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Abstract. We conduct a global inverse analysis of 2010–2018 GOSAT satellite observations to better understand the factors 

controlling atmospheric methane and its accelerating increase over the 2010–2018 period. The inversion optimizes 2010–2018 

anthropogenic methane emissions and their trends on a 4º×5º grid, monthly regional wetland emissions, and annual 

hemispheric concentrations of tropospheric OH (the main sink of methane) also for individual years. We use an analytical 20 

solution to the Bayesian optimization problem that provides closed-form estimates of error covariances and information 

content for the solution. Our inversion successfully reduces the errors against the independent methane observations from the 

TCCON network and reproduces the interannual variability of the methane growth rate inferred from NOAA background sites. 

We find that prior estimates of fuel-related emissions reported by individual countries to the United Nations are too high for 

China (coal) and Russia (oil/gas), and too low for Venezuela (oil/gas) and the U.S. (oil/gas). We show that the 2010–2018 25 

increase in global methane emissions is mainly driven by tropical wetlands (Amazon and tropical Africa), boreal wetlands 

(Eurasia), and tropical livestock (South Asia, Africa, Brazil), with no significant trend in oil/gas emissions. While the rise in 

tropical livestock emissions is consistent with bottom-up estimates of rapidly growing cattle populations, the rise in wetland 

emissions needs to be better understood. The sustained acceleration of growth rates in 2016–2018 relative to 2010–2013 is 

mostly from wetlands, while the peak methane growth rates in 2014–2015 are also contributed by low OH concentrations 30 

(2014) and high fire emissions (2015). Our best estimate is that OH did not contribute significantly to the 2010–2018 methane 

trend other than the 2014 spike, though error correlation with global anthropogenic emissions limits confidence in this result. 
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1 Introduction 

Methane is the second most important anthropogenic greenhouse gas after CO2, with an emission-based radiative forcing of 

0.97 W m-2 since pre-industrial times (Myhre et al., 2013). Methane is emitted to the atmosphere from a range of anthropogenic 35 

activities including fuel exploitation, agriculture, waste and wastewater treatment, and biomass burning. The main natural 

source is from wetlands, with minor contributions from geological seeps, forest fires, and termites. Atmospheric methane has 

a lifetime of 11.2 ±1.3 years against tropospheric oxidation by the hydroxyl radical (OH) (Prather et al., 2012). Minor sinks 

include stratospheric loss, oxidation by Cl atoms, and absorption by soils.  
 40 

Unlike the steady rise in atmospheric CO2, the rise of methane has taken place in fits and starts. Observations from the NOAA 

network (Dlugokencky, 2020) (https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/, last access: 22 June 2020) show a period of 

stabilization in the early 2000s, followed by a renewed growth after 2007 that has accelerated since 2014. Annual growth rates 

averaged 0.50% a-1 for 2014–2018, compared to 0.32% a-1 for 2007–2013. The growth of atmospheric methane concentrations, 

if continued at current rates in coming decades, may significantly negate the climate benefit of CO2 emission reduction (Nisbet 45 

et al., 2019).  
 

However, our understanding of the drivers behind the methane growth rate is still limited, preventing reliable projections for 

future changes. Explanations have differed for the renewed growth of atmospheric methane since 2007. A concurrent increase 

in atmospheric ethane has been interpreted as evidence of an increase in oil and gas emissions (Hausmann et al., 2016;Franco 50 

et al., 2016). However, the assumption that the ethane/methane emission ratio should be stable is questionable (Lan et al., 

2019). Meanwhile, a concurrent shift towards isotopically lighter methane has been attributed to an increase in microbial 

sources either from livestock or wetlands (Schaefer et al., 2016;Nisbet et al., 2016). Worden et al. (2017) pointed out that the 

trend towards isotopically lighter methane could be explained by decreases in fire emissions that are isotopically heavy. Based 

on methyl chloroform observations, Turner et al. (2017) and Rigby et al. (2017) suggested that a decrease in the OH sink may 55 

be the cause of the methane regrowth.  
 

To better interpret the methane budget and its recent trends, we present here an inverse analysis of global 2010–2018 methane 

observations from the GOSAT satellite instrument. GOSAT provides a long record (starting in 2009) of global high-quality 

observations of column methane mixing ratios (Kuze et al., 2016;Buchwitz et al., 2015). A number of inverse analyses 60 

previously used GOSAT observations to constrain methane emission estimates (Fraser et al., 2013;Monteil et al., 2013;Cressot 

et al., 2014;Alexe et al., 2015;Turner et al., 2015;Pandey et al., 2016;Pandey et al., 2017a;Miller et al., 2019;F. Wang et al., 

2019a;Lunt et al., 2019;Maasakkers et al., 2019;Janardanan et al., 2020;Tunnicliffe et al., 2020;Yin et al., 2020). Maasakkers 

et al. (2019) used 2010–2015 GOSAT observations to optimize gridded methane emissions, global OH concentrations, and 

their 2010–2015 trends. They concluded that increasing methane emissions were driven mainly by India, China, and tropical 65 
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wetlands. Our analysis is based on that of Maasakkers et al. (2019) but extends it to 2018 in order to interpret the post-2014 

acceleration. It implements for that purpose a number of major improvements to the Maasakkers et al. (2019) methodology 

including in particular (1) separate optimization of subcontinental wetland emissions to resolve their seasonal and interannual 

variability; (2) correction of stratospheric methane forward model biases based on ACE-FTS solar occultation satellite data 

(Waymark et al., 2014); (3) prior estimates of global fuel exploitation emissions using national reports submitted to the United 70 

Nations Framework Convention on Climate Change (UNFCCC) (Scarpelli et al., 2020), and (4) optimization of annual 

hemispheric OH concentrations.  

2 Methods 

We perform a global inversion to optimize the sources and sinks of atmospheric methane, and their 2010–2018 trends, by 

drawing information from GOSAT data and prior knowledge following the Bayes’ rule. 75 

 

We assemble the 2010–2018 GOSAT methane column observations in an observation vector y (Section 2.1), and optimize a 

state vector x including methane sources and sinks and their trends (Section 2.2). Prior estimates xa, which regularize the 

Bayesian solution, are compiled from bottom-up estimates for specific methane sources and sinks (Section 2.3). We use the 

GEOS-Chem chemical transport model (CTM) version 11.02 as the forward model to relate atmospheric methane to its sources 80 

and sinks (Section 2.4), and correct model biases in the stratosphere using independent satellite observations from the ACE-

FTS instrument (Section 2.5). We solve the Bayesian optimization problem analytically to obtain both the posterior solution 

𝒙𝒙� and its error covariance matrix 𝐒𝐒� , thus achieving a closed-form quantification of information content as part of the solution 

(Section 2.6). The inversion is evaluated by measuring its fit to observations (Section 2.7), lending confidence in the results 

before we analyze them in Section 3. 85 

2.1 GOSAT observations 

The observation vector for the inversion (y) consists of column averaged dry-air methane mole fractions during 2010–2018 

observed by the TANSO-FTS instrument on board the Greenhouse Gases Observing Satellite (GOSAT) (Kuze et al., 2009). 

The satellite is in polar sun-synchronous low-Earth orbit and observes methane by nadir solar backscatter in the 1.65 μm 

shortwave infrared absorption band. Observations are made at around 13:00 local solar time. We use the University of Leicester 90 

version 9 CO2 proxy retrieval (Parker et al., 2020a). The retrieval has a single-observation precision of 13.7 ppb and a regional 

bias of 4 ppbv (Parker et al., 2020a), sufficient for a successful methane inversion (Buchwitz et al., 2015). The inversion ingests 

a total of 1.5 million successful GOSAT retrievals. Previous inversions often excluded high-latitude GOSAT observations 

because of seasonal bias, large retrieval errors at low solar elevations, and uncertainty in the role of the stratosphere 

(Bergamaschi et al., 2013; Turner et al., 2015;Z. Wang et al., 2017;Maasakkers et al., 2019). The exclusion of high-latitude 95 

https://doi.org/10.5194/acp-2020-964
Preprint. Discussion started: 25 September 2020
c© Author(s) 2020. CC BY 4.0 License.



4 
 

observations limited the capability of the inversions to resolve emissions at high latitudes such as boreal wetlands and oil/gas 

emissions in Russia (Maasakkers et al., 2019). Here we use an improved model bias correction scheme (Section 2.5) and 

include these high-latitude observations in the inversion. 

2.2 State vector 

The state vector (x) is the ensemble of variables that we seek to optimize in the inversion. In this work, the state vector includes 100 

(1) mean 2010–2018 methane emissions from non-wetland sources (all anthropogenic and natural emissions excluding 

wetlands) on a global 4º×5º grid (1009 elements); (2) linear trends of non-wetland emissions on that same grid (1009 elements); 

(3) monthly wetland emissions from 14 subcontinental regions (1512 elements) (Figure 1); and (4) annual-mean tropospheric 

OH concentrations in the northern and southern hemispheres (18 elements). The reason to treat wetland and non-wetland 

emissions separately is that wetland emissions have large seasonal and interannual uncertainties but relatively coherent spatial 105 

behaviors (Bloom et al., 2017). Therefore, we can use the inversion to characterize seasonal and interannual variability in 

wetland emissions, instead of imposing them as part of the prior estimate as was done by Maasakkers et al. (2019). The latter 

approach introduced substantial seasonal biases in the forward model simulation that then had to be empirically filtered out 

before conducting the inversion (Maasakkers et al., 2019). 

 110 

Another improvement in the state vector definition relative to Maasakkers et al. (2019) is to optimize annual mean OH 

concentrations in each hemisphere rather than just globally. Y. Zhang et al. (2018) previously found with an observing system 

simulation experiment that it should be possible to constrain annual mean hemispheric OH concentrations from satellite 

methane observations. Patra et al. (2014) suggested that global CTMs are often biased in their interhemispheric OH gradient 

relative to methyl chloroform observations, and such bias would propagate to the solution for methane emissions.  115 
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Figure 1. Spatial distribution of mean 2010–2018 methane emissions used as prior estimates in the inversion of GOSAT data. Blue boxes 
indicate the 14 subcontinental regions for which monthly wetland emissions are optimized (Section 2.2): (1) Alaska+West Canada, (2) East 
Canada, (3) West Europe, (4) Russia, (5) USA, (6) Latin America, (7) North Africa, (8) East Asia, (9) Amazon, (10) Sub-Sahara Africa, (11) 120 
Tropical South Asia, (12) Argentina, (13) Southern Africa, and (14) Australia.  

2.3 Prior estimates 

Prior estimates for methane sources and sinks (xa) are compiled from an ensemble of bottom-up studies. Figure 1 shows the 

spatial distribution of prior emission estimates. For gridded 4º×5 º anthropogenic emissions, we use as default the EDGAR 

v4.3.2 global emission inventory for 2012 (https://edgar.jrc.ec.europa.eu/, last access: 1 December 2017) (Janssens-Maenhout 125 

et al., 2017). We supersede it for the US with the gridded version of the Environmental Protection Agency inventory for 2012 

(Maasakkers et al., 2016). We further supersede it globally for fuel (oil, gas, and coal) exploitation with the inventory of 

Scarpelli et al. (2020) for 2012, which disaggregates spatially the national emissions reported to the United Nations Framework 

Convention on Climate Change (UNFCCC) (di.unfccc.int). All anthropogenic emissions are assumed to be aseasonal, except 

manure management for which we apply local temperature-dependent corrections (Maasakkers et al., 2016), and rice 130 

cultivation for which we apply gridded seasonal scaling factors from B. Zhang et al. (2016).  

 

Monthly wetland emissions from 2010 to 2018 are from the WetCHARTS v1.0 extended ensemble mean (Bloom et al., 2017). 

Daily global emissions from open fires are taken from GFEDv4s (van der Werf et al., 2017), which accounts for high methane 
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emissions from peatland fires (Liu et al., 2020). For geological sources, we scale the spatial distribution from Etiope et al. 135 

(2019) to a global total of 2 Tg a-1 inferred from preindustrial-era ice core 14CH4 data (Hmiel et al., 2020). Termite emissions 

are from Fung et al. (1991). 

 

The prior estimates for the hemispheric tropospheric OH concentrations are based on a GEOS-Chem full chemistry simulation 

(Wecht et al., 2014). The monthly 3-D OH concentration fields from this full chemistry simulation are also used in the forward 140 

model. We optimize hemispheric OH concentrations as the methane loss frequency [s-1] due to oxidation by tropospheric OH 

(𝑘𝑘𝑖𝑖 ) in the northern and southern hemispheres (i = north or south): 

𝑘𝑘𝑖𝑖 =
∫ 𝑘𝑘′(𝑇𝑇)[OH]𝑛𝑛CH4d𝑣𝑣troposphere,𝑖𝑖

∫ 𝑛𝑛CH4d𝑣𝑣atmosphere

 (1) 

where 𝑛𝑛CH4 is methane number density [molecules cm-3] , v is volume, and k′(T)=2.45×10-12 e-1775/T cm3 molec-1 s-1 is the 

temperature-dependent oxidation rate constant (Burkholder et al., 2015). In this definition, the denominator of Eq. 1 integrates 145 

over the entire atmosphere and the numerator integrates over the hemispheric troposphere. Hence, global methane loss 

frequency (or inverse lifetime; k) due to oxidation by tropospheric OH can be expressed as the sum of hemispheric values 

(𝑘𝑘 = 1 𝜏𝜏⁄ = 𝑘𝑘north + 𝑘𝑘south where 𝜏𝜏 is the global lifetime due to oxidation by tropospheric OH). Our prior estimates from 

Wecht et al. (2014) are 0.050 a-1 for 𝑘𝑘north and 0.043 a-1 for 𝑘𝑘south, which translates to a 𝜏𝜏 of 10.7 years and a north to south 

inter-hemispheric OH ratio of 1.16. In comparison, the methyl chloroform proxy infers 𝜏𝜏 of 11.2±1.3 years (Prather et al., 150 

2012) and an inter-hemispheric ratio in the range 0.85–0.98 (Montzka et al., 2000;Prinn et al., 2001;Krol and Lelieveld, 

2003;Bousquet et al., 2005;Patra et al., 2014), while the ACCMIP model ensemble yields a 𝜏𝜏 of 9.7±1.5 years and an inter-

hemispheric ratio of 1.28±0.10 (Naik et al., 2013).  

 

Our prior estimate assumes no 2010–2018 trends in non-wetland emissions on the 4º×5 º grid except for interannual variability 155 

in fires (GFED4s). In this manner, all information on anthropogenic emission trends is from the GOSAT observations.  

 

The Bayesian inversion requires error statistics for the prior estimates. The prior error covariance matrix (Sa) is constructed as 

follows. For non-wetland emissions, we assume 50% error standard deviation for individual grid cells and 20% for each source 

category when aggregated globally. We specify an absolute error standard deviation of 5% a-1 for linear trends of non-wetland 160 

emissions. For wetland emissions, we take the full error covariance structure (including spatial and temporal error covariance) 

derived from the WetCHARTs ensemble members for the 14 subcontinental regions (Bloom et al., 2017). For annual 

hemispheric OH concentrations, we assign 5% independent errors for individual years on top of a 10% systematic error for the 

multi-year mean. 
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2.4 Forward model 165 

We use the GEOS-Chem CTM v11.02 as forward model for the inversion (Wecht et al., 2014;Turner et al., 2015;Maasakkers 

et al., 2019). The simulation is conducted at 4º×5º horizontal resolution with 47 vertical layers (~ 30 layers in the troposphere) 

and is driven by 2009–2018 MERRA-2 meteorological fields (Gelaro et al., 2017) from the NASA Global Modeling and 

Assimilation Office (GMAO). The prior simulation is from 2010 to 2018 with a one-year spin-up starting from January 2009 

to establish methane gradients driven by synoptic-scale transport (Turner et al., 2015). We set the initial conditions on January 170 

1, 2010 to be unbiased by removing the zonal mean biases relative to GOSAT observations. Thus we attribute any model 

departures from observations over the 2010–2018 period in the inversion to errors in sources and sinks over that period. 

 

We use archived 3-D monthly fields of OH concentration from a GEOS-Chem full chemistry simulation (Wecht et al., 2014) 

to compute the removal of methane from oxidation by tropospheric OH. Other minor loss terms include stratospheric oxidation 175 

computed with archived monthly loss frequencies from the NASA Global Modeling Initiative model (Murray et al., 2012), 

tropospheric oxidation by Cl atoms computed with archived Cl concentration fields from X. Wang et al. (2019b), and monthly 

soil uptake fields from Murguia-Flores et al. (2018). The inversion does not optimize these minor sinks. The loss from 

oxidation by Cl is 5.5 Tg a-1, accounting for ~ 1% of methane loss. This estimate by X. Wang et al. (2019b) is lower than the 

previous estimate of 9 Tg a-1 (Sherwen et al., 2016) used by Maasakkers et al. (2019) and is consistent with a recent analysis 180 

of methane and CO isotopic signatures (Gromov et al., 2018). Use of monthly soil uptake fields from the Murguia-Flores et 

al. (2018) climatology of 2000-2009 data is another update relative to Maasakkers et al. (2019) and yields a global soil sink of 

34 Tg a-1. 

 

2.5 Forward model bias correction 185 

The GEOS-Chem simulated methane columns have a latitude-dependent background bias relative to the GOSAT data (Turner 

et al., 2015). This is thought to result from excessive meridional transport in the stratosphere, a common problem in global 

models (Patra et al., 2011). In particular, coarse-resolution global models have difficulty resolving polar vortex dynamics that 

control the distribution of stratospheric methane in the winter-spring hemisphere (Stanevich et al., 2019). GEOS-Chem model 

evaluation with stratospheric sub-columns derived from ground-based TCCON column measurements shows that the 190 

stratospheric bias varies seasonally (Saad et al., 2016). Previous GEOS-Chem based inversions of GOSAT data (Turner et al., 

2015;Maasakkers et al., 2019) developed correction schemes by fitting differences between the prior model simulation and 

background GOSAT observations as a second-order polynomial function of latitude. However, these correction schemes did 

not consider the seasonal variation of the stratospheric biases. Moreover, they could falsely attribute high-latitude model-

GOSAT differences to stratospheric model bias rather than to errors in prior emissions.  195 
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Here we improve the stratospheric bias correction by using satellite observations from ACE-FTS v3.6 (Waymark et al., 

2014;Koo et al., 2017). ACE-FTS is a solar occultation instrument launched in 2003 and measures vertical profiles of 

stratospheric methane (Bernath et al., 2005). We compute correction factors to GEOS-Chem stratospheric methane sub-

columns as a function of season and equivalent latitude, based on the ratios of stratospheric methane sub-columns between 200 

ACE-FTS and GEOS-Chem prior simulations (Figure 2). A global scaling factor (1.06) is applied to these correction factors 

to enforce mass conservation for methane in the stratosphere, so that the correction does not introduce a spurious stratospheric 

sink in the model simulation. We use equivalent latitude, computed on the 450 K isentropic surface from MERRA-2 reanalysis 

fields, as one of the predictors for parameterization. The equivalent latitude is a potential vorticity (PV) based coordinate that 

maps PV to latitude, based on areas enclosed by PV isopleths (Butchart and Remsberg, 1986), and is often used to represent 205 

the influence of high-altitude dynamics (e.g., polar vortex) on chemical tracers (e.g., Engel et al., 2006;Hegglin et al., 

2006;Strahan et al., 2007). Figure 2 shows that GEOS-Chem model biases tend to be large at high latitudes of the winter-

spring hemisphere, and are small in the tropics and in the summer-fall hemisphere. Based on information provided by ACE-

FTS observations, the model bias correction scheme is able to capture these seasonal and latitudinal variations, which are not 

resolved by a second-order polynomial function used in Turner et al. (2015) and Maasakkers et al. (2019). Furthermore, we 210 

can attribute the stratospheric bias as specifically due to the polar vortex dynamical barrier being too weak in the model.  

 

Figure 2. GEOS-Chem stratospheric bias correction based on ACE-FTS observations. Correction factors for stratospheric subcolumns are 
shown in blue lines as a function of season and equivalent latitude. Grey shading represents the fitting unceratinty. The correction factor is 
signficant poleward of 60 degrees in winter-spring, consistent with model error in accounting for polar vortex dynamics. 215 

 

2.6 Inversion procedure 

We perform the inversion by minimizing the Bayesian cost function (Brasseur and Jacob, 2017): 
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𝐽𝐽(𝒙𝒙) = (𝒙𝒙 − 𝒙𝒙a)T𝐒𝐒a−1(𝒙𝒙 − 𝒙𝒙a) + 𝛾𝛾(𝒚𝒚 − 𝐊𝐊𝒙𝒙)T𝐒𝐒O−1(𝒚𝒚 − 𝐊𝐊𝒙𝒙) (2) 

Here 𝐒𝐒O  is the observation error covariance matrix including contributions from the instrument error and the forward model 220 

error. 𝐒𝐒O  is taken to be diagonal and the variance terms are computed with the residual error method of Heald et al. (2004) as 

applied to GOSAT observations by Turner et al. (2015) and Maasakkers et al. (2019). The observational error standard 

deviation averages 13 ppbv. The Jacobian matrix K= ∂𝒚𝒚
∂𝒙𝒙

 that relates y (observations) to x (state vector) is a linearized 

description of the forward model. We explicitly compute the Jacobian matrix by perturbing each individual element of x 

independently in GEOS-Chem and calculating the sensitivity of y to that perturbation. xa is the prior estimate for x and 𝐒𝐒a  is 225 

the prior error covariance matrix (Section 2.3). 𝛾𝛾 is the regularization parameter taken to be 0.05 following Y. Zhang (2018) 

and Maasakkers et al. (2019) to account for missing error covariance structure in SO. 

 

Minimizing J(x) (Eq. 2) by solving dJ/dx=0 analytically (Rodgers, 2000; Brasseur and Jacob, 2017) yields a best posterior 

estimate of the state vector (𝒙𝒙�) and the associated posterior error covariance matrix (𝐒𝐒�) characterizing the error statistics of 𝒙𝒙�: 230 

𝒙𝒙� = 𝒙𝒙a + (𝛾𝛾𝐊𝐊T𝐒𝐒O−1𝐊𝐊 + 𝐒𝐒a−1)−1𝛾𝛾𝐊𝐊T𝐒𝐒O−1(𝒚𝒚 − 𝐊𝐊𝒙𝒙a), (3) 

𝐒𝐒� = (𝛾𝛾𝐊𝐊T𝐒𝐒O−1𝐊𝐊 + 𝐒𝐒a−1)−1, (4) 

From there we derive the averaging kernel matrix 𝐀𝐀 = 𝜕𝜕𝒙𝒙� 𝜕𝜕𝒙𝒙⁄  describing the sensitivity of the solution to the true state 

𝐀𝐀 = 𝐈𝐈 − 𝐒𝐒�𝐒𝐒a−1. (5) 

The trace of the averaging kernel matrix is referred to as the degrees of freedom for signal (DOFS) (Rodgers, 2000) and 235 

represents the number of independent pieces of information on the state vector that are constrained by the inversion. 

 

The posterior solution is often presented in reduced dimensionality. For example, spatially resolved emission and trend 

estimates on the 4º×5º grid can be aggregated to countries or regions, or to global/regional emissions from individual source 

sectors (e.g., oil/gas, livestock, etc.). Let W be a matrix that represents the linear transformation from the full state vector to a 240 

reduced state vector. The posterior estimation of the reduced state vector (𝒙𝒙�red) is computed as 

𝒙𝒙�red = 𝐖𝐖𝒙𝒙�. (6) 

with posterior error covariance matrix  

𝐒𝐒�red = 𝐖𝐖𝐒𝐒�𝐖𝐖T (7) 

and averaging kernel matrix 245 

𝐀𝐀red = 𝐖𝐖𝐖𝐖𝐖𝐖∗ (8) 

where 𝐖𝐖∗ = 𝐖𝐖𝐓𝐓(𝐖𝐖 𝐖𝐖𝐓𝐓)−𝟏𝟏 is the pseudo-inverse of 𝐖𝐖. The advantage of this approach is that the derived regional/global 

budget terms and their error covariance structures are consistent with the full inversion. In the case of aggregation by sectors, 

we construct W on the basis of the relative contribution of the sector to the prior emissions in each 4º×5º grid cell. This does 
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not assume that the prior distribution of sectoral emissions is correct, only that the relative allocation within a given 4º×5º grid 250 

cell is correct. 

2.7 Evaluation of posterior simulation 

We conduct a posterior simulation driven by the optimized (posterior) distributions of methane emissions, emission trends, 

and OH concentrations to evaluate the inversion. The posterior simulation results are compared with the training data (GOSAT) 

as well as evaluation data including TCCON total column measurements (tccondata.org) (Wunch et al., 2011) and NOAA 255 

surface measurements (www.esrl.noaa.gov/gmd/ccgg/flask.php) (Dlugokencky et al., 2020). Figure 3 shows the GEOS-Chem 

comparison to the GOSAT data. As expected for a successful inversion, the posterior simulation achieves a better fit to GOSAT 

observations than the prior simulation, both spatially and temporally. The prior simulation has a negative bias that grows with 

time and is particularly large in the extratropical northern hemisphere and tropics. The prior biases have a large seasonal 

structure presumably associated with errors in wetland emissions. All these features largely vanish in the posterior simulation 260 

through the optimized adjustment of the state vector. 

 

 

Figure 3. Difference of methane columns between GEOS-Chem simulations and GOSAT observations. Results are shown for GEOS-Chem 
using prior (left) and posterior (right) state vector estimates, and for spatial distribution averaged during 2010–2018 (top) and monthly time 265 
series of zonal means in different latitude bands (bottom). Note different color scales in the top panels. Tick marks of x axes in bottom panels 
represent January of each year. 
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Figure 4 presents evaluations against independent 2010–2018 observations from TCCON and NOAA sites, arranged by 

latitude. Values are shown as the root mean square error (RMSE) for individual sites. Figure 4 shows that the inversion 270 

substantially improves the agreement between simulations and observations for all TCCON sites and almost all NOAA surface 

sites. Average root-mean-square errors are reduced by 60% for TCCON sites (prior: 38 ppbv; posterior: 15 ppbv) and by 33% 

for NOAA surface sites (prior: 42 ppbv; posterior: 28 ppbv). The seasonal component of the errors (root-mean-square errors 

computed from monthly mean model-observation differences after annual mean biases are removed, not shown in figure) are 

reduced on average by 44% for TCCON sites (prior: 6.6 ppbv; posterior: 3.7 ppbv) and 27% for surface sites (prior: 11 ppbv; 275 

posterior: 8 ppbv), primarily owing to optimized seasonal variations in wetland emissions. 

 

Figure 4. Root mean square errors of prior and posterior GEOS-Chem simulations relative to TCCON observations of dry column methane 
mixing ratios (left) and NOAA observations of surface air mixing ratios (middle and right). Observation sites are arranged by latitude. Data 
are for 2010–2018. Site names are shown along with their latitude and longitude (more information about these sites can be found at tccon-280 
wiki.caltech.edu/Sites and www.esrl.noaa.gov/gmd/dv/site/index.php?program=ccgg). A mountain-top TCCON site located at Zugspitze, 
Germany (zs; ~ 3000 m.a.s.l.) is excluded because the terrain effect on the total column is not resolved by the coarse resolution model. 

 

 

 285 
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3 Results and discussion 

3.1 Anthropogenic emissions 

Figure 5 shows the correction factors from the inversion to 2010–2018 mean non-wetland emissions (posterior/prior ratios) 

along with the associated averaging kernel sensitivities (corresponding diagonal terms of the averaging kernel matrix). The 

averaging kernel sensitivities largely follow the pattern of prior emissions and are highest in major anthropogenic source 290 

regions. We achieve 179 independent pieces of information (DOFS) for constraining the emissions on the 4º×5 º grid. By 

applying the posterior/prior correction factors to the prior distribution of each anthropogenic emission sector, we obtain 

improved estimates for anthropogenic emissions for that sector. 

 

We find that the prior emission inventory significantly overestimates anthropogenic emissions in eastern China (Figure 5). The 295 

posterior estimate of Chinese anthropogenic emissions (48 Tg a-1) is 30% lower than the prior estimate (67 Tg a-1), and is also 

lower than the latest national report from China to the UNFCCC of 55 Tg a-1 for 2014 (Figure 6). Based on the relative 

contribution of each sector in the prior inventory, we attribute ~ 60% of this downward correction to coal mining. The 

overestimation of anthropogenic emissions from China has been reported by previous global and regional GOSAT inversion 

studies using different EDGAR inventory versions as prior estimates (Monteil et al., 2013;Thompson et al., 2015;Turner et al., 300 

2015;Maasakkers et al., 2019;Miller et al., 2019).  

 

Figure 5. Corrections to prior estimates of 2010–2018 mean non-wetland methane emissions. (Left) posterior/prior emission ratios. (Right) 
averaging kernel sensitivities (diagonal elements of averaging kernel matrix). The sum of averaging kernel sensitivities defines the degrees 
of freedom for signal (DOFS), shown inset. 305 

 

Another major downward correction is for the oil/gas producing regions in Russia. We estimate Russia’s anthropogenic 

emissions to be 21 Tg a-1, as opposed to the prior estimate of 36 Tg a-1 (Figure 6), and the difference is mainly attributable to 

the oil/gas sector (posterior: 15 Tg a-1; prior: 27 Tg a-1). This finding is consistent with Maasakkers et al. (2019) though they 

used a different oil/gas emission inventory. Russia has been revising downwards its national emission estimates submitted to 310 
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the UNFCCC, and our posterior estimate of total anthropogenic emissions is closer to the country’s latest submission to 

UNFCCC for 2010–2018 (16 Tg a-1; Figure 6). The new submission revises oil/gas methane emissions downward by a factor 

of 3 relative to the previous submission used as prior estimate in our inversion (Scarpelli et al., 2020).  

 

We find large upward corrections to the prior inventory over eastern Africa (Mozambique, Zambia, Tanzania, Ethiopia, 315 

Uganda, Kenya, and Madagascar) and over South America (Brazil). A previous inversion suggested that corrections for these 

regions may be due to an underestimation of prior wetland emissions (Maasakkers et al., 2019). Our inversion, which optimizes 

wetland and anthropogenic emissions separately, more specifically attributes the underestimation to livestock emissions. The 

upward correction pattern in Brazil is located near the country’s “agricultural frontier” where forest is converted to agricultural 

lands for livestock and crops (Nepstad et al., 2019). Herrero et al. (2013) identified eastern Africa as the region of the highest 320 

livestock emission intensity (emission/kg protein) because of low feed efficiency, suggesting that emission factors in this 

region may be underestimated in bottom-up calculation given a general lack of region-specific information for developing 

countries.  

 

 325 

Figure 6. National and regional estimates of 2010–2018 mean methane emissions from anthropogenic sources. Included are the top 5 
individual countries, the European Union (including the United Kingdom), and East Africa (including Mozambique, Zambia, Tanzania, 
Ethiopia, Uganda, Kenya, and Madagascar). The UNFCCC record is from di.unfccc.int (accessed on July 10, 2020). Non-Annex I countries 
do not report yearly emissions to the UNFCCC and for those we use the latest UNFCCC submissions (Brazil, 2015; China, 2014; Ethiopia, 
2013; India, Madagascar, Kenya, 2010; Uganda, Zambia, 2000; Mozambique, Tanzania, 1994). 330 
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Another upward correction pattern in South America is located near Venezuela, a major oil producing country in the region. 

The large discrepancy in Venezuela likely reflects underestimation of fossil fuel emissions by the national estimates for 2010 

reported to UNFCCC. Upward corrections are also seen in central Asia (Iran, Turkmenistan), where the regional posterior 

estimates (11.7±0.9 Tg a-1) are 43% higher than the prior (8.2±1.4 Tg a-1), with adjustments mainly attributed to the oil/gas 335 

sector. This region has previously been identified by satellite observations as a methane emission hotspot (Buchwitz et al., 

2017; Varon et al., 2019; Schneising et al., 2020). 

 

The inversion finds small upward corrections over the US (prior: 28 Tg a-1; posterior: 32 Tg a-1) (Figure 6), resulting mainly 

from underestimation of emissions from the oil/gas sector in the western and southwestern US (Figure 5). This result is broadly 340 

consistent with a number of basin-level studies based on aircraft and satellite measurements (e.g., Kort et al., 2014;Karion et 

al., 2015;Smith et al., 2017;Schwietzke et al., 2017;Peischl et al., 2018;Cui et al., 2019;Y. Zhang, 2020;Gorchov Negron et al., 

2020; Schneising et al., 2020) and national assessments of methane emissions from oil/gas production (Alvarez et al., 

2018;Maasakkers, 2020).  

 345 

Small downward corrections with a diffuse pattern are found over Europe. The posterior estimate of anthropogenic emissions 

for the European Union (including the UK) is 16 Tg a-1, slightly lower than the prior estimate (21 Tg a-1) and the UNFCCC 

national reports (19 Tg a-1 for 2014) (Figure 6). Source sector attribution is difficult in this case because of spatial overlap 

between emission sectors. The inversion finds only small adjustments to prior emissions for India (prior: 32 Tg a-1; posterior: 

33 Tg a-1) even though the information content is relatively large, confirming the prior inventory used in the inversion. Our 350 

estimate, however, is much higher than a previous inversion study for India (Ganesan et al., 2017) (22 Tg a-1), which found 

their result in agreement with India’s UNFCCC report (20 Tg a-1 for 2010) (Figure 6). The discrepancy is mainly in the livestock 

sector, which we find to be greatly underestimated in the UNFCCC submission. Livestock emission trends in India are 

discussed further below. 

3.2 Anthropogenic emission trends 355 

Figure 7 shows the spatial distribution of 2010–2018 trends for anthropogenic emissions inferred from GOSAT observations, 

along with the associated averaging kernel matrix sensitivities. The GOSAT observations provide 42 pieces of information to 

constrain the spatial distribution of anthropogenic emission trends. The constraints are strongest in China and India, but there 

is also strong information aggregated over other continental regions. The prior estimate assumed no anthropogenic trends 

anywhere, therefore the posterior trends are driven solely by the GOSAT information. The corresponding diagonal elements 360 

of the posterior error covariance matrix allow us to quantify error standard deviations on the results. 
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Figure 7. Anthropogenic methane emission trends for 2010–2018, as informed by GOSAT observations. (Left) Relative emission trends on 
the 4o×5o grid. (Right) Averaging kernel sensitivities. Degrees of freedom for signal (DOFS) is inset.  

 365 

Significant positive trends of anthropogenic emissions are found in South Asia (0.57±0.16 Tg a-1 a-1 or 1.3±0.4% a-1; Pakistan 

and India), East Africa (0.21±0.10 Tg a-1 a-1 or 1.4±0.6 % a-1; Ethiopia, Tanzania, Uganda, Kenya, and Sudan), West Africa 

(0.32±0.10 Tg a-1 a-1 or 4.6±1.4% a-1; Nigeria, Niger, Ghana, Cote d’Ivoire, Mali, Benin, Burkina Faso), and Brazil (0.17±0.15 

Tg a-1 a-1 or 0.7±0.6% a-1). All these regions are seeing rapid increases in livestock populations. According to the United 

Nations Food and Agriculture Office (UNFAO) statistics, the fastest growing cattle populations in the world over the 2010–370 

2016 period were Pakistan (1.4×106 heads a-1), Ethiopia (1.2×106 heads a-1), Tanzania (1.1×106 heads a-1), and Brazil (0.9×106 

heads a-1). Indeed, our sectoral attribution of the trends in Figure 7 attributes them mostly to livestock (0.40 Tg a-1 a-1 in South 

Asia, 0.13 Tg a-1 a-1 in East Africa, 0.15 Tg a-1 a-1 in West Africa, and 0.11 Tg a-1 a-1 in Brazil). Our inversion results for these 

regional trends in livestock emissions are consistent with the trends from bottom-up livestock emission inventories (FAOSTAT, 

IPCC tier I method; EDGAR v4.3.2 and v5, hybrid tier I method; Chang et al. (2019), IPCC tier II method), as shown in Figure 375 

8. Anthropogenic methane emission trends in South Asia, Africa, and Brazil add up to 1.3 Tg a-1 a-1, which as we will show 

below amounts to the global anthropogenic emission trend.  

 

A positive trend in anthropogenic emissions (0.27±0.20 Tg a-1 a-1 or 0.6±0.4% a-1) is found over China driven by coal mining 

(northern China) and rice (southern China), but the magnitude of the trend is much smaller than previous inverse analyses of 380 

satellite and surface observations for time horizons before 2015 (Bergamaschi et al., 2013;Thompson et al., 2015;Saunois et 

al., 2017;Miller et al., 2019;Maasakkers et al., 2019). We infer a much stronger trend (0.72±0.39 Tg a-1 a-1 or 1.6±0.9% a-1) for 

China if we restrict the GOSAT record to 2010–2016. Our results thus suggest that anthropogenic emission trends in China 

peaked midway within the 2010-2018 record. Indeed, coal production in China peaked in 2013 (Sheng et al., 2019).  

 385 
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Figure 8. Regional trends in anthropogenic methane emissions from livestock. Our GOSAT inversion results for 2010-2018 (with error 
standard deviations) are compared to estimates from different bottom-up inventories over the 2005-2017 period: Chang et al. (2019), 
FAOSTAT (2020), EDGAR v5 (Crippa et al., 2019), and EDGAR v4.3.2 (Janssens-Maenhout et al., 2017). Results are shown for South 
Asia (India and Pakistan), West Africa (Nigeria, Côte d’Ivoire, Mali, Niger, Burkina Faso, Cameroon, Ghana, and Benin), East Africa 390 
(Ethiopia, Kenya, Uganda, and Tanzania), and Brazil. Our inversion assumes no prior trend in anthropogenic emissions, thus the inferred 
trends are solely from the GOSAT observations.  

 

The inversion does not find significant 2010–2018 trends in anthropogenic emissions over the US (-0.12±0.21 Tg a-1 a-1, -0.4% 

a-1). This is consistent with the lack of trend of US emissions over 2000-2014 in inversions collected by the Global Carbon 395 

Project (Bruhwiler et al., 2017). It contradicts the 2-3% a-1 positive trend inferred from direct analysis of GOSAT enhancements 

(Turner et al., 2016; Sheng et al., 2018a) and the inference of large positive trends based on increasing concentrations of ethane 

and propane (Franco et al., 2016;Hausmann et al., 2016;Helmig et al., 2016). Bruhwiler et al. (2017) pointed out that the 

inference of methane emission trends from simple analysis of GOSAT data could be subject to various biases including 

variability in background and seasonal sampling, which would be accounted for in an inversion. Increasing ethane/methane 400 

and propane/methane emission ratios may confound inference of methane emission trends from ethane and propane records 

(Lan et al., 2019).  
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Small negative trends are found in Central Asia (Uzbekistan, Kazakhstan, Turkmenistan, Afghanistan; -0.20±0.16 Tg a-1 a-1), 

Europe (-0.15±0.15 Tg a-1 a-1), Australia (-0.12±0.07 Tg a-1 a-1). The decrease in Central Asia is attributed mainly to oil/gas, 405 

and the decrease in Australia to coal mining and livestock. Trends over Europe and Russia are too diffuse to be separated by 

sectors. No significant trend is found in Russia (-0.08±0.25 Tg a-1 a-1). 

3.3 Wetland emissions 

We infer from the inversion monthly wetland emissions for 14 subcontinental regions (Figure 1) and for individual years from 

2010 to 2018, thus allowing for seasonal and interannual variability to be optimized. This achieves 167 independent pieces of 410 

information (DOFS) for wetland emissions. The results are presented as mean seasonal cycles (Figure 9) and time series of 

annual means (Figure 10). We find lower wetland emissions than the mean of the WetCHARTs ensemble (prior estimate) over 

the Amazon, the US, and Canada. The previous inversion of GOSAT data by Maasakkers et al. (2019) also found 

overestimation of emissions by WetCHARTs in the coastal US and Canada wetlands, but did not have significant corrections 

over the Amazon. The overestimation of wetland emissions in the US and eastern Canada is also reported in analyses of aircraft 415 

measurements in the southeast US (Sheng et al., 2018b) and surface observations in Canada (Baray et al., 2019), both of which 

used WetCHARTs v1.0 as prior information. The downregulation of North American emissions is consistent with recent 

WetCHARTs updates (v1.2.1) represent substantially reduced methane emissions across regions categorized as partial wetland 

complexes (Lehner & Döll, 2004; Bloom et al., 2017). Recent studies found that WetCHARTs overestimates wetland 

emissions in the Congo Basin but underestimates in the Sudd region (Lunt et al., 2019; Parker et al., 2020b; Pandey et al., 420 

2020). Our inversion is unable to resolve this spatial correction pattern, because of coarse resolution in the wetland state vector 

(both regions are in Sub-Sahara Africa, i.e., wetland region 10 in Figure 1). 

 

The seasonal cycles inferred from the inversion are in general consistent with prior information (Figure 9), although averaging 

kernel sensitivities indicate that we only have limited constraints on the seasonality, particularly for high latitude regions in 425 

northern hemisphere winter. This was generally expected, given the limited GOSAT observational coverage at high latitudes 

during winter months. The inversion infers a sharp and late (May-June) onset of methane emissions across boreal wetlands, in 

contrast to an early and gradual increase starting from March predicted by the prior inventory. This feature in posterior 

estimates appears to be consistent with aircraft and surface observations over Canada’s Hudson Bay Lowlands (Pickett-Heaps 

et al., 2011) and eddy flux measurements over Alaskan Arctic tundra (Zona et al., 2015), while the gradual onset in the prior 430 

inventory agrees with aircraft observations over Alaska by Miller et al. (2016). The negative fluxes right before the onset may 

reflect strong soil sinks during spring thaw over these high-latitude regions (Jørgensen et al., 2015); alternatively, given the 

low averaging kernel sensitivities throughout the winter season, the negative fluxes could be attributable to spatial or temporal 

compensating inversion errors. The inversion also suggests stronger seasonal cycles than the prior inventory in Sub-Saharan 

https://doi.org/10.5194/acp-2020-964
Preprint. Discussion started: 25 September 2020
c© Author(s) 2020. CC BY 4.0 License.



18 
 

Africa and tropical South Asia, which indicates that the prior inventory may have underestimated the sensitivity of wetland 435 

emissions to precipitation but overestimate the sensitivity to temperature.  

 

Our posterior estimates of 2010–2018 trends in wetland emissions are generally larger than the prior estimates from 

WetCHARTs, indicating that they are mostly driven by the GOSAT data. They vary greatly by region (Figure 10). Large 

positive trends are found in the tropics (Amazon: +0.9 Tg a-1 a-1; Sub-Sahara Africa: +0.6 Tg a-1 a-1; southern Africa: +0.4 Tg 440 

a-1 a-1) and high latitudes (Russia: +0.6 Tg a-1 a-1; West Europe: +0.4 Tg a-1 a-1). Increasing Amazonian wetland emissions may 

have been driven by intensification of flooding in the region over the past three decades (Barichivich et al., 2018). Our result 

of increasing tropical Africa wetland emissions is consistent with a previous regional analysis of GOSAT data, which found a 

positive trend of 1.5–2.1 Tg a-1 a-1 in the region for 2010–2016 attributed mainly to wetlands particularly the Sudd in South 

Sudan (Lunt et al., 2019). Compared to steady and linear increases in the tropics, boreal Russia and West Europe show abrupt 445 

increases in 2017–2018, for reasons unclear (Figure 10). Decreasing but weaker trends are found in tropical Southeast Asia (-

0.3 Tg a-1 a-1) and Australia (-0.2 Tg a-1 a-1). These trends are in general not captured by prior information, suggesting that our 

results can be useful inputs to improvement of process-based wetland emission modeling. Furthermore, posterior inter-annual 

variability is overall larger than prior variability across all regions, suggesting that the integrated climate sensitivity of prior 

emissions may be underestimated. 450 
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Figure 9.Seasonal variation of wetland emissions for 14 subcontinental regions (Figure 1). Values are means for 2010–2018. The prior 
estimate is the mean of the WetCHARTs inventory ensemble (Bloom et al., 2017). The posterior estimate is from our inversion of GOSAT 455 
data. Vertical bars are error standard deviations. The reduction of error in the posterior estimate measures the information content provided 
by the GOSAT data. Scales are different between panels. 
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Figure 10.Wetland emission trends, 2010–2018. The figure shows annual mean emissions for the prior estimate (mean of WetCHARTs 460 
inventory ensemble) and the posterior estimate after inversion of GOSAT data. Values are for the 14 subcontinental regions of Figure 1. The 
trends are from ordinarly linear regression. Inset are prior and posterior 2010–2018 average annual emissions in Tg a-1 with 2010–2018 
trends in Tg a-1 a-1 in parentheses. Significant trends at the 95% confidence level are denoted with “*”. Note differences in scales between 
panels. 

 465 

3.4 OH concentration 

Our inversion infers a global methane lifetime against oxidation by tropospheric OH of 12.4±0.3 a, which is ~ 15% longer 

than the prior estimate (10.7±1.1 a) and is at the higher end of the inference from the methyl chloroform proxy (11.2±1.3 years) 

(Prather et al., 2012). We find that the downward correction for OH concentrations is mainly in the northern hemisphere. The 

north-to-south inter-hemispheric OH ratio is 1.02±0.05 in the posterior estimate, as compared to 1.16 in the prior estimate and 470 

1.28±0.10 in the ACCMIP model ensemble (Naik et al., 2013). It is more consistent with the observation-based estimate of 

0.97 ± 0.12 (Patra et al., 2014). No significant 2010–2018 trend is seen in the methane lifetime (Figure 11). The OH 
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concentration is 5% lower than average in 2014, which had particularly large peatland fires in Indonesia that would be very 

large sources of carbon monoxide (CO) as a sink for OH (Pandey et al., 2017b).  

 475 

Figure 11. Methane loss frequency and lifetime against oxidation by tropospheric OH, 2010-2018. Values are annual means with error 
standard deviations. The loss frequency (k) is as calculated by Eq. 1 and the lifetime (𝝉𝝉) is the inverse. The prior estimate from Wecht et al. 
(2014) assumes no 2010–2018 trend in OH concentrations; the slight variability seen in the Figure is due to temperature. 

 

3.5 Attribution of the 2010–2018 methane trend 480 

Figure 12 shows the 2010–2018 annual methane growth rates inferred from NOAA background surface measurements 

(Dlugokencky, 2020) and from our inversion of GOSAT data. There is general consistency between the two, with both showing 

highest growth rates in 2014–2015 and a general acceleration after 2014. Our inversion achieves a much better match to the 

interannual variability in the NOAA record than the previous work of Maasakkers et al. (2019), in large part because of our 

optimization of the interannual variability of wetland emissions.  485 

 

The bottom panel of Figure 12 attributes the interannual variability in the methane growth rate to individual processes as 

determined by the inversion. The growth rate Gj = [dm/dt]j in year j, where m is the global methane mass, is determined by the 

balance between sources and sinks: 

 490 

𝐺𝐺𝑗𝑗 = 𝐸𝐸𝑗𝑗 − 𝑘𝑘𝑗𝑗𝑚𝑚𝑗𝑗 − 𝐿𝐿𝑗𝑗  (9)  

Here Ej denotes the global emission in year j, for which the inversion provides further sectoral breakdown, kj is the loss 

frequency against oxidation by tropospheric OH (Eq. 1), mj is the total methane mass, and Lj represents the minor sinks not 

optimized by the inversion. Let ΔEj = Ej – Eo, Δkj = kj – ko, and Δmj = mj – mo represent the changes relative to 2010 conditions 

(Eo, ko, mo) taken as reference. We can then write 495 
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𝐺𝐺𝑗𝑗 = �𝐸𝐸𝑜𝑜 + Δ𝐸𝐸𝑗𝑗� − �𝑘𝑘𝑜𝑜 + Δ𝑘𝑘𝑗𝑗��𝑚𝑚𝑜𝑜 + Δ𝑚𝑚𝑗𝑗� − (𝐿𝐿𝑜𝑜 + Δ𝐿𝐿𝑗𝑗)
≈ �𝐸𝐸𝑜𝑜 − 𝑘𝑘𝑜𝑜𝑚𝑚𝑜𝑜 − 𝐿𝐿𝑜𝑜 − 𝑘𝑘𝑜𝑜Δ𝑚𝑚𝑗𝑗� + Δ𝐸𝐸𝑗𝑗 − 𝑚𝑚𝑜𝑜Δ𝑘𝑘𝑗𝑗 (10)

 

where we have neglected the minor terms ΔkjΔmj and ΔLj. Here the growth rate Gj in year j is decomposed into three terms: (1) 

a relaxation to steady state based on 2010 conditions (Eo – komo Lo – koΔmj), (2) a perturbation to emissions (ΔEj) that can be 

further disaggregated by sectors, and (3) a perturbation to OH concentrations (moΔkj). 

 500 

We see that from the bottom panel of Figure 12 that the legacy of 2010 imbalance sustains a positive growth rate throughout 

the 2010–2018 period but this influence diminishes towards the end of the record. The 2010–2018 trend in anthropogenic 

emissions is linear by design of the inversion and sustains a steady growth rate over the 2010–2018 period as the legacy of the 

2010 imbalance declines. The spike in the methane growth rate in 2014–2015 is attributed to an anomalously low OH 

concentration in 2014 (5% lower than 2010–2018 average; Figure 11), partly offset by low wetland emissions, and 505 

anomalously high fire emissions in 2015, mostly from Indonesia peatlands (Worden et al., 2017). Smoldering peatland fires 

are particularly large sources of methane (Liu et al., 2020). The large fire emissions are informed by the GFED inventory 

because the inter-annual variability of fire emissions is not optimized in our inversion. Despite their small magnitude relative 

to wetland and anthropogenic emissions globally, anomalous fire emissions can be an important contributor to methane 

interannual variability (Worden et al., 2017;Pandey et al., 2017b), both directly by releasing methane and indirectly by 510 

decreasing OH concentrations through CO emissions. Error correlations in our methane trend attributions (see discussion 

below) suggest that the high growth rates in both 2014 and 2015 could be due to Indonesian fires including effects on OH.  

 

In addition to the 2014–2015 extremum, the NOAA surface observations show an acceleration of methane growth during the 

latter part of the 2010–2018 record (Nisbet et al., 2019) and this is reproduced in our inversion (Figure 12). We find that the 515 

rapid growth in 2016–2018 is mostly driven by wetlands, including contributions from both the steady 2010–2018 increase in 

tropical wetlands (in particular the Amazon and tropical Africa) and the 2016–2018 surge in Eurasian boreal wetlands (Figure 

10). 

 

Figure 13 shows the mean 2010–2018 emission trends attributed by the inversion to individual sectors. The 2010–2018 growth 520 

in emissions is two-thirds from wetlands (3.0 Tg a-1 a-1) and one third anthropogenic (1.5 Tg a-1 a-1). Wetland emissions increase 

in both tropical regions (1.8±0.6 Tg a-1 a-1; Amazon and tropical Africa) and the extra-tropics (1.2±0.3 Tg a-1 a-1; Russia and 

West Europe) (Figure 13 and Figure 10). The increase of anthropogenic emissions is driven by livestock (South Asia, tropical 

Africa, Brazil), rice (East Asia), and wastewater treatment (Asia) sectors (Figure 13). The best estimate for global trends in 

emissions from fuel exploitation (oil, gas, and coal) (0.0±0.4 Tg a-1 a-1) is almost zero; but small trends cannot be ruled out 525 

given the uncertainty (Figure 13).  
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Figure 12. 2010–2018 annual growth rates in global atmospheric methane. (Top) Comparison of annual growth rates inferred from our 
inversion of GOSAT data and from the NOAA surface network (Dlugokencky, 2020). Average methane growth rates for the period are inset. 530 
(Bottom) Attribution of annual growth rates in the GOSAT inversion to perturbations to emissions (anthropogenic, wetlands, fires) and OH 
concentrations relative to 2010 conditions. The purple bar shows the relaxation of 2010 budget imbalance to steady state. See text for details 
explaining the breakdown. 

 

We estimate from the inversion a global mean methane emission for 2010–2018 of 510±4 Tg a-1 (wetlands: 139 Tg a-1; 535 

anthropogenic: 341 Tg a-1) and a sink of 488±4 Tg a-1. This posterior global emission is lower than the prior estimate (538 Tg 

a-1) and the 538–593 Tg a-1 range reported recently by the Global Carbon Project for 2008–2017 (Saunois et al., 2020). 

Compared to prior emissions, we estimate lower emissions for wetlands and fossil fuel, and higher emissions for livestock and 

rice (Figure 13). Meanwhile, we estimate a methane lifetime against tropospheric OH oxidation of 12.4±0.3 years, at the high 

end of 11.2±1.3 years based on the methyl chloroform proxy (Prather et al., 2012).  540 
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Figure 14 plots the posterior joint probability density functions (PDFs) for pairs of global budget terms and their trends. There 

is a strong negative error correlation in the inversion results between anthropogenic emissions and methane lifetime (r=-0.8), 

reflecting limited ability of the inversion to separate the two. In contrast, error correlations between wetland emissions and 

methane lifetime (r=-0.4), and between wetland and anthropogenic emissions (r=-0.2) are much smaller. We find moderate 545 

error correlations between the OH trend and either wetland or anthropogenic emission trends (r=-0.6). We cannot exclude at 

the 90% confidence level the possibility that the 2010–2018 anthropogenic emission trend could be zero (compensated by a 

decrease in OH concentrations), but we can exclude the possibility that the 2010–2018 wetland emission trend could be zero. 

Improved separation of global budget terms and their trends may be achieved by including additional information from surface 

observation (Lu et al., 2020) and from thermal infrared satellite observations (Y. Zhang et al., 2018).  550 

 

 

Figure 13. 2010–2018 global methane emissions and emission trends partitioned by individual sectors. Posterior estimates are from our 
inversion of GOSAT data. Prior estimates for anthropogenic emission trends are zero. Error bars in the right panel shows posterior error 
standard deviations for emission trends. Posterior error standard deviations are too small to show for mean emissions of the left panel. 555 
Posterior errors computed from Eq. 4 and 7 tend to be overoptimistic because of ideal inversion assumptions (Maasakkers et al., 2019). 
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Figure 14. Error correlations between global anthropogenic emissions, wetland emissions, and tropospheric OH concentrations (methane 
lifetime against oxidation by tropospheric OH; 𝝉𝝉) in the inverse solution. Results are shown both for 2010–2018 mean values and for 2010–
2018 trends. The error correlations are presented as joint probability density functions for pairs of reduced global state vector elements. 560 
Confidence ellipses represent probability of 0.1 (innermost) to 0.9 (outermost) at intervals of 0.1. The error correlation coefficients are shown 
inset. 

4 Conclusions 

We quantified the regional and sectoral contributions to global atmospheric methane and its 2010–2018 trend by inversion of 

GOSAT satellite observations. The inversion jointly optimizes (1) 2010–2018 anthropogenic emissions and their linear trends 565 

on a 4º×5 º grid; (2) monthly wetland emissions in 14 subcontinental regions for individual years; and (3) annual mean 

hemispheric OH concentrations for individual years. Analytical solution to the optimization problem provides closed-form 

estimates of posterior error covariances and information content, allowing us in particular to diagnose error correlations in our 

solution. Separate optimization of wetland and anthropogenic emissions allows us to resolve interannual and seasonal 

variations in posterior wetland emissions. Our inversion introduces additional innovations including the correction of 570 

stratospheric model biases using ACE-FTS satellite data, and a new bottom-up inventory for emissions from fossil fuel 

exploitation based on national reports to the UNFCCC (Scarpelli et al., 2020).  

 

Our optimization of 2010–2018 mean anthropogenic emissions on the 4º×5 º grid provides strong information in source regions 

as measured by averaging kernel sensitivities. We find that estimates of anthropogenic emissions reported by individual 575 

countries to the UNFCCC are too high for China (coal emissions) and Russia (oil/gas emissions) and too low for Venezuela 

(oil/gas) and the U.S. (oil/gas). We also find that tropical livestock emissions are larger than previous estimates particularly in 

South Asia, Africa, and Brazil. Our posterior estimate of anthropogenic emissions in India (33 Tg a-1) is much higher than its 

most recent (2010) report to the UNFCCC (20 Tg a-1), mostly because of livestock emissions. 
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 580 

2010–2018 trends in methane emissions on the 4º×5 º grid are successfully quantified in source regions. We find that the 

largest growth in anthropogenic emissions is from tropical livestock in South Asia, tropical Africa, and Brazil. This finding is 

consistent with trends in livestock populations. There has been little discussion in the literature about increasing agricultural 

methane emissions in these developing countries (Jackson et al., 2020). The 2010–2018 increase in Chinese emissions is 

smaller than previously reported in inversions focused on earlier periods, likely caused by leveling of coal emissions in China. 585 

The 2010–2018 emission trend in the US is insignificant on the national scale.  

 

We find that global wetland emissions are lower than the prior estimate from mean WetCHARTs emissions, mostly because 

of the Amazon. Wetland emissions over North America are also lower, consistent with previous studies. In both cases, we note 

that posterior estimates are all well within the full WetCHARTs uncertainty range (Bloom et al., 2017). The seasonality of 590 

wetland emissions inferred by the inversion is in general consistent with WetCHARTs. An exception is in boreal wetlands 

where we find negative fluxes in April-May, possibly reflecting uptake as the soil thaws. The inversion infers increasing 

wetland emissions over the 2010–2018 period, superimposed on large inter-annual variability, in both the tropics (Amazon, 

tropical Africa) and extra-tropics (Russia, western Europe).  

 595 

Our optimization of annual hemispheric OH concentrations yields a global methane lifetime of 12.4±0.3 years against 

oxidation by tropospheric OH, with an inter-hemispheric OH ratio of 1.02. Our best estimate is that the global OH 

concentration has no significant trend over 2010–2018 except for a 5% dip in 2014.  

 

Taking all these methane budget terms together, our inversion of GOSAT satellite data estimates global mean methane 600 

emissions for 2010–2018 of 510 Tg a-1, with 341 Tg a-1 from anthropogenic sources, 139 Tg a-1 from wetland sources, and 30 

Tg a-1 from other natural sources. Our inferred growth rate of methane over that period matches that observed at NOAA 

background sites, including peak growth rates in 2014–2015 and an overall acceleration over the 2010–2018 period. We 

attribute the 2014–2015 peaks in methane growth rates to low OH concentrations (2014) and high fire emissions (2015), and 

the overall trend acceleration to a sustained increase in emissions. Most of this increase in emissions is attributed to wetlands 605 

(tropics: 1.8 Tg a-1 a-1; extra-tropics: 1.2 Tg a-1 a-1) and tropical livestock (0.8 Tg a-1 a-1). Our best estimate indicates no 

contribution of the oil/gas sector to increasing global emissions; but small oil/gas trends cannot be ruled out given relatively 

large uncertainties. Our finding is in general consistent with a previous 2010–2015 inversion of GOSAT data (Maasakkers et 

al., 2019) although here we use a longer record and we capture the interannual variability better. Our results also agree with 

isotopic data indicating that the rise in methane is driven by biogenic sources (Schaefer et al., 2016;Nisbet et al., 2016). The 610 

increase in tropical livestock emissions is quantitatively consistent with bottom-up estimates. More work is needed to 

understand the increase in wetland emissions. 
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Data availability 

The GOSAT proxy satellite methane observations are available at the CEDA archive (Parker and Boesch, 2020). The ACE-

FTS satellite observations can be requested through http://www.ace.uwaterloo.ca/data.php (last access: July 20, 2020). 615 

TCCON data were obtained from the TCCON Data Archive hosted by CaltechDATA (https://tccondata.org) (Deutscher et al., 

2017; Dubey et al., 2017; Feist et al., 2017; Goo et al., 2017; Griffith et al., 2017a, b; Hase et al., 2017; Iraci et al., 2017a, b; 

Kivi et al., 2017; Liu et al., 2017; de Maziere et al., 2017; Morino et al., 2017a, b, c; Notholt et al., 2019a, b; Sherlock et al., 

2017a, b; Shiomi et al., 2017; Strong et al., 2017; Sussmann et al., 2017; Te et al., 2017; Warneke et al., 2017; Wennberg et 

al., 2017a, b, c, d; Wunch et al., 2017). NOAA surface observations are accessed through NOAA ESRL/GMD CCGG Group 620 

(doi.org/10.15138/VNCZ-M766) (Dlugokencky et al., 2020). National reports to UNFCCC are available through UNFCCC’s 

Greenhouse Gas Inventory Data Interface (di.unfccc.int/detailed_data_by_party, last access: July 20, 2020). EDGAR 

anthropogenic emission inventories (v4.3.2 and v5) are available at 

https://data.europa.eu/doi/10.2904/JRC_DATASET_EDGAR  (last access: July 20, 2020). 
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