
We thank both reviewers for their comments and suggestions. 

Reviewer #1 

Zhang et al uses an analytical inverse method to estimate methane emissions from the 

GOSAT data from 2010 to 2018. The study contains a lot of information that is poorly 

structured and explained so I found it difficult to extract any new or notable scientific 

insights. I recommend a major revision that takes into the recommendations I have 

made below to help draw out the key points of the paper. Given the eminence of the 

coauthors I feel slightly aggrieved I have needed to make some of these points.  

Thanks for your suggestions. We have worked through the manuscript to make the 

improvements.  

 

Minor Comment 

I think the language is a bit odd in places. Easily fixed but needs an overhaul.  

We tried our best to improve the language throughout the text. 

 

Major Clarifications  

Cleanly separating wetland and non-wetland emissions, including rice paddies, etc is a 

bold claim. The authors’ motivation, based on WetCHARTs, is that wetlands have 

relatively coherent spatial behaviours. From what I understand the authors’ state vector 

is at grid-point resolution for non-wetland sources and their trend, but the wetland 

emissions are described on much larger spatial regions. I remain unclear whether using 

a combination of small and large geographical regions will decrease or increase 

posterior correlations between wetlands and anthropogenic emissions. An argument 

could be made for both sides. Certainly, more discussion/description is needed.  

We now add a new figure (Figure 6), which shows the posterior error correlations 

between regional wetland and anthropogenic emissions. The error correlations are 

moderate (r: averages -0.3; range -0.1 to -0.5), suggesting that the inversion has some 

ability to separate the two at the regional scale. 

 

We also test the impact of unresolved subregional wetland distribution on both wetland 

and anthropogenic estimates with an additional sensitivity inversion. We perturb prior 

wetland distribution in Africa following Lunt et al. (2019) (which reported that 

WetCHARTS underestimate over the Sudd region but overestimate over the Congo 

Basin). This results in some changes in estimates for both wetland and anthropogenic 



emissions in the region, but the main conclusion still holds. The sensitivity inversion is 

presented in Figure S1 (prior wetland emission), Figure S4 (anthropogenic emissions), 

and Figure S5 (wetland emissions). The resulting impact on the inference of 

anthropogenic emissions in eastern Africa is also presented in Figure 8. 

 

We also make changes in Section 2.2 (state vector) to better explain our reasoning on 

separate optimization of wetland and anthropogenic emissions. 

 

These two statements are apparently contradictory: Line 155: “Our prior estimate 

assumes no 2010-2018 trends in non-wetland emissions. . ..” Line 160: “We specify an 

absolute error standard deviations of 5%/a for linear trends of non-wetland emissions. . .”  

They are not contradictory. The first statement describes the prior estimate for non-

wetland trends, and the second describes the error statistics for this prior estimate. We 

now revise the two sentences to improve clarification. 

 

Line 161: Given the diversity of emission estimates from the ensemble members of 

WetCHARTs and the resulting uncertainty covariance structure, I am left wondering 

how sensitive the authors’ posterior solution is to this information.  

We have tested the inversion without the error covariance structure (only diagonal terms) 

from the WetCHARTS ensemble. We find the resulting changes in the posterior solution 

are small. In addition, as described above, we perform a sensitivity inversion to test the 

impact of errors in subregional wetland distribution unresolved by our inversion.  

 

Line 221: Given your reliance on the residual error method I think it would be useful 

to explain this a bit more.  

We now explain the method in the text. 

 

Line 224: Please clarify whether you use the brute force method to calculate the 

Jacobian matrix or take advantage of the tagged CH4 simulation, as described in section 

2.4.  

To construct the Jacobian matrix, we explicitly perturbed each individual element of 

the state vector in independent GEOS-Chem simulations and calculate the sensitivity 

of XCH4 to that perturbation. We did not use any tagged simulation in this work. This 

is described Section 2.6. 



 

Line 255: Comparison with NOAA is an important first step to determine whether your 

posterior solution is consistent with the observed atmospheric growth rate. 

Unfortunately, Figure 3 and the accompanying text is not sufficiently clear for this 

reviewer to make that judgement. For the lower right panel of Figure 3 it would be 

better to use a smaller y axis range given the small differences. At least then a reader 

can eyeball the comparison. I recommend “better fit” is substituted with some 

quantitative statistics, e.g. bias, correlations, etc.  

We now add the panel with smaller y axis in the Figure S6. We still keep the original 

panel in the main text (which has the same y axis as the left panel), as it is easy for a 

reader to compare prior and posterior simulations. We now report root-mean-square 

errors to quantitatively describe the fit to observations.  

 

Comment on arrangement of paper: showing your ability to independently estimate 

wetland and non-wetland emissions on the spatial scale you are using (Figure 14) would 

be useful up front before the more detailed discussions begin. See my comments below.  

We now add more discussion on the posterior error correlation before we start 

presenting inversion results in Section 3 (previously Section 2.7). We have moved 

previous Figure 14 (Now Figure 5) and relevant discussion to this section. As 

mentioned in above responses, we also add a new figure (Figure 6) with more detailed 

discussion on error correlations between wetland and anthropogenic emissions at a 

regional scale.  

 

A broad comment relevant to more than one figure, e.g. Figure 3: the period 2010 to 

2018 covers a wide range of climate variations (e.g. both phases of ENSO) so that 

taking the mean or differences over this period hides a lot of useful information about 

how methane has changed.  

The bottom panels of Figure 3 already show the monthly time series for the period. The 

posterior errors (Fig. 3d) are stable throughout the period with reduced seasonal error 

compared to the prior results. In particular, they show no coherence with ENSO phases. 

We now modify the relevant text to improve clarity. We also add Fig. S3 in the 

Supplementary Material, which shows the time series of errors compared to 

independent ground-based observations. Fig. S3 also shows that the posterior errors 

have no coherence with ENSO phases. 



 

Line 289: averaging kernel sensitivities? The matrix of averaging kernels already 

describes sensitivity. Do the authors mean the sensitivities described by this matrix?  

We introduced averaging kernel sensitivities (in Section 4.1) as diagonal terms of the 

averaging kernel matrix corresponding to a specific state vector element, which 

represent the sensitivity of a state vector element to its true value. The spatial/temporal 

distribution of this quantity visualizes locations where/when the inversion has 

strong/weak observational constraints. To better introduce this concept, we now 

formally define averaging kernel sensitivities in Method section (Section 2.6). We also 

add more explanations to the captions of relevant figures. 

 

Line 292: from what I understand the state vector has a length of 1000s but the DOFs 

is limited to 179. What implications does that have for being able to resolve the state 

vector? 

We now add more relevant discussion following the statement. Basically, this indicates 

that the inversion cannot fully resolve the 1009 state vector element. The constraints 

from the observations vary spatially, as shown in the figure of averaging kernel 

sensitivities (Fig. 7 right) mentioned above. 

 

Line 291: “By applying the posterior/prior correction factors to the prior distribution of 

each anthropogenic emission sector, we obtain improved estimates for anthropogenic 

emissions for that sector.” This statement does not make sense. Improved how? Better 

fit to measurements? Smaller uncertainties? Applying correction factors does not 

improve estimates for anthropogenic emissions. Which sector?  

The sentence is removed. 

 

Comments on reporting results: some posterior estimates are accompanied by their 

uncertainties and some are not. The authors need to be consistent. They should certainly 

report them on Figure 6.  

We now report throughout the text the errors derived from posterior error covariance 

matrix. The error bar is not plotted in Figure 6 and Figure 7 (left panel) because they 

are often too small compared to the absolute magnitude. We now note this in the figure 

captions. 

 



Line 315: I am really interested to hear more about how their results point towards an 

underestimate in livestock emissions. This whole paragraph contains so much hand 

waving I thought I was at a pre-pandemic music festival. I urge the authors to justify 

their result in light of it being inconsistent with Maasakkers et al and other published 

studies that attribute most of these changes to wetlands. I acknowledge they take a 

second swing at this point on page 15 but I was unsure which they used for their prior 

(for Figure 8) and more importantly how confidently they could separate wetland and 

livestock emissions.  

Both paragraphs are rewritten to better present the results.  

 

We first would like to clarify that the first paragraph is for mean anthropogenic 

emissions, and the second paragraph is for emission trends. So, they are separate 

discussions and are placed in different sections of the paper. We now make changes in 

both paragraphs to increase clarity. 

 

Our results are consistent with Maasakkers et al. in that both inversions found prior 

emissions underestimate over these regions. We differ, however, in the attribution. 

Maasakkers et al. mainly attributed the underestimation to wetland, based on fractions 

of each sector in prior information. Maasakkers et al. did not exploit the significant 

seasonal and spatial structure of wetland emissions, which our approach makes use of 

to separate wetland and non-wetland emissions (with different spatial and temporal 

resolution). We now add discussion about the error correlations between anthropogenic 

and wetland emissions (Figure 6). We also present the results of the sensitivity inversion 

mentioned above, which shows the results presented are robust against the perturbation. 

 

Fig. 10 (previously Fig. 8) discusses the regional emission trends attributed to the 

livestock sector. We use trends in these inventories to support that increasing livestock 

emissions over these regions are also plausible from the bottom-up perspective. They 

are not prior information in our inversion, as we assumed zero prior emission trends in 

the inversion (described in Section 2.3 and repeated also in the figure’s caption). We 

have modified the text for Fig. 8 to remove any ambiguity.  

 

Line 358: why are the constraints strongest over India and China? 

The averaging kernel sensitivities are a function of multiple factors including 



observation number, transport, and emissions, and are often large over regions with 

large emissions. This constraint stems mainly from the fact that these strong emissions, 

if exist, can create large methane gradients, that are easy to detect by satellite 

observations. We now briefly explain it in the text. 

 

Line 539: That’s a very long lifetime for methane against OH oxidation. This reviewer 

is left wondering whether the authors’ inverse problem remains ill-posed given their 

state vector. The joint PDF clearly shows strong correlations between different parts of 

the (global mean) state vector. Given the authors reporting of regional methane missions, 

it would be useful to show the regional joint PDFs for which I suspect the correlations 

between anthropogenic and wetland emissions can be much higher. Their conclusion 

on page 24 doesn’t fill me with confidence. 

The lifetime we derived is within but at the high end of that derived from the 

methylchloroform proxy. We now also add text here to remind the readers of the strong 

error aliasing between global OH and global wetland emissions in this inversion (Figure 

5). 

 

As mentioned above, we add Fig. 6 which show that the error correlations between 

anthropogenic and wetland emissions are moderate at regional level (r: averages -0.3; 

range -0.1 to -0.5). 

 

 

Reviewer #2 

This article analyses the role of wetland and livestock on the global CH4 growth rates 

in the period 2010-2018. The authors have also carefully assesed the role of OH on the 

CH4 growth rate. The article is generally well written, and has built upon their earlier 

analysis. I have doubt on the simplicity of the emission optimisation for only two major 

sectors, while CH4 has so many other natural and anthropogenic emission sectors those 

vary very differently at interannual and longer timescales. Detailed comments below. 

The manuscript may be considered for publication after addressing some of these 

comments.  

 

Specific comments: lines 38-39 : need references?  

A reference is added. 



 

lines 76ff: I find later that the CTM configuration and other details are discussed later. 

May be remove this paragraph  

We remove the paragraph. 

 

lines 90ff: I think this is not an ideal choice because the values of CH4 depends on 

assumed CO2 concentrations. We know that our understanding of CO2 fluxes over many 

data void regions are poor. How do you estimate regional bias, say over South Asia, 

Southeast Asia, Amazon/Brazil, Africa etc.  

The CO2 proxy retrieval has been systematically evaluated against ground-based 

measurements with its uncertainty characterized (Parker et al., 2020) and has been 

extensively used in other methane inversion studies. In particular, validation has also 

been performed for the uncertainties induced by the model XCO2 (Parker et al., 2015). 

An evaluation was also performed over Amazon against aircraft profile observations 

(Webb et al., 2016). We now add information about these validation studies in the 

manuscript. 

 

line: that’s the lower bound, what about the oceans?  

We do not know what this comment is referred to. 

 

line 137: Did you apply any scaling to termite emissions?  

We did not apply any scaling to Fung et al. (1991) in the prior emissions. We do 

optimize termite emissions together with other non-wetland emissions. We now report 

the total termite emissions in the text in case readers are interested in the magnitude. 

 

lines 170ff: 1-year spin-up is too short by any standards for long-lived species. What 

about the stabilisation of vertical gradients? You cannot get that right by the unbiasing 

method you describe. For future studies please make a spin-up for 10 years or so. Its 

worth the computing cost, given the large amount of follow work and analysis is done 

for any publication.  

The previous description was inaccurate. The 1-year spin-up simulation was initialized 

from a CH4 field generated from a long-term simulation (Turner et al., 2015), in which 

stabilization of global-scale methane gradients is already achieved. The additional 1-

year simulation using 2009 meteorology was to establish reasonable synoptic-scale 



gradient on the starting date (Jan 1 2010). We now modify our description to avoid this 

confusion. 

 

Figure 2 and associated text: Does these correction factors extend till the poles? The 

problem is that the stratosphere is dynamic as well. Are such seasonal bias correction 

factor good for getting the profiles right.  

We fully agree with you that the stratosphere is dynamic. We do find that the correction 

factors are better predicted by equivalent latitude rather than ordinary latitude. 

Equivalent latitude is a function of potential vorticity, which partly reflects the 

dynamics of stratosphere, in particular polar vortex. We now emphasize this point in 

the text. It is not necessary to extend the correction to the poles, because we do not have 

any GOSAT data over very high latitudes to begin with. 

 

My worry here is also that if the stratosphere is not spun-up well these bias correction 

factors will not be time invariant. So the trends in anthropogenic or natural emissions 

you derive later may not be free of these correction factors.  

See above responses on initial conditions for “not well spun-up stratosphere”. In 

addition, we now also compute the correction factors by individual years, and find no 

significant shift in the correction factors (Figure S2). 

 

Figure 5 and associated text: Very tough to accept the results for the a posteriori patterns, 

e.g., there is a strip of increased emissions along the Himalayan region! Is this arising 

from not properly accounting for the orography in the coarse resolution model? Or this 

may be an artifact of the proxy retrievals by miscalulating CO2 over northern part of 

the Indian subcontinent.  

The absolute changes along the Himalayan region are very small (because prior 

emissions there are very small). We now add Figure S7, which shows the absolute 

changes between prior and posterior estimates to help readers interpret the results. We 

still retain the posterior/prior ratio plot, as the ratios are useful for interpreting results 

for regions with large emissions. 

 

Figure 6 and associated text: I like this analysis but it is not clear at all, if the results are 

independent of the priors! For example, if you if you started with the priors from the 

UNFCCC will you get the same a posteriori emissions? The question is also same for 



the trends in derived emissions. Some sensitivity tests are need for clarifying robustness 

of the a posteriori emissions. See for example Patra et al., JMSJ, 2016. That paper is 

also relevant for other discussion in the paper where you discuss trends of emissions 

over China, and from Animals etc.  

We now report the reduced averaging kernel sensitivities in the figure, which 

characterizes the dependence of the results on observations vs. prior. We now also cite 

Patra et al., 2016 and include it for discussion where relevant. 

 

lines 340-344: How confidently we can talk about the oil and gas emission trends - 

given that the cited references are so small scale compared to the gridcell you optimize 

here. For example, can you gather the cited references by model gridcells and check the 

validity of the inversion and vice versa?  

Though in coarse resolution, the upward correction patterns over Mid- and South U.S. 

in Fig. 7 correspond to major U.S. oil and gas production regions, where 

underestimation of emissions is reported by work of these cited references repeatedly. 

We now add a discussion on Maasakkers et al. (2020) who performed a high-resolution 

inverse analysis over the U.S. using the 2010-2015 GOSAT data, and allocated the 

correction more specifically to these oil/gas regions. 

 

lines 366-377: I am a bit confused why/how all the anthropogenic emissions are linked 

with the livestock population? Is this because your a priori emissions only accounts for 

the livestocks? For example how is the trends in waste management in these developing 

nations?  

We now modify the text to avoid any confusion that the attribution is made based on 

livestock population. We attribute these trends to emission sectors based on their 

fractions in prior information over a grid cell. We then support this attribution with 

bottom-up information (both livestock population data and bottom-up livestock 

inventories).  

 

Page 18-20: I do not know but I have a feeling that the inversion is set in such a way 

that all the regions are having somewhat similar increase in emissions, either from the 

animals or from wetlands. The authors are in the best position to judge and find the 

reasons behind such outcomes from their inversion system.  

Fig. 9 shows the spatial patterns of anthropogenic emission trends derived from our 



inversion. Fig. 12 shows the trends of wetland emissions in 14 subcontinental regions. 

Both show that varied magnitudes of trends are inferred for different regions by our 

inversion. 

 

If you can explain the global CH4 growth rates using emissions from only two emission 

sectors then we have an oversimplifications of CH4 sources. I cannot prove anything 

in favour or against the proposed mechanisms here but many of the hypothesis are based 

on apparently single line of evidence, i.e., the GOSAT proxy XCH4 retrievals. Aren’t 

Maasakkers et al., Lunt et al., Pandey et al., Parker et al. using the same XCH4 data 

sources? 

We did not intend to state that wetland and livestock are the only two sectors 

contributing to accelerating methane growth. We now make several changes in the text 

to avoid this misimpression. In particular, when discussing wetland contributions, we 

are now more explicit about the years (2016-2018) that we infer large wetland 

emissions, rather than presenting them as a trend (which is misleading because they are 

just large inter-annual variability occurring in the latter part of the study period). We 

also discussed contributions from other sectors (Fig. 13 and relevant text).  

 

Indeed, evidence are mostly from GOSAT XCH4 data for now, because of the lack of 

other measurements in these remote regions. Our findings suggest that more attention 

should be paid to these regions. 

 

In addition to the trends analysis, it would have been useful to discuss how and why are 

the large interannual variability in some regions as shown in Fig. 10. Are there irregular 

data gaps or a particular climate anomaly affecting CH4 emissions regionally?  

Thanks for the suggestions. We have a paper in preparation that uses the satellite-

constrained wetland emissions to examine the drivers of their variability in different 

regions.  

 

line 470: The NH/SH OH ratio of 1.02 is an interesting result from this exercise. Could 

you please comment here how are the NH/SH ratio of CH4 emission changed from a 

priori to a posteriori cases? I suspect the derived NH/SH OH ratio depends on how well 

freely the inversion system is allowed to adjust emissions vs that for OH. 

Our setup is based on the reasoning that emissions can be informed by 



regional/subcontinental gradients of CH4 while OH mainly is informed by 

global/hemispheric gradients of CH4. With this setting, both emissions and OH have 

some freedom to adjust. The figure below shows the NH/SH ratio of emissions in prior 

and posterior estimates, which demonstrates that hemispheric emission ratios are 

indeed being adjusted by the inversion (though emissions are resolved at much finer 

resolution). We decide not to include the figure in the manuscript to better focus on the 

OH ratio results. 

 

 

page 23: How can we get assured that the OH and CH4 emissions can be optimised in 

one inversion system. Is there a dipole effect? For example, if you do more or less 

number of iterations, will the global total emission and global mean OH will be different? 

I see that this issue is addressed later using Fig. 14, but still not convinced that the 

inversion system is separating the wetland vs livestock emissions well.  

We solve the inversion analytically. So, we do not iterate to find the solution. In our 

previous work (Zhang et al., 2018), we tested separate optimization of OH and CH4 

emissions in an Observation System Simulation Experiment, which demonstrated some 

ability to separate changes in OH and CH4 emissions in an inversion similar to the 

setting here. Zhang et al. (2018) identified that the major source of uncertainty to the 

method is the prescribed distribution of spatial-temporal OH fields (about 3% 

systematic uncertainty). We now add text to remind readers that with current 

observations we have only limited ability to separate OH and emissions. 

 

As described in the above responses, we now add more discussion to support the 

separability of wetland and anthropogenic emissions on regional scales. Briefly, we add 



a new figure (Figure 6) to show the posterior error correlations between regional 

wetland and anthropogenic emissions. We also perform a sensitivity inversion to test 

the impact of unresolved subregional wetland distribution on posterior wetland and 

anthropogenic estimates. In this sensitivity simulation, prior wetland distribution in 

Sudd and the Congo Basin of Africa (which are near livestock hotspots) is perturbed 

(Figure S1). Results are shown in Figure S4, Figure 8 (anthropogenic emissions), and 

Figure S5 (wetland emissions). 

 

Figure 13: You attributed emissions from livestock increase to the animal population, 

but what appears here is that the increase in emissions from tropical and extratropical 

wetland are the greatest. Could you propose a mechanistic viewpoint? 

We have briefly included some discussion on the driver based on literature. As 

mentioned above, we will explore from this perspective in a paper in preparation. 
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Abstract. We conduct a global inverse analysis of 2010–2018 GOSAT satellite observations to better understand the factors 

controlling atmospheric methane and its accelerating increase over the 2010–2018 period. The inversion optimizes 2010–2018 

anthropogenic methane emissions and their 2010–2018 trends on a 4º×5º grid, monthly regional wetland emissions, and annual 20 

hemispheric concentrations of tropospheric OH (the main sink of methane) also for individual years.). We use an analytical 

solution to the Bayesian optimization problem that provides closed-form estimates of error covariances and information 

content for the solution. OurWe verify our inversion successfully reduces the errors against theresults with independent 

methane observations from the TCCON network andand NOAA networks. Our inversion successfully reproduces the 

interannual variability of the methane growth rate inferred from NOAA background sites. We find that prior estimates of fuel-25 

related emissions reported by individual countries to the United Nations are too high for China (coal) and Russia (oil/gas), and 

too low for Venezuela (oil/gas) and the U.S. (oil/gas). We show that thelarge 2010–2018 increaseincreases in global 

anthropogenic methane emissions is mainly driven by tropical wetlands (Amazon and tropical Africa), boreal wetlands 

(Eurasia), and tropical livestock (over South Asia, tropical Africa, and Brazil),, coincident with no significant trend in oil/gas 

emissions. While the rise in tropical livestock emissions is consistent with bottom-up estimates of rapidly growing 30 

cattlelivestock populations, the rise in wetland emissions needs to be better understood. The sustained acceleration of growth 

rates in 2016–2018 relative to 2010–2013 is mostly from wetlands, while the  in these regions. We do not find a significant 

trend in anthropogenic emissions over regions with large production or use of fossil methane, including the U.S., Russia, and 

Europe. Our results indicate that the peak methane growth rates in 2014–2015 are also contributeddriven by low OH 
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concentrations (2014) and high fire emissions (2015).), while strong emissions from tropical (Amazon and tropical Africa) and 35 

boreal (Eurasia) wetlands combined with increasing anthropogenic emissions drive high growth rates in 2016–2018. Our best 

estimate is that OH did not contribute significantly to the 2010–2018 methane trend other than the 2014 spike, though error 

correlation with global anthropogenic emissions limits confidence in this result. 

1 Introduction 

Methane is the second most important anthropogenic greenhouse gas after CO2, with an emission-based radiative forcing of 40 

0.97 W m-2 since pre-industrial times (Myhre et al., 2013). Methane is emitted to the atmosphere from a range of anthropogenic 

activities including fuel exploitation, agriculture, waste and wastewater treatment, and biomass burning. The main natural 

source is from wetlands, with minor contributions from geological seeps, forest fires, and termites. Atmospheric methane has 

a lifetime of 11.2 ±1.3 years against tropospheric oxidation by the hydroxyl radical (OH) (Prather et al., 2012). Minor sinks 

include stratospheric loss, oxidation by Cl atoms, and absorption by soils. (Kirschke et al., 2013).  45 
 

Unlike the steady rise in atmospheric CO2, the rise of methane has taken place in fits and starts. Observations from the NOAA 

network (Dlugokencky, 2020) (https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/, last access: 22 June 2020) show a period of 

stabilization in the early 2000s, followed by a renewed growth after 2007 that has accelerated since 2014. Annual growth rates 

averaged 0.50% a-1 for 2014–2018, compared to 0.32% a-1 for 2007–2013. The growth of atmospheric methane concentrations, 50 

if continued at current rates in coming decades, may significantly negate the climate benefit of CO2 emission reduction (Nisbet 

et al., 2019).  
 

However, our understanding of the drivers behind the methane growth rate is still limited, preventing reliable projections for 

future changes. Explanations have differed for the renewed growth of atmospheric methane since 2007. A concurrent increase 55 

in atmospheric ethane has been interpreted as evidence of an increase in oil and gas emissions (Hausmann et al., 2016;Franco 

et al., 2016). However, the assumption that the ethane/methane emission ratio should be stable is questionable (Lan et al., 

2019). Meanwhile, a concurrent shift towards isotopically lighter methane has been attributed to an increase in microbial 

sources either from livestock or wetlands (Schaefer et al., 2016;Nisbet et al., 2016). Worden et al. (2017) pointed out that the 

trend towards isotopically lighter methane could be explained by decreases in fire emissions that are isotopically heavy. Based 60 

on methyl chloroform observations, Turner et al. (2017) and Rigby et al. (2017) suggested that a decrease in the OH sink may 

be the cause of the methane regrowth.  
 

To better interpret the methane budget and its recent trends, we present here an inverse analysis of global 2010–2018 methane 

observations from the GOSAT satellite instrument. GOSAT provides a long record (starting in 2009) of global high-quality 65 

observations of column methane mixing ratios (Kuze et al., 2016;Buchwitz et al., 2015). A number of inverse analyses 
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previously used GOSAT observations to constrain methane emission estimates (Fraser et al., 2013;Monteil et al., 2013;Cressot 

et al., 2014;Alexe et al., 2015;Turner et al., 2015;Pandey et al., 2016;Pandey et al., 2017a;Miller et al., 2019;F. Wang et al., 

2019a;Lunt et al., 2019;Maasakkers et al., 2019;Janardanan et al., 2020;Tunnicliffe et al., 2020;Yin et al., 2020). Maasakkers 

et al. (2019) used 2010–2015 GOSAT observations to optimize gridded methane emissions, global OH concentrations, and 70 

their 2010–2015 trends. They concluded that increasing methane emissions were driven mainly by India, China, and tropical 

wetlands. Our analysis is based on that of Maasakkers et al. (2019) but extends it to 2018 in order to interpret the post-2014 

acceleration. It implementsWe implement for that purpose a number of major improvements to the Maasakkers et al. (2019) 

methodology including in particular (1) separate optimization of subcontinental wetland emissions to resolve their seasonal 

and interannual variability; (2) correction of stratospheric methane forward model biases based on ACE-FTS solar occultation 75 

satellite data (Waymark et al., 2014); (3) prior estimates of global fuel exploitation emissions using national reports submitted 

to the United Nations Framework Convention on Climate Change (UNFCCC) (Scarpelli et al., 2020), and (4) optimization of 

annual hemispheric OH concentrations.  

2 Methods 

We perform a global inversion to optimize the sources and sinks of atmospheric methane, and their 2010–2018 trends, by 80 

drawing information from GOSAT data and prior knowledge following the Bayes’ rule. 

 

We assemble the 2010–2018 GOSAT methane column observations in an observation vector y (Section 2.1), and optimize a 

state vector x including methane sources and sinks and their trends (Section 2.2). Prior estimates xa, which regularize the 

Bayesian solution, are compiled from bottom-up estimates for specific methane sources and sinks (Section 2.3). We use the 85 

GEOS-Chem chemical transport model (CTM) version 11.02 as the forward model to relate atmospheric methane to its sources 

and sinks (Section 2.4), and correct model biases in the stratosphere using independent satellite observations from the ACE-

FTS instrument (Section 2.5). We solve the Bayesian optimization problem analytically to obtain both the posterior solution 

𝒙𝒙� and its error covariance matrix 𝐒𝐒� , thus achieving a closed-form quantification of information content as part of the solution 

(Section 2.6). The inversion is evaluated by measuring its fit to observations (Section 2.7), lending confidence in the results 90 

before we analyze them in Section 3. 

2.1 GOSAT observations 

The observation vector for the inversion (y) consists of column averaged dry-air methane mole fractions during 2010–2018 

observed by the TANSO-FTS instrument on board the Greenhouse Gases Observing Satellite (GOSAT) (Kuze et al., 2009). 

The satellite is in polar sun-synchronous low-Earth orbit and observes methane by nadir solar backscatter in the 1.65 μm 95 

shortwave infrared absorption band. Observations are made at around 13:00 local solar time. We use the University of Leicester 
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version 9 CO2 proxy retrieval (Parker et al., 2020a). TheThe retrieval has been extensively validated against ground-based 

column observations from the Total Carbon Column Observing Network (Wunch et al., 2011). Validation has also been 

performed for the model XCO2 used in the CO2 proxy retrieval (Parker et al., 2015), and for a specific region (i.e., Amazon) 

against aircraft profile observations (Webb et al., 2016). Overall, the retrieval has a single-observation precision of 13.7 ppb 100 

and a regional bias of 4 ppbv (Parker et al., 2020a), sufficient for a successful methane inversion (Buchwitz et al., 2015). The 

inversion ingests a total of 1.5 million successful GOSAT retrievals. Previous inversions of GOSAT data often excluded high-

latitude GOSAT observations because of seasonal bias, large retrieval errors at low solar elevations, and uncertainty in the role 

offorward model errors for the stratosphere (Bergamaschi et al., 2013; Turner et al., 2015;Z. Wang et al., 2017;Maasakkers et 

al., 2019). The exclusion of high-latitude observations limited the capability of the inversions to resolve emissions at high 105 

latitudes such as from boreal wetlands and oil/gas emissionsactivity in Russia (Maasakkers et al., 2019). Here we use an 

improved model bias correction scheme (Section 2.5) and include these high-latitude observations in the inversion. 

2.2 State vector 

The state vector (x) is the ensemble of variables that we seek to optimize in the inversion. In this work, the state vector includes 

(1) mean 2010–2018 methane emissions from non-wetland sources (all anthropogenic and natural emissions excluding 110 

wetlands) on a global 4º×5º grid (1009 elements); (2) linear trends of non-wetland emissions on that same grid (1009 elements); 

(3) monthly wetland emissions from 14 subcontinental regions for individual months (1512 elements) (Figure 1); and (4) 

annual-mean tropospheric OH concentrations in the northern and southern hemispheres (18 elements). The reason to treat 

wetland and non-wetland emissions separately is that wetland emissions have large seasonal and interannual uncertainties but 

relatively coherent spatial behaviors (Bloom et al., 2017). Therefore, we can use the inversion to characterize seasonal and 115 

interannual variability in wetland emissions, instead of imposing them as part of the prior estimate as was done by Maasakkers 

et al. (2019). The latter approach introduced substantial seasonal biases in the forward model simulation that then had to be 

empirically filtered out before conducting the inversion (Maasakkers et al., 2019).(as compared to anthropogenic emissions); 

coarsening the spatial resolution when optimizing wetland emissions allows us to estimate monthly values for individual years 

(Bloom et al., 2017). This is a significant improvement over the inverse analysis of Maasakkers et al. (2019), where interannual 120 

and seasonal errors in prior wetland emissions were not addressed by the inversion.   

 

Another improvement in the state vector definition relative to Maasakkers et al. (2019) is to optimize annual mean OH 

concentrations in each hemisphere rather than just globally. Y. Zhang et al. (2018) previously found with an observing system 

simulation experiment that it should be possible to constrain annual mean hemispheric OH concentrations from satellite 125 

methane observations. Patra et al. (2014) suggested that global CTMs are often biased in their interhemispheric OH gradient 

relative to methyl chloroform observations, and such bias, if not corrected, would propagate to the solution for methane 

emissions.  
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 130 

Figure 1. Spatial distribution of mean 2010–2018 methane emissions used as prior estimates in the inversion of GOSAT data. Top panel 
shows wetland emissions, and bottom panel shows non-wetland emissions. Blue boxes indicate the 14 subcontinental regions for which 
monthly wetland emissions are optimized for individual months (Section 2.2): (1) Alaska+West Canada, (2) East Canada, (3) WestNorthern 
Europe, (4) RussiaSiberia, (5) USATemperate North America, (6) Latin America, (7) North AfricaMediterranean, (8) East Asia, (9) Amazon, 
(10) Sub-Sahara Africa, (11) Tropical South Asia, (12) Argentina, (13) Southern Africa, and (14) Indonesia+Australia.  135 

2.3 Prior estimates 

Prior estimates for methane sources and sinks (xa) are compiled from an ensemble of bottom-up studies. Figure 1 shows the 

spatial distribution of prior emission estimates. For gridded 4º×5 º anthropogenic emissions, we use as default the EDGAR 

v4.3.2 global emission inventory for 2012 (https://edgar.jrc.ec.europa.eu/, last access: 1 December 2017) (Janssens-Maenhout 

et al., 2017). We supersede it for the USU.S. with the gridded version of the Environmental Protection Agency greenhouse gas 140 

emission inventory for 2012 (Maasakkers et al., 2016). We further supersede it globally for fuel (oil, gas, and coal) exploitation 

with the inventory of Scarpelli et al. (2020) for 2012, which disaggregates spatially the national emissions reported to the 

United Nations Framework Convention on Climate Change (UNFCCC) (di.unfccc.int). All anthropogenic emissions are 

assumed to be aseasonal, except manure management for which we apply local temperature-dependent corrections 

(Maasakkers et al., 2016), and rice cultivation for which we apply gridded seasonal scaling factors from B. Zhang et al. (2016).  145 

 

Monthly 
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For the prior estimates of natural emissions, we take monthly wetland emissions fromduring 2010 to –2018 are from the 

WetCHARTS v1.0 extended ensemble mean (Bloom et al., 2017).) for each subcontinental domain of Figure 1. To test the 

impact of wetland spatial distribution within the subcontinental domains on inversion results, we performed a sensitivity 150 

inversion in which prior WetCHARTS emissions in Africa (regions 10 and 13 in Figure 1) are increased by a factor of 3 in the 

Sudd wetland of South Sudan and decreased by a factors 2.5 in the Congo Basin, following Lunt et al. (2019) and as shown in 

Figure S1. Daily global emissions from open fires are taken from GFEDv4s (van der Werf et al., 2017), which accounts for 

high methane emissions from peatland fires (Liu et al., 2020). For geological sources, we scale the spatial distribution from 

Etiope et al. (2019) to a global total of 2 Tg a-1 inferred from preindustrial-era ice core 14CH4 data (Hmiel et al., 2020). Termite 155 

emissions are from Fung et al. (1991).) totalling 12 Tg a-1. 

 

The prior estimates for 2010–2018 trends in non-wetland emissions are specified as zero on the 4º×5 º grid, except for 

interannual variability in fire emissions given by GFEDv4s. In this manner, all information on the posterior estimate of 

anthropogenic emission trends is from the GOSAT observations. 160 

 

The prior estimates for the hemispheric tropospheric OH concentrations are based on a GEOS-Chem full chemistry simulation 

(Wecht et al., 2014). The monthly 3-D OH concentration fields from this full chemistry simulation are also used in the forward 

model. We optimize hemispheric OH concentrations as the methane loss frequency [s-1] due to oxidation by tropospheric OH 

(𝑘𝑘𝑖𝑖 ) in the northern and southern hemispheres (i = north or south): 165 

𝑘𝑘𝑖𝑖 =
∫ 𝑘𝑘′(𝑇𝑇)[OH]𝑛𝑛CH4d𝑣𝑣troposphere,𝑖𝑖

∫ 𝑛𝑛CH4d𝑣𝑣atmosphere

 (1) 

where 𝑛𝑛CH4 is methane number density [molecules cm-3] ,], v is volume, and k′(T)=2.45×10-12 e-1775/T cm3 molec-1 s-1 is the 

temperature-dependent oxidation rate constant (Burkholder et al., 2015). In this definition, the denominator of Eq. 1 integrates 

over the entire atmosphere and the numerator integrates over the hemispheric troposphere. Hence, global methane loss 

frequency (or inverse lifetime; k) due to oxidation by tropospheric OH can be expressed as the sum of hemispheric values 170 

(𝑘𝑘 = 1 𝜏𝜏⁄ = 𝑘𝑘north + 𝑘𝑘south where 𝜏𝜏 is the global lifetime due to oxidation by tropospheric OH). Our prior estimates from 

Wecht et al. (2014) are 0.050 a-1 for 𝑘𝑘north and 0.043 a-1 for 𝑘𝑘south, which translates to a 𝜏𝜏 of 10.7 years and a north to south 

inter-hemispheric OH ratio of 1.16. In comparison, the methyl chloroform proxy infers 𝜏𝜏 of 11.2±1.3 years (Prather et al., 

2012) and an inter-hemispheric ratio in the range 0.85–0.98 (Montzka et al., 2000;Prinn et al., 2001;Krol and Lelieveld, 

2003;Bousquet et al., 2005;Patra et al., 2014), while the ACCMIP model ensemble yields a 𝜏𝜏 of 9.7±1.5 years and an inter-175 

hemispheric ratio of 1.28±0.10 (Naik et al., 2013).  
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Our prior estimate assumes no 2010–2018 trends in non-wetland emissions on the 4º×5 º grid except for interannual variability 

in fires (GFED4s). In this manner, all information on anthropogenic emission trends is from the GOSAT observations.  

 180 

The Bayesian inversion requires error statistics for the prior estimates. The prior error covariance matrix (Sa) is constructed as 

follows. For mean non-wetland emissions, we assume 50% error standard deviation for individual grid cells and 20% for each 

source category when aggregated globally. WeFor linear trends in non-wetland emissions, we specify an absolute error 

standard deviation of 5% a-1 for linear trends of non-wetland emissionsindividual grid cells. For wetland emissions, we take 

the full error covariance structure (including spatial and temporal error covariance) derived from the WetCHARTs ensemble 185 

members for the 14 subcontinental regions (Bloom et al., 2017). For annual hemispheric OH concentrations, we assign 5% 

independent errors for individual years on top of a 10% systematic error for the multi-year2010-2018 mean. 

2.4 Forward model 

We use the GEOS-Chem CTM v11.02 as forward model (F) for the inversion (Wecht et al., 2014;Turner et al., 

2015;Maasakkers et al., 2019) that relates atmospheric methane observations (y) to the state vector to be optimized (x) as 190 

y=F(x). The simulation is conducted at 4º×5º horizontal resolution with 47 vertical layers (~ 30 layers in the troposphere) and 

is driven by 2009–2018 MERRA-2 meteorological fields (Gelaro et al., 2017) from the NASA Global Modeling and 

Assimilation Office (GMAO). The prior simulation is conducted from 2010 to 2018. The initial conditions are from Turner et 

al. (2015) with aan additional one-year spin-up starting from January 2009 to establish methane gradients driven by synoptic-

scale transport (Turner et al., 2015). We further set the initial conditions on January 1, 2010 to be unbiased by removing the 195 

zonal mean biases relative to GOSAT observations. Thus we attribute any model departures from observations over the 2010–

2018 period in the inversion to errors in sources and sinks over that period. 

 

We use archived 3-D monthly fields of OH concentrationconcentrations from a GEOS-Chem full chemistry simulation (Wecht 

et al., 2014) to compute the removal of methane from oxidation by tropospheric OH. Other minor loss terms include 200 

stratospheric oxidation computed with archived monthly loss frequencies from the NASA Global Modeling Initiative model 

(Murray et al., 2012), tropospheric oxidation by Cl atoms computed with archived Cl concentration fields from X. Wang et al. 

(2019b), and monthly soil uptake fields from Murguia-Flores et al. (2018). The inversion does not optimize these minor sinks. 

The loss from oxidation by Cl is 5.5 Tg a-1, accounting for ~ 1% of methane loss. This estimate by X. Wang et al. (2019b)It is 

lower than the previous estimate of 9 Tg a-1 (Sherwen et al., 2016) used by Maasakkers et al. (2019) andbut is consistent with 205 

a recent analysis of methane and CO isotopic signatures (Gromov et al., 2018). Use of monthly soil uptake fields from the 

Murguia-Flores et al. (2018) climatology of 2000-2009 data is another update relative to Maasakkers et al. (2019) and yields 

a global soil sink of 34 Tg a-1. 
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2.5 Forward model bias correction 210 

The GEOS-Chem simulated methane columns have a latitude-dependent background bias relative to the GOSAT data (Turner 

et al., 2015). This is thought to result from excessive meridional transport in the stratosphere, a common problem in global 

models (Patra et al., 2011). In particular, coarse-resolution global models have difficulty resolving polar vortex dynamics that 

control the distribution of stratospheric methane in the winter-spring hemisphere (Stanevich et al., 20192020). GEOS-Chem 

model evaluation with stratospheric sub-columns derived from ground-based TCCON column measurements shows that the 215 

stratospheric bias varies seasonally (Saad et al., 2016). Previous GEOS-Chem based inversions of GOSAT data (Turner et al., 

2015;Maasakkers et al., 2019) developed correction schemes by fitting differences between the prior model simulation and 

background GOSAT observations as a second-order polynomial function of latitude. However, these correction schemes did 

not consider the seasonal variation of the stratospheric biases. Moreover, they could falsely attribute high-latitude model-

GOSAT differences to stratospheric model bias rather than to errors in prior emissions. Therefore, they had to exclude these 220 

high-latitude observations in their analysis (Turner et al., 2015;Maasakkers et al., 2019).  

 

Here we improve the stratospheric bias correction by using satellite observations from ACE-FTS v3.6 (Waymark et al., 

2014;Koo et al., 2017). ACE-FTS is a solar occultation instrument launched in 2003 andthat measures vertical profiles of 

stratospheric methane (Bernath et al., 2005). We compute correction factors to GEOS-Chem stratospheric methane sub-225 

columns as a function of season and equivalent latitude, based on the ratios of stratospheric methane sub-columns between 

ACE-FTS and GEOS-Chem prior simulationssimulation for 2010-2015 (Figure 2). A global scaling factor (1.06) is applied to 

these correction factors to enforce mass conservation for methane in the stratosphere, so that the correction does not introduce 

a spurious stratospheric source/sink in the model simulation. We use equivalent latitude, computed on the 450 K isentropic 

surface from MERRA-2 reanalysis fields, as one of the predictors for parameterization. The equivalent latitude is a potential 230 

vorticity (PV) based coordinate that maps PV to latitude, based on areas enclosed by PV isopleths (Butchart and Remsberg, 

1986), and is often used to represent the influence of high-altitude dynamics (e.g., polar vortex) on chemical tracers (e.g., 

Engel et al., 2006;Hegglin et al., 2006;Strahan et al., 2007). We use the same stratospheric bias correction for all years because 

the correction does not vary significantly for individual years (Figure S2). Figure 2 shows that GEOS-Chem model biases 

tendare largely confined to be large at high latitudes of the winter-spring hemisphere,. By having our correction factors be 235 

dependent on equivalent latitude and are small in the tropics and in the summer-fall hemisphere. Based on information provided 

by ACE-FTS observations, the model bias correction scheme is able to capture these seasonal and latitudinal variations, which 

are not resolved by a second-order polynomial function used in Turner et al. (2015) and Maasakkers et al. (2019). 

Furthermoreseason, we can attribute the stratospheric bias as specifically due toaccount for the too weak polar vortex 

dynamical barrier being too weak in the model. as the cause of the stratospheric bias (Stanevich et al., 2020).  240 
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Figure 2. GEOS-Chem stratospheric bias correction based on ACE-FTS observations. Correction factors for The Figure shows the ACE-
FTS to GEOS-Chem ratio of stratospheric methane subcolumns are shown in blue lines as a function of season and equivalent latitude. and 
season, averaged over the 2010-2015 period. Grey shading represents the fitting unceratinty. The correction factor is signficant poleward of 
60 degrees in winter-spring, consistent with model error in accounting for polar vortex dynamics. 245 

 

2.6 Inversion procedure 

We perform the inversion by minimizing the Bayesian cost function (Brasseur and Jacob, 2017): 

𝐽𝐽(𝒙𝒙) = (𝒙𝒙 − 𝒙𝒙a)T𝐒𝐒a−1(𝒙𝒙 − 𝒙𝒙a) + 𝛾𝛾(𝒚𝒚 − 𝐊𝐊𝒙𝒙)T𝐒𝐒O−1(𝒚𝒚 − 𝐊𝐊𝒙𝒙) (2) 

HereHere the Jacobian matrix K (= ∂𝒚𝒚
∂𝒙𝒙

) is a linearized description of the forward model (F)that relates y (observations) to x 250 

(state vector). We explicitly compute the Jacobian matrix by perturbing each individual element of x independently in GEOS-

Chem simulations and calculating the sensitivity of y to that perturbation. xa is the prior estimate for x and 𝐒𝐒a  is the prior error 

covariance matrix (Section 2.3). 𝐒𝐒O  is the observation error covariance matrix including contributions from the instrument 

error and the forward model error. We take 𝐒𝐒O  is taken to be diagonal and compute the variance terms are computed withfrom 

the statistics of the residual error method of (𝜺𝜺𝑂𝑂 = 𝒚𝒚 − 𝑭𝑭(𝒙𝒙𝑎𝑎) − 𝒚𝒚 − 𝑭𝑭(𝒙𝒙𝑎𝑎)������������� where the overbar denotes annual averages in a 255 

4°× 5° grid cell) that represents the random component of model-observation differences (Heald et al. (.,2004) as). This method 

of constructing 𝐒𝐒O  has been previously applied to GOSAT observations by Turner et al. (2015) and Maasakkers et al. (2019). 

The observational error standard deviation averages 13 ppbv. The Jacobian matrix K= ∂𝒚𝒚
∂𝒙𝒙

 that relates y (observations) to x 

(state vector) is a linearized description of the forward model. We explicitly compute the Jacobian matrix by perturbing each 

individual element of x independently in GEOS-Chem and calculating the sensitivity of y to that perturbation. xa is the prior 260 

estimate for x and 𝐒𝐒a  is the prior error covariance matrix (Section 2.3). derived in this manner averages 13 ppbv. 𝛾𝛾 is the 
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regularization parameter taken to be 0.05 following Y. Zhang (2018) and Maasakkers et al. (2019) to account for missing error 

covariance structure in SO. 

 

 265 

Minimizing J(x) (Eq. 2) by solving dJ/dx=0 analytically (Rodgers, 2000; Brasseur and Jacob, 2017) yields a best posterior 

estimate of the state vector (𝒙𝒙�) and the associated posterior error covariance matrix (𝐒𝐒�) characterizing the error statistics of 𝒙𝒙�: 

𝒙𝒙� = 𝒙𝒙a + (𝛾𝛾𝐊𝐊T𝐒𝐒O−1𝐊𝐊 + 𝐒𝐒a−1)−1𝛾𝛾𝐊𝐊T𝐒𝐒O−1(𝒚𝒚 − 𝐊𝐊𝒙𝒙a), (3) 

𝐒𝐒� = (𝛾𝛾𝐊𝐊T𝐒𝐒O−1𝐊𝐊 + 𝐒𝐒a−1)−1, (4) 

From there we derive the averaging kernel matrix 𝐀𝐀 = 𝜕𝜕𝒙𝒙� 𝜕𝜕𝒙𝒙⁄  describing the sensitivity of the solution to the true state 270 

𝐀𝐀 = 𝐈𝐈 − 𝐒𝐒�𝐒𝐒a−1. (5) 

The trace of the averaging kernel matrix is referred to as the degrees of freedom for signal (DOFS) (Rodgers, 2000) and 

represents the number of independent pieces of information on the state vector that are constrained by the inversion. We refer 

to the diagonal terms of A as averaging kernel sensitivities, which measure the ability of the observations to quantify the 

individual elements of the state vector (Sheng et al.,2018c;Maasakkers et al., 2019).  275 

 

The posterior solution is often presented in reduced dimensionality. For example, spatially resolved emission and trend 

estimates on the 4º×5º grid can be aggregated to countries or regions, or to global/regional emissions from individual source 

sectors (e.g., oil/gas, livestock, etc.). Let W be a matrix that represents the linear transformation from the full state vector to a 

reduced state vector. The posterior estimation of the reduced state vector (𝒙𝒙�red) is computed as 280 

𝒙𝒙�red = 𝐖𝐖𝒙𝒙�. (6) 

𝒙𝒙�red = 𝐖𝐖𝒙𝒙�, (6) 

with posterior error covariance matrix  

𝐒𝐒�red = 𝐖𝐖𝐒𝐒�𝐖𝐖T (7) 

𝐒𝐒�red = 𝐖𝐖𝐒𝐒�𝐖𝐖T, (7) 285 

and averaging kernel matrix 

𝐀𝐀red = 𝐖𝐖𝐀𝐀𝐖𝐖∗ (8) 

𝐀𝐀red = 𝐖𝐖𝐀𝐀𝐖𝐖∗, (8) 

where 𝐖𝐖∗ = 𝐖𝐖𝐓𝐓(𝐖𝐖 𝐖𝐖𝐓𝐓)−𝟏𝟏 is the pseudo-inverse of 𝐖𝐖. The advantage of this approach is that the derivedThe regional/global 

budget terms and their error covariance structures obtained by this approach are consistent with the full inversion. In the case 290 

of aggregation by sectors, we construct W on the basis of the relative contribution of the sector to the prior emissions in each 

4º×5º grid cell. This does not assume that the prior distribution of sectoral emissions is correct, only that the relative allocation 

within a given 4º×5º grid cell is correct. 
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2.73 Evaluation of posterior simulationthe inversion results 

We conduct a posterior simulation driven by the optimized (posterior) distributions of methane emissions, emission trends, 295 

and OH concentrations to evaluate the inversion. The posterior simulation results are compared with the training data (GOSAT) 

as well as independent evaluation data including TCCON total column measurements (tccondata.org) (Wunch et al., 2011) 

and NOAA surface measurements (www.esrl.noaa.gov/gmd/ccgg/flask.php) (Dlugokencky et al., 2020). Figure 3 shows the 

GEOS-Chem comparison to the GOSAT data. As expected for a successful inversion, the posterior simulation achieves a better 

fit to GOSAT observations than the prior simulation, both spatially and temporally., with root-mean-square errors reduced by 300 

69% (prior: 45 ppbv; posterior: 14 ppbv). The prior simulation hasshows a negative bias that grows with time and is particularly 

large in the extratropical northern hemisphere and tropics. The prior biases havehas a large seasonal structure presumably 

associated with errors in wetland emissions. The prior biases also have prominent spatial patterns particularly in the 

extratropical northern hemisphere and tropics. All these error features largely vanish in the posterior simulation through the 

optimized adjustment of the state vector. (Figure 3). 305 

 

 

Figure 3. Difference of methane columns between GEOS-Chem simulations and GOSAT observations. Results are shown for GEOS-Chem 
using prior (left) and posterior (right) state vector estimates, and for spatial distribution averaged during 2010–2018 (top) and monthly time 
series of zonal means in different latitude bands (bottom). Note different color scales in the top panels. Tick marks of x axes in bottom panels 310 
represent January of each year. Figure S6 plots the right bottom panel in an expanded ordinate scale.  

 

http://www.esrl.noaa.gov/gmd/ccgg/flask.php
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Figure 4 presents evaluations against independent 2010–2018 observations from TCCON and NOAA sites, arranged by 

latitude. Values are shown as the root mean square error (RMSE) for individual sites. Figure 4 shows that the inversion 

substantially improves the agreement between simulations and observations for all TCCON sites and almost all NOAA surface 315 

sites. Average root-mean-square errors are reduced by 60% for TCCON sites (prior: 38 ppbv; posterior: 15 ppbv) and by 33% 

for NOAA surface sites (prior: 42 ppbv; posterior: 28 ppbv). The seasonal component of the errors (root-mean-square errors 

computed from monthly mean model-observation differences after annual mean biases are removed, not shown in figure) are 

reduced on average by 44% for TCCON sites (prior: 6.6 ppbv; posterior: 3.7 ppbv) and 27% for surface sites (prior: 11 ppbv; 

posterior: 8 ppbv), primarily owing to optimized seasonal variations in wetland emissions. In addition, we do not find large 320 

interannual variability of posterior biases that could be associated with climate oscillations such as ENSO (Figure S3).  
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Figure 4. Root mean square errors of prior and posterior GEOS-Chem simulations relative to TCCON observations of dry column methane 
mixing ratios (left) and NOAA observations of surface air mixing ratios (middle and right). Observation sites are arranged by latitude. Data 325 
are for 2010–2018. Site names are shown along with their latitude and longitude (more information about these sites can be found at tccon-
wiki.caltech.edu/Sites and www.esrl.noaa.gov/gmd/dv/site/index.php?program=ccgg). A mountain-top TCCON site located at Zugspitze, 
Germany (zs; ~ 3000 m.a.s.l.) is excluded because the terrain effect on the total column is not resolved by the coarse resolution model. 

 

 330 

The posterior error covariance matrix 𝐒𝐒� resulting from analytically solving the Bayesian problem allows us to analyse the error 

structure of posterior estimates. Figure 5 plots the posterior joint probability density functions (PDFs) for pairs of global budget 

terms and their trends (computed following Eq. 6-7). A strong negative error correlation in the inversion results is found 

between global anthropogenic emissions and methane lifetime (r=-0.8), reflecting limited ability of the inversion to separate 

the two. In contrast, error correlations between wetland emissions and methane lifetime (r=-0.4), and between wetland and 335 

anthropogenic emissions (r=-0.2) are much smaller. We find moderate error correlations between the OH trend and either 

wetland or anthropogenic emission trends (r=-0.6). Improved separation of global budget terms and their trends may be 
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achieved by including additional information from surface observations (Lu et al., 2020) and from thermal infrared satellite 

observations (Y. Zhang et al., 2018).  

 340 

 
Figure 5. Error correlations between global anthropogenic emissions, wetland emissions, and tropospheric OH concentrations (methane 
lifetime against oxidation by tropospheric OH; 𝝉𝝉) in the inverse solution. Results are shown both for 2010–2018 mean values and for 2010–
2018 trends. The error correlations are presented as joint probability density functions for pairs of reduced global state vector elements. 
Confidence ellipses represent probability of 0.1 (innermost) to 0.9 (outermost) at intervals of 0.1. The error correlation coefficients are shown 345 
inset. 

 

3Figure 6 further examines the error aliasing of estimates for anthropogenic and wetland emissions within or between regions. 

For this analysis, anthropogenic emissions optimized on the 4º×5 º grid are aggregated to 14 subcontinental regions used for 

estimating wetland emissions. We find only moderate negative error correlations (r=-0.1– -0.5) between estimates for 350 

anthropogenic and wetland emissions within the same region (diagonal of top left quadrant), suggesting that the inversion is 

able to separate the two. Cross-region error correlations are generally small for anthropogenic emissions (bottom left quadrant 

of Figure 6), but have a complex structure for wetland emissions (top right quadrant of Figure 6). For example, errors are 

positively correlated between Sub-Sahara Africa and southern Africa wetlands (r=0.6), but are negatively correlated between 

East Canada and northern Europe wetlands (r=-0.4).   355 
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Figure 6. Posterior error correlations between regional anthropogenic and wetland emissions. To examine error aliasing at regional scale, 
anthropogenic emissions resolved on the 4º×5 º grid are aggregated to the 14 subcontinental  regions of Figure 1 used for optimizing 
wetland emissions. Numbers (1-14) are region index as Figure 1. “A” or “W” stands for anthropogenic or wetland emissions, respectively. 360 
For example, 5A stands for anthropogenic emissions from Temprate North America. 

 

4 Results and discussion 

34.1 Anthropogenic emissions 

Figure 57 shows the correction factors from the inversion to 2010–2018 mean non-wetland emissions (posterior/prior ratios) 365 

along with the associated averaging kernel sensitivities (corresponding diagonal terms of the averaging kernel matrix). The 

averaging kernel sensitivities largely follow the pattern of prior emissions and are highest in major anthropogenic source 

regions. We achieve 179 independent pieces of information (DOFS) for constraining the emissions on the 4º×5 º5º grid. By 

applying the posterior/prior correction factors to the priorThe spatial distribution of each anthropogenic emission sector, we 

obtain improved estimates for anthropogenic emissions foraveraging kernel sensitivities largely follows the pattern of prior 370 

emissions (right panel of Figure 5). The inversion provides strong constraints in major anthropogenic source regions such as 

East Asia, South Asia, and South America. The constraints are generally weaker over North America, Europe, and Africa, 

indicating that sector.the inversion provides more diffuse spatial information in these regions.  
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We find that the prior emission inventory significantly overestimates anthropogenic emissions in eastern China (Figure 57). 375 

The posterior estimate of Chinese anthropogenic emissions (48±1 Tg a-1) is 30% lower than the prior estimate (67 Tg a-1), and 

is also lower than the latest national report from China to the UNFCCC of 55 Tg a-1 for 2014 (Figure 68). Based on the relative 

contribution of each sector in the prior inventory, we attribute ~ 60% of this downward correction to coal mining. The 

overestimation of anthropogenic emissions from China has been reported by previous global and regional GOSAT inversion 

studies using different EDGAR inventory versions as prior estimates (Monteil et al., 2013;Thompson et al., 2015;Turner et al., 380 

2015;Maasakkers et al., 2019;Miller et al., 2019).  

 

Figure 7. Corrections to prior estimates of 2010–2018 mean non-wetland methane emissions. (Left) posterior/prior emission ratios. Figure 
S7 shows the same corrections as posterior – prior emission differences. (Right) averaging kernel sensitivities (diagonal elements of the 
averaging kernel matrix). The averaging kernel sensitivities measure the ability of the observations to constrain the posterior solution (0 = 385 
not at all, 1 = fully). The sum of averaging kernel sensitivities defines the degrees of freedom for signal (DOFS), shown inset.  

 

Another major downward correction is for the oil/gas producing regions in Russia. We estimate Russia’s anthropogenic 

emissions to be 2119±1 Tg a-1, as opposed to the prior estimate of 36 Tg a-1 (Figure 68), and the difference is mainly attributable 

to the oil/gas sector (posterior: 15 Tg a-1; prior: 27 Tg a-1). This finding is consistent with Maasakkers et al. (2019) though they 390 

used a different oil/gas emission inventory. Russia has been revising downwards its national emission estimates submitted to 

the UNFCCC, and our posterior estimate of total anthropogenic emissions is closer to the country’s latest submission to 

UNFCCC for 2010–2018 (16 Tg a-1; Figure 68). The new submission revises oil/gas methane emissions downward by a factor 

of 3 relative to the previous submission used as prior estimate in our inversion (Scarpelli et al., 2020).  

 395 

We find large upward corrections to the prior inventory over easternEast Africa (Mozambique, Zambia, Tanzania, Ethiopia, 

Uganda, Kenya, and Madagascar) and over South America (Brazil). A previous inversion suggested that corrections for these 

regions may be due to an underestimation of prior wetland emissions (Maasakkers et al., 2019). Our inversion, which optimizes 

wetland and anthropogenic emissions separately, more specifically attributes the underestimation to livestock emissions. The 

upward correction pattern in Brazil is located near the country’s “agricultural frontier” where forest is converted to agricultural 400 

lands for livestock and crops (Nepstad et al., 2019). Herrero et al. (2013) identified eastern Africa as the region of the highest 
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livestock emission intensity (emission/kg protein) because of low feed efficiency, suggesting that emission factors in this 

region may be underestimated in bottom-up calculation given a general lack of region-specific information for developing 

countries.attributes the underestimation to anthropogenic emissions (also see Section 4.3 for wetland results), though there is 

some error aliasing between them (r=-0.5 for Sub-Sahara Africa, -0.4 for Southern Africa; Figure 6). We find that the upward 405 

correction over East Africa generally remains robust in a sensitivity inversion where prior wetland emissions in a neighbouring 

region (Sudd in South Sudan) are increased by a factor of 3 (Figure S4 and Figure 8). Based on prior sectoral information, 

these underestimations are most likely due to livestock emissions, whose bottom-up estimates have large uncertainties in these 

developing regions (Herrero et al., 2013).  

 410 
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Figure 8. National and regional estimates of 2010–2018 mean methane emissions from anthropogenic sources. Included are the top 5 
individual countries in our posterior estimates, the European Union (including the United Kingdom), and East Africa (including Mozambique, 
Zambia, Tanzania, Ethiopia, Uganda, Kenya, and Madagascar). The UNFCCC record is from di.unfccc.int (accessed on July 10, 2020). Non-415 
Annex I countries do not report yearly emissions to the UNFCCC and for those we use the latest UNFCCC submissions (Brazil, 2015; China, 
2014; Ethiopia, 2013; India, Madagascar, Kenya, 2010; Uganda, Zambia, 2000; Mozambique, Tanzania, 1994). Inset are the averaging 
kernel sensitivities for these national and regional aggregated results, which measure the ability of the observations to constrain the posterior 
solution (0 = not at all, 1 = fully). The dot for East Africa represents the estimate inferred from a sensitivity inversion with prior spatial 
distribution of African wetlands perturbed. 420 

 

Another upward correction pattern in South America is located near Venezuela, a major oil producing country in the region. 

The large discrepancycorrection in Venezuela likely reflects underestimation of fossil fuel emissions by the national estimates 

for 2010 reported to UNFCCC. Upward corrections are also seen in central Asia (Iran, Turkmenistan), where the regional 

posterior estimates (11.7±0.9 Tg a-1) are 43% higher than the prior (8.2±1.4 Tg a-1), with adjustments mainly attributed to the 425 

oil/gas sector. This region has previously been identified by satellite observations as a methane emission hotspot (Buchwitz et 

al., 2017; Varon et al., 2019; Schneising et al., 2020). 
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The inversion finds small upward corrections over the USU.S. (prior: 28 Tg a-1; posterior: 32±1 Tg a-1) (Figure 68), resulting 

mainly from underestimation of emissions from the oil/gas sector in the western and southwestern US south-central U.S. 430 

(Figure 57). This result is broadly consistent with a high-resolution inversion over the U.S. using the 2010–2015 GOSAT data, 

which spatially allocates the correction more specifically to oil/gas basins (Maasakkers et al., 2020). A number of basin-

levelprevious studies based on aircraft and satellite measurementshave found that emissions from oil/gas production are 

underestimated in the national US inventory (e.g., Kort et al., 2014;Karion et al., 2015; Smith et al., 2017;Schwietzke et al., 

2017; Peischl et al., 2018;Cui Alvarez et al., 20192018;Y. Zhang, et al., 2020;Gorchov Negron et al., 2020; Schneising et al., 435 

2020) and national assessments of methane emissions from oil/gas production (Alvarez et al., 2018;Maasakkers, 2020).  

 

Small downward corrections with a diffuse pattern are found over Europe. The posterior estimate of anthropogenic emissions 

for the European Union (including the UK) is 16±0.7 Tg a-1, slightly lower than the prior estimate (21 Tg a-1) and the UNFCCC 

national reports (19 Tg a-1 for 2014) (Figure 68). Source sector attribution is difficult in this case because of spatial overlap 440 

between emission sectors. The inversion finds only small adjustments to prior emissions for India (prior: 32 Tg a-1; posterior: 

33±0.6 Tg a-1) even though the information content is relatively large, confirming the prior inventory used in the inversion. 

Our estimate, however, is much higher than a previous inversion study for India (Ganesan et al., 2017) (22 Tg a-1), which 

found their result in agreement with India’s UNFCCC report (20 Tg a-1 for 2010) (Figure 68). TheOur inversion attributes the 

discrepancy iswith the UNFCCC submission mainly into the livestock sector, which we find to be greatly underestimated in 445 

the UNFCCC submission. Livestock emission trends in India are discussed further below..  

34.2 Anthropogenic emission trends 

Figure 79 shows the spatial distribution of 2010–2018 trends for anthropogenic emissions inferred from GOSAT observations, 

along with the associated averaging kernel matrix sensitivities. The GOSAT observations provide 42 pieces of information to 

constrain the spatial distribution of anthropogenic emission trends. The, suggesting that, compared to mean emissions, the 450 

inversion is only able to constrain more diffuse spatial patterns for emission trends. These constraints are strongest in China 

and India, but there is also fairly strong information aggregated over other continental regions. The prior estimate assumed 

nozero anthropogenic trends anywhere, therefore the posterior trends are driven solely by the GOSAT information. The 

corresponding diagonal elements of the posterior error covariance matrix allow us to quantify error standard deviations on the 

results. 455 
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Figure 9. Anthropogenic methane emission trends for 2010–2018, as informed by GOSAT observations. (Left) Relative emission trends on 
the 4o×5o grid. Absolute emission trends are shown in Figure S8. (Right) Averaging kernel sensitivities. that measure the ability of the 
observations to constrain the posterior solution (0 = not at all, 1 = fully). Degrees of freedom for signal (DOFS) is inset.  

 460 

Significant positive trends of anthropogenic emissions are found in South Asia (0.57±0.16 Tg a-1 a-1 or 1.3±0.4% a-1; Pakistan 

and India), East Africa (0.21±0.10 Tg a-1 a-1 or 1.4±0.6 % a-1; Ethiopia, Tanzania, Uganda, Kenya, and Sudan), West Africa 

(0.32±0.10 Tg a-1 a-1 or 4.6±1.4% a-1; Nigeria, Niger, Ghana, Cote d’Ivoire, Mali, Benin, Burkina Faso), and Brazil (0.17±0.15 

Tg a-1 a-1 or 0.7±0.6% a-1). All these regions are seeing rapid increases in livestock populations. AccordingBased on prior 

sectoral fractions in each 4º×5º grid cell, we attribute these positive trends mostly to the livestock sector (0.40 Tg a-1 a-1 in 465 

South Asia, 0.13 Tg a-1 a-1 in East Africa, 0.15 Tg a-1 a-1 in West Africa, and 0.11 Tg a-1 a-1 in Brazil). Indeed, according to the 

United Nations Food and Agriculture Office (UNFAO) statistics, the (http://www.fao.org/faostat), all these regions have had 

rapid increases in livestock population. The fastest growing cattle populations in the world reported by the UNFAO over the 

2010–2016 period were Pakistan (1.4×106 heads a-1), Ethiopia (1.2×106 heads a-1), Tanzania (1.1×106 heads a-1), and Brazil 

(0.9×106 heads a-1). Indeed, our sectoral attribution of the trends in Figure 7 attributes them mostly to livestock (0.40 Tg a-1 a-470 
1 in South Asia, 0.13 Tg a-1 a-1 in East Africa, 0.15 Tg a-1 a-1 in West Africa, and 0.11 Tg a-1 a-1 in Brazil). OurMoreover, our 

inversion results for these regional trends in livestock emissions are generally consistent in magnitude with the trends from 

bottom-up livestock emission inventories (FAOSTAT, IPCC tier I method; EDGAR v4.3.2 and v5, hybrid tier I method; Chang 

et al. (2019), IPCC tier II method), as shown in ) (Figure 810. Anthropogenic). Because our inversion assumes zero prior trends 

in anthropogenic emissions, the inferred trends are solely informed by satellite observations and independent of bottom-up 475 

trends in Figure 10. Taking together, anthropogenic methane emission trends in South Asia, Africa, and Brazil add up to 1.3 

Tg a-1 a-1, which as we will show below amounts to the global anthropogenic emission trend. (with trends over other regions 

and sectors almost cancelling out).  

 

A positive trend in anthropogenic emissions (0.27±0.20 Tg a-1 a-1 or 0.6±0.4% a-1) is found over China driven by coal mining 480 

(northern China) and rice (southern China), but the magnitude of the trend is much smaller than previous inverse analyses of 
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satellite and surface observations for time horizons before 2015 (Bergamaschi et al., 2013;Thompson et al., 2015;Patra et al., 

2016;Saunois et al., 2017;Miller et al., 2019;Maasakkers et al., 2019). We infer a much stronger trend (0.72±0.39 Tg a-1 a-1 or 

1.6±0.9% a-1) for China if we restrict the GOSAT record to 2010–2016. Our results thus suggest that anthropogenic emission 

trends in China peaked midway within the 2010-–2018 record. Indeed, coal production in China peaked in 2013 (Sheng et al., 485 

2019).  

 

 

Figure 10. Regional trends in anthropogenic methane emissions from livestock. Our GOSAT inversion results for 2010-2018 (with error 
standard deviations) are compared to estimates from different bottom-up inventories over the 2005-2017 period: Chang et al. (2019), 490 
FAOSTAT (2020), EDGAR v5 (Crippa et al., 2019), and EDGAR v4.3.2 (Janssens-Maenhout et al., 2017). Results are shown for South 
Asia (India and Pakistan), West Africa (Nigeria, Côte d’Ivoire, Mali, Niger, Burkina Faso, Cameroon, Ghana, and Benin), East Africa 
(Ethiopia, Kenya, Uganda, and Tanzania), and Brazil. Our inversion assumes noBy assuming zero prior trendtrends in anthropogenic 
emissions, thusour inversion does not use trend information in any of these bottom-up inventories; the trends inferred trendsby the inversion 
are solely from the GOSAT observations.  495 

 

The inversion does not find significant 2010–2018 trends in anthropogenic emissions over the USU.S. (-0.12±0.21 Tg a-1 a-1, 

-0.4% a-1). This is generally consistent with the lack of trend of USU.S. emissions over 2000-–2014 in inversions collected by 

the Global Carbon Project (Bruhwiler et al., 2017) and over 2010–2015 in a North America regional inversion using GOSAT 

data (Maasakkers et al., 2020). It contradicts the 2-3% a-1 positive trend inferred from direct analysis of GOSAT enhancements 500 
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(Turner et al., 2016; Sheng et al., 2018a) and the inference of large positive trends based on increasing concentrations of ethane 

and propane (Franco et al., 2016;Hausmann et al., 2016;Helmig et al., 2016). Bruhwiler et al. (2017) pointed out that the 

inference of methane emission trends from simple analysis of GOSAT data could be subject to various biases including 

variability in background and seasonal sampling, which would be accounted for in an inversion. Increasing ethane/methane 

and propane/methane emission ratios may confound inference of methane emission trends from ethane and propane records 505 

(Lan et al., 2019).  

 

Small negative trends are found in Central Asia (Uzbekistan, Kazakhstan, Turkmenistan, Afghanistan; -0.20±0.16 Tg a-1 a-1), 

Europe (-0.15±0.15 Tg a-1 a-1), Australia (-0.12±0.07 Tg a-1 a-1). The decrease in Central Asia is attributed mainly to oil/gas, 

and the decrease in Australia to coal mining and livestock. Trends over Europe and Russia are too diffuse to be separated by 510 

sectors. No significant trend is found in Russia (-0.08±0.25 Tg a-1 a-1). 

34.3 Wetland emissions 

We infer from the inversion monthly wetland emissions for 14 subcontinental regions (Figure 1) and for individual 

yearsmonths from 2010 to 2018, thus allowing for seasonal and interannual variability to be optimized. This achieves 167 

independent pieces of information (DOFS) for wetland emissions. The results are presented as mean seasonal cycles (Figure 515 

911) and time series of annual means (Figure 1012). We). Recent studies found that the mean WetCHARTs inventory used 

here as prior estimate is too high in the Congo Basin and too low in the Sudd region (Lunt et al., 2019; Parker et al., 2020b; 

Pandey et al., 2020). Our inversion is unable to resolve this subregional spatial correction pattern, because of coarse resolution 

in the wetland state vector (Figure 1). We therefore perform a sensitivity inversion with modified prior estimates following 

Lunt et al (2019) (Figure S1), which finds a 20% (3 Tg a-1) increase in estimates of the 2010–2018 average for Sub-Sahara 520 

Africa and a 7% (0.6 Tg a-1) increase for southern Africa, relative to the base inversion (Figure S5). Interannual trends and 

seasonal cycles are almost unchanged between two inversions (Figure S5).  

 

As shown in Figure 11 and Figure 12, our results find lower wetland emissions than the mean of the WetCHARTs ensemble 

(prior estimate) over the Amazon, Temperate North America (the US,U.S.), and East Canada. The previous inversion of 525 

GOSAT data by Maasakkers et al. (2019) also found overestimation of emissions by WetCHARTs in the coastal USU.S. and 

Canada wetlands, but did not have significant corrections over the Amazon. The overestimation of wetland emissions in the 

USU.S. and eastern Canada is also reported in analyses of aircraft measurements in the southeast USU.S. (Sheng et al., 2018b) 

and surface observations in Canada (Baray et al., 2019), both of which used WetCHARTs v1.0 as prior information. The 

downregulationdownward correction of North American emissions is consistent with recent WetCHARTs updates (v1.2.1) 530 

representthat substantially reducedreduces methane emissions across regions categorized as partial wetland complexes (Lehner 

& Döll, 2004; Bloom et al., 2017). Recent studies found that WetCHARTs overestimates wetland emissions in the Congo 
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Basin but underestimates in the Sudd region (Lunt et al., 2019; Parker et al., 2020b; Pandey et al., 2020). Our inversion is 

unable to resolve this spatial correction pattern, because of coarse resolution in the wetland state vector (both regions are in 

Sub-Sahara Africa, i.e., wetland region 10 in Figure 12017). 535 

 

The seasonal cycles inferred from the inversion are in general consistent with prior information (Figure 911), although 

averaging kernel sensitivities indicate that we only have limited constraints on the seasonality, particularly for high latitude 

regions in northern hemisphere winter. This was generally expected, given the limited GOSAT observational coverage at high 

latitudes during winter months. The inversion infers a sharp and late (May-June) onset of methane emissions across boreal 540 

wetlands, in contrast to an early and gradual increase starting from March predicted by the prior inventory. This feature in 

posterior estimates appears to be consistent with aircraft and surface observations over Canada’s Hudson Bay Lowlands 

(Pickett-Heaps et al., 2011) and eddy flux measurements over Alaskan Arctic tundra (Zona et al., 2015), while the gradual 

onset in the prior inventory agrees with aircraft observations over Alaska by Miller et al. (2016). The negative fluxes right 

before the onset may reflect strong soil sinks during spring thaw over these high-latitude regions (Jørgensen et al., 2015); 545 

alternatively, given the low averaging kernel sensitivities throughout the winter season, the negative fluxes could be 

attributable to spatial or temporal compensating inversion errors. The inversion also suggests). The inversion also indicates 

stronger seasonal cycles than the prior inventory in Sub-Saharan Africa and tropical South Asia, which indicatessuggests that 

the prior inventoryWetCHARTs may have underestimatedunderestimate the sensitivity of wetland emissions to precipitation 

but overestimate thetheir sensitivity to temperature.  550 

 

Our posterior estimates of 2010–2018 trends in wetland emissions vary greatly by region, and are generally larger than the 

prior estimates from WetCHARTs, indicating that they are mostly driven by the GOSAT data. They vary greatly by region 

(Figure 1012). Large positive trends are found in the tropics (Amazon: +0.9 Tg a-1 a-1; Sub-Sahara Africa: +0.6 Tg a-1 a-1; 

southern Africa: +0.4 Tg a-1 a-1) and high latitudes (RussiaSiberia: +0.6 Tg a-1 a-1; Westnorthern Europe: +0.4 Tg a-1 a-1). 555 

Increasing Amazonian wetland emissions may have been driven by intensification of flooding (Barichivich et al., 2018) or 

increasing temperature (Tunnicliffe et al., 2020) in the region over the past three decades (Barichivich et al., 2018).. Our result 

of increasing tropical Africa wetland emissions is consistent with a previous regional analysis of GOSAT data, which found a 

positive trend of 1.5–2.1 Tg a-1 a-1 in the region for 2010–2016 attributed mainly to wetlands particularly the Sudd in South 

Sudan (Lunt et al., 2019). Compared to steady and linear increases in the tropics, boreal RussiaSiberia and Westnorthern 560 

Europe show abrupt increases in 20172016–2018, for reasons unclear (Figure 1012). Decreasing but weaker trends are found 

in tropical Southeast Asia (-0.3 Tg a-1 a-1) and Australia (-0.2 Tg a-1 a-1). These trends are in general not captured by prior 

information, suggesting that our results can be useful inputs to improvement of process-based wetland emission modeling. 

Furthermore, posterior inter-annual variability is overall larger than prior variability across all regions, suggesting that the 

integrated climate sensitivity of prior emissions may be underestimated. 565 
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Figure 11.Seasonal variation of wetland emissions for 14 subcontinental regions (Figure 1). Values are means for 2010–2018. The prior 570 
estimate is the mean of the WetCHARTs inventory ensemble (Bloom et al., 2017). The posterior estimate is from our inversion of GOSAT 
data. Vertical bars are error standard deviations. The reduction of error in the posterior estimate measures the information content provided 
by the GOSAT data. Scales are different between panels. 
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Figure 12.Wetland emission trends, 2010–2018. The figure shows annual mean emissions for the prior estimate (mean of WetCHARTs 
inventory ensemble) and the posterior estimate after inversion of GOSAT data. Values are for the 14 subcontinental regions of Figure 1. 
(panels in white background), and also aggregated for extratropics and tropics (panels in grey background). The trends are from 
ordinarlyordinary linear regression. Inset are prior and posterior 2010–2018 average annual emissions in Tg a-1 with 2010–2018 trends in Tg 580 
a-1 a-1 in parentheses. Significant trends at the 95% confidence level are denoted with “*”. Note differences in scales between panels. 

 

34.4 OH concentration 

Our inversion infers a global methane lifetime against oxidation by tropospheric OH of 12.4±0.3 a, which is ~ 15% longer 

than the prior estimate (10.7±1.1 a) and is at the higher end of the inference from the methyl chloroform proxy (11.2±1.3 years) 585 

(Prather et al., 2012). We find that the downward correction for OH concentrations is mainly in the northern hemisphere. The 

north-to-south inter-hemispheric OH ratio is 1.02±0.05 in the posterior estimate, as compared to 1.16 in the prior estimate and 

1.28±0.10 in the ACCMIP model ensemble (Naik et al., 2013). It is more consistent with the observation-based estimate of 

0.97 ± ±0.12 (Patra et al., 2014). No significant 2010–2018 trend is seen in the methane lifetime (Figure 1113). The OH 
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concentration in 2014 is 5% lower than average in 2014, which hadmay relate to particularly large peatland fires inover 590 

Indonesia in 2014 that would be very large sources of carbon monoxide (CO) as a sink for OH (Pandey et al., 2017b).  

 

Figure 13. Methane loss frequency and lifetime against oxidation by tropospheric OH, 2010-2018. Values are annual means with error 
standard deviations. The loss frequency (k) is as calculated by Eq. 1 and the lifetime (𝝉𝝉) is the inverse. The prior estimate from Wecht et al. 
(2014) assumes no 2010–2018 trend in OH concentrations; the slight variability seen in the Figure is due to temperature. 595 

 

34.5 Attribution of the 2010–2018 methane trend 

Figure 1214 shows the 2010–2018 annual methane growth rates inferred from NOAA background surface measurements 

(Dlugokencky, 2020) and from our inversion of GOSAT data. There is general consistency between the two, with both showing 

highest growth rates in 2014–2015 and a general acceleration after 2014. Our inversion achieves a much better match to the 600 

interannual variability inof the NOAA record than the previous work of Maasakkers et al. (2019), in large part because of our 

optimization of the interannual variability of wetland emissions.  

 

The bottom panel of Figure 1214 attributes the interannual variability in the methane growth rate to individual processes as 

determined by the inversion. The growth rate Gj = [dm/dt]j in year j,  (where m is the global methane mass,) is determined by 605 

the balance between sources and sinks: 

 

𝐺𝐺𝑗𝑗 = 𝐸𝐸𝑗𝑗 − 𝑘𝑘𝑗𝑗𝑚𝑚𝑗𝑗 − 𝐿𝐿𝑗𝑗  (9)  

Here Ej denotes the global emission in year j, for which the inversion provides further sectoral breakdown, kj is the loss 

frequency against oxidation by tropospheric OH (Eq. 1), mj is the total methane mass, and Lj represents the minor sinks not 610 

optimized by the inversion. Let ΔEj = Ej – Eo, Δkj = kj – ko, and Δmj = mj – mo represent the changes relative to 2010 conditions 

(Eo, ko, mo) taken as reference. We can then write 
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𝐺𝐺𝑗𝑗 = �𝐸𝐸𝑜𝑜 + Δ𝐸𝐸𝑗𝑗� − �𝑘𝑘𝑜𝑜 + Δ𝑘𝑘𝑗𝑗��𝑚𝑚𝑜𝑜 + Δ𝑚𝑚𝑗𝑗� − (𝐿𝐿𝑜𝑜 + Δ𝐿𝐿𝑗𝑗)
≈ �𝐸𝐸𝑜𝑜 − 𝑘𝑘𝑜𝑜𝑚𝑚𝑜𝑜 − 𝐿𝐿𝑜𝑜 − 𝑘𝑘𝑜𝑜Δ𝑚𝑚𝑗𝑗� + Δ𝐸𝐸𝑗𝑗 − 𝑚𝑚𝑜𝑜Δ𝑘𝑘𝑗𝑗 (10)

 

where we have neglected the minor terms ΔkjΔmj and ΔLj. Here the growth rate Gj in year j is decomposed into three terms: (1) 

a relaxation to steady state based on 2010 conditions (Eo – komo – Lo – koΔmj), (2) a perturbation to emissions (ΔEj) that can be 615 

further disaggregated by sectors, and (3) a perturbation to OH concentrations (moΔkj). 

 

We see that from the bottom panel of Figure 12Figure 14 that the legacy of 2010 imbalance sustains a positive growth rate 

throughout the 2010–2018 period but this influence diminishes towards the end of the record. The 2010–2018 trend in 

anthropogenic emissions is linear by design of the inversion and sustains a steady growth rate over the 2010–2018 period as 620 

the legacy of the 2010 imbalance declines. TheFigure 15 shows the sectoral breakdown of the anthropogenic trend. The 

increase of global anthropogenic emissions totalling 1.4±0.8 Tg a-1 a-1 is driven by livestock (0.63±0.36 Tg a-1 a-1; South Asia, 

tropical Africa, Brazil), rice (0.36±0.18 Tg a-1 a-1; East Asia), and wastewater treatment (0.28±0.13 Tg a-1 a-1; Asia). Our best 

estimate finds zero global trend in emissions from fuel exploitation (oil, gas, and coal) (0.0±0.4 Tg a-1 a-1); but small trends 

cannot be ruled out given the uncertainty (Figure 15). 625 

 

The bottom panel of Figure 14 also shows that the spike in the methane growth rate in 2014–2015 is attributed to an 

anomalously low OH concentration in 2014 (5% lower than 2010–2018 average; Figure 1113), partly offset by low wetland 

emissions, and anomalously high fire emissions in 2015, mostly from Indonesia peatlands (Worden et al., 2017). Smoldering 

peatland fires are particularly large sources of methane (Liu et al., 2020). The large fire emissions are informed by the GFED 630 

inventory because the inter-annual variability of fire emissions is not optimized in our inversion. Despite their small magnitude 

relative to wetland and anthropogenic emissions globally, anomalous fire emissions can be an important contributor to methane 

interannual variability (Worden et al., 2017;Pandey et al., 2017b), both directly by releasing methane and indirectly by 

decreasing OH concentrations through CO emissions. Error correlations in our methane trend attributions (see discussion 

below) suggest that the high growth rates in both 2014 and 2015 could be due to Indonesian fires including effects on OH.  635 

 

In addition to the 2014–2015 extremum, the NOAA surface observations show an acceleration of methane growth during the 

latter part of the 2010–2018 record (Nisbet et al., 2019) and this is reproduced in our inversion (Figure 1214). We find that the 

rapidThis accelerating growth in 2016–2018 is mostly driven by wetlands, including contributions from both thestrong wetland 

emissions, particularly in 2016–2018, on top of increasing anthropogenic emissions (Figure 14). Our inversion infers a 640 

relatively steady 2010–2018 increase infrom tropical wetlands (in particular the Amazon and tropical Africa) and thea 2016–

2018 surge in Eurasian from extratropical wetlands (in particular boreal wetlands (Figure 10).Eurasia) (Figure 12). More work 

is needed to understand drivers for changes in wetland emissions. 
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Figure 13 shows the mean 2010–2018 emission trends attributed by the inversion to individual sectors. The 2010–2018 growth 645 

in emissions is two-thirds from wetlands (3.0 Tg a-1 a-1) and one third anthropogenic (1.5 Tg a-1 a-1). Wetland emissions increase 

in both tropical regions (1.8±0.6 Tg a-1 a-1; Amazon and tropical Africa) and the extra-tropics (1.2±0.3 Tg a-1 a-1; Russia and 

West Europe) (Figure 13 and Figure 10). The increase of anthropogenic emissions is driven by livestock (South Asia, tropical 

Africa, Brazil), rice (East Asia), and wastewater treatment (Asia) sectors (Figure 13). The best estimate for global trends in 

emissions from fuel exploitation (oil, gas, and coal) (0.0±0.4 Tg a-1 a-1) is almost zero; but small trends cannot be ruled out 650 

given the uncertainty (Figure 13).  

 

 

Figure 14. 2010–2018 annual growth rates in global atmospheric methane. (Top) Comparison of annual growth rates inferred from our 
inversion of GOSAT data and from the NOAA surface network (Dlugokencky, 2020). Average methane growth rates for the period are inset. 655 
(Bottom) Attribution of annual growth rates in the GOSAT inversion to perturbations to emissions (anthropogenic, wetlands, fires) and OH 
concentrations relative to 2010 conditions. The purple bar shows the relaxation of 2010 budget imbalance to steady state. See text for details 
explaining the breakdown. 
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We estimate from the inversion a global mean methane emission for 2010–2018 of 510±4 Tg a-1 (wetlands: 139 Tg a-1; 660 

anthropogenic: 341 Tg a-1) and a sink of 488±4 Tg a-1. This posterior global emission is lower than the prior estimate (538 Tg 

a-1) and the 538–593 Tg a-1 range reported recently by the Global Carbon Project for 2008–2017 (Saunois et al., 2020). 

Compared to prior emissions, we estimate lower emissions for wetlands and fossil fuel, and higher emissions for livestock and 

rice (Figure 13).Figure 12 and Figure 15). Meanwhile, we estimate a methane lifetime against tropospheric OH oxidation of 

12.4±0.3 years, at the high end of 11.2±1.3 years based on the methyl chloroform proxy (Prather et al., 2012).2012), though 665 

strong error correlations between wetland emissions and methane lifetime suggests that our inversion has limited ability to 

constrain both independently (Figure 5).  

 

Figure 14 plots the posterior joint probability density functions (PDFs) for pairs of global budget terms and their trends. 

There is a strong negative error correlation in the inversion results between anthropogenic emissions and methane lifetime 670 

(r=-0.8), reflecting limited ability of the inversion to separate the two. In contrast, error correlations between wetland 

emissions and methane lifetime (r=-0.4), and between wetland and anthropogenic emissions (r=-0.2) are much smaller. We 

find moderate error correlations between the OH trend and either wetland or anthropogenic emission trends (r=-0.6). We 

cannot exclude at the 90% confidence level the possibility that the 2010–2018 anthropogenic emission trend could be zero 

(compensated by a decrease in OH concentrations), but we can exclude the possibility that the 2010–2018 wetland emission 675 

trend could be zero. Improved separation of global budget terms and their trends may be achieved by including additional 

information from surface observation (Lu et al., 
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2020) and from thermal infrared satellite observations (Y. Zhang et al., 2018).  

 680 

 

Figure 15. 2010–2018 global methane anthropogenic emissions and emission trends partitioned by individual sectors. Posterior estimates 
are from our inversion of GOSAT data. Prior estimates for anthropogenic emission trends are zero. Error bars in the right panel showsshow 
posterior error standard deviations for emission trends. Posterior error standard deviations are too small to show for mean emissions ofare 
small and are thus not shown in the left panel. Posterior errors computed from Eq. 4 and 7 tend to be overoptimistic because of ideal inversion 685 
assumptions (Maasakkers et al., 2019). 

 
Figure 14.5 Error correlations between global anthropogenic emissions, wetland emissions, and tropospheric OH concentrations (methane 
lifetime against oxidation by tropospheric OH; 𝝉𝝉) in the inverse solution. Results are shown both for 2010–2018 mean values and for 2010–
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2018 trends. The error correlations are presented as joint probability density functions for pairs of reduced global state vector elements. 690 
Confidence ellipses represent probability of 0.1 (innermost) to 0.9 (outermost) at intervals of 0.1. The error correlation coefficients are shown 
inset. 

4 Conclusions 

We quantified the regional and sectoral contributions to global atmospheric methane and its 2010–2018 trend by inversion of 

GOSAT satellite observations. The inversion jointly optimizes (1) 2010–2018 anthropogenic emissions and their linear trends 695 

on a 4º×5 º grid; (2) monthly wetland emissions in 14 subcontinental regions for individual yearsmonths; and (3) annual mean 

hemispheric OH concentrations for individual years. Analytical solution to the optimization problem provides closed-form 

estimates of posterior error covariances and information content, allowing us in particular to diagnose error correlations in our 

solution. Separate optimization of wetland and anthropogenic emissions allows us to resolve interannual and seasonal 

variations in posterior wetland emissions. Our inversion introduces additional innovations including the correction of 700 

stratospheric model biases using ACE-FTS satellite data, and a new bottom-up inventory for emissions from fossil fuel 

exploitation based on national reports to the UNFCCC (Scarpelli et al., 2020).  

 

Our optimization of 2010–2018 mean anthropogenic emissions on the 4º×5 º grid provides strong information in source regions 

as measured by averaging kernel sensitivities. We find that estimates of anthropogenic emissions reported by individual 705 

countries to the UNFCCC are too high for China (coal emissions) and Russia (oil/gas emissions) and too low for Venezuela 

(oil/gas) and the U.S. (oil/gas). We also find that tropical livestock emissions are larger than previous estimates particularly in 

South Asia, Africa, and Brazil. Our posterior estimate of anthropogenic emissions in India (33 Tg a-1) is much higher than its 

most recent (2010) report to the UNFCCC (20 Tg a-1), mostly because of livestock emissions. 

 710 

2010–2018 trends in methane emissions on the 4º×5 º grid are successfully quantified in source regions. We find that the 

largest growth in anthropogenic emissions is fromoccurs in tropical livestock inregions including South Asia, tropical Africa, 

and Brazil, and can be attributed to the livestock sector. This finding is consistent with trends in livestock populations. There 

has been little discussion in the literature about increasing agricultural methane emissions in these developing countries 

(Jackson et al., 2020). TheOur results also show that the 2010–2018 increase in Chinese emissions is smaller than previously 715 

reported in inversions focused on earlier periods, likely caused by leveling of coal emissions in China. The 2010–2018 emission 

trend in the USU.S. is insignificant on the national scale.  

 

We find that global wetland emissions are lower than the prior estimate from mean WetCHARTs emissions used as prior 

estimate, mostly because of the Amazon. Wetland emissions over North America are also lower, consistent with previous 720 

studies. In both cases, we note that posterior estimates are all well within the full WetCHARTs uncertainty range (Bloom et 
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al., 2017). The seasonality of wetland emissions inferred by the inversion is in general consistent with WetCHARTs. An 

exception is in boreal wetlands where we find negative fluxes in April-May, possibly reflecting methane uptake as the soil 

thaws. The inversion infers increasing wetland emissions over the 2010–2018 period, superimposed on large inter-annual 

variability, in both the tropics (Amazon, tropical Africa) and extra-tropics (Russia, westernSiberia, northern Europe).  725 

 

Our optimization of annual hemispheric OH concentrations yields a global methane lifetime of 12.4±0.3 years against 

oxidation by tropospheric OH, with an inter-hemispheric OH ratio of 1.02. Our best estimate is that the global OH 

concentration has no significant trend over 2010–2018 except for a 5% dip in 2014.  

 730 

Taking all these methane budget terms together, our inversion of GOSAT satellite data estimates global mean methane 

emissions for 2010–2018 of 510 Tg a-1, with 341 Tg a-1 from anthropogenic sources, 139 Tg a-1 from wetland sources, and 30 

Tg a-1 from other natural sources. Our inferred growth rate of methane over that period matches that observed at NOAA 

background sites, including peak growth rates in 2014–2015 and an overall acceleration over the 2010–2018 period. We 

attribute the 2014–2015 peaks in methane growth rates to low OH concentrations (2014) and high fire emissions (2015), and 735 

the overall trend acceleration to a sustained increase in anthropogenic emissions. over the period and strong wetland emissions 

in the latter part of the period. Most of thisthe increase in anthropogenic emissions is attributed to wetlands (tropics: 1.8 Tg a-

1 a-1; extra-tropics: 1.2 Tg a-1 a-1) and tropical livestock (0.8 Tg a-1 a-1).in tropics), with minor contributions from increases in 

rice and wastewater emissions (Asia). Our best estimate indicates noinsignificant contribution of the oil/gasfuel exploitation 

sector to increasing global emissions; but small oil/gas trends cannot be ruled out given relatively large uncertainties. Our 740 

finding is in general consistent with a previous 2010–2015 inversion of GOSAT data (Maasakkers et al., 2019) although here 

we use a longer record and we capture the interannual variability better. Our results also agree with isotopic data indicating 

that the rise in methane is driven by biogenic sources (Schaefer et al., 2016;Nisbet et al., 2016). The increase in tropical 

livestock emissions is quantitatively consistent with bottom-up estimates. More work is needed to understand the 

increaseinterannual variations in wetland emissions. 745 

Data availability 

The dataset for the 2010–2018 global inversion results is accessible through doi.org/10.5281/zenodo.4052518. The GOSAT 

proxy satellite methane observations are available at the CEDA archive (Parker and Boesch, 2020). The ACE-FTS satellite 

observations can be requested through http://www.ace.uwaterloo.ca/data.php (last access: July 20, 2020). TCCON data were 

obtained from the TCCON Data Archive hosted by CaltechDATA (https://tccondata.org) (Deutscher et al., 2017; Dubey et al., 750 

2017; Feist et al., 2017; Goo et al., 2017; Griffith et al., 2017a, b; Hase et al., 2017; Iraci et al., 2017a, b; Kivi et al., 2017; Liu 

et al., 2017; de Maziere et al., 2017; Morino et al., 2017a, b, c; Notholt et al., 2019a, b; Sherlock et al., 2017a, b; Shiomi et al., 

2017; Strong et al., 2017; Sussmann et al., 2017; Te et al., 2017; Warneke et al., 2017; Wennberg et al., 2017a, b, c, d; Wunch 

http://www.ace.uwaterloo.ca/data.php
https://tccondata.org/
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et al., 2017). NOAA surface observations are accessed through NOAA ESRL/GMD CCGG Group (doi.org/10.15138/VNCZ-

M766) (Dlugokencky et al., 2020). National reports to UNFCCC are available through UNFCCC’s Greenhouse Gas Inventory 755 

Data Interface (di.unfccc.int/detailed_data_by_party, last access: July 20, 2020). EDGAR anthropogenic emission inventories 

(v4.3.2 and v5) are available at https://data.europa.eu/doi/10.2904/JRC_DATASET_EDGAR  (last access: July 20, 2020). 
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