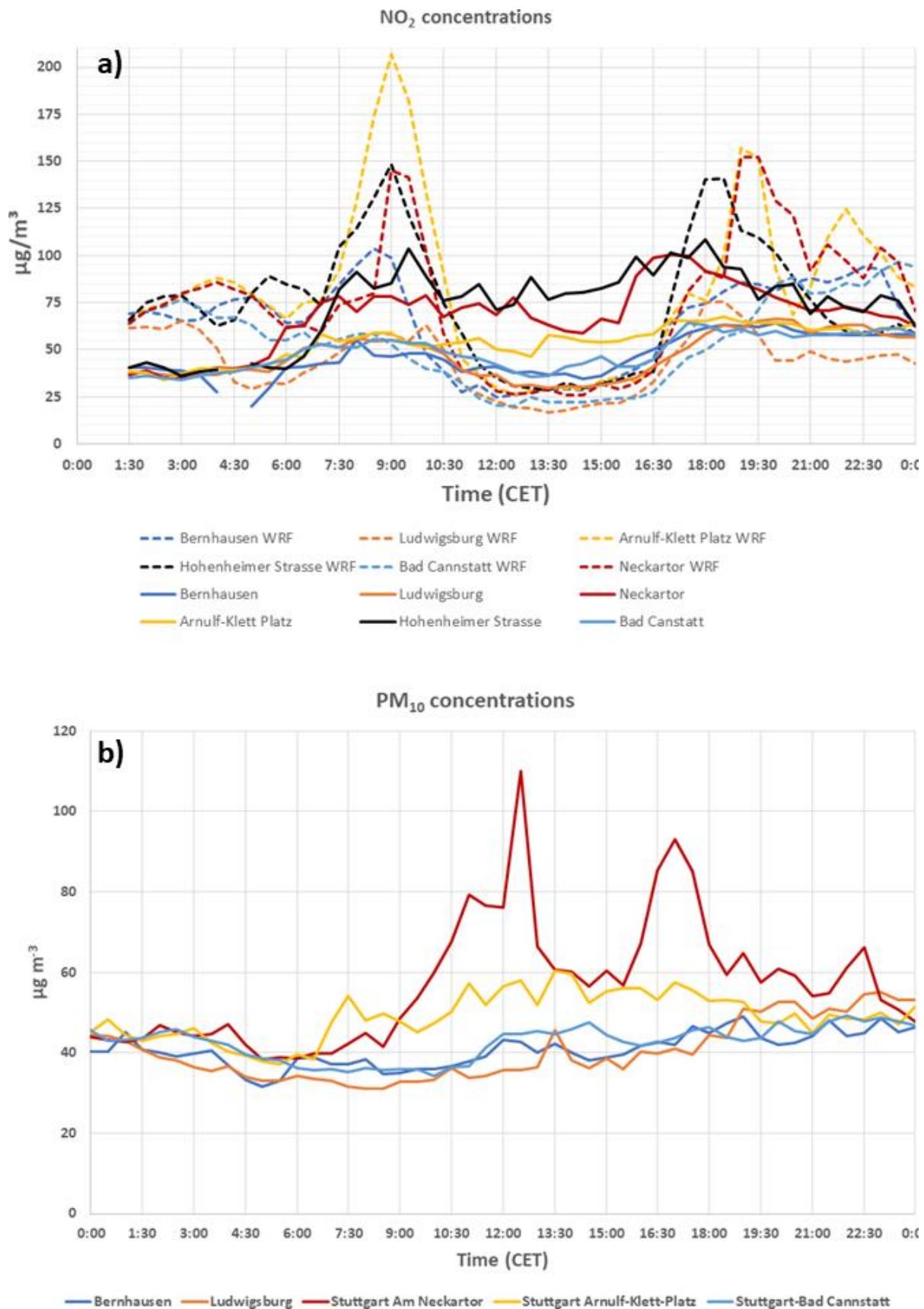


Figure 5: NO₂ (a) and PM₁₀ (b) concentrations at several stations distributed over the model domain on 21 January 2019. The dashed line in (a) denotes the simulated NO₂ concentration and the time zone (CET) corresponds to local time. Measurements at Neckartor, Hohenheimer Strasse, and Arnulf-Klett Platz are directly taken next to the main road.

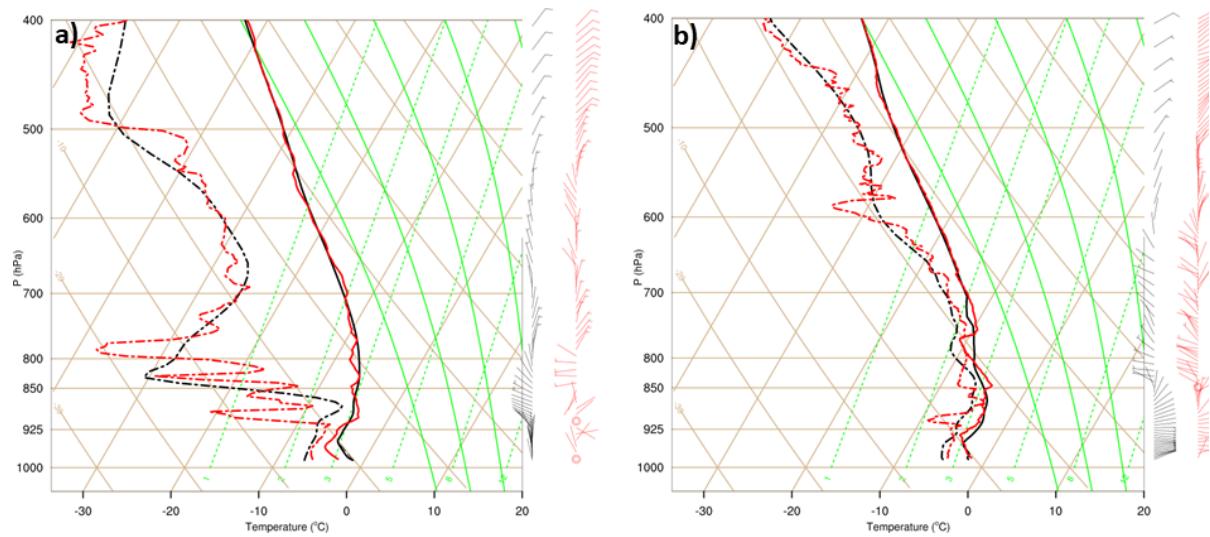



Figure 6: (a) ECMWF operational analysis of 500 hPa geopotential height, sea level pressure (white contour lines) together with 500 hPa wind velocities valid at 00 UTC 21 January 2019. (b) shows the 925hPa equivalent potential temperature together with 925 hPa wind velocities and sea level pressure (white contour lines). Gray areas indicate values below the ECMWF model terrain. The black dot denotes Stuttgart and the reference wind vector length (top right corner of each Figure)) is equal to 25 m s⁻¹.

931

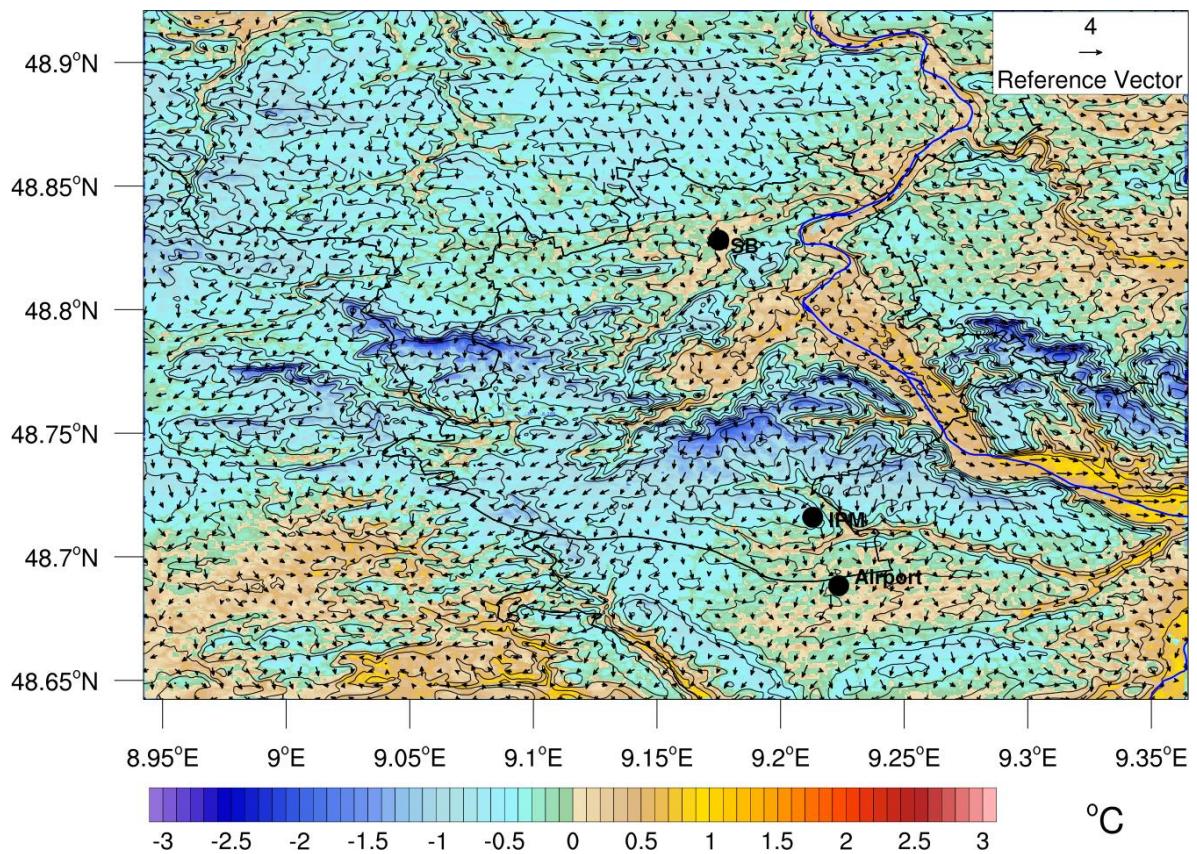

932

Figure 7: Comparison of temperature, dewpoint and wind of the WRF model simulation (black line) and the sounding from Stuttgart-Schnarrenberg (red line) valid at 00 UTC (a) and 11 UTC (b) 21 January 2019. The solid lines denote the temperature profile and the dash-dotted line denotes the dewpoint profile. Wind barbs denote wind speed in m s^{-1} .

933

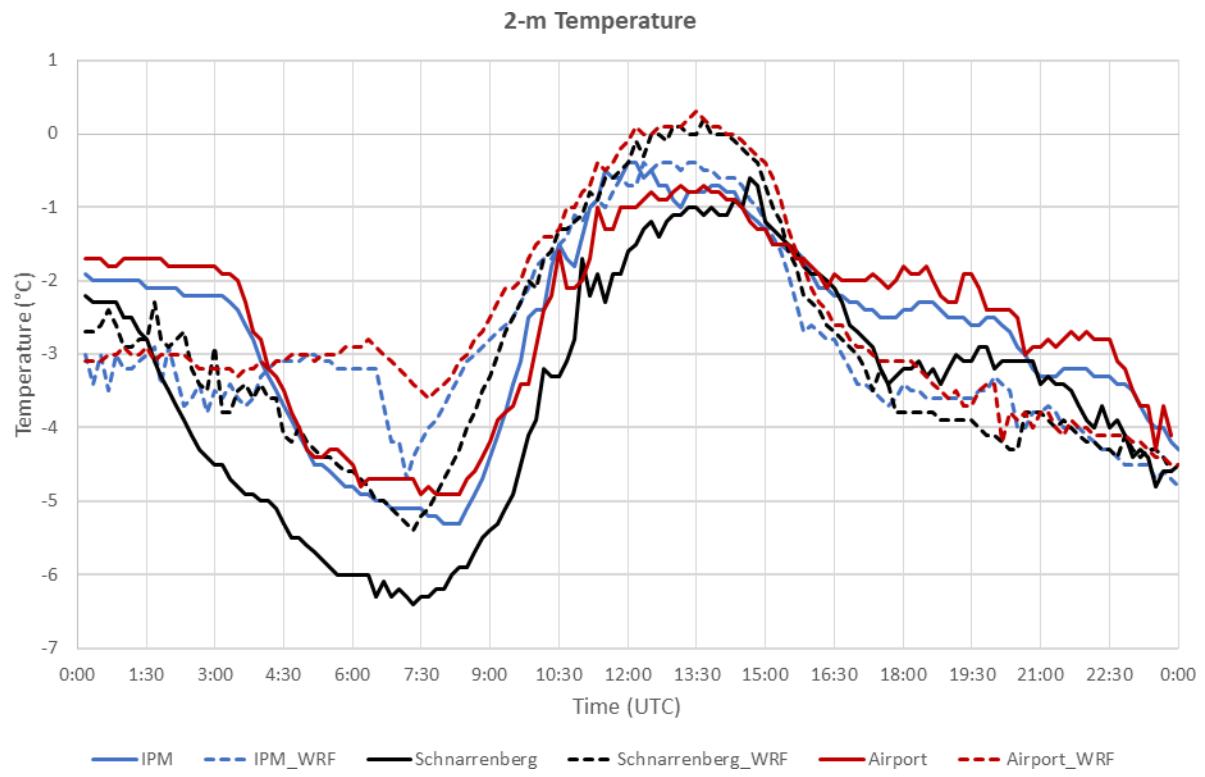

934

Figure 8: 2-m temperature together with 10-m wind velocities at 12 UTC 21 January 2019. The thick black line denotes the Stuttgart city limits and the thin black contour lines denote the terrain. The blue line denotes the Neckar River (River data © OpenStreetMap contributors 2020. Distributed under a Creative Commons BY-SA License).

935

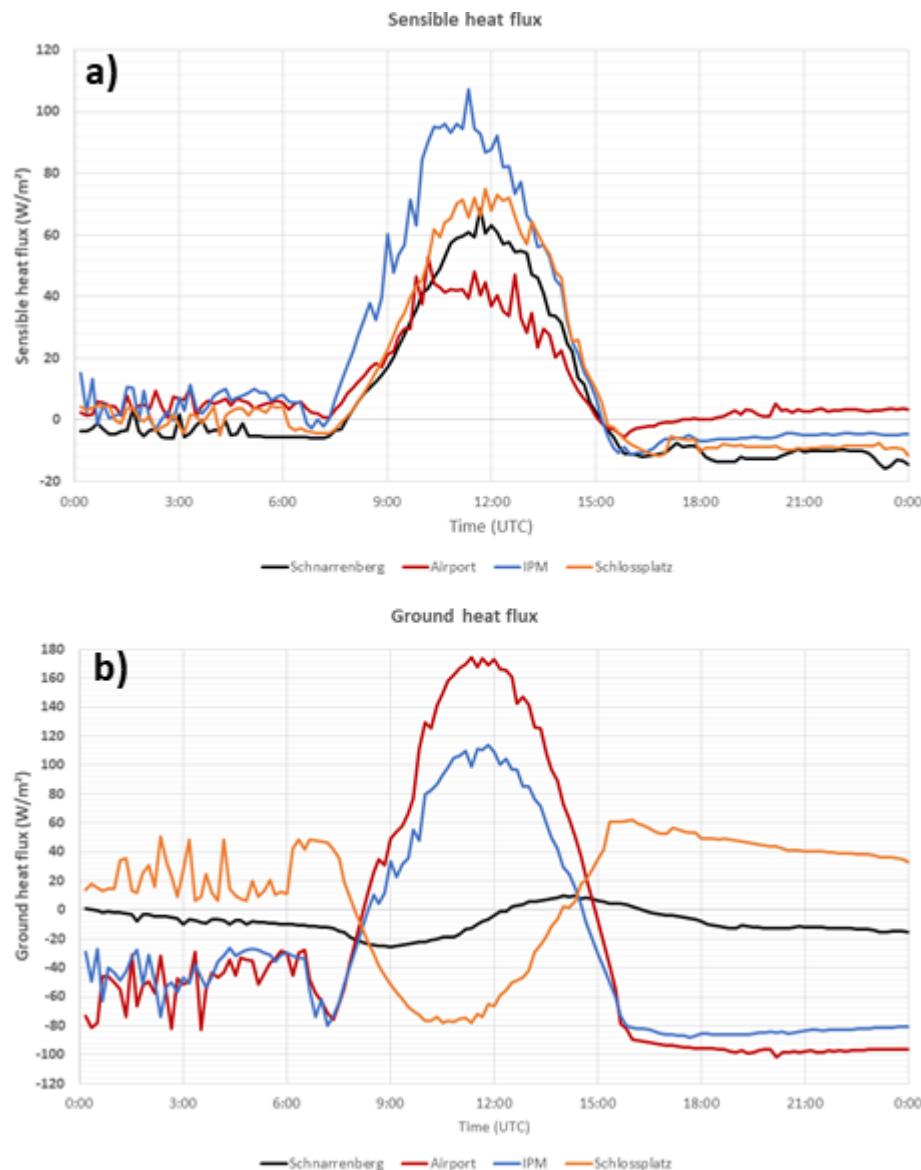
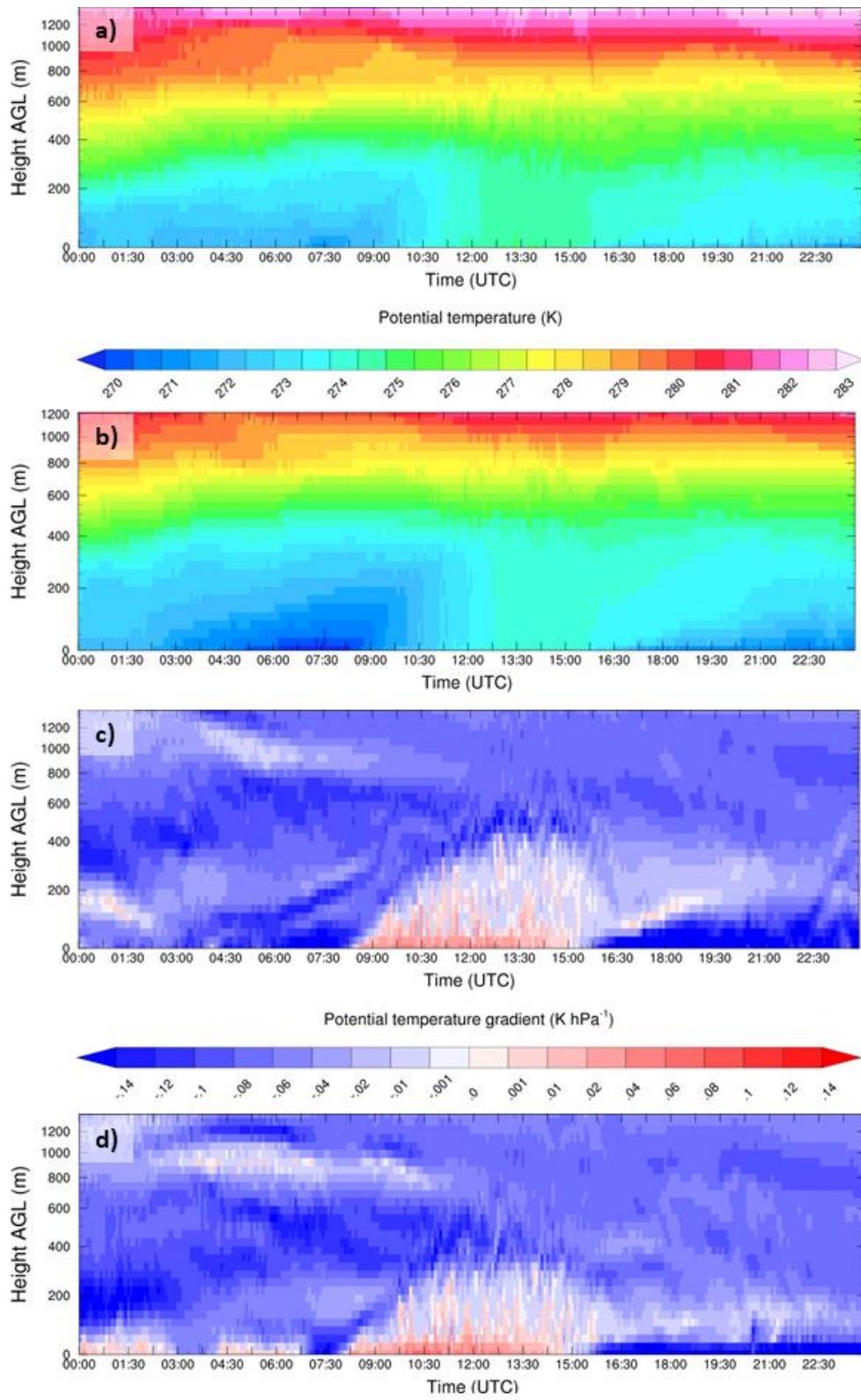
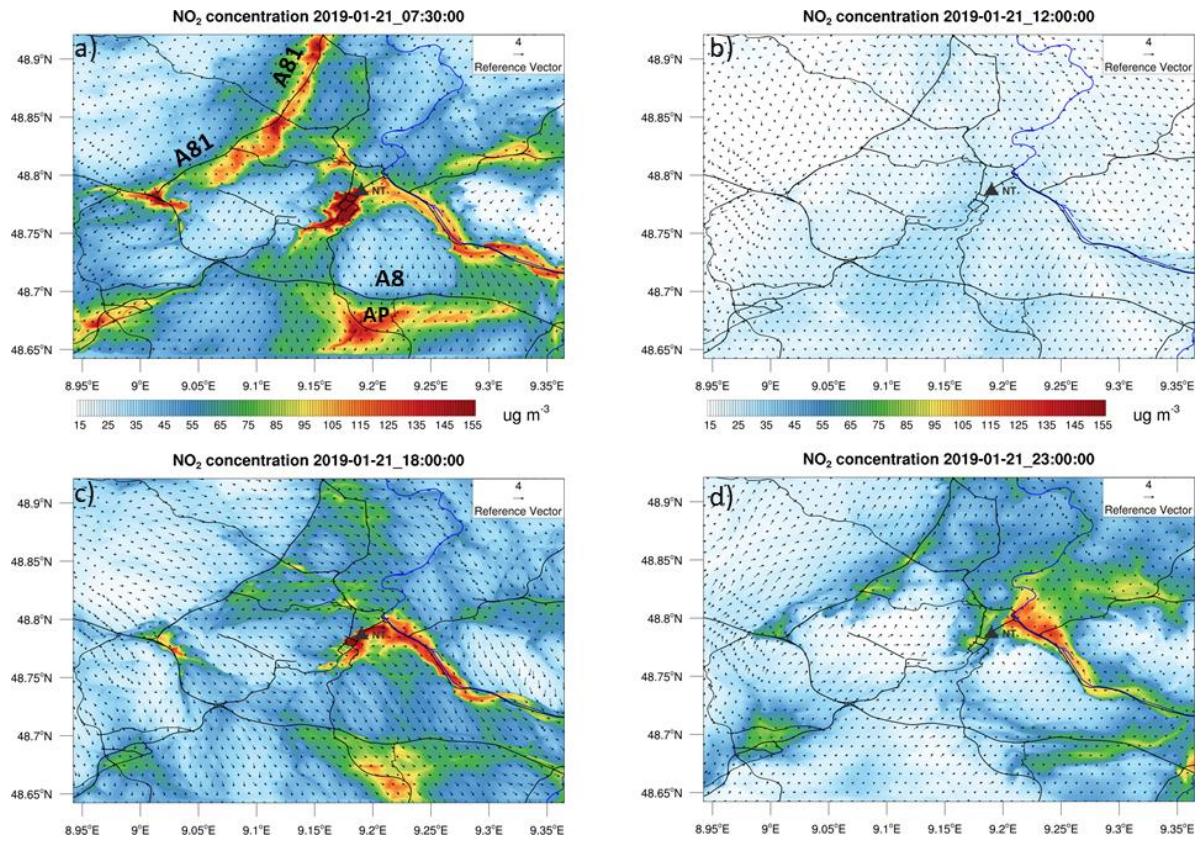

936

Figure 9: Diurnal cycle of 2-m temperatures for the three meteorological stations shown in Fig. 1b. Solid lines denote the observation, dashed lines denote the model simulation. The temporal resolution of the data points is 10 minutes.

937


938


Figure 10: Diurnal cycle of simulated sensible heat flux (SH, a) and ground heat flux (GRDFLX, b) at the four stations Schnarrenberg, Airport, IPM, and Schlossplatz (Fig. 1b). Positive values of GRDFLX indicate fluxes into the soil. The land cover categories are bare soil (airport), croplands (IPM), low-density residential (Schnarrenberg), and high-density residential (Schlossplatz).

939

940

Figure 11: Time-height cross section of the simulated potential temperature at Schnarrenberg (a) and IPM (b). (c) and (d) show the potential temperature gradient at Schnarrenberg (c) and IPM (d). The displayed altitude is above ground level (AGL).

Figure 12: NO₂ concentration at the lowest model level for 07:30 UTC, 12 UTC, 18:00 UTC, and 23 UTC (from a to d) 21 January 2019. The black contour lines denote main roads and motorways in and around Stuttgart (Map Data © OpenStreetMap contributors 2020. Distributed under a Creative Commons BY-SA License). AP denotes the airport, A8 and A81 denote the main motorways around Stuttgart.

942

943

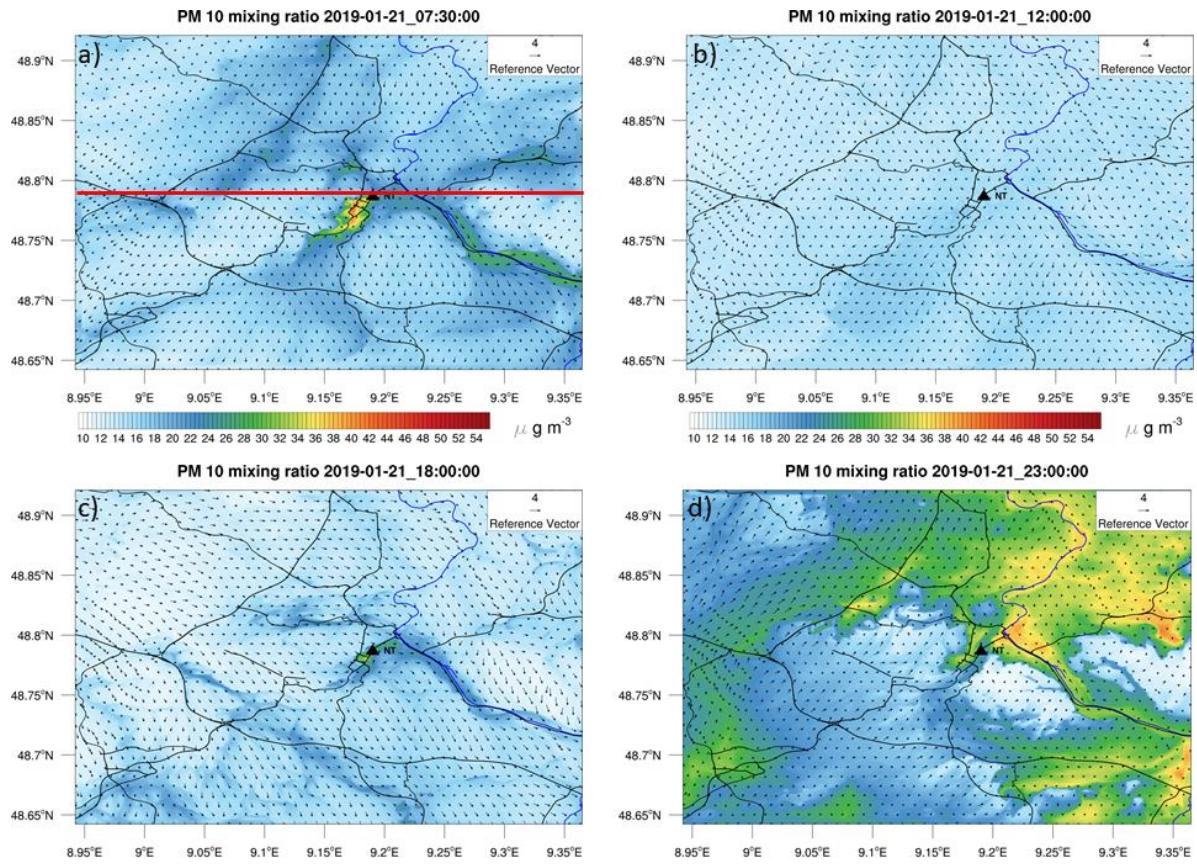
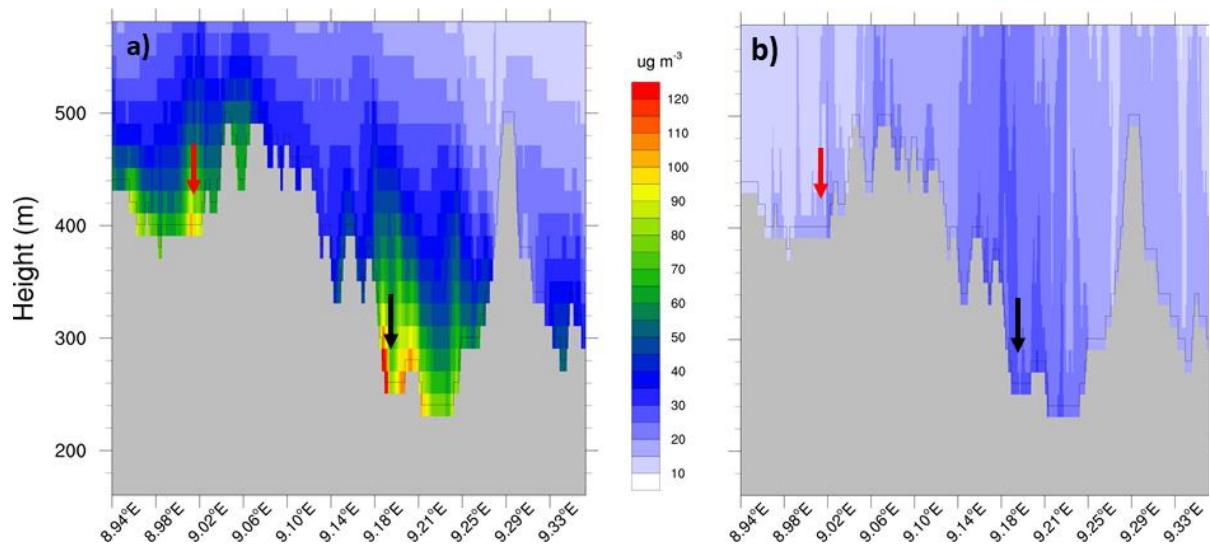



Figure 13: Same as Fig. 12 but for PM₁₀ (Map Data © OpenStreetMap contributors 2020. Distributed under a Creative Commons BY-SA License). The red line in (a) denotes the cross section shown in Figs. 14 and 15.

944

945

Figure 14: West-East cross section through Neckartor displaying the NO₂ concentration at 07:30 UTC (a) and 12 UTC (b), 21 January 2019. The red arrow denotes the motorway A81 and the black arrow denotes the Neckartor location. The black area shows the model terrain above mean sea level.

946

947

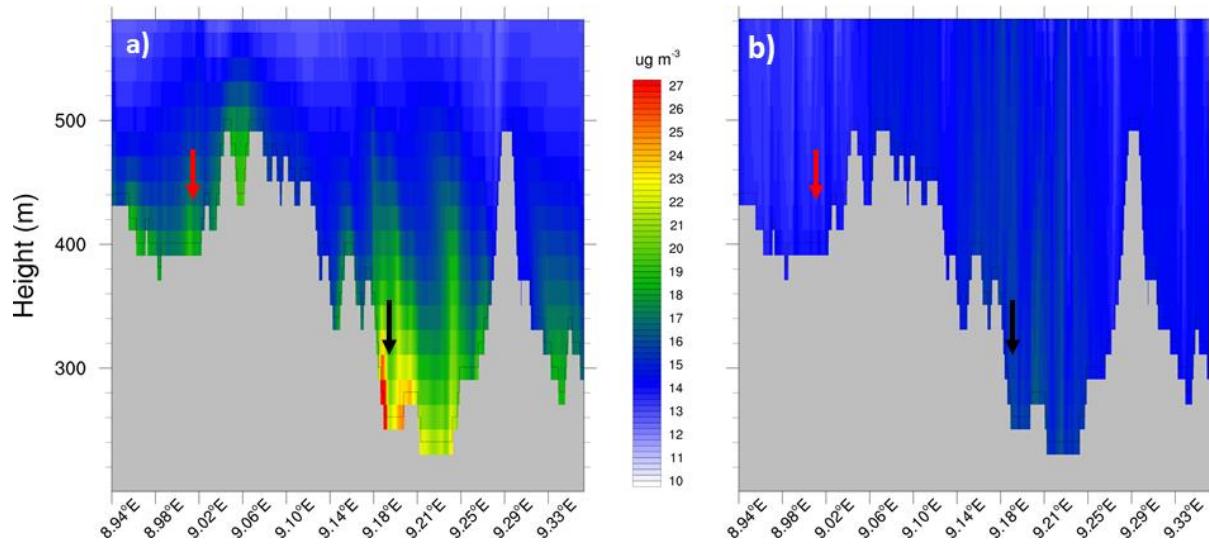
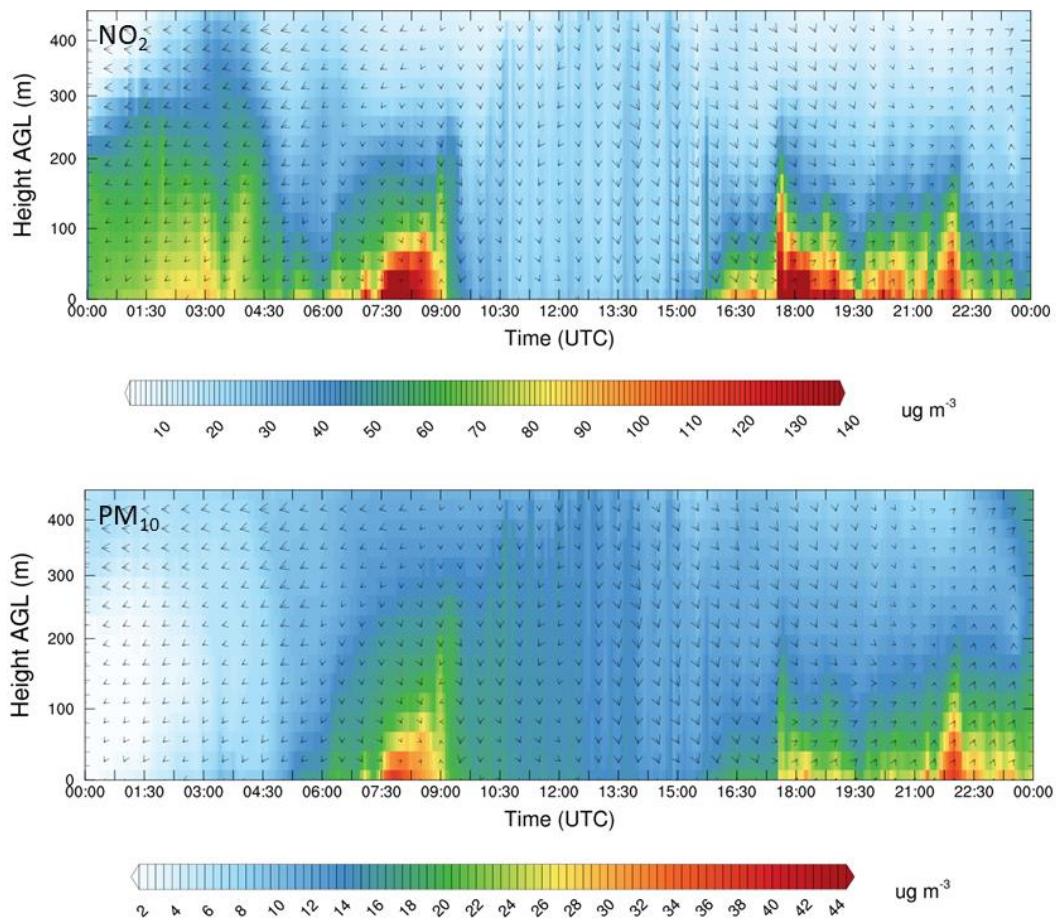



Figure 15: Same as Fig. 14 but for PM₁₀.

948

949

Fig. 16: Time height cross section of NO_2 (top) and PM_{10} (bottom) at Neckartor (NT) up to an altitude of 450 m AGL.

950