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Abstract. Abundant mining and industrial activities located in the Upper Silesian Coal Basin (USCB) lead to large emissions of

the potent greenhouse gas (GHG) methane (CH4). The strong localization of CH4 emitters (mostly confined to known coal mine

ventilation shafts) and the large emissions of 448 / 720 kt CH4 yr−1 reported in the European Pollutant Release and Transfer

Register (E-PRTR 2017) and the Emissions Database for Global Atmospheric Research (EDGAR v4.3.2) make the USCB a

prime research target for validating and improving CH4 flux estimation techniques. High-precision observations of this GHG5

were made downwind of local (e.g. single facilities) to regional-scale sources (e.g. agglomerations) in the context of the CoMet

1.0 campaign in early summer 2018. A Quantum Cascade/Interband Cascade Laser (QCL/ICL) based spectrometer adapted for

airborne research was deployed aboard the German Aerospace Centers (DLR) Cessna 208B to sample the planetary boundary

layer (PBL) in situ. Regional CH4 emission estimates for the USCB are derived using a model approach including assimilated

wind soundings from three ground-based Doppler lidars. Although retrieving estimates for individual emitters is difficult using10

only single flights due to sparse data availability, the combination of two flights allows for exploiting different meteorological

conditions (analogous to a sparse tomography algorithm) to establish confidence on facility level estimates. Emission rates

from individual sources are not only needed for unambiguous comparisons between bottom-up and top-down inventories

but become indispensable if (independently verifiable) sanctions are to be imposed on individual companies emitting GHGs.

An uncertainty analysis is presented for both the regional scale and facility level emission estimates. We find instantaneous15

coal mine emission estimates of 451 / 423± 77 / 79 kt CH4 yr−1 for the morning / afternoon flight of June 6th, 2018. The

derived fuel-exploitation emission rates coincide (±6 %) with annual-average inventorial data from E-PRTR 2017 albeit they

are distinctly lower (-28 % / -32 %) than values reported in EDGAR v4.3.2. Discrepancies in available emission inventories

could potentially be narrowed down with sufficient observations using the method described herein to bridge the gap between

instantaneous emission estimates and yearly averaged inventories.20
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1 Introduction

The growth in population and economy since the pre-industrial era has been going hand in hand with rising anthropogenic

emissions, causing a strong increase in atmospheric greenhouse gas (GHG) concentrations. This is in general attributed to

anthropogenic emissions from a large variety of sources omnipresent in modern life (Pachauri et al., 2014), e.g. extraction,

processing, and transport of fossil fuels. Despite the evident anthropogenic influence on the climate in general, large uncertain-25

ties remain in the magnitude of human induced radiative forcing and relative contributions from different sectors (Nisbet et al.

(2014); Kirschke et al. (2013)). Approximately 20 % of the global CH4 source are estimated to arise from the sector of fossil

fuel industry (Schwietzke et al., 2016), that also includes activities like coal mining - an industry for which the Upper Silesian

Coal Basin (USCB), located in Southern Poland and the Czech Republic, is well known for.

According to the European Pollutant Release and Transfer Register (E-PRTR 2017, https://prtr.eea.europa.eu/) a total of30

448 kt CH4 yr−1 is emitted into the air from the USCB region, making it one of Europe’s methane emission hot spots. The

intensive mining activities and the heavy industry spread around the city of Katowice lead to these significant amounts of

CH4 emitted into the atmosphere, where over 99 % of the CH4 emissions reported in E-PRTR 2017, listing emitters above

a threshold of 0.1 kt CH4 yr−1, are attributed to mining and related industry. These large emissions are also apparent in the

EDGAR v4.3.2 emission inventory reporting a total of 720 kt CH4 yr−1 in 2012.35

The design and subsequent control of mitigation measures to slow down the increase in atmospheric GHG concentrations

requires reliable verification and attribution of GHG emissions now and in the future. An established method to derive GHG

emissions is known as the top-down approach. This method is based on observed GHG concentrations in the atmosphere and

projects their variations (both in time and space) back onto the emissions that may have caused these variations (Nisbet and

Weiss (2010); Chevallier et al. (2005); Peters et al. (2007)). For CH4, concentrations downwind of local- to regional-scale40

emission sources can be sampled efficiently using high-precision airborne measurements within the planetary boundary layer

(PBL). On-board meteorological instrumentation allows for concurrent sensing of important atmospheric state variables like

static pressure and air temperature, as well as the local wind field, which are particularly useful to estimate emissions. In situ

instruments provide point measurements at high precision that can well be used for flux estimation using techniques like the

mass balance approach (Karion et al. (2013); Conley et al. (2017); Pitt et al. (2018)). Previous studies used airborne in situ45

instrumentation to estimate regional CH4 emissions from oil and natural gas operations in the U.S. and Canada (Johnson et al.

(2017); Karion et al. (2015); Barkley et al. (2017)). These studies find emission inventories (EDGAR) to underestimate CH4

emissions from the respective sector. Recent studies also targeted urban CH4 emissions (Ryoo et al. (2019); Plant et al. (2019);

Ren et al. (2018)) and anthropogenic CH4 emissions from agriculture and waste treatment (Yu et al., 2020). Airborne in situ

data have further been used to estimate emissions on facility level by flying closed circles around individual emitters (Lavoie50

et al. (2015); Conley et al. (2017); Hajny et al. (2019); Mehrotra et al. (2017); Baray et al. (2018)).

Recently, Luther et al. (2019) reported on XCH4 flux estimates ranging from 6± 1 kt CH4 yr−1 for single shafts and up to

109± 33 kt CH4 yr−1 for a subregion of the USCB from ground-based, portable, sun-viewing Fourier transform spectrometers

mounted on a truck. Fiehn et al. (2020) investigated CH4 emissions from the USCB using a mass balance approach. They report
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emission estimates of 436± 115 kt CH4 yr−1 and 477± 101 kt CH4 yr−1 from two research flights along with a detailed55

uncertainty analysis. The present study is based on the very same research flights and aims at contributing an advanced model

approach. Previous studies have used Lagrangian models to simulate the dispersion (Tuccella et al. (2017); Raut et al. (2017))

of plumes emanating from oil and gas platforms or identification of CH4 sources (Platt et al., 2018). Atmospheric transport

models have been used to infer CH4 emissions from the oil and natural gas industry (Barkley et al., 2017). Here, a combination

of a Eulerian atmospheric transport model and a Lagrangian particle dispersion model is used in conjunction with assimilated60

Doppler lidar soundings to infer instantaneous CH4 emissions for Europe’s largest coal extraction region, the USCB.

Section 2 provides an introduction on the USCB as the region of prime interest followed by a research flight overview in

Sect. 3. Section 4 details a model based flux estimation approach. CH4 emission estimates will be given in the form of a case

study in Sect. 4.1 for two research flights on June 6th, 2018 along with an estimate of the uncertainties involved. Section 5

summarizes our findings and concludes the study.65

2 The Upper Silesian Coal Basin

The Upper Silesian Coal Basin is a plateau elevated between 200 m and 300 m above sea level in southern Poland. To the south

it is confined by the Tatra Mountains reaching up to 2655 m above sea level and forming a natural border between Slovakia

and Poland. To the west it extends across the national border between Poland and the Czech Republic into the Ostrava region.

Figure 1. Flight trajectories of two flights of the DLR Cessna 208B sampling the USCB area during the CoMet field campaign. The plot

shows flight trajectories for the morning flight (black) and afternoon flight (red) on June 6th, 2018. Red triangles mark the location of three

Doppler wind lidars, deployed in the USCB area during the CoMet campaign. Grey triangles mark known coal mine ventilation shafts.

Colored tiles are from the EDGAR v4.3.2 CH4 emission inventory for 2012 showing typical emissions ranging up to ∼100 kt yr−1.
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According to Gzyl et al. (2017), the USCB is well known for its abundant mining and industrial activities, including coal,70

zinc and lead ore exploitation. Coal mining activities make up for the largest part, with an approximate total of 10 billion

metric tonnes extracted since the industrial revolution, where over 70 % of this exploitation took place after 1945. To date an

approximate 75 million tonnes of coal are extracted every year from 27 active mines. It is these figures and the large area

of approximately 7400 km2 covered, that make the USCB the largest coal extraction region in Europe (Dulias, 2016). The

intensive coal mining activities and the heavy industry spread around the city of Katowice, Poland, located in the north of the75

USCB, lead to significant amounts of GHG emissions in this area. Fugitive CH4 emanating from the coal mine shafts reaching

several hundred meters into the ground is either actively ventilated (active mines) or degasses passively from abandoned mines.

Mines located in the north of the USCB are mostly abandoned and partially flooded, while intensive, active coal exploitation

is located in the southern USCB, both in Poland and the Czech Republic (Gzyl et al., 2017).

Global emission inventories show large sources of methane in this area as depicted by the colored tiles in Fig. 1. The80

Figure is based on a subset of the publicly available EDGAR v4.3.2 CH4 (https://edgar.jrc.ec.europa.eu/) emission inventory

(Janssens-Maenhout et al., 2017). It shows CH4 emissions range up to approx. 100 kt yr−1 on a 0.1× 0.1 degree grid with

source strengths increasing towards the southern USCB. Accordingly, the strongest sources are located near the Czech border

mid ways between the cities of Bielsko-Biala, Poland and Ostrava, Czech Republic. According to EDGAR v4.3.2, these CH4

Figure 2. Total non-fuel-exploitation CH4 emission from the EDGAR v4.3.2 emission inventory corresponding to the five sectors: Solid

waste landfills, Energy for buildings, Waste water handling, Enteric fermentation and Oil refineries and transformation energy.

sources are among the strongest in Europe. The total CH4 emissions from this inventory amount to approximately 720 kt yr−185

for the USCB region, where ∼ 620 kt yr−1 are attributed to the fuel exploitation sector. The EDGAR v4.3.2 inventory further

includes information on sectorial partitioning of the remaining non-fuel-exploitation CH4 emissions making up for approxi-

mately ∼14 % of total annual CH4 emissions in the USCB. From these ∼14 % approximately 90 % are attributed to the five

sectors: Solid waste landfills, Energy for buildings, Waste water handling, Enteric fermentation and Oil refineries and trans-

formation energy. The spatial distribution of the total non-fuel-exploitation CH4 emissions from these five sectors is shown in90
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Fig. 2. Most emitters are weak in comparison to fuel-exploitation and uniformly distributed and will be canceled out by the

later described background subtraction. We added stronger source tiles (threshold ≥ 4 kt yr−1) emitting a total of 33 kt yr−1

to our FLEXPART-WRF simulation. Facility level emission data of CH4 are provided by E-PRTR 2017. The locations of 74

documented coal mine ventilation shafts (active and inactive) have been added to Fig. 1 for reference. These locations were

visually identified from satellite imagery and emission values from E-PRTR 2017 were evenly distributed among the ventila-95

tion shafts for each company (see also Nickl et al. (2019)). According to E-PRTR 2017 individual contributions sum up to a

total CH4 emission of approximately 448 kt yr−1. This value is approximately 38 % lower compared to the EDGAR v4.3.2

inventory (28 % if only considering the fuel exploitation sector), showing the large uncertainties present in the available data.

3 Research flight overview

The CoMet mission in early summer 2018 primarily aimed at providing observations of GHG (mainly CO2 and CH4) gradients100

along large-scale latitudinal transects over Europe from co-ordinated operation of several state-of-the-art instruments on ground

and aboard five research aircraft. Aboard the Cessna 208B, a rich dataset of simultaneous airborne observations of CH4, C2H6,

CO2, CO, N2O and H2O was collected using the QCLS instrument (see Fig. 3 and Kostinek et al. (2019) for details) during

∼30 flight hours. In the following, a subset of these data from two research flights undertaken on June 6th, 2018 was used to

retrieve CH4 fluxes emanating from the USCB region. Both flight tracks are shown in Fig. 1 along with the locations of three105

co-deployed Leosphere Windcube 200S Doppler wind lidars (Wildmann et al., 2020). The morning (black line) and afternoon

flights (red line) circumvent all known ventilation shafts in the area (gray triangles) and are in fact very similar (congruent)

from the top-down perspective. This is well intended to enhance confidence on retrieved GHG fluxes. Moderate (3 - 6 m s−1)

winds throughout the day from north-easterly directions drive advection of the CH4 plumes towards the Czech border and into

the Ostrava region.110

The morning flight (black line in Fig. 1) on June 6th, 2018 starts off from Katowice airport, located to the north of the

city center, around 0915 UTC. Following a short constant-altitude transect a spiral-up was flown in the east to get a sounding

out of the boundary layer. This maneuver, revealing a boundary layer depth of approximately 1150 m above mean sea level

(a.M.S.L), was followed by an upwind leg flown at a constant altitude of 900 m a.M.S.L showing a fairly homogeneous CH4

inflow into the area of interest, thus allowing for subtracting an out-of-plume background (as described in Sect. 4.4) from115

the measured mole fractions downwind of the mines. Mixing ratios decreased slightly towards free tropospheric background

values when climbing above the PBL. Before returning back to Katowice airport at around 1145 UTC, the downwind wall

maneuver, consisting of 5 constant-altitude flight legs to the west was performed at altitudes of approximately 800 m, 1.1 km,

950 m, 1.4 km, and 1.8 km a.M.S.L, respectively. During the last two flight legs the aircraft was outside of the PBL.

The afternoon flight (red line in Fig. 1) started off from Katowice airport around 1315 UTC. An upwind leg flown at a120

constant altitude of 900 m a.M.S.L again showed a fairly homogeneous CH4 inflow into the USCB area. Mixing ratios decrease

slightly towards free tropospheric background values when climbing above the PBL during a climb and descent maneuver flown

parallel to the sensed mean wind direction. During this flight, we observed an latitudinally inclined PBL with an approximate
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Figure 3. The DLR Cessna 208B on the taxiway at Katowice airport. The sample air intake is mounted underneath the right wing. The

meteorological data acquisition system underneath the left wing. The QCLS instrument (lower right panel) is located inside the cabin behind

the pilot seats.

depth of 1.7 km a.M.S.L in the northern section and 1.3 km a.M.S.L towards the south. Before returning back to Katowice

airport at around 1530 UTC, the downwind wall maneuver, consisting of 6 constant-altitude flight legs was performed over125

the western USCB region at altitudes of approximately 800 m, 890 m, 975 m, 950 m, 1.1 km, 1.5 km, and 1.8 km a.M.S.L,

respectively.

4 Estimating emissions

The model-based approach developed in this work employs a combination of Eulerian and Lagrangian particle dispersion mod-

els. Due to the known locations of the coal mine ventilation shafts, their emissions are modeled forward in time with constant130

emission rates. Modeled data are then extracted at the aircraft position in space and time and compared to actual airborne in

situ observations. This comparison depends on the quality of the a-priori emission data, the quality of the measurements and

the quality of the transport model simulation, which in turn depends on the quality of the meteorological data (winds, PBL

heights, etc.). Validating the meteorological data is therefore important to enable regional emission estimates based on parti-

cle dispersion models. Here, meteorological driver data is generated using the Weather Research and Forecasting (WRF) v4.0135

model (Powers et al., 2017) with assimilated soundings from three Leosphere Windcube 200S Doppler wind lidars. Data is then

fed into the Lagrangian particle dispersion model FLEXPART-WRF ("FLEXible PARTicle dispersion model") - a FLEXPART

(Pisso et al., 2019) flavour adapted for WRF meteorology - and used to model the exhaust plumes emanating from ventilation

shafts of the emitters listed in E-PRTR 2017.
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4.1 Local scale meteorology using WRF140

Figure 4 shows a satellite map of central Europe with the two domains specified for the USCB region. The outer domain D1

(light blue box in Fig. 4) with a horizontal grid resolution of∼ 15 km includes large parts of central Europe. This domain is fed

Figure 4. The FLEXPART-WRF domain resides in the nested WRF domain D2 providing the meteorological driver data. Generous spacing

towards the driver domain has been included to avoid spurious boundary effects.

by NCEP GDAS/FNL Operational Global Analysis data on a 0.25-degree x 0.25-degree grid, available from the NCAR/UCAR

Research Data Archive at 3 hours time resolution (GDAS/FNL, 2015). The grid four dimensional data assimilation (GFDDA)

module is used to nudge modeled meteorology towards the analysis data at each grid point. The outer domain is intended to145

catch the large scale weather situation over Europe and to provide a smooth transition between the coarse NCEP GDAS/FNL

Operational Global Analysis and the region of prime interest. The inner domain D2 (yellow box in Fig. 4) has a horizontal

grid resolution of ∼ 3 km and covers the entire USCB region. The model output from D2 is the primary product required for

subsequent FLEXPART runs. Both domains are driven with the original WRF v4.0 topographic data with a resolution of 30

arc-seconds. Vertically, the model atmosphere is divided into 33 stacked layers, with the top layer at 200 hPa (corresponding150

to approximately 12 km altitude). Vertical layers are closer spaced at lower altitudes to enable a better resolution of boundary

layer processes. The modeled atmospheric state variables are output every hour for D1 and every 5 minutes for D2.

Soundings from three Doppler lidars (marked DLR85, DLR86 and DLR89) deployed in the USCB area during the CoMet

mission (see Fig. 1 for respective positions) have been used to augment the model output (Wildmann et al., 2020). These data

are available on a regular, continuous basis throughout the campaign period at 10 min time intervals with soundings typically155
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Figure 5. Ensemble WRF runs with varying radius of influence rxy in comparison to interpolated NCEP GDAS/FNL and actual Lidar

soundings for June 6th, 2018 at 0900 UTC. The shaded area shows the maximum variability including soundings timed 20 minutes before

and 20 minutes after the observations used. Abscissa units are ms−1 and degrees, respectively.

reaching up to ∼2.5 km a.M.S.L depending on the atmospheric condition. Domains D1 and D2 are both nudged towards

the Doppler soundings using the WRF-FDDA subsystem (Deng et al., 2008). Sensitivity of the model output on three key

parameters of the observational data assimilation subsystem, namely the radius of influence rxy , time window ∆t and horizontal

wind coefficient cuv were analyzed through numerous runs with the goal of finding an appropriate configuration. Figure 5 shows

ensemble runs with varying rxy in comparison to interpolated NCEP GDAS/FNL and the actual lidar soundings for June 6th,160

2018 at 0900 UTC. The shaded gray area beneath the orange-colored lidar soundings shows the maximum variability including

soundings timed 20 min before and 20 min after the observations used. Figure 5 demonstrates that modeled data are in good

agreement to observed Doppler soundings when using WRF-FDDA. It also shows discrepancies between NCEP GDAS/FNL

driver data and observations in wind direction and more importantly on the wind speed in the lower troposphere and the PBL

depth. To further enhance compatibility between model and observations, the WRFDA submodule (Barker et al., 2012) was165

used in 3DVar cycling mode similar to Liu et al. (2013) using the NCAR CV3 background error covariance (Barker et al.,

2004). The required observational error covariances are taken from the measurement uncertainties.
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Figure 6. Comparison of 1 Hz wind speed (upper left), wind direction (upper right), static pressure (lower left) and static air temperature

(lower right) as measured aboard the Cessna 208B on June 6th, 2018 between 1000 UTC and 1120 UTC to ensemble runs with varying rxy

from above. The graphs are plotted as a function of time in minutes since 0600 UTC.

To verify and validate the observational-FDDA approach, non-assimilated meteorological in situ data collected aboard the

Cessna 208B are compared to modeled data in Fig. 6. In particular, Fig. 6 compares 1 Hz wind speed, wind direction, static

pressure and static air temperature as measured on June 6th, 2018 between 1000 UTC and 1120 UTC with the underwing boom-170

mounted data acquisition system to ensemble runs with varying rxy from above. These data were collected approximately

35 km (minimum distance) to 65 km (maximum distance) to the west of the nearest wind lidar during the downwind wall

phase of the morning flight (see Fig. 1). Simulated data, extracted at the aircraft positions in space and time, agree with 1 Hz

observations of wind speed and direction to within an RMSE of± 0.7 ms−1 (1σ) and± 5 ◦ (1σ), respectively. Here, the NCAR

Command Language (NCL, Brown et al. (2012)) has been used to interpolate from gridded model output to the exact aircraft175

position in space and time. Modeled wind speed deviates from observed winds during the last 20 minutes of the downwind

wall. A possible reason for this might be that the flight leg was in close vicinity to the PBL top height. A bias of modeled

static pressure and static air temperature is evident from the lower panels in Fig. 6. Modeled pressure has a consistent offset of

-5 hPa compared to in situ data and modeled temperature is biased approximately 2.2 K towards lower values.
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4.2 Plume dispersion using FLEXPART-WRF180

FLEXPART-WRF version 3.3.2 (Brioude et al., 2013) was used to model the exhaust plumes of known emitters forward in

time using the meteorological data (including PBLH) obtained from the WRF simulations described above (see Sect. 4.1)

as a driver. The model is set to release 50 000 particles and an arbitrarily chosen total mass of me = 1× 105 kg for each

release location during the total simulated time of τe = 9 hours. The model output is gridded into 100× 100 horizontal tiles

and 24 vertically stacked layers ranging from ground level up to 3 km in altitude. This results in a horizontal resolution of185

approximately 1.3 km and a vertical resolution of 50 m near ground, gradually increasing to 500 m above 2 km altitude. The

domain has been placed inside the nested WRF domain D2 with generous spacing towards the domain boundaries as indicated

in Fig. 4 to avoid spurious boundary effects. The main product of the FLEXPART-WRF runs are concentration fields for each

release location in units of ng m−3, which are scaled a-posteriori to deduce the emission rate of each modeled release. Each

coal mine ventilation shaft is modeled as a constant, continuous volume source ϕi with a 10 m× 10 m horizontal footprint and190

extending 10 m in the vertical direction. The volume emitter sizes are based on the construction of typical ventilation shafts in

the USCB (Swolkień, 2020).

Mass densities in units of ng m−3 can be extracted for the aircraft positions from the model output. The result is a m×n
linear forward model matrix Kji that links scaling factors for emission rates to atmospheric mass density enhancements at the

measurement instances, where m is the number of observations available and n is the number of modeled release locations, i.e.195

Kji is the mass density that source i contributes to observation j. A scaling coefficient xi is assigned to each of the n sources

ϕi = me,i τ
−1
e,i , with the total emission time τe,i in seconds and the total mass emitted me,i in kg for each simulated source.

These last two parameters are both assigned in the FLEXPART-WRF input file.

Following a maximum a posteriori (MAP) approach, the scaling coefficients xi can be found for each of the n modeled

sources ϕi and for each of the m observed enhancements yj making use of a-priori information xa on the emissions of the200

individual shafts. Following Bayes’ theorem the MAP solution is given by the minimum of the cost function (Tarantola (2004);

Jacob (2007); Rodgers (2000))

J (x) = (x−xa)
T
Sa

−1 (x−xa)

+(y−Kx)
T
Sε

−1 (y−Kx) (1)

with later defined a-priori and observational error covariance matrices Sa and Sε, respectively. The MAP solution can be found

by solving for ∇xJ (x) = 0 and is given by205

x̂ = xa +G(y−Kx) (2)

with the gain matrix

G = SaK
T
(
KSaK

T +Sε
)−1

(3)

By exploiting the averaging kernel A = GK the number of degrees of freedom for signal ds can be computed as

ds = tr (A) (4)210
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This number describes the reduction in the normalized error on x introduced by the available observations and hence provides

a measure for the improvement in knowledge of x, relative to the a-priori, due to the observations.

The total emission estimate Φ in units kg s−1 follows from the scaled sum of the individual contributions ϕi

Φ =

n∑
i=1

xiϕi (5)

Here, the Non-Negative Least Squares (NNLS) algorithm (Lawson and Hanson, 1995) has been used to minimize the MAP215

cost function subject to the constraint x> 0. This constraint is equivalent to the absence of negative sources. The NNLS

algorithm solves the constrained least squares problem by splitting into active and passive subsets, where active and passive

refer to the state of the constraint. The algorithm subsequently solves the unconstrained least squares problem for the passive

set.

4.3 Estimating total uncertainty220

The outlined approach is based on assumptions, of which the most important ones are: a constant emission rate over the

timescale of transport from the source to the aircraft, an appropriate atmospheric background vector b (used to compute CH4

enhancements y = ρ−b from measured mass densities ρ), long lifetime of the species of interest, i.e. no chemical and physical

removal on the timescale of a flight and the model being able to adequately represent the meteorological state variables. To

assess uncertainty on the retrieved emission rates, several variables have been selected as most influencing systematic error225

sources: wind speed, wind direction, PBL height, source dislocation and an error in sensed mole fractions, that is further

intended to include an error due to chosen background. Individual contributions of these error sources to total uncertainty can

be identified from ensemble model runs with systematically perturbed parameters.

In addition to derived systematic uncertainties, statistical errors related to the MAP fit are to be acknowledged. The statistical

uncertainty εi in the retrieved parameters xi can be expressed in terms of the parameter covariance matrix Ŝ as230

εi =

√
Ŝii (6)

for individual scaling coefficients. For regional estimates we further included off-diagonal elements of Ŝ. The parameter co-

variance matrix Ŝ is computed from the m-by-n dimensional forward model K using

Ŝ =
(
KT Sε

−1K+Sa
−1
)−1

(7)

Due to the different time scales of model output and observations, the observational error covariance matrix Sε cannot simply235

be taken as a diagonal matrix as this would neglect any correlations. Although the influence on regional estimates is small,

these correlations have significant effect on subregional estimates. The main diagonal of Sε has been estimated from the

squared observation uncertainties σ2 inflated with a transport model error χm obtained from ensemble runs with perturbed

parameters (see Sect. 4.6). In order to compensate for tempo-spatial-autocorrelation we simulated a puff release to check the

impulse response of the simulation on a one-second release from individual sources. We sampled simulated observations from240
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Figure 7. Left: Observational covariance augmented with a first order autoregressive model AR(1) structure with ϕ= 0.7. Right: A-priori

covariance matrix highlighting correlated clusters from individual ventilation shafts. The scaling factor results from the scaling of the

FLEXPART-WRF plume to the designated flux unit kt yr−1.

this puff release at the aircrafts location in space and time and computed the Autocorrelation function (ACF) from a single

dispersed puff. The exponential decay of the correlogram suggested to augment the observational covariance matrix with a first

order autoregressive model AR(1) structure with ϕ= 0.7. Fig. 7 shows a zoom on the first 400× 400 elements of this 14936×
14936 matrix to highlight the introduced off-diagonal elements. The measurement uncertainties σi were obtained via standard

error propagation from the uncertainties associated with different instruments aboard the aircraft needed for the computation245

of the CH4 mass density observations (see Eq. 8). Static air temperature can be probed with an uncertainty of σT= 0.15 K,

static air pressure with σp= 1 hPa and wind speed with σu= 0.3 ms−1 (1s-1σ, Mallaun et al. (2015)). CH4 mole fractions were

sampled with a total uncertainty better than 1.85 ppb (1s-1σ). The main diagonal of the a-priori error covariance matrix Sa (i.e.

the a-priori variances) contains the squared a-priori uncertainties, estimated with 50 % of the nominal value. As several shafts

cluster around individual mines at distances not much more than a kilometer we further introduced a +.5 correlation on the250

mines belonging to the same cluster and mining company and added local information (see review comment by J. Necki). The

final a-priori error covariance matrix is depicted in Fig. 7. The scaling factor results from the scaling of the FLEXPART-WRF

plume to the designated flux unit kt yr−1.

4.4 Case study: June 6th, 2018

Figure 8 shows a time series of the measured and modeled CH4 mass density enhancement as a function of flight time during255

the downwind wall phase with the atmospheric background subtracted and source coefficients xi already optimized (according

to Eq. 1).
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Figure 8. Time series of the in situ measured (gray) and modeled CH4 mass density (solid black) with subtracted background as a function

of flight time during the downwind wall phase of the morning (left panel) and afternoon (right panel) flight on June 6th, 2018 with optimized

source coefficients xi. The dotted light blue line corresponds to the same forward simulation using scaling coefficients deduced from E-

PRTR 2017.

The measured scalar mass density ρ has been deduced from the ideal gas law pV=mRsT (mass m, specific gas constant

Rs =R/M and molar mass of CH4 M) using the in situ measured static air temperature and static air pressure according to

ρx =
mx

Vair
=

mx

mair

( p

RT

)
air

(8)260

where mx denotes the total mass of the species of interest. The unit-less coefficient mx m−1
air= cx Mx M−1

air is obtained from

the sensed CH4 mole fractions cx in units mol mol−1.

Prior to conversion, the atmospheric background has to be subtracted from the observed cx. The choice of background is to

some extent ambiguous, because there is no clear edge between background and in-plume sampling. This contributes to total

flux estimation uncertainty, as will be discussed later. Here, a piecewise linear interpolation between the outermost boundaries265

of each of the 4 flight legs (see Fig. 9) has been considered as the best guess of atmospheric background. The mean value

of 20 samples has been used on both edges of each flight leg. Using this approach, latitudinal and longitudinal gradients in

background CH4 mole fractions are accounted for by using both edges of each flight leg. Vertical gradients in background CH4

levels are accounted for by treating each constant-altitude flight leg separately.

From Fig. 8 a good overall match between model (solid black line) and in situ observations (gray) is apparent with a mean270

bias of 2.5× 10−9 kg m−3 and a root mean square error of 1.6× 10−8 kg m−3. Some of the minor structure is not reproduced

in detail by the model, which is expected due to the model’s 3 km horizontal grid resolution. The reason for the discrepancy

between model and the first few hundred observations in Fig. 8 becomes more obvious when looking at the 2D scene shown

in Fig. 9. The left panel of Fig. 9 shows a cross section of the model output along the downwind wall including the in situ

observations of ρ. The right panel of Fig. 9 depicts the top-down view on the model output and the downwind wall observations275
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Figure 9. Left: Interpolated cross section of the model output along the downwind wall including scattered in situ observations of CH4 for

the morning flight on June 6th, 2018. The colorbar also applies to the isolines on the right. Right: Top-down view on the model output and

the downwind wall observations ρ at 750 m a.g.l with underlaid topography. Triangles mark simulated emitters with colors corresponding

to the optimized source strengths. Gray isolines correspond to non-fuel-exploitation emissions. Both panels show a snapshot of the model

output at one fixed time chosen as the center time of the downwind wall phase.

at a fixed altitude of 750 m a.g.l. It should be noted here that both panels show a snapshot of the model output at one fixed time

chosen as the center time of the downwind wall.

The discrepancy between model and observation at the lowermost (first in time) flight leg, corresponding to the southernmost

trajectory section in Fig. 9 (right panel) can not be reproduced by any of the included emission sources. A possible source is

urban CH4 emissions of Krakow, located to the east of the USCB region. An area source, covering the greater city area,280

has therefore been included in the model. Its influence can be seen at the rightmost edge of Fig. 9 (right panel). Although we

identified Krakow city as a possible source, we omitted it in the USCB emission estimates, as it does not officially belong to the

USCB area. There are other parts in the time series, where the model does either underestimate (e.g. times around observation

numbers 2000-3000, 4000-4500) or overestimate emissions (e.g. around observation number 6000). This might well be related

to sources not taken into account or deficiencies in wind speed, wind direction, PBL height, etc..285

The instantaneous fuel-exploitation emission estimate directly follows from the optimized parameters xi via Eq. 5. The emis-

sion estimate obtained for the morning flight on June 6th, 2018 using the model based approach amounts to Φ = 451± 77 kt yr−1.

It differs from the yearly averaged inventorial emission estimates for the USCB region by approximately -28 % for EDGAR v4.3.2

and +1 % for the E-PRTR inventory (excluding simulated non-fuel-exploitation sources), respectively. In addition to the coal

mine emissions, approximately 27 kt yr−1 of CH4 are estimated to emanate from simulated non-coal-mine sources. The re-290
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Figure 10. Left: Interpolated cross section of the model output along the downwind wall including scattered in situ observations of CH4 for

the afternoon flight on June 6th, 2018. The colorbar also applies to the isolines on the right. Right: Top-down view on the model output and

the downwind wall observations ρ at 750 m a.g.l with underlaid topography. Gray isolines correspond to non-fuel-exploitation emissions.

Triangles mark simulated emitters with colors corresponding to the optimized source strengths. Both panels show a snapshot of the model

output at one fixed time chosen as the center time of the downwind wall phase.

trieval for the morning flight yields 48 degrees of freedom for signal and a total of 35 out of 74 modeled sources actively

emitting. Here, the large amount of degrees of freedom for signal is indicative for the validity of the total emission estimate.

The latter can be confirmed by the negligible impact of the a-priori
∑

(1−A)xa versus the observations
∑

Ax in the emission

estimate. The algorithm makes use of the large number of modeled sources to enable a total emission estimate plus additional

information on individual sources.295

To enhance confidence in the emission estimate an afternoon flight of the DLR Cessna 208B was carried out a few hours after

the morning flight ended on June 6th, 2018. Due to consistent wind directions on that day, the flight pattern was kept as close

as possible to the morning flight. The flight trajectories for both flights are depicted in Fig. 1. The right panel in Fig. 8 shows

the corresponding time series of the measured and modeled CH4 mass density as a function of flight time during the downwind

wall phase with source coefficients xi already optimized. Alike for the morning flight a good overall match between model and300

in situ observations can be observed with a mean bias of 3× 10−10 kg m−3 and a root mean square error of 1× 10−8 kg m−3.

The sensed mixing ratios are lower compared to the morning flight due to a further developed and hence more diluted boundary

layer in the afternoon. The corresponding snapshot 2D scene is depicted in Fig. 10, with the left panel showing a cross section

of the model output along the downwind wall including the in situ observations of ρ. The right panel of Fig. 10 shows the

top-down view and the downwind wall observations as before. Both panels show a snapshot of the model output at the center305
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time of the downwind wall phase. It is evident from Fig. 10 that the inclined boundary layer height observed during the flight is

nicely captured by the model. Boundary layer depth is generally enhanced compared to the morning flight. Plume trajectories

are streamlined implying consistent winds over time.

The fuel-exploitation emission estimate obtained for the afternoon flight on June 6th, 2018 using the model based approach

amounts to Φ = 423± 79 kt yr−1. The obtained instantaneous emission estimate differs from the yearly averaged inventorial310

emission values for the USCB region by approximately -32 % for EDGAR v4.3.2 and -6 % for the E-PRTR inventory (excluding

simulated non-fuel-exploitation sources), respectively. The retrieval for the afternoon flight yields 31 kt yr−1 of CH4 from

simulated non-coal-mine sources, 42 degrees of freedom for signal and a total of 38 out of 74 simulated coal mine sources

actively emitting. Both flights yield similar ds values, indicating that not all information stems from observations alone. Hence,

neither flight can be used alone to retrieve all modeled sources. In an effort to minimize the dependency on the a-priori, both315

flights will be analyzed together in the next section.

4.5 Subregional emission estimates

The model based approach provides a unique advantage over established mass balance techniques in terms of spatial informa-

tion, as it enables attributing sensed CH4 mole fractions to remote sources at distances of tens to hundreds of kilometers. The

achievable level of confidence for these subregional estimates however strongly depends on the observational data. The total320

emission estimate has been introduced in Sect. 4.2 as the sum over n sources ϕi that are individually scaled with a coefficient

xi. The emission rate Φi corresponding to the i-th source is thus given by xiϕi. By including all n sources in the state vector

individual scaling coefficients can be derived for individual sources. Here, the availability of data from two research flights

on June 6th, 2018 was exploited to estimate subregional emission rates Φi for individual sources. As the mean wind direc-

tion did differ by ≤ 10 % between the two flights, uncertainty on the shaft-level remained large and observational data is to325

limited for a more specific estimate. With mission planning further optimized for the Bayesian inversion from airborne in situ

data, as presented in this manuscript, these uncertainties can potentially be narrowed down in future campaigns. The retrieval

yields ds = 32 with 53 sources actively emitting. Figure 11 illustrates Φi in kt yr−1 for all modeled mining shafts taking into

account both research flights on June 6th, 2018. The blue bars represent the estimated Φi and are to be related to the yearly

average values (slim green bars) for each mining company reporting to E-PRTR 2017 for illustrative purposes. The estimated330

uncertainty depicted in Fig. 11 includes systematic uncertainties derived from a variational ensemble and statistic uncertainties

due to the fit algorithm used (see Sect. 4.3). The variational ensemble introduced in Sect. 4.3 includes scaling coefficients xi

subject to systematic variations in key sources of uncertainty. Systematic uncertainties for each source are directly obtained

from this ensemble run. Differences in estimated and reported (E-PRTR 2017) Φi are evident. This is however expected due to

the comparison of instantaneous emission estimates and yearly averages. Figure 12 shows the a-posteriori correlation matrix335

as deduced from the MAP covariance matrix. The matrix indicates that there remained some uncertainty as to which shaft the

emissions had to be assigned.
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Figure 11. Emission estimates Φi (blue bars) in kt yr−1 for 74 individual mining shafts using the morning and afternoon flight of June

6th, 2018. Slim green bars are the reported yearly average values for each mining company (E-PRTR 2017) evenly distributed among

the respective ventilation shafts. The orange error bars stem from the quadrature sum of the statistical uncertainties εi (computed from

the parameter covariance matrix Ŝ) and the uncertainties σensemble derived from a variational ensemble with systematically perturbed

parameters.

4.6 Uncertainty analysis

The influence of several variables on the total flux estimate Φ has been computed from 8 sensitivity runs with symmetrically

perturbed parameters. The systematic transport model uncertainty is subsequently estimated as the standard deviation of this340

ensemble. Figure 13 shows the influence of an error in wind speed (σu= 0.9 ms−1), wind direction (σd= 5 ◦), PBL height

(σpbl= 100 m) and a source dislocation (σsd= 1 km) to total uncertainty for the flights detailed in the previous section. An

assumed error in sensed mole fractions (σc= 10 ppb) is intended to include an error due to wrongly chosen background. The

error on wind speed σu is taken as the standard deviation of the difference between WRF modeled wind and non-assimilated in

situ observations from the data depicted in Fig. 6. The same holds for the wind direction. The difference between modeled data345

and observations should therefore reflect overall uncertainty in these variables. Two spiral-up soundings out of the PBL revealed

a boundary layer height of 1150 m at 0937 UTC and 1300 m at 1145 UTC. Based on these two soundings the uncertainty on

boundary layer depth is estimated with σpbl= 100 m for the downwind wall phase between 1000 UTC and 1100 UTC. For this
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Figure 12. A-posteriori correlation matrix as deduced from the a-posteriori covariance matrix showing there remained some uncertainty as

to which shaft the emissions had to be assigned.
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Figure 13. Ensemble runs to assess uncertainty in the flux estimates derived using a model based approach. All selected error sources

contribute to total uncertainty on a similar level.

sensitivity analysis, the WRF fields were perturbed systematically during the FLEXPART read phase in "readwind.f90". The

source dislocation was implemented in the FLEXPART configuration file. It is evident from Fig. 13 that all selected error350

sources contribute on a similar level to total systematic uncertainty, which is ultimately computed as the standard deviation of

the ensemble.

In addition to the derived systematic uncertainties, statistical errors related to the MAP fit have been computed following

Sect. 4.3. Figure 14 depicts the Jacobian K with respect to xi and the observations of the morning flight on June 6th, 2018. It
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Figure 14. Jacobian with respect to xi and the observations yj for the morning flight on June 6th, 2018. All scaling coefficients xi are

sensitive to variations in yj and can therefore be deduced from a MAP fit. Measurements centered around observation 2300 are not covered

by the model and are thus obsolete for flux estimation using this particular flight.

describes the change in residuals introduced by a change in parameter xi. From this figure, it can be seen that all 74 modeled355

coal mine sources were sampled by the aircraft using the chosen flight pattern, as all scaling coefficients are represented in the

Jacobian. For the fluxes emanating from the USCB area, the statistical uncertainty εi computed from the Jacobian following

Eqs. 6-7 amounts to approximately 66 kt yr−1 or 15 % respectively.

Ultimately, the total uncertainty for the morning flight (same for the afternoon flight) on June 6th, 2018 follows is the

quadrature sum of systematic (44 kt yr−1) errors from the ensemble runs and statistical uncertainty (66 kt yr−1) from the360

fitting algorithm adding up to approx. 17 % relative uncertainty.

5 Conclusions

A modified Aerodyne Dual QCLS instrument has been deployed aboard the DLR Cessna 208B in the context of the CoMet

1.0 campaign in early summer 2018 with the goal of estimating hard coal mine CH4 emissions emanating from the USCB

area - Europe’s largest coal extraction region. Intensive mining activities and the heavy industry spread around the city of365

Katowice lead to significant amounts of GHGs emitted into the atmosphere. The reported inventorial CH4 emission rates for

the entire USCB region amount to 720 kt yr−1 (EDGAR v4.3.2) and 448 kt yr−1 (E-PRTR 2017). The latter corresponds to

12.5 MtCO2-eq yr−1 using a CH4-GWP100=28 from the IPCC Fifth Assessment report (Pachauri et al., 2014). Assuming an

average carbon content of 75 %, a net calorific value of 29 MJ kg−1, an emission factor of 94 tCO2 (TJ)−1 and the approxi-

mate 75 million tonnes of coal extracted from the USCB every year results in yearly CO2 emissions of 205 MtCO2 yr−1 from370

burning of the extracted coal. The CH4 emissions from mining alone therefore make up for approximately 6 % in terms of

GWP.
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Estimates of coal mine CH4 emissions in the USCB were derived using a model approach based on the Eulerian WRF

model and the Lagrangian particle dispersion model FLEXPART-WRF. Data assimilation further exploits the availability of

additional data products, e.g. wind lidar soundings during the CoMet 1.0 campaign. Due to the known locations of the coal mine375

ventilation shafts, sources are modeled forward in time assuming a constant emission rate. Modeled data are then extracted

at the aircraft positions in space and time and compared to actual airborne in situ observations. Here, meteorological driver

data was generated using the WRF v4.0 model with continuous assimilated wind lidar soundings using WRF’s OBS-FDDA

and WRFDA subsystems. After validation with unassimilated in situ measurements, data were fed into the Lagrangian particle

dispersion model FLEXPART-WRF and used to model the exhaust plumes of the ventilation shafts. Using an inverse modeling380

approach, a-priori emission data from E-PRTR 2017 are optimized to allow a better fit to the observations. Thereby, total

emission estimates for the USCB area of Φ = 451± 77 kt yr−1 and Φ = 423± 79 kt yr−1 were obtained for a morning flight

and an afternoon flight on June 6th, 2018, respectively. This includes non-fuel-exploitation fluxes, estimated with 27 kt yr−1

and 31 kt yr−1 for the morning and afternoon flights, respectively. Morning and afternoon flights differ by less than 4 %

corresponding to an excellent agreement well within the uncertainty range. The obtained emission estimate differs from the385

inventorial emission estimates by approximately -28 % / -32 % for the EDGAR v4.3.2 inventory (morning flight / afternoon

flight) and ± +1 % / -6 % for the E-PRTR inventory (excluding non-fuel-exploitation sources), respectively. Differences in

estimated and reported emission rates are however expected due to the comparison of instantaneous estimates and yearly

averages. This is in line with previous studies hinting towards EDGAR v4.3.2 overestimating CH4 emissions in the USCB

(Luther et al. (2019); Fiehn et al. (2020)). Uncertainty estimates include systematic contributions from ensemble runs and390

statistical uncertainty introduced by the fitting algorithm. Data from both research flights are further exploited to estimate

individual source contributions. Differences between individual estimates and E-PRTR reported emissions are observed. This

is expected due to several reasons: limited amount of measurements relative to the yearly averages provided in the inventories,

wind directions do not differ by much between the two flights and the evenly distributed emissions among the ventilation shafts

for each mining company. In general, the approach described herein delivers more information compared to the conventional395

mass balance, albeit at increased effort: wind lidars need to be deployed during the measurement campaign, models need to

be run, wind lidar data needs to be assimilated and inverse estimation techniques need to be applied. The additional possibility

of remote source attribution however, coupled with the results obtained in Sect. 4.2 for the regional USCB anthropogenic CH4

emissions make this approach a potent alternative to the mass balance technique. Although retrieving estimates for individual

emitters is not possible using only single flights, due to sparse data availability, the combination of two or more flights allows400

for exploiting different meteorological conditions to enhance confidence on facility level estimates.

Code and data availability. Data are available from the HALO-DB database https://halo-db.pa.op.dlr.de/. WRF v4.0 can be downloaded

from https://www.mmm.ucar.edu/weather-research-and-forecasting-model. FLEXPART-WRF can be downloaded from https://www.flexpart.

eu/. Model setups for both employed models are available upon request.
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