Supplementary Information of 1

Long-range transport patterns into the tropical northwest Pacific 2

during the CAMP²Ex aircraft campaign: chemical composition, 3 size distributions, and the impact of convection 4

- Miguel Ricardo A. Hilario^{1,+}, Ewan Crosbie^{2,3}, Michael Shook², Jeffrey S. Reid⁴, Maria Obiminda L. Cambaliza^{1,5}, James Bernard B. Simpas^{1,5}, Luke Ziemba², Joshua P. DiGangi², Glenn S. 5
- 6
- Diskin², Phu Nguyen⁶, Joseph Turk⁷, Edward Winstead^{2,3}, Claire E. Robinson^{2,3}, Jian Wang⁸, Jiaoshi Zhang⁸, Yang Wang⁹, Subin Yoon¹⁰, James Flynn¹⁰, Sergio L. Alvarez¹⁰, Ali Behrangi^{11,12}, 7
- 8
- Armin Sorooshian^{11,13,*} 9
- 10
- ¹Manila Observatory, Quezon City 1108, Philippines 11
- ²NASA Langley Research Center, Hampton, VA, USA 12
- 13 ³Science Systems and Applications, Inc., Hampton, VA, USA
- 14 ⁴Marine Meteorology Division, Naval Research Laboratory, Monterey, CA, USA
- 15 ⁵ Department of Physics, Ateneo de Manila University, Quezon City 1108, Philippines
- 16 ⁶ Department of Civil & Environmental Engineering, University of California Irvine, Irvine, CA 92697, USA
- 17 ⁷NASA Jet Propulsion Laboratory, Pasadena, CA, USA
- 18 ⁸ Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering,
- 19 Washington University in St. Louis, St. Louis, MO 63130, USA
- 20 ⁹ Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, 21 Rolla, MO 65409, USA
- 22 ¹⁰ Department of Earth and Atmospheric Science, University of Houston, Texas, 77204, USA
- 23 ¹¹Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, USA
- 24 ¹² Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA
- 25 ¹³ Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, USA
- 26
- 27 *Correspondence to: Armin Sorooshian (armin@email.arizona.edu)
- 28 *Now at: Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, USA

29 Contents of this file

30 Tables S1-S2, Figures S1-S8 31 Table S1: Sensitivity analysis in terms of percentage contribution. Percentage contributions for classified trajectories (i.e., excluding Other) are provided in parentheses.

32 Total number of trajectories (N) is also provided. Mixed-source trajectories are also included with the most recently passed source region listed first (e.g., PSEA-EA).

33 Blanks denote zero contribution, rounded to the nearest tenth decimal. Source regions are Peninsular Southeast Asia (PSEA), Maritime Continent (MC), East Asia (EA),

34 and West Pacific (WP).

		PSEA	MC	EA	WP	PSEA-MC	EA-PSEA	PSEA-EA	MC-PSEA	Other	Ν
Trajectory Height Threshold	0.5 km	1.4 (9.5)	4.0 (28.1)	2.9 (19.9)	5.6 (38.9)				0.5 (3.6)	85.6	1534
	1 km	3.1 (14.0)	6.0 (26.8)	4.4 (19.5)	7.9 (35.3)				1.0 (4.4)	77.6	1534
	2 km	7.8 (21.4)	10.2 (28.1)	7.8 (21.6)	8.8 (24.3)				1.6 (4.5)	63.8	1534
	3 km	10.4 (23.3)	12.0 (26.7)	9.3 (20.8)	10.8 (24.0)				2.3 (5.2)	55.1	1534
Trajectory Run Time	200 h	8.0 (19.5)	12.5 (30.6)	9.0 (22.1)	8.8 (21.6)				2.5 (6.2)	59.3	1534
	150 h	7.8 (20.3)	11.6 (30.4)	8.6 (22.5)	8.3 (21.8)				1.9 (4.9)	61.8	1534
	120 h	7.8 (21.4)	10.2 (28.1)	7.8 (21.6)	8.8 (24.3)				1.6 (4.5)	63.8	1534
	72 h	5.0 (18.0)	7.8 (28.4)	5.5 (20.1)	8.4 (30.5)				0.8 (3.1)	72.4	1534
Vertical Profile Filtering	All Data	3.2 (12.2)	9.3 (35.3)	8.3 (31.5)	5.5 (21.0)	(0.1)			(0.1)	73.7	7286
	Profiles Only	5.7 (17.3)	11.3 (34.2)	8.5 (25.5)	7.6 (23.0)					66.8	1534
Monsoon Shift	SWM (< 20 Sep)	10.0 (28.9)	20.6 (59.8)	0.1 (0.3)	3.3 (9.6)		0.4 (1.0)	0.1 (0.3)		65.5	843
	MT (> 20 Sep)	0.1 (0.4)	0.4 (1.2)	18.8 (51.4)	16.9 (46.2)				0.3 (0.8)	63.4	691
Sampling Location	East of Luzon	6.2 (26.0)	7.4 (30.8)	3.7 (15.4)	6.6 (27.4)				0.1 (0.5)	76.1	870
(o-nourly)	North of Luzon	7.8 (26.2)	6.0 (20.0)	9.4 (31.5)	6.7 (22.3)					70.1	870
	Sally Ride	2.8 (11.9)	8.2 (35.3)	1.5 (6.5)	10.7 (46.3)					76.9	870
	Sulu Sea	3.2 (10.9)	24.8 (84.0)	0.1 (0.4)	0.9 (3.1)	0.2 (0.8)			0.2 (0.8)	70.5	870
	West of Luzon	12.3 (39.8)	7.0 (22.7)	7.0 (22.7)	3.9 (12.6)	0.3 (1.1)			0.3 (1.1)	69.1	870

35 ^a Back trajectories were generated every 6 hours (Aug 23 – Oct 5 2019) for the sampling location test. Exact locations are provided in Fig. S1.

- Table S2: Significance (*p*) values for Table 1 computed with a two-tailed t-test between boundary layer (< 2 km) and free
- 37 troposphere (> 2 km) data per source region. Bold values denote significant statistical differences (p < 0.05). Source

regions are East Asia (EA), Maritime Continent (MC), Peninsular Southeast Asia (PSEA), and West Pacific (WP). The

39 EA column was left blank due to the infrequent sampling of EA air in the FT.

	EA	MC	PSEA	WP
N100-1000nm (cm ⁻³)		< 0.01	< 0.01	< 0.01
CO (ppm)		< 0.01	0.50	0.87
O ₃ (ppbv)		< 0.01	< 0.01	< 0.01
CH4 (ppm)		< 0.01	0.22	0.10
SO4 ²⁻ (µg m ⁻³)		< 0.01	< 0.01	< 0.01
NO3 ⁻ (µg m ⁻³)		< 0.01	< 0.01	0.10
NH4 ⁺ (µg m ⁻³)		< 0.01	< 0.01	0.04
ΟΑ (μg m ⁻³)		< 0.01	< 0.01	0.02
BC (ng m ⁻³)		< 0.01	< 0.01	0.02

41 Figure S1: Flight tracks and classified vertical profiles marked in red. Identified is the base of operations, Clark

International Airport (CRK). Locations for the sampling location sensitivity test (Table S1) are also depicted: West of
 Luzon (WLuz), North of Luzon (NLuz), East of Luzon (ELuz), Sulu Sea (Sulu), and the approximate location of the

⁴⁴ research vessel R/V Sally Ride (Sally) from the Office of Naval Research Propagation of InterSeasonal Tropical

⁴⁵ OscillatioNs (PISTON) project.

Figure S2: (a) Distribution of 1-minute averaged data points per research flight colored by classified source region, and
(b) relative contributions (%) of source attribution per research flight. Note that the research flight on 4 October 2019

49 (b) relative contributions (70) of source attribution per research night fore that the research night on 4 October 2017 49 was excluded due to the dominance of local emissions. Source regions are Peninsular Southeast Asia (PSEA), Maritime

was excluded due to the dominance of local emissions. Source regions are remnsular Sourceast Asia (FSEA), Martune
 Continent (MC), East Asia (EA), and West Pacific (WP). Note that classification of an air mass as PSEA or MC was only

51 considered during the SWM (< 20 Sep) while classification into EA or WP was only done during the MT (> 20 Sep).

53 Figure S3: Trajectories clustered using K-means clustering.

55 Figure S4: Same as Fig. S3 but using Ward-linkage clustering.

Figure S5: Histograms of integrated particle number concentration for diameters between 100 nm to 1000 nm (N_{100-1000nm};
cm⁻³) for (a) Peninsular Southeast Asia (PSEA), (b) Maritime Continent (MC), (c) East Asia (EA), and (d) West Pacific
(WP) to show the effect of the Philippine (PH) filter for local emissions. Note that "No PH" (black) refers to transported
air considered unaffected by Philippine emissions (e.g., MC only), while "With PH" (red) refers to transported air mixed

61 with Philippine air (e.g., air classified into both MC and PH).

63

64 Figure S6: Percent differences between free troposphere (FT; > 2 km) and boundary layer (BL; < 2 km) concentrations

for selected species in air from the Maritime Continent (MC) and Peninsular Southeast Asia (PSEA). Species along the x axis are arranged with trace gas (aerosol) species on the left (right).

Figure S7: Same as Figure 7 but for (a) $\Delta SO_4^{2-}/\Delta CO$, (b) $\Delta OA/\Delta CO$, and (c) $\Delta OA/\Delta SO_4^{2-}$ for the Maritime Continent

69 (MC) resolved by boundary layer (BL; < 2 km) and free troposphere (FT; > 2 km) sampling. In addition to annotations

70 described in Figure 7, we also included the number of data points used to compute the linear regression statistics.

73 Figure S8: Same as Fig. 8 but for particle volume.