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Abstract. Air pollution is one of the major challenges in urban areas. It can have a major impact on human health
and society and is currently a subject of several litigations at European courts. Information on the level of air
pollution is based on near surface measurements, which are often irregularly distributed along the main traffic
roads and provide almost no information about the residential areas and office districts in the cities. To further
enhance the process understanding and give scientific support to decision makers, we developed a prototype for

an air quality forecasting system (AQFS) within the EU demonstration project “Open Forecast™.

For AQFS, the Weather Research and Forecasting model together with its coupled chemistry component (WRF-
Chem) is applied for the Stuttgart metropolitan area in Germany. Three model domains from 1.25 km down to a
turbulence permitting resolution of 50 m were used and a single layer urban canopy model was active in all
domains. As demonstration case study the 21 January 2019 was selected which was a heavy polluted day with

observed PM1o concentrations exceeding 50 pg m.

Our results show that the model is capable to reasonably simulate the diurnal cycle of surface fluxes and 2-m
temperatures as well as evolution of the stable and shallow boundary layer typically occurring in wintertime in
Stuttgart. The simulated fields of particulates with a diameter of less than 10 um (PMsgo) and Nitrogen dioxide
(NOy) allow a clear statement about the most heavily polluted areas apart from the irregularly distributed
measurement sites. Together with information about the vertical distribution of PM1o and NO, from the model,
AQFS will serve as a valuable tool for air quality forecast and has the potential of being applied to other cities

around the world.
1. Introduction

Currently more than 50 % of the global population live in cities whereas the United Nations (UN) expect a further
increase by about 10 % in 2030 (UN, 2018). The UN also expect that in 2030 34% of the world population will

reside in cities with more than 500 000 inhabitants.

Due to a strong increase of road traffic in major European cities (Thunis et al., 2017), pollution limits are often
violated in larger cities. E.g. for particulate matter with particle diameters less than 10 um (PM1o), the critical value
is an annual mean concentration of 20 ug m or a daily mean value of 50 ug m= (WHO, 2005). For Nitrogen

dioxide (NO) the critical values are 200 g m™ and 40 pg m as daily and annual mean values, respectively.
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The violation of these pollution limits canlead to health and environmental problems and is currently part of several
litigations e.g. at the German Federal Administrative Court dealing with possible driving bans for non low-
emission vehicles. The basis for these litigations are mostly few local, unevenly distributed observations which .
In combination with special meteorological conditions like winter time thermal inversion layers it can be
misleading to conclude about the overall air quality in the city only from single observations. According to e.g.
the German Federal Immission Control Ordinance® it is sufficient that traffic related measurements are
representative for a section of 100 m, but this is not representative for the commercial and office districts in the
cities that are suffering from traffic control in case of fine dust alerts and residential areas. Namely in residential

areas health protection action plans require representative air quality measures.

Therefore, it becomes important to apply a more scientifically valid approach by applying coupled atmospheric
and chemistry models to predict air quality. Regional and global atmospheric models like the Weather Research
and Forecasting (WRF) model (Skamarock et al., 2019), the Consortium for Small Scale modeling (COSMO;
Baldauf et al., 2011), the Icosahedric Nonhydrostatic model (ICON; Zéngl et al., 2015), or the Regional Climate
Model system (RegCM4; Giorgi et al., 2012) are often used to force offline chemistry transport models like
CHIMERE (Mailler et al., 2017), LOTOS-EUROS (Manders et al., 2017), EURopean Air Pollution Dispersion
(EURAD; Memmesheimer et al., 2004), and Model for OZone And Related chemical Tracers (MOZART)
(Brasseur et al., 1998; Horowitz et al., 2003).

Several studies showed that combining an atmospheric model with an online coupled chemistry component is a
suitable tool for air quality and pollution modeling in urban areas at the convection permitting (CP) resolution
(Fallmann et al., 2014; Kuik et al., 2016; Zhong et al., 2016; Kuik et al., 2018; Huszar et al., 2020) .

Compared to chemical transport models, coupled models like WRF-Chem (Grell et al., 2005), COSMO-ART
(Vogel et al., 2009), ICON-ART (Rieger et al., 2015), and the Integrated Forecasting System (IFS) MOZART
(Flemming et al., 2015) allow for a direct interaction of aerosols with radiation leading to a better representation

of the energy balance closure at the surface as it would be the case when applying an offline chemistry model.

As usually the terrain and land cover over urban areas show fine scale structures which are not resolved even by a
CP resolution, there is a need for turbulence permitting (TP) simulations with horizontal grid increments of a few
hundred meters or even less. Important features are, e.g., urban heat island effects (Fallmann et al., 2014; Fallmann
et al., 2016; Garcia-Diez et al., 2016; Li et al., 2019) and local wind systems like mountain and valley winds due
to differential heating (Corsmeier et al., 2011; e.g. Jin et al., 2016). Also, micro- and mesoscale wind systems can
develop due to urban structures and the heterogeneity of the land surface. It is well known that TP simulations are
a promising tool to further enhance the understanding of processes in the atmospheric boundary layer (Heinze et
al., 2017b; Panosetti et al., 2016; Heinze et al., 2017a; Bauer et al., 2020) in urban areas (Nakayama et al., 2012;
Maronga et al., 2019; Maronga et al., 2020).

In order to further enhance the quality of the simulations, building and urban canopy models (UCM) are developed
(Martilli et al., 2002; Kusaka and Kimura, 2004; Salamanca and Martilli, 2010; Maronga et al., 2019; Scherer et

al., 2019; Teixeira et al., 2019). The main purpose of UCMs is to provide a better description of the lower

lhttps://www.gesetze-im-internet.de/bimschv _39/anlage 3.html
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boundaries over urban areas such as building, roof and road geometries and their interactions with atmospheric

water vapor, wind, and radiation.

With the EU-funded project Open Forecast (https://open-forecast.eu/en/) it was intended to develop a prototype
for an air quality forecasting system (AQFS) for the Stuttgart metropolitan area in southwest Germany. Open
Forecast is a demonstration project to show the potential of open data combined with supercomputer resources to
create new data products for European citizens and public authorities. The long-term goal is to provide end users
and political decision-makers a useful tool, particularly considering further urbanization, heat island effects as well

as potential driving restrictions due to recent EU decisions on emission limits.

For our AQFS we use the WRF-Chem NWP model (Grell et al., 2005; Skamarock et al., 2019) as the WRF model
is extensively evaluated over Europe at different time scales and horizontal resolutions (San José et al., 2013;
Warrach-Sagi et al., 2013; Milovac et al., 2016; Lian et al., 2018; Molnér et al., 2019; Bauer et al., 2020; Coppola
et al., 2020; Schwitalla et al., 2020). It can easily be set up in a nested configuration over all regions of the Earth.
Compared to PALM-4U model, the nested model domains are driven by the full atmospheric and chemical
information from the parent domain along its lateral boundaries. Also, it contains well-characterized combinations
of parameterizations of turbulence and cloud microphysics in the outer domain that are consistent with the inner
TP domains where the high-quality cloud parameterization remains. No switch between different model systems
is required, which is expected to provide a great advantage with respect to the skill of air pollution and

meteorological forecasts.

To enhance the forecast skill, suitable variational and ensemble-based data assimilation systems are already in
place to further improve the meteorological initial conditions (Barker et al., 2012; Zhang et al., 2014; Kawabata et
al., 2018; Thundathil et al., 2020) and the chemical initial conditions (Chen et al., 2019; Sun et al., 2020) but this

is beyond the scope of our study.

The Parallelized Large-Eddy Simulation Model (PALM) model (Maronga et al., 2015) is another widely used TP
simulation model over Europe. PALM did not include the full interaction between land-surface, radiation, cloud
microphysics and chemistry during the performance of our study. The very recent version 6.0 of PALM-4U
(PALM for urban applications) (Maronga et al., 2020) is expected to contain a fully coupled chemistry module
(Khan et al., 2020).

Fallmann et al. (2016) and Kuik et al. (2016) performed air quality simulations with WRF-Chem over the cities of
Berlin and Stuttgart on a CP resolution down to 1km and less than 40 model levels. They used the TNO-MACC
emission inventory (Kuenen et al., 2014) which is available as an annual totals on a 7 km x 7 km resolution. As
the topography of Stuttgart is very complex, the AQFS applies the WRF-Chem model on a turbulence permitting
horizontal resolution using 100 model levels to account for the shallow boundary layer occurring during
wintertime. In addition, we applied a local emission data set from the Baden-Wirttemberg State Institute for the
Environment, Survey and Nature Conservation available as annual mean on a horizontal resolution of 500 m x 500

m to resolve fine-scale emission structures.

Our study focuses on the methodology how to set up a AQFS prototype by using WRF-Chem and its application
to a typical wintertime situation in the Stuttgart metropolitan area. The manuscript is set up as follows: section 2

describes the design of our AQFS model system on the turbulence permitting resolution of 50 m followed by a

3
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description of the selected case study. Section 4 shows the results including a discussion, sect. 5 summarizes our

work and provides an outlook on potential future enhancements of the AQFS prototype.

2. AQFS design
2.1. WRF model set-up

For our AQFS, we selected the Advanced Research WRF-Chem model in version 4.0.3 (Grell et al., 2005;
Skamarock et al., 2019). To reach the targeted resolution of 50 m, three model domains have been applied with
horizontal resolutions of 1250 m, 250 m, and 50 m and encompasses 800*800 grid cells in the outer domain and
601*601 grid cells in the two inner TP domains. The reasons to start with a resolution of 1250 m in the outermost
domain is 1) to avoid the application of a convection parametrization which can deteriorate the model results (Prein
et al., 2015; Coppola et al., 2020), 2) that the model starts to partially resolve turbulent structures whilst a PBL
parametrization is still necessary (Honnert and Masson, 2014; Honnert et al., 2020), and 3) to reach the target

resolution with a nesting ratio of 5:1. The areas of model domain 1 and 3 are shown in Fig. 1.

As seen from Fig. 1b, the Stuttgart metropolitan area is characterized by an elevation variation of more than 300
m. The lowest elevation is approx. 220 m in the basin while the highest elevation reaches up to 570 m. As the main
traffic roads are in the basin, especially during wintertime this often leads to a worsening of the air quality as the

surrounding prevents an air mass exchange due to the stationary temperature inversion.

For the WRF model system land cover and soil texture fields are not available at resolutions higher than 500m.
Therefore we reclassified land cover data from the Copernicus CLC 2012 data set (European Union, 2012),
available on a resolution of 100 m, from the original 44 categories to the categories applied in the WRF model for
the simulations of the outer 2 domains. For the innermost model domain, we incorporated the most recent high-
resolution land-cover data set from the Baden-Wirttemberg State Institute for the Environment (LUBW), which

is derived from Landsat (Butcher et al., 2019) in 2010 and is available at 30 m resolution (https://udo.lubw.baden-

wuerttemberg.de/public/) This data set was also reclassified to the corresponding land cover categories used in
WRF and is shown in Fig. 2.

The resolution of the provided default Food and Agriculture Organization of the United Nations (FAO) soil texture
data is only 10 km, therefore we used soil texture data from the International Soil Reference and Information
Centre (ISRIC) SoilGrids project (Hengl et al., 2014; Hengl et al., 2015). These data are available on a resolution
of 250 m. Terrain information was provided by the National Center for Atmospheric Research (NCAR) derived
from the Global multi-resolution terrain elevation data 2010 (GMTED2010) data set (Danielson and Gesch, 2011)
for domain 1. As the horizontal resolution of the GMTED2010 data set is 1 km, the 3” gap-filled Shuttle Radar
Topography Mission (SRTM) data set (Farr et al., 2007) is used for domain 2. As this resolution is still too coarse
for our targeted resolution of 50 m, the Digital Elevation model Europe (EU-DEM; European Union, 2017),

available at a resolution of 25 m, is used for the innermost domain.

In our set-up, we use 100 vertical levels for all domains using the traditional terrain following coordinate system
in WRF; 20 of the levels are distributed in the lowest 1100 m above ground level (AGL). All domains apply the
Noah-MP land surface model (Niu et al., 2011; Yang et al., 2011), the revised MMD5 surface layer scheme based
on Monin-Obukhov similarity theory (Jiménez et al., 2012), the Thompson 2-moment cloud microphysics scheme
(Thompson et al., 2008) and the Rapid Radiative Transfer Model for GCMs (RRTMG; lacono et al., 2008) for

4
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parametrizing longwave and shortwave radiation. Due to the coarser resolution of the outermost domain, we
applied the Yonsei University (YSU; Hong et al., 2006) planetary boundary layer (PBL) parametrization in D01
only. As suggested by the WRF user guide, we applied the sub-grid turbulent stress option for momentum

(Kosovic, 1997) in domains two and three. The complete namelist settings are provided in the supplement.

The more sophisticated Building Effect Parameterization (BEP; Martilli et al., 2002) is not applied as this scheme
does not work with our selection of parametrizations. Instead, the single layer urban canopy model (UCM) (Kusaka
and Kimura, 2004) is selected to improve the representation of the urban canopy layer and the surface fluxes. The
parameters needed by the UCM are read in from the lookup table URBPARAM.TBL which was adjusted for the
Stuttgart area following Fallmann (2014).

Atmospheric chemistry is parametrized by the Regional Acid Deposition Model 2nd generation (RADM2) model
(Stockwell et al., 1990). RADM2 features more than 60 chemical species and more than 135 chemical reactions
including photolysis. Aerosols are represented by the Modal Aerosol Dynamics Model for Europe (MADE) and
Secondary Organic Aerosol Model (SORGAM) scheme (Ackermann et al., 1998; Schell et al., 2001) considering
size distributions, nucleation, coagulation, and condensational growth. The combination of RADM2_MADE-
SORGAM is a computationally efficient approach and is widely used for simulations over Europe (Forkel et al.,
2015; Mar et al., 2016). To further enhance vertical mixing of CO to higher altitudes during nighttime over urban
grid cells, the if-statements in the dry deposition driver of WRF-Chem at lines 690 and 707 have been deleted

according as shown in the supplement of Kuik et al. (2018).

Compared to a previous study from (Fallmann et al., 2016), who performed simulations over the Stuttgart
metropolitan area using WRF-Chem on a CP resolution of 3 km, or the study of (Kuik et al., 2016) who performed
a three month simulation at different resolutions over Berlin, simulations on the TP resolution provide a much
more realistic representation of the land-cover structures (see Fig. 2 in this paper and e.g. Fig. 2b in Fallmann et
al. (2016)). As the climate in the Stuttgart metropolitan area is strongly influenced by the topography, we are
convinced that our special combination of a TP resolution and high-resolution emission data (see section 2.3) will

lead to a better understanding and prediction of the air pollution situation in this area.

Currently, air pollution modeling with WRF-Chem is a computationally expensive task. Depending on the number
of output variables and frequency (5 min in our study), a 24 h simulation currently takes around 36 h wall clock
time. For future experiments it is worth to try the 1/0 quilting option in combination with PNetCDF which should

considerably reduce the time spent on 1/0O.

While the WRF model itself is ready for hybrid parallelism (MP1 + OpenMP), the WRF-Chem model can only be
used with MPI. If WRF-Chem could be enhanced for additional OpenMP capabilities, this would lead to an

increase in computation speed almost linear with the number of OpenMP threads.

Due to the complexity of the chemistry model in combination with the very high horizontal resolution and the
calm meteorological conditions, the adaptive model time step option was chosen instead of a fixed time step.

Model output is available in 5 min intervals for the innermost model domain.

Our single day case study on the turbulence permitting (TP) scale is designed to serve as a test bed to set up an air
quality forecasting system prototype for the Stuttgart metropolitan area. For process studies, the model chain itself

can be applied to other areas over the globe as long as 1) detailed land cover and soil texture data are available, 2)
5
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high-resolution emission data not only from traffic are available. The new model system can be even applied in a
forecast and warning mode, if near real time emission data exist. As the computational demands of applying WRF-

Chem on the TP scale are very high, access to an HPC system is a prerequisite.
2.2. Model initialization

The meteorological initial and boundary conditions were provided by the operational ECMWF integrated
forecasting system (IFS) analysis on model levels. The IFS is a global model with 9 km horizontal resolution and
applies a sophisticated four-dimensional variational (4DVAR) data assimilation system (Bonavita et al., 2016).
The data have been retrieved from the ECMWF Meteorological Archival and Retrieval System (MARS) and were

interpolated to a resolution of 0.05°.

The initialization and provision of the boundary conditions of the chemistry of the model is done with data from
the Whole Atmosphere Community Climate Model (WACCM; Marsh et al., 2013) using the Model for Ozone and
Related Chemical Tracers (MOZART) conversion tool MOZBC (Pfister et al., 2011). As the resolution of
WACCM is very coarse, the input data was enhanced by the ECMW(F Copernicus Atmosphere Monitoring Service
(CAMS) reanalysis data set on 60 model levels and 40 km horizontal resolution (Inness et al., 2019).

2.3. Emission data

The emission data set used in this study is a combination of three products. Global input data sets containing
coarse resolution emissions from different sources are obtained from the BRAMS numerical modeling system
(Freitas et al., 2017).The PREP-CHEM-SRC tool (Freitas et al., 2011) is then applied as pre-processor to convert
these emissions to the appropriate WRF units and interpolate the data onto the WRF model grid.

As global emission data sets have a very coarse resolution in space and time, higher resolution emission data for
Europe from the Copernicus Atmosphere Monitoring Service (CAMS; Copernicus) CAMS-REG-AP product
became available (Granier et al., 2019). Its resolution is approx. 7x7 km and it is based on total annual emissions
from 2016. This product provides emissions of PM1o, PM25, SO2, CO, NOyx, and CH4 and contains sources from
different sectors, separated into ten different categories following the Gridded Nomenclature For Reporting
(GNFR; Granier et al., 2019).

The third emission data set (BW-EMISS) deployed in our study was obtained from the Baden-Wurttemberg State
Institute for the Environment (LUBW). This data set contains annual mean emissions from different sectors
following the GNFR classification and is currently available only until 2014 and has a horizontal resolution of 500
m. Unfortunately, more recent quality-controlled data sets were not available when our study was performed. It is

expected that annual emissions for 2018 will become available by mid of 2021.

As CAMS-REG-AP and BW-EMISS only contain annual sums or annual mean values, a temporal decomposition
was applied for both data sets following Denier van der Gon et al. (2011). Depending on the GNFR code, the data
are first projected onto the corresponding month, followed by the corresponding day of the week and the hour of
the day. A similar approach was performed e.g. in Resler et al. (2020, under review) for the city of Prague. After
finishing the decomposition, the data are converted to the corresponding units and interpolated onto the WRF

model grid using the Earth System Modeling Framework (ESMF; Valcke et al., 2012) interpolation utilities.
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Figure 3 shows an example of the NO emissions derived from the CAMS-REG-AP product (left) and the emission
data derived from the LUBW data set (right) on January 21, 2019 at 07 UTC.

Due to its much higher horizontal resolution, the BW-EMISS data set (Fig. 3b) shows much more detailed
structures for the NO, emissions which are mainly caused by road traffic. The average emissions for this particular
time step are 2 mol km h! for the CAMS-REG-AP data set and 7 mol km h-? for the BW-EMISS data set.

In addition, the following adjustments have been performed: 1) NOx emissions from forest grid cells have been
reduced by 90 %, 2) Road traffic NOy emissions were transformed into 90 % NO and 10 % NO, emissions
following Kuik et al. (2018) 3) All emissions from Stuttgart airport were reduced by 90 % during the nighttime
flight ban between 00 UTC and 04 UTC as well as after 21 UTC.

The WRF-Chem model only ingests one emission data set per species, hence emissions from the different GNFR
categories have been accumulated to a single emission data set before performing the simulation. Figure 4

summarizes all necessary steps and the complete data and workflow of the AQFS prototype.
2.4. Observations

We used data from three meteorological stations (Stuttgart-Schnarrenberg (48.8281°N 9.2°E, elevation 314 m),
Stuttgart Airport (48.6883°N 9.2235°E, elevation 375 m), and Institute of Physics and Meteorology (IPM) at the
University of Hohenheim (48.716°N 9.213°E, elevation 407 m) to validate the simulated 2m temperatures; data
are available every 10 minutes. The locations are indicated by the black dots in Fig. 1b. In addition, the radiosonde

data from Stuttgart-Schnarrenberg were used.
3. Case study description

For our study, we selected 21 January 2019. This day was characterized as “fine dust alarm” situation (Stuttgart
Municipality and German Meteorological Service (DWD), 2019) which is defined by a combination of the

following criteria:

1. Expected daily maximum PMjo concentration at Stuttgart Neckartor (NT in Fig. 1b) is higher than 30 g
m—3

No rain on the following day

10-m wind speed less than 3 m s from south to northwest directions (180-330 °)

Nocturnal atmospheric inversion

Mixing layer depth less than 500 m during the day

2 O

Daily average 10-m wind speed less than 3 m s from all directions

A sufficient criterion is a higher PM1o concentration following (1). If (1) is not fulfilled, then (2) and (3) together
with either (4) and/or (5) has to be fulfilled. If only (4) or (5) is fulfilled, then (6) has to be considered. For our

case study, the criteria 1-5 were fulfilled.

The thick lines in Fig. 5 shows the observed PM1o and NO; concentrations at several stations in our model domain.
From Fig. 5a the high NO, concentrations at Neckartor and Hohenheimer Strasse occurring after sunrise can be
clearly identified. While these measurements are taken next to main roads, the other stations show considerably

lower NO; concentrations throughout the day. The PMao concentrations (Fig. 5b) show extremely high values at

7
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Neckartor exceeding 100 pug m around noon time and the evening rush hour which clearly meets the main criteria
of the “fine dust alarm situation”. The other stations, which are not directly taken near main roads with heavy

traffic show considerably lower PM1o concentrations around 40 ug m= .

This day was a typical winter weather situation. Central Europe was located at the east flank of a blocking high
pressure system located over the East Atlantic together with moderate to low horizontal geopotential gradients and

resulting weak winds at 500 hPa in southwestern Germany (Fig. 6a).

Near surface temperatures are below freezing level, between 1000 and 850 hPa very light easterly winds
characterize the flow, and a dry layer is present around 925 hPa (Fig. 6b). Above 850 hPa, the wind direction

rapidly changes to westerly directions, but the wind speeds remain below 5 m s (see Fig. 7a).

The inversion between the two air masses inhibits vertical mixing leading to higher concentrations of aerosols in
the lowest few hundred meters above ground (AGL) and preventing air mass exchange aloft. This inversion is

further enhanced by the special orography of Stuttgart city (see later Fig. 15).

4, Results and Discussion

4.1. Meteorological quantities

Figure 7a shows a Skew-T diagram of the model initial conditions (black line) at Stuttgart-Schnarrenberg valid at

00 UTC 21 January 2019 in comparison with the observations (red line).

The initial conditions agree well with the sounding showing a weak temperature inversion around 900 hPa with
high relative humidity values up to 650 hPa. The observed and simulated lifting condensation level is 940 hPa and
the integrated water vapor (PWAT) is 8 mm. Wind speed and direction agree with the observations showing a

wind shear above 850 hPa associated with low wind speeds of less than 5 m s,

To further evaluate the stratification conditions during the day, Figure 7b shows the observed and simulated
temperature, dew point, and wind profiles at 11 UTC. The vertical structure of the observation and the simulation
has an almost perfect agreement. The temperature inversion layer at 910 hPa is well captured although the
simulated temperatures below the inversion are too high by about 1.5 K. The humidity profile (expressed as
dewpoint profile) is also very well captured with the largest moisture content below 870 hPa. Wind speed and
direction above 850 hPa agree well with the observation throughout the atmosphere. In regard of the vertical model

resolution, the wind situation in the lowest 1000 m AGL is also reasonably represented.

Figure 8 exemplarily shows the simulated 2-m temperature together with 10-m wind velocities at 12 UTC (noon

time) to display the complexity of the Stuttgart metropolitan area.

The 2-m temperatures show a daytime warming of downtown Stuttgart and the Neckar Valley while still
temperature slightly below 0°C are present at higher elevations (blue colors in Fig. 8). The wind situation is very
complex due to weak wind speeds in combination with a shallow boundary layer (see later Fig. 16) but the wind
flow along the upper Neckar river (south of 48.75°) is strongly pronounced. After sunset, wind speed starts to

decrease and the channeling effect along the Neckar weakens (not shown).

Figure 9 shows an evaluation of the diurnal cycle of 2-m temperatures at the three measurement sites

Schnarrenberg, IPM and airport. Sunrise is at 07 UTC and sunset at 16 UTC and the model data are averaged over

8
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5 grid cells around the measurement site to take into account that even a simulation with 50 m resolution cannot
fully capture the local conditions at the measurement site. The northern station Schnarrenberg shows a lower
temperature throughout the day than the other two stations, which are situated 3 km apart at a similar elevation.

The temperature is about 1 K colder during the day and 0.5 K colder during the night.

At Schnarrenberg, the observed diurnal cycle is reasonably well simulated with WRF. Between 00 and 15 UTC, a
warm temperature bias of 1 K is present in the simulation, which turns into a small negative bias after sunset. At
IPM, the simulation shows a cold bias until 04 UTC turning into a warm bias as the strong temperature drop is not
simulated until 06:30 UTC. After 09 UTC until sunset the simulated temperature agrees well with the observations

while later a cold bias of around 1 K is present.

For the airport station, the model stays too warm with a positive bias of almost 2 K between 05 and 09 UTC.
During the further course of the day, the bias reduces to 1 K at noon while after sunset it turns into a negative bias
of 1 K.

A possible reason for the larger differences at the airport and IPM before (after) sun rise (sun set) is the observed
occurrence of low stratus or fog. At the beginning of the simulation, cloud coverage was reported by 5—7 octas
(broken clouds) over Schnarrenberg and the airport at approx. 500 m AGL (not shown) while after 04 UTC the
low level clouds started to diminish at Schnarrenberg first leading to a strong cooling until the early morning which
is seen as a temperature decrease in the observations shown in Fig. 9. The temperature drop at Schnarrenberg and
IPM is also simulated but with a delay of approx. 2 h. A reason for this delayed temperature drop could be a
simulated thin cloud layer around 1000 m AGL which is present in the lower left and partly the lower right quadrant
of the model domain. This cloud layer slowly moves in a southeasterly direction and starts to dissolve around 06
UTC.

During the evening transition and the following night, the low stratus is developing again at the measurement sites
with a ceiling of 500 m AGL but is not simulated and thus contributes to a stronger cooling in the model. Another
contributing factor to the delayed cloud dissipation could be the turbulence spin-up time (Kealy et al., 2019), but

this is beyond the scope of this study.

Although no measurements of sensible heat and ground heat fluxes are available, diurnal cycles of the fluxes at
the locations IPM, Schnarrenberg, airport, and Schlossplatz were investigated. Figure 10 shows the simulated

surface sensible heat and ground heat flux at the four sites.

The sensible heat flux (Fig. 10a) shows a typical diurnal cycle with fluxes around zero before (after) sunrise
(sunset). During the day, the model simulates typical wintertime sensible heat fluxes between 40 and 100 W/m?
(e.g. Zielinski et al., 2018), which nicely shows a dependency on the different underlying land cover types. Lower
sensible heat fluxes occur over the sparsely vegetated surface at the airport as compared to the cropland station
IPM while the urban locations Schnarrenberg and Schlossplatz shows interjacent values. As the algorithm to
diagnose the 2-m temperature in NOAHMP is rather complex, no clear correlation between SH and the 2-m
temperature shown in Fig. 9 can be made. The latent heat fluxes (not shown) are almost zero at Schnarrenberg and

less than 10 W m2 at the other two locations due to cold and dry winter conditions

The simulated ground heat flux (Fig. 10b) shows an interesting behavior. Until sunrise, the simulated GRDFL X at

the airport and IPM shows fluctuations around -50 W m-? indicating some low levels clouds in accordance with
9
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the too high simulated 2-m temperatures shown in Fig. 9. During the further course of the day, IPM and airport
show a clear diurnal cycle with maximum values between 100 and 170 W m- reflected in the highest surface

temperatures during the day (not shown).

At Schnarrenberg, most of the time the ground heat flux is less than zero indicating a cooling of the soil, while
between 12 UTC and 16 UTC small positive values are simulated. As Schnarrenberg is categorized as low density
residential (category 31) with an urban fraction of 0.5 and the UCM is applied here, energy is mainly stored in the
urban canopy layer instead of being transferred into the soil. At Schlossplatz (high-density residential) the ground

heat flux shows a similar shape but with a larger amplitude as compared to Schnarrenberg.

As this day was characterized by a shallow PBL and a temperature inversion, it is worth to investigate the PBL
evolution during the day. Figures 11a, bshow time-height cross sections of potential temperature at IPM (top) and

Schnarrenberg (bottom).

Both locations are characterized by a very stable shallow boundary layer until 09 UTC with a depth of less than
200 m. Between 03 and 09 UTC the temperatures at Schnarrenberg are up to 1.5 K colder near the surface (Fig. 9)
resulting in a stronger potential temperature gradient up to 400 m AGL compared to the IPM location. During the
day, the boundary layer height increases to 400 m above ground as indicated by the constant potential temperature
(e.g. Bauer et al., 2020) which is a typical value for European winter conditions (Seidel et al., 2012; Wang et al.,
2020). The PBL heights are also visible by the potential temperature gradients (A6) shown in Figs. 11c, d. During
the morning hours, a very shallow boundary layer was simulated at Schnarrenberg (blue colors in Fig. 11c) while
at IPM some fluctuations are present. During daytime, A6 nicely shows the PBL height evolution up to 400 m
AGL, while after sunset the PBL collapses to a very stable layer again (dark blue colors in Figs. 11c, d) with
heights between 50—100 m AGL. Calculating the gradient Richardson number (Ri; Chan, 2008) (not shown) and
assuming a threshold of 0.25 for a turbulent PBL (Seidel et al., 2012; Lee and Wekker, 2016) leads to similar
results After sunset around 15:30 UTC the boundary layer collapses to a night-time stable boundary layer and a

temperature inversion occurred again.
4.2. Air quality

The most relevant air pollutants for air quality considerations in cities are NO2 and PM1o. Sources for these are
mainly truck supply, transit, and commuter traffic through the city as well as advection from motorways south,

west, and northwest of Stuttgart.

As the incorporated emissions are from 2014 and are based on annual values, it cannot be expected that the model
exactly matches the observed concentrations. For instance, the actual traffic, the sequence of traffic lights and
traffic congestions of this particular day cannot be realistically represented. In addition, all diagnosed or prognostic
chemical quantities are only available on model levels (with the lowest model half level being at ~15 m above
ground) but according to studies of Glaser et al. (2003) and Samad et al. (2020) the concentrations of PM1o and
NO; are often constant up to 150—200 m AGL during daytime.

We start with the discussion of the simulated horizontal distributions followed by vertical cross sections of NO,
and PMao.

4.2.1 Horizontal distribution

10
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Figure 12 shows the horizontal distribution of the NO, concentration at the lowest model half level (~15 m AGL)
at the four timesteps 07:30 UTC, 12 UTC, 18 UTC and 23 UTC 21 January 2019.

At 7:30 UTC the morning traffic rush hour is visible in the NO, concentrations in Fig. 12a. High NO;
concentrations of more than 80 pg m= are simulated along the motorway A81 in the northwest of the domain, over
the airport and over downtown Stuttgart. In the Neckar Valley the concentrations exceed 120 pug m=. At noon time
(Fig. 12b), when turbulence is fully evolved (Fig. 11), the simulated NO; concentrations are less than 30 pg m3
on average apparently due to vertical mixing of NO; (see next section). In the evening (Fig. 12c) the simulated
NO; concentrations increase again showing values of more than 100 pg m-3over the airport and more than 150 pg
m=3in downtown Stuttgart and the Neckar Valley due to road and air traffic. The high morning concentrations
along the northwestern motorway are not reached since the wind speed increases and the near surface winds turn
towards a westerly direction. According to the emission data set converted by the temporal factors, the evening
traffic spreads over a longer time. During the night (Fig. 12d), NO, accumulates in the Stuttgart basin as well as
the Neckar Valley due to the very low nocturnal boundary layer height of less than 200 m capped by an atmospheric
inversion (Fig. 11).

Compared to the observed NO- concentrations (Fig. 5a) , the simulated concentrations during the peak traffic times
are too high at Arnulf-Klett Platz, Neckartor and Hohenheimer Strasse. Possible reasons are that either the traffic
is reduced and/or that the vehicle emission classification have been improved since 2014. Another contributing
factor could be that the vertical mixing near the surface is too weak during sunrise and sunset while it appears
slightly too strong during daytime as indicated by the very low simulated NO, concentrations.

Apart from NO;, the concentration of PMjo is an important parameter for air quality considerations and is the
decisive factor for proclaiming a “fine dust alarm” situation in Stuttgart (Stuttgart Municipality and German
Meteorological Service (DWD), 2019).

Figure 13 shows the horizontal distribution of PMjo for the same time steps as shown in Fig 12.

During the morning traffic (Fig. 13a), PM1 accumulates in the Stuttgart basin as this is an area with heavy traffic
during the morning and an atmospheric inversion is present (Fig. 7). Interestingly, the high NO, concentrations
along the motorway (Fig. 12a) do not lead to very high PM1o concentrations potentially due to chemical transitions

caused by low temperatures.

During daytime when turbulence is fully evolved, the concentration of PMio decreases to less than 20 pug m due
to vertical mixing and horizontal transport (see next section). After sunset (Fig. 13c) PMyg starts to accumulate
again in the Stuttgart basin showing concentrations between 35—40 pug m. During the night (Fig. 13d) PMyo
accumulates over a large part of the model domain as the nocturnal boundary layer is very shallow, an inversion
layer is present 200 m AGL and the wind direction changes from north to west. In the configuration we use in our
study, PMy is a diagnostic variable which is a sum of the PM, s concentration (which is around 26 pg m- at 23
UTC) and the other prognostic aerosol species. As the night is very cold with temperatures far below freezing and
the humidity is very high, the high concentrations could imply a very (too) strong deposition or be the result of

dense fog formation due to weak near-surface winds.
4.2.2  Vertical distribution of NO2 and PMuo

In addition to the horizontal distribution of near surface NO, and PMio, TP simulations with a fine vertical

resolution also enable qualitative insights into the vertical distribution of pollutants. Figure 14 shows West-East
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cross sections at Neckartor (Fig. 1b) during the morning rush hour and at noon time. Neckartor is one of the

heaviest traffic locations in the Stuttgart city area.

The NO; concentration during the morning rush hour shows an accumulation along the motorway (red arrow in
Fig. 14a) and in the region around Neckartor (white arrow in Fig. 14a) with concentrations exceeding 100 ug m
as the atmospheric inversion prevents exchange with the layers above (Fig. 7). The vertical extent of concentrations
higher than 30 pg m is about 200 m AGL with a strong reduction above.

During noon time (Fig. 14b), the simulated NO- concentration is much lower (less than 30 ug m) as turbulence
leads to a stronger mixing throughout the boundary layer up to 400 m AGL which is in accordance with the
simulated potential temperature timeseries shown in Fig. 11.

Figure 15a displays the simulated PM1o concentrations during the morning rush hour. Similar like for NO,, higher
concentrations of more than 25 pug m= is simulated along the motorway and in the Stuttgart basin. During the day,
PMyo is vertically mixed showing a clear gradient around 800 m above sea level (ASL) (Fig. 15b) while

concentrations remain between 10-20 pg m within the boundary layer.

Apart from the West-East cross sections it is also worthwhile to investigate the vertical temporal evolution of NO;
and PMyg concentrations. Therefore, Fig. 16 shows time height cross sections of NO; (top) and PMj, (bottom) at

Neckartor.

Well visible are the high simulated NO, and PM1, concentrations during the morning rush hour with peak values
of more than 120 pg m3 NO and more than 40 pg m-2 PMyo. The high concentrations of NO; and PMy, are present
up to around 150-200 m AGL. During daytime, turbulence efficiently mixes the pollutants up to higher altitude
and the near surface concentrations are quickly reduced. During the evening when the very shallow boundary layer
has developed again and evening traffic commences, the particle concentrations increase, and peak values of more
than 30 pg m-3are simulated below 100 m AGL.

5. Summary and conclusion

This paper describes the setup of an AQFS prototype using WRF-Chem for the Stuttgart Metropolitan area.
Because of the complex topography in this region, this simulation system requires a very high horizontal resolution

down to the turbulenc- permitting scale to represent all orographic and land cover features.

For the development of this prototype 21 January 2019 served as test case as this was a typical winter day with an
atmospheric inversion. In addition, this day was characterized as “fine dust alarm” situation where the PMag
concentration at the station Neckartor in the Stuttgart basin was expected to exceed 30 pg m?
(http:/lwww.stadtklima-stuttgart.de/stadtklima_filestorage/download/luft/Feinstaubwerte-2019 AN.pdf). The

model setup encompassed three domains down to a turbulence permitting resolution of 50 m.

The initial conditions were provided by the ECMWF operational analysis, the CAMS reanalysis and WACCM
model for background chemistry. Emission data sets from CAMS-REG-AP and high-resolution data with 500 m
resolution from LUBW were combined to be used in the AQFS. As current emission data sets only provide annual

totals or means, a temporal decomposition following TNO was applied (Denier van der Gon et al., 2011).

For this case study, we focused on the results with respect to 2-m temperature, surface fluxes and boundary layer

evolution as well as horizontal and vertical distributions of NO, and PMyo.
12
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Our results revealed that despite the complex topography in Stuttgart, the model is in general capable to simulate
a realistic diurnal cycle of 2-m temperatures although, compared to observations, differences of up to 1 K occur.
Apparently the model has difficulties with the dissolution of low stratus clouds between 03 and 06 UTC which
was also reported in the work of Steeneveld et al. (2015) resulting in a warm 2-m temperature bias during the
morning. Although no measurements are available, the surface sensible heat fluxes show a clear diurnal cycle with
the magnitude clearly depending on the underlying land cover type. The low simulated ground heat flux and its
fluctuations between 00 UTC and sunrise partially confirm the fog dissolution issue but more test cases are needed
for a more detailed investigation. Over grid cells where the single layer UCM is active, most of the ground heat
flux is stored in the canopy layer thus not transferred into the soil. The high vertical resolution of 100 levels enables
a realistic representation of the nocturnal and daytime temperature inversion with an accompanying shallow

boundary layer of less than 400 m during the day.

The simulation of PM10 shows an exceedance of the 30 pg m concentration threshold close to the Neckartor
station and also fulfills the other fine dust alarm criteria shown in section 3. Compared to the usually unevenly
distributed air quality measurements, the AQFS allows further insights into the spatio-temporal pollutant
distribution. The horizontal distributions of NO, and PMyo at this particular day clearly indicate the main polluted
areas along the motorways and in the Stuttgart basin. The special orography of Stuttgart with its basin favors the
accumulation of NO2 and PMy in the morning and evening while the pollutants are well mixed to around 200-400

m AGL when the boundary layer is fully evolved.

The simulation also shows that pollutants can be advected from the motorway A81 towards Stuttgart, depending
on the wind situation, potentially leading to an increase of the NO; and partially PM1o concentrations in the
Stuttgart basin. As can be seen from Figs. 12 and 13, the Neckar Valley can also have a large impact on the
pollutant concentration in the Stuttgart basin in case an atmospheric inversion together with prevailing easterly

winds is present.

This is, to our knowledge, the first study of applying WRF-Chem on a TP resolution for an urban area. To derive
more robust conclusions with respect to air pollution, more cases studies with different weather situations during
winter and summer time are necessary. Nevertheless, our evaluation gives the following indications to further

improve the quality of such simulations:

I.  Applying high spatial and temporal resolution gridded emission data from all pollution sources in near
real time to avoid extrapolating annual emissions to individual days.. This will help to enhance the
simulation of the diurnal cycles of chemical species.

Il. Improving the chemical background e.g. by applying higher resolution products from the CAMS
European Air quality project (Marécal et al., 2015). This will help to have a more detailed structure of
the chemical constituents beneficial for subsequent downscaling simulations.

1. Using a longer spin-up period and applying a larger TP model domain to further improve the spin-up of
turbulence in the model
(\VA Considering vertical distribution of surface emissions (e.g. Bieser et al., 2011; Guevara et al., 2020)

V. Considerably increase the number of pollutant measurements to allow more robust conclusions

The AQFS has a great potential for urban planning applications. For example, land cover could be changed from

urban low density to urban high density to investigate the impact of urban re-densification e.g. on temperature and
13
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air quality. Although no BEP can be applied on the TP resolution with our combination of parameterizations,
changes of the parameters required for the single layer UCM offer the opportunity to perform sensitivity analysis
with respect to different building heights, urban greening effects (Fallmann et al., 2016), or anthropogenic heating
(Karlicky et al., 2020). Recently, Lin et al. (2020) developed an interface to use output from high-resolution WRF
simulations to force PALM 6.0 in an offline mode which could be another tool in the future to study microscale

structures in urban areas.

In the future, more emphasis should also be put on an improvement of the I/O (e.g. by means of quilting) and
additional OpenMP capabilities in WRF-Chem. However simulations with WRF-Chem at the TP resolution will

still require around 1500-2000 compute cores for operational use due to the small numerical time step necessary.

Although air quality modeling on the TP scale is a very challenging and computationally expensive task, we are
convinced that the AQFS will have a great potential to further improve process understanding and will certainly

help politicians to make decisions on a more scientifically valid basis.
Code and data availability

The WRF-Chem code version 4.0.3 can be downloaded from https://github.com/wrf-

model/WRF/archive/v4.0.3.tar.gz. ECMWEF analysis data can be obtained from https://apps.ecmwf.int/archive-

catalogue/?type=an&class=od&stream=oper&expver=1 (last access: 26 August 2020). The user’s affiliation needs

to belong to an ECMWF member state to benefit from these data sets. Due to restrictions on the input data sets for

this simulation, the data can only be made available upon special request from the corresponding author.
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Figure 1: Model domain 1 (a) and domain 3 (b). The blue dot in (a) denotes Stuttgart. Black dots in (b) show the
location of the meteorological measurement sites. The diamonds in (b) denotes the Neckartor (NT) and Schlossplatz

(SP) locations and the blue contour line denotes the Neckar River (River data © OpenStreetMap contributors 2020.

Distributed under a Creative Commons BY-SA License).
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Figure 2: Land cover data from the Baden-Wurttemberg State Institute for the Environment (LUBW) reclassified
for WRF in the innermost domain at a resolution of 50 m.
924

925

26



926

927

NO2 emission 2019-01-21_07:00:00

489N — 489N
48.85°N 48.85°N
488N — 488N —
48.75°N 48.75°N
487N 487N
865N — ) 4865°N —2 "
I
8.95°E 9E 9.05°E 9.1°E 9.15°E 9.2°E 9.25°E 9.3°E 9.35°E B8.95°E 9°E 9.05°E 9.1°E 9.15°E 9.2°E 9.25°E 93°E 9.35°E
[T - LD P 24 [T - LU M —— 2pt
5 10 15 20 25 30 35 40 45 S0 55 60 mol km™ h 5 10 15 20 25 30 35 40 45 S50 55 60 mol km™ h

Figure 3: NO2z emissions valid at 07 UTC on January 21, 2019. (a) shows the emissions derived from the CAMS-
REG-AP data set and (b) shows the emissions derived from the BW-EMISS data set (Map Data © OpenStreetMap
contributors 2020. Distributed under a Creative Commons BY-SA License).
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Figure 5: NO2 (a) and PM1o (b) concentrations at several stations distributed over the model domain on 21 January
2019. The dashed line in (a) denotes the simulated NO2 concentration and the time zone (CET) corresponds to local
time. Measurements at Neckartor, Hohenheimer Strasse, and Arnulf-Klett Platz are directly taken next to the main
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Figure 6: (a) ECMWF operational analysis of 500 hPa geopotential height, sea level pressure (white contour lines)
together with 500 hPa wind velocities valid at 00 UTC 21 January 2019. (b) shows the 925hPa equivalent potential
temperature together with 925 hPa wind velocities and sea level pressure (white contour lines). Gray areas indicate
values below the ECMWF model terrain. The black dot denotes Stuttgart and the reference wind vector length (top
right corner of each Figure)) is equal to 25 m s,
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Figure 7: Comparison of temperature, dewpoint and wind of the WRF model simulation (black line) and the
sounding from Stuttgart-Schnarrenberg (red line) valid at 00 UTC (a) and 11 UTC (b) 21 January 2019.The solid
lines denote the temperature profile and the dash-dotted line denotes the dewpoint profile. Wind barbs denote wind
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Figure 8: 2-m temperature together with 10-m wind velocities at 12 UTC 21 January 2019. The thick black line
denotes the Stuttgart city limits and the thin black contour lines denote the terrain. The blue line denotes the Neckar
River (River data © OpenStreetMap contributors 2020. Distributed under a Creative Commons BY-SA License).
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Figure 9: Diurnal cycle of 2-m temperatures for the three meteorological stations shown in Fig. 1b. Solid lines denote
the observation, dashed lines denote the model simulation. The temporal resolution of the data points is 10 minutes.
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Figure 10: Diurnal cycle of simulated sensible heat flux (SH, a) and ground heat flux (GRDFLX, b) at the four
stations Schnarrenberg, Airport, IPM, and Schlossplatz (Fig. 1b). Positive values of GRDFLX indicate fluxes into
the soil. The land cover categories are bare soil (airport), croplands (IPM), low-density residential (Schnarrenberg),
and high-density residential (Schlossplatz).
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Figure 11: Time-height cross section of the simulated potential temperature at Schnarrenberg (a) and IPM (b).
(c) and (d) show the potential temperature gradient at Schnarrenberg (c) and IPM (d). The displayed altitude is
above ground level (AGL).
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Figure 12: NOz concentration at the lowest model level for 07:30 UTC, 12 UTC, 18:00 UTC, and 23 UTC (from a to
d) 21 January 2019. The black contour lines denote main roads and motorways in and around Stuttgart (Map Data
© OpenStreetMap contributors 2020. Distributed under a Creative Commons BY-SA License). AP denotes the

airport, A8 and A81 denote the main motorways around Stuttgart.
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Figure 13: Same as Fig. 12 but for PMio (Map Data © OpenStreetMap contributors 2020. Distributed under a

Creative Commons BY-SA License). The red line in (a) denotes the cross section shown in Figs. 14 and 15.
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Figure 14: West-East cross section through Neckartor displaying the NO2 concentration at 07:30 UTC (a) and 12
UTC (b), 21 January 2019. The red arrow denotes the motorway A81 and the black arrow denotes the Neckartor

location. The black area shows the model terrain above mean sea level.
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Figure 15: Same as Fig. 14 but for PMo.
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