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Abstract. Height resolved airmass source attribution is crucial for the evaluation of profiling ground-based remote sensing

observations
:
,
::::::::
especially

:::::
when

:::::
using

::::
lidar

::
to

:::::::::
investigate

::::::::
different

::::::
aerosol

:::::
types

:::::::::
throughout

:::
the

::::::::::
atmosphere.

:::::
Lidar

:::::::::
networks,

::
as

::::::::::
EARLINET

::
in

:::
the

:::::
frame

::
of

::::::::
ACTRIS,

:::::::
observe

::::::
profiles

::
of

::::::
optical

:::::::
aerosol

::::::::
properties

::::::
almost

:::::::::::
continuously,

:::
but

::::::
usually

:::::::::
additional

:::::::::
information

::
is
:::::::
needed

::
to

::::::
support

:::
the

::::::::::::::
characterization

::
of

:::
the

::::::::
observed

:::::::
particles. This work presents an approach of how back-

ward trajectories or particle positions from a dispersion model can be combined with geographical information (a land cover5

classification and manually defined areas) to obtain a continuous and vertically resolved estimate of airmass source above a

certain location. Ideally, such an estimate depends on as few as possible a-priori information and auxiliary data. An automated

framework for the computation of such an airmass source is presented and two applications are described. Firstly, the airmass

source information is used for the interpretation of airmass sources for three case studies with lidar observations from Limas-

sol (Cyprus), Punta Arenas (Chile) and ship-borne off Cabo Verde. Secondly, airmass source statistics are calculated for two10

multi-week campaigns to assess potential observation biases of lidar-based aerosol statistics.
::::
Such

:::
an

:::::::::
automated

::::::::
approach

:
is
::
a

:::::::
valuable

:::
tool

:::
for

:::
the

:::::::
analysis

::
of

:::::::::
short-term

::::::::::
campaigns,

:::
but

:::
also

:::
for

:::::::::
long-term

:::::::
datasets,

:::
for

:::::::
example

:::::::
acquired

:::
by

::::::::::
EARLINET.

:

Copyright statement. TEXT

1 Introduction

Tracing airmass transport through a turbulent atmosphere is (still) a complex problem. Especially the transport of aerosols and15

consequently the interactions with clouds, precipitation and radiation are required to capture the four-dimensional history of

an air parcel. When it comes to practical application, such as the analysis of aerosol observations or aerosol-cloud interaction

studies, the ease of interpretation is often hindered by the amount of data that needs to be considered.

:::
The

::::::::
European

::::::::
Research

:::::::::::
Infrastructure

:::
on

:::::::
Aerosol,

::::::
Clouds

:::
and

:::::
Trace

:::::
Gases

:::::::::
(ACTRIS)

::::
aims

::
at

:::
the

:::::::::::
investigation

::
of

:::::::::
short-lived

::::::::::
components

::
in

:::
the

::::::::::
atmosphere,

::::::
among

:::::
them

:::::::
aerosols

:::
and

::::::
clouds.

:::
As

::::
part

::
of

::::::::
ACTRIS,

:::
the

::::::::
European

::::::::
Research

:::::
Lidar

::::::::
Network20

::::::::::
EARLINET

::::::::::::::::::::
(Pappalardo et al., 2014)

:::::::
operates

:::::
lidars

::
at

::::
more

::::
than

:::
25

::::::
stations

::
to

:::::::
observe

::::::::::
atmospheric

::::
state

:::
and

:::::::::::
compositions

:::
up
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::
to

:::::
30km

::::::
height.

:::
The

:::::::::::::
complementary

:::::::
network

:::::::::::
CLOUDNET

:::::::::::::::::::::
(Illingworth et al., 2007)

::::::
utilizes

:::::::::
continuous

:::::::::
synergistic

::::::::::
observations

::
of

::::::
ground

:::::
based

::::::::::
instruments

:::::
such

::
as

::::::::::
ceilometers,

:::::
cloud

:::::::
radars,

:::::::::
microwave

::::::::::
radiometers

::::
and

:::::::
Doppler

:::::
wind

:::::
lidars

::
to

:::::::
provide

::::::::::::
comprehensive

:::::
cloud

::::::::::
observations

::::::
within

::::::
Europe

::::
and

::
at

:::
key

::::::
regions

::
of

:::
the

:::::::
climate

::::::
system.

:::::
Both

::::::::
networks,

::
as

::::
part

::
of

::::::::
ACTRIS,

::::
need

:::::::::
additional,

::::::::::
continuous

::::::::::
information

:::::
about

:::::::
airmass

::::::
source

::
to

::::::::
interpret

:::
the

:::::::::::
observations.

::::::::::
Identifying

:::
the

:::::::
airmass

::::::
source25

:::::
region

::::::::
supports

:::
the

:::::::::::::
characterization

::
of

::::
new

::::::::
particles,

::::
e.g.

::::::
during

:::::::
volcanic

::::::::
eruptions

:::::::::::::::::::::
(Pappalardo et al., 2013)

::
or

:::::
strong

:::::
wild

:::
fires

::::::::
injecting

::::::
aerosol

:::
into

:::
the

::::::::::
stratosphere

::::::::::::::::
(Baars et al., 2019).

:::::
Also

::
for

:::::::
aerosol

:::::
typing

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Amiridis et al., 2015; Wandinger, Ulla et al., 2016; Papagiannopoulos et al., 2020; Nicolae et al., 2018; Mylonaki et al., 2020)

::::::
airmass

::::::
source

:::
can

:::::::
provide

::
an

:::::::
importat

:::::::::
constraint.

:::::::::::
Furthermore,

::::::::::
operational

:::::::::::::
height-resolved

::::::
airmass

::::::
source

::::::::::
information

:::::
could

:::::::
improve

:::::::
warning

::::::::::
applications

::
for

:::::::::
hazardous

::::::
events,

::
as

:::::::::::
demonstrated

:::
for

::::::::::
EARLINET

::
in

:::
the

:::::
frame

::
of

::
the

::::::::
European

::::::::::::::
EUNADICS-AV

::::::
exercise

::::::::::::::::::::::::::
(Papagiannopoulos et al., 2020)

:
.30

Models that simulate airmass transport can be broadly grouped into trajectory models and particle dispersion models

(overview provided by Fleming et al., 2012). Trajectory models calculate the transport of a single air parcel imposed by

the mean meteorological fields. The model simulations can be run either forward or backward in time, providing information

about the source and the destination of the airmass, respectively, after a given transport time. Turbulence and vertical motion

during the transport are usually parameterized on the grid scale. Commonly used models are HYSPLIT (Stein et al., 2015),35

FLEXTRA (Stohl et al., 1995) and LAGRANTO (Wernli and Davies, 1997; Tarasova et al., 2009). Due to the rather simple

approach, the results are quite uncertain (Seibert, 1993; Polissar et al., 1999), but computational requirements are comparably

low. A straightforward approach to represent some of the variability is to calculate spatial or temporal ensembles of the trajec-

tories (Merrill et al., 1985; Kahl, 1993; Draxler, 2003). Lagrangian particle dispersion models (LPDM) with a large number

of particles are set up to cover turbulent and diffusive transport even more realistically (Stohl et al., 2002). The fate of each40

particle is tracked individually, allowing more variability to be included into the transport simulation. A frequently used LPDM

is FLEXPART (Pisso et al., 2019).

Generally, representation of chaotic motion in the atmosphere improves with larger ensembles of trajectories or increasing

number of particles. But, with dozens to hundreds of air parcel locations available, interpretation rapidly becomes cumbersome.

A number of infinitesimally small air parcels grouped together gives an airmass, a larger volume of air with similar properties.45

Residence times are a well established technique for attributing regional information to airmass properties such as being laden

with aerosols, moisture or trace gases (Ashbaugh, 1983; Ashbaugh et al., 1985).

Using backward simulations of air parcel positions, analysis of the residence time yields useful information about the poten-

tial source region of an observed airmass. The basic assumption is, that the longer an air parcel was present in a certain region,

the more likely it will be influenced by the surface characteristics. Hence, the dimensionality of an air parcels 4D location can50

be reduced to the residence time. Approaches for clustering backward trajectories by direction, source regions or latitude are

widely used. The majority focus on the interpretation of timeseries observations at single heights - mostly close to ground (e.g.

Escudero et al., 2011), for aircraft intersects (e.g. Paris et al., 2010) or over a whole region (Lu et al., 2012). More sophisti-

cated approaches blend the residence time with actual concentration measurements (Stohl, 1996; Heintzenberg et al., 2013).

However, these approaches require continuous concentration time series, which are generally not available for remote sensing55

observations. Furthermore any profile information above the measurement site is neglected.
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When interpreting ground-based remote sensing observations,
::
as

::::::::
obtained

::::
from

:::::::
aerosol

:::::
lidars

::
or

:::::
cloud

::::::
radars,

:
the airmass

sources are
::::
have

::::
been

:::::::
usually assigned by manually selected periods (time and height above ground), that seem interesting for

further investigation and calculating backward transport for that specific cases . For example optical properties of aerosol layers

retrieved from lidar observations are frequently connected to airmass sources (e.g., Müller et al., 2007; Mattis et al., 2008). If60

airmass source estimates are required for longer time periods or multiple heights, calculating, visualizing and interpreting the

results become tedious. Hence, a continuous, computationally efficient, easy to interpret and automated airmass source estimate

is required. To be broadly and easily applicable, such a source estimate should not require extensive a-priori information, such

as clusters of trajectories or potential source contribution functions. The required approach is intended to be also simpler than

using a coupled aerosol model, such as CAMS (Flemming et al., 2017), COSMO-MUSCAT (Dipu et al., 2017) or ICON-ART65

(Rieger et al., 2015). Although these models can provide profiles of atmospheric composition, they usually do not provide

information on the source.

Herein, we propose a combination of automated backward trajectory calculations and geographical information for the

setup of a simple, spatio-temporally resolved airmass source attribution scheme. As a proxy for geographical information, two

products are used: a land cover classification mask and manually defined geographical areas. The methodology is described in70

the following section 2. A comprehensive, easy to use software package is also provided. Earlier versions were already used in

Haarig et al. (2017), Foth et al. (2019) and ?. Afterwards
:::::::::::::::
Floutsi et al. (2021)

:
.
::::::::::
Afterwards, two applications illustrate potential

use cases. In the first example, the temporal and vertical evolution of the airmass source is analyzed for three lidar observations

of different aerosol conditions from Limassol (Cyprus), Punta Arenas (Chile) and on board R/V Polarstern off Cabo Verde. In

the second example, vertically resolved airmass source statistics are used to assess potential observation biases of long-term75

lidar-based aerosol statistics. Two multi-week campaigns of the PollyNET (Baars et al., 2016),
::
as

::
a
::::
part

::
of

:::::::::::
EARLINET, are

presented: Finokalia (Greece) and Krauthausen (Germany).

2 Airmass source attribution method

In a conceptualized view, properties of an air parcel arriving over a location of interest are characterized by a certain surface

type, if the air was close to the surface during its travelled path. The ’proximity’ to the surface can be parameterized as80

a reception height, which depends on the mixing state of the atmosphere at this location as well as on the type of aerosol

particles that could potentially be emitted (i.e. mineral dust or sea salt). Conceivable choices for the reception height are the

model-derived depth of the atmospheric boundary layer or fixed thresholds. As a first estimate for identification of possible

surface effects on an air parcel, 2km is widely used (Val Martin et al., 2018). It is assumed that, the more time an air parcel

resides close to the surface, the more likely it will acquire the aerosol footprint of the surface. The residence time - the total85

time an air parcel spent over a certain surface and below the reception height - is a first hint for the aerosol characteristics of

the air parcel.

The transport pathway of an airmass arriving over the site can be computed using either mean-wind trajectories or a particle

dispersion model. Both approaches can be used with the method proposed in this study. Mean wind trajectories for the past
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Figure 1. Example of how the residence time profile is calculated. HYSPLIT ensemble backward trajectories (a) and FLEXPART particle

positions (c) ending above Limassol on the 14 September 2017 00 UTC at 3km height. The number of FLEXPART particles is reduced by

a factor of 4 in this visualization (i.e. 10000 instead of 40000). A time-resolved version with all particles is provided in the supplement. Air

parcel height is color-coded. The simplified MODIS land surface classification (Fig. 2) is shown in the background. The profiles of normalized

residence time with a reception height threshold of 2km for HYSPLIT ensemble trajectories (b) and FLEXPART particle positions (d) are

shown.

10 days are calculated using HYSPLIT (Stein et al., 2015). To account for variability, ensemble trajectories consisting of 2790

members, spaced 0.3◦ horizontally and 220m vertically around the end point, are used (Fig. 1 a). Meteorological input data for

HYSPLIT are obtained from the Global Data Assimilation System dataset at 1◦ horizontal resolution (GDAS1) provided by the

Air Resources Laboratory (ARL) of the U.S. National Weather Service’s National Centers for Environmental Prediction (ARL

Archive). The location of the air parcel is stored in 1 hour steps. A more realistic representation of turbulence and mixing can

be achieved using a LPDM, which simulates the pathway of hundreds to thousands of particles. Here the most recent version95

of FLEXPART (Stohl et al., 2005; Pisso et al., 2019) is used. Meteorological data is obtained from the GFS analysis at a
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MODIS Category Simplified Category

0 water

1, 2, 3, 4, 5, 6 forest

7, 8, 9 savanna/shrubland

10, 11, 12, 14 grass-, cropland

13 urban

15 snow

16 barren

Table 1. Overview of how the MODIS land surface categories translate into the simplified categories used in this study. MODIS Category

numbers as in (Broxton et al., 2014)

horizontal resolution of 1◦ (NOAA, 2000). 500 particles are used with the particle positions being stored every 3 hours. These

simulations are run every 3 hours with height steps of 500m for the whole period of interest.

In this work, surface is classified by two methods: (1) a simplified version of the MODIS land cover classification (Friedl

et al., 2002; Broxton et al., 2014). The 17 categories of the original dataset are grouped into 7 categories according to Tab. 1 in100

order to allow for robust statistics in the output (Fig. 2). Additionally, the horizontal resolution is reduced to 0.1◦. The categories

do not resolve the annual cycles, for example due to growing seasons. (2) customly defined areas as polygons, named according

to their geographical context (Fig. 3). These areas can be tailored to the measurement location and/or scientific interest.

Figure 2. The simplified MODIS land cover classification. Details are given in the text.

The residence times at each time and height step are summed for each land cover class or polygon, where the air parcel

was below the reception height. Within this study, the widely applicable reception height threshold of 2km is used (Val Martin105

et al., 2018). Different settings can be easily applied to study events which are entrained at greater heights, such as wildfire

smoke emission or volcanic eruptions. The vertical airmass transport during such events is usually not accurately covered by

atmospheric models. Setting the reception height to the maximum emission height of such events (as can be estimated, e.g.,

5



Figure 3. The customly defined geographical areas for Limassol, Finokalia, Krauthausen (all a), Punta Arenas (b) and the Atlantic transit

(c). Locations of the sites are also marked in the respective map.

from satellite observations) can bypass the uncertainties in the modeled vertical motion. The residence times for each category

and each height can then be visualized as a profile (Fig. 1 b). Where the residence time is 0, no air parcels were observed below110

the reception height during the duration of the backward simulation. In the example shown in Fig. 1 (b) above 5km height, no

airmasses resided at heights below 2km above ground in the prior 10 days. The theoretical maximum residence time in hours

depends on the number of trajectories or particles n, the duration of backward calculation d in days and the interval of output

∆o in hours:

tmax = nd
24

∆o
(1)115

To illustrate the temporal evolution, successive airmass source profiles can be shown one after another. This visualization

condenses the 4D history of a multitude of trajectories (or thousands of particle positions) to a quickly understandable summary,
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which structures information on airmass source similar into a time-height cross section. Such a format is usually obtained from

vertically or nadir pointed active ground-based remote sensing observations (e.g., Fig. 4).

3 PollyXT lidar observations120

The airmass source estimate is used to interpret observations conducted with the PollyXT lidar (Engelmann et al., 2016).

PollyXT is equipped with backscatter-channels at 1064, 532 and 355nm as well Raman- and depolarization-channels at the

shorter two wavelengths. The optical properties are derived using the automated PollyNET retrieval (Baars et al., 2016, 2017;

Yin and Baars, 2020) and manual analysis of single profiles. One product of the PollyNET retrieval is the quasi backscatter

coefficient, where the attenuated backscatter is corrected for molecular extinction. For this approach, the background, range,125

and deadtime corrected lidar profiles are normalized by the so called lidar calibration parameter (also sometimes called li-

dar constant even though it is no constant) which is derived from Raman or Klett retrievals (see Baars et al., 2016). This

normalization gives the attenuated backscatter coefficient from ground (note that for the same atmospheric scene, the attenu-

ated backscatter measured from ground is different to the one measured from space, as it is not corrected for attenuation by

molecules and particles). The molecular contribution to the atmospheric backscattering and extinction can be calculated from130

pressure and temperature profiles, the attenuated backscatter coefficient is corrected for the molecular scattering. Furthermore,

an assumption of a fixed lidar ratio is applied on the attenuated backscatter corrected for molecular contribution to account for

a first guess of the particulate attenuation. This procedure gives the quasi particle backscatter coefficient which is a good proxy

for the real particle backscatter coefficient that cannot yet be obtained at high-temporal resolution for all atmospheric scenes.

More details are covered in Baars et al. (2017).135

PollyXT was deployed to various field campaigns and longer term measurements during the last 15 years (Baars et al., 2016).

A broad variety of meteorological conditions and aerosol regimes was covered. The multi-wavelength observations of PollyXT

contain unique fingerprints of the observed aerosol types from different source regions (Illingworth et al., 2015).

In the following sections 4 and 5, the airmass source attribution will be applied to selected case studies and measurement

campaigns, in order to demonstrate its applicability for determination of the airmass source regions and for the estimate of140

potential observation biases. The case studies are chosen from deployments of PollyXT to Limassol (Cyprus, 34.7°N, 33.0°E,

12m a.s.l., October 2016 to March 2018), Punta Arenas (Chile, 53.1°S, 70.9°W, 10m a.s.l., November 2018 and ongoing)

and the RV Polarstern Atlantic transit 2018 when passing Cabo Verde (18.1°N, 21.3°W to 21.3°N, 20.8°W). The estimate of

potential observation biases is done for two multi-weeks campaigns. One at Krauthausen (Germany, 50.9°N, 6.4°E, 99m a.s.l.)

taking place for 8 weeks in April/May 2013 and the second one at Finokalia (Greece, 35.3°N 25.7°E, 250m a.s.l.) for 6.5 weeks145

in June/July 2014.
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4 Application to lidar case studies

4.1 Saharan dust off the coast of West Africa

A lofted layer of dust was observed on 30 and 31 May 2018 by a PollyXT system on board RV Polarstern (Strass, 2018), as the

ship steamed between Cabo Verde and African mainland (18.1°N, 21.3°W to 21.3°N, 20.8°W) on her transit north from Punta150

Arenas (Chile) to Bremerhaven (Germany). A detailed description of the event and optical properties of the observed aerosol

were already reported by Yin et al. (2019).

Fig. 4 illustrates the temporal evolution of the observed aerosol plume by means of time-height cross section of the 1064nm

quasi particle backscatter coefficient for the time period from 30 May 06 UTC to 31 May 06 UTC. Yin et al. (2019) already

discussed this case, especially the period from 16 to 17 UTC (their Fig. 14). Optical parameters from the Raman analysis155

during the following night from 22 to 23 UTC are shown in Fig. 5 (period marked in Fig. 4 (a) with a horizontal orange bar).

According to the optical properties Yin et al. argued that the lowest 1km was dominated by marine particles and a certain

contribution from European continental aerosol. Patchy, liquid clouds were observed at boundary layer top, especially around

09 and 19 UTC. At larger heights, between 1.8 and 5.2km height, a Saharan dust plume with extinction values as large as

700Mm−1 was present. Lidar ratios were 60sr and partlicle linear depolarization ratios at 532nm of 0.35. Low Ångström160

between the lower two wavelengths is consistent with (Veselovskii et al., 2016; Rittmeister et al., 2017). Yin et al. (2019)

corroborate their findings by ensemble calculations of HYSPLIT backward trajectories for selected arrival heights and times.

However, this way of presentation is rather selective, as information for different heights and times can hardly be shown. This is

where the benefit of the continuous airmass source estimate becomes evident. Fig. 6 presents the results of the airmass source

estimate for the land surface classification and geographical areas for both, the HYSPLIT (Fig. 6 a,c) and the FLEXPART165

simulations (Fig. 6, b,d). The estimates based on HYSPLIT and FLEXPART show a good general agreement. The heights

and times of certain surface types and geographical regions agree qualitatively. Before 12 UTC on 30 May 2018, FLEXPART

derived a lower residence time from barren and grassland or ’Africa’, respectively. With respect to Fig. 4, this seems to be

reasonable as the layer was rather faint at the beginning of the shown measurement period. Besides this difference, both the

HYSPLIT and FLEXPART approaches provide a concise picture of the likely source regions of the observed aerosol. Below170

1.5km height, the airmass was marine dominated with a small contribution of European grass/cropland. At heights between 2

and 4km, barren areas from Africa are the main source, but a considerable fraction is also attributed to African grass/cropland

and Savanna. This finding is supporting the observations presented by Yin et al. (2019) who already discussed that there was

likely a small non-dust fraction in the upper layer, as the particle depolarization ratio profile was not constant at all heights. A

potential reason for the observed discrepancy of the observations from pure-dust conditions could be the presence of wildfire175

smoke stemming from the crop/grassland and savanna. In comparison to the lidar observations, the top of the layer was slightly

underestimated by the airmass source estimate. The temporal extent is also fully captured. Variability of backscatter within the

layer is not represented by the airmass source estimate, because the strength of dust mobilization is insufficiently parametrized

by the reception height. However, the airmass transport is correctly covered by both estimates. Interestingly, the airmass source

estimation for this case provides some added value information with respect to the lidar observations. As both HYSPLIT and180
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FLEXPART approaches indicate, North-American air masses were present in the upper troposphere during the time of the

observation, which however had too low aerosol load for being detectable by the PollyXT lidar.

Figure 4. (a) Quasi particle backscatter coefficient at 1064nm observed by PollyXT on board Polarstern close to Cabo Verde on the 30

and 31 May 2018. Moving average smoothing of 8 range bins (60m) and 10 temporal bins (5 minutes) was applied. The red overlays show

the Klett derived particle backscatter coefficient from the automated algorithm at 532nm. The time period of manual analysis (see text) is

marked by a horizontal orange bar. (b) Volume depolarization ratio at 532nm for the same period. No smoothing was applied.

4.2 Saharan and Arabian dust at Limassol, Cyprus

On 14 September 2017 an upper-level short-wave trough moved eastward from the Aegean Sea towards Cyprus. Above 1km

height, the wind turned from South-West to South during the course of the day with velocities ranging between 5− 15ms−1,185

whereas below, wind velocity was lower and direction more variable.

The time-height cross-section of quasi particle backscatter observed by PollyXT at Limassol shows two pronounced aerosol

layers above the boundary layer (Fig. 7). The first layer was observed between 1 and 2km height from 0 to 9 UTC and a

second, thicker layer after 3 UTC. Until the night, this layer increases in thickness from bases at 3 and tops at 4.5km height to

bases at 1.2 and tops at 6.5km height. The boundary layer itself is also laden with aerosols and shows significant backscatter190

below 1km height.

9



Figure 5. Profiles of optical properties on the 30 May 2018 between 22:00 and 22:59 UTC manually derived with the Raman method. A

vertical smoothing of 35 bins (262.5m) was applied.

Figure 6. Airmass source estimate from 06 UTC on the 30 to 06 UTC on the 31 May 2018 for the land surface classification (a, b) and the

named geographical areas (b, d) based on HYSPLIT ensemble trajectories (a, c) and FLEXPART particle positions (b, d).

The optical parameters of the aerosol plume were analyzed for two periods, 02:59 - 04:02 UTC in the morning and 21:41-

22:39 UTC in the evening (periods marked in Fig. 7 (a) with horizontal orange bars). The profiles from the morning period

(Fig. 8) show for the lower layer at 1.8km height particle depolarization ratios of 0.25 (355 and 532nm), low Ångström values

and lidar ratios around 40sr (355 and 532nm). These optical parameters and their independence of wavelength are typical195
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Figure 7. (a) Quasi particle backscatter coefficient at 1064nm observed by PollyXT at Limassol on the 14 September 2017. Moving average

smoothing of 8 range bins (60m) and 10 temporal bins (5 minutes) was applied. The red overlays show the Klett derived particle backscatter

coefficient at 532nm. The time periods of manual analysis (Fig. 8 and 9) are marked by horizontal orange bars. (b) Volume depolarization

ratio at 532nm for the same period. No smoothing was applied.

for aerosol mixtures with a high dust fraction. Extinction in this layer peaks at 72Mm−1 (355 and 532nm). The second layer

above 2.5km height has particle backscatter values of less than 2Mm−1 sr−1 (at 355nm) and 0.5Mm−1 sr−1 (at 532nm).

Ångström values are slightly higher than in the lower layer, varying between 1 and 2. The particle depolarization ratios at both,

355 and 532nm wavelength, are between 0.05 and 0.10. This upper layer during the morning is already the leading edge of the

second plume, that increased in thickness during the day (both geometrically and optical). As shown in Fig. 7 (b), the volume200

depolarization ratio increased only slowly during the averaging period.

During the evening (Fig. 9), the upper layer extended from 1.3 to 6km height and shows homogeneous and mostly wavelength-

independent optical properties throughout. Particle depolarization ratios were between 0.10 and 0.15, with 532nm values

slightly higher than at 355nm. Lidar ratios in that layer were 35sr, typical for Middle East dust (Mamouri et al., 2013; Nisantzi

et al., 2015), while the particle depolarization ratio hints towards a mixture of mineral dust and anthropogenic pollution (e.g.205

Tesche et al., 2009).
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Figure 8. Profiles of optical properties on the 14 September 2017 between 02:59 and 04:02 UTC manually derived with the Raman method.

A smoothing of 99 range bins (742.5m) was applied. The abbreviation NR marks profiles observed with the larger field-of-view near-range

telescope.

Figure 9. Profiles of optical properties on the 14 September 2017 between 21:41 and 22:39 UTC manually derived with the Raman method.

A smoothing of 99 range bins (742.5m) was applied. The abbreviation NR marks profiles observed with the larger field-of-view near-range

telescope.

The airmass source estimate (Fig. 10) identifies transport from barren-ground-influenced air from the ’Sahara’ until 9 UTC.

Later, corresponding to the change in wind direction, the source for the air aloft is identified as ’Arabian Peninsula’, but still the

barren class. Below 1km height, a mixture of surfaces was observed, originating mostly form ’Europe’. Comparing the source

estimate based on HYSPLIT (Fig. 10 a, c) with the one from FLEXPART (Fig. 10 b, d), both models agree qualitatively well210

again. While the general transition was captured by the source estimate, the leading edge of the ’Arabian Peninsula’ plume was
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observed over Limassol earlier than indicated. The increase in thickness of this plume is represented in the source estimate as

well.

Figure 10. Airmass source estimate on the 14 September 2017 for the land surface classification (a, b) and the named geographical areas (b,

d) based on HYSPLIT ensemble trajectories (a, c) and FLEXPART particle positions (b, d).

4.3 Biomass burning aerosol at Punta Arenas, Chile

Punta Arenas is located in a region where the atmosphere is known to be clean and one of the least affected by anthropogenic215

influences (Hamilton et al., 2014). Nevertheless, events of aerosol long-range transport occur occasionally (Foth et al., 2019; ?)

::::::::::::::::::::::::::::::
(Foth et al., 2019; Floutsi et al., 2021). Due to the large distance of Punta Arenas from aerosol source regions, an attribution of

observed aerosol events is in general rather complicated. The application of airmass source estimate for the characterization of

an aerosol long-range transport event is presented in here. An upper-level ridge was located off the Chilean coast on 20 May

2019, which supported also a surface high pressure system. At Punta Arenas the flow was zonal throughout the troposphere.220

Within that flow long-range transport from across the Pacific Ocean occurred.

In the PollyXT observations from 20 May 2019 a layer of increased backscatter is present from 2 UTC to roughly 10 UTC.

This layer extends from 3km to above 6km height (Fig. 11). From 14 to 18 UTC a low-level liquid cloud was observed at

1.5km height. The cloud was optically thick enough to significantly attenuate the laser beam, causing lack of signal above the

clouds top. Occasional cirrus clouds did also enhance the backscatter in the free troppshere, e.g. at 12 UTC between 4 and225

5km. The values of particle backscatter were peaking at 0.3Mm−1 sr−1 (Fig. 12), which are significantly lower values than

reported for the prior cases. In the period analyzed, extinction values were approximately 15Mm−1 giving lidar ratios well
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above 50sr and rather low linear particle depolarization ratios. Altogether these optical parameters agree with prior findings of

wildfire smoke in the troposphere (Tesche et al., 2011; Burton et al., 2012; Groß et al., 2013; Veselovskii et al., 2015).

Figure 11. Quasi particle backscatter coefficient at 1064nm observed by PollyXT at Punta Arenas on the 20 May 2019. Moving average

smoothing of 8 range bins (60m) and 10 temporal bins (5 minutes) was applied. The red overlay shows the Klett derived particle backscatter

coefficient at 532nm. The time period of manual analysis (Fig. 12) is marked by a horizontal orange bar.

Figure 12. Profiles of optical properties on the 20 May 2019 between 02:50 and 04:30 UTC manually derived with the Raman method. A

smoothing of range 153 bins (1147.5m) was applied. The abbreviation NR marks profiles observed with the larger field-of-view near-range

telescope.

The airmass source estimate is also able to capture this faint aerosol layer. Fig. 13 shows, that airmasses form ’Australia’230

were present between 3 and 9 UTC from 3 to 6km height. In terms of land cover class these airmasses were characterized by

savanna/shrubland and grass. Wildfires were active in south-western Australia between 10 and 16 May 2019, which is also the

region, where the backward simulations end (Fig. A1). Apart from the described period, the airmasses were solely influenced
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by the Southern Ocean (i.e. the water class). FLEXPART simulations (Fig. 13 b, d) agree with the HYSPLIT results, however

the computed temporal extend and the residence times are slightly longer for the latter. Hence, the airmass source scheme is235

also capable of capturing aerosol transport at hemispheric (i.e. more than 10000km) scales.

Figure 13. Airmass source estimate on the 20 May 2019 for the land surface classification (a, b) and the named geographical areas (b, d)

based on HYSPLIT ensemble trajectories (a, c) and FLEXPART particle positions (b, d).

5 Assessing potential observation biases

Vertically resolved aerosol statistics are prone to observations biases, as they usually depend on cloud-free conditions. When

clouds or precipitation are present, no aerosol properties can be obtained from optical techniques. However, respective statistics,

for example, obtained from lidar observations provide key quantities for the determination of the environmental conditions at240

a certain site (Matthias et al., 2004; Winker et al., 2013; Baars et al., 2016). It is therefore an open question whether the data

from suitable (cloud-free) measurement periods are representative for the full observational period. Chances are given that

cloudy conditions are related to certain air masses which would stay unidentified in the lidar-based statistics of aerosol optical

properties. One way to assess this bias is to compare the airmass residence time statistics of the full observational period with

the one subsampled to the times when aerosol information is available.245

Applied to lidar data, the automatically analyzed profiles of particle backscatter at 532nm from Baars et al. (2016) are used.

In their work, the raw profiles are grouped into 30-minute chunks, cloud screened, averaged and analyzed by either the Klett

or the Raman method, if signal-to-noise ratio is high enough and a reference height could be set. All profiles that pass a basic
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quality control are then included into the backscatter statistics. Obviously, this statistic will only be intermittent, due to overcast

cloud conditions or interruptions in the measurement. Subsampling the airmass source statistics is done by selecting only the250

airmass source profiles that are temporally close to a valid lidar profile. A time-threshold of 1.5h is used for the following

statistics. However, covering representative airmass conditions is only a necessary condition, not a sufficient one to obtain a

representative aerosol statistics.

PollyXT observations at Krauthausen (Germany, April/May 2013) and Finokalia (Greece, June/July 2014) are used here. At

Finokalia 940 profiles could be analyzed with the Klett method. Hence, the particle backscatter statistics covers 457.7h, which255

is 42% of the campaign duration. The statistics of particle backscatter is shown in Fig. 14 (a). For the Krauthausen deployment

315 profiles could be analyzed with the Klett method, covering 154.2h or 11% of the campaign. Fig. 15 (a) shows the particle

backscatter statistics.

Profiles of airmass source for the Finokalia deployment are shown in Fig. 14 (b, c). Again with a reception height threshold of

2km. The summed residence time of subsampled profiles is divided by the fraction of time covered to make them comparable260

to the full residence time. Most dominant land surface categories are water, barren and grass-/cropland. The residence time

of airmasses from barren ground shows a pronounced maximum between 2 and 6km height. The residence time of all other

categories decreases monotonically. Airmasses from urban and snow or ice covered areas are 10-100 times less frequent, than

the other categories.

In terms of geographical areas (Fig. 14 c), ’Europe’ is the most dominant source up to 3km and again above 9km height.265

Between 3 and 6km height the ’Sahara’ is the most dominant airmass source. During the campaign period, no airmasses from

the ’Arabian Peninsula’, that fulfilled the < 2km criterion were transported to Finokalia.

The dominant sources are well covered by the lidar profiles in terms of land surface, only the barren class is subsampled

by a factor of 10 above 6.5km height (Fig. 14 b). This agrees to the Sahara also being subsampled above that height. Air-

masses originating over ’Europe’ were also subsampled at heights above 5km. An undersampling of potentially aerosol laden270

airmasses by the lidar statistics will cause the backscatter statistics to be biased low.

During the Krauthausen campaign airmasses originating over water were the most frequent ones, followed by grass-/cropland,

forest, shrubland and barren (Fig. 15 b). Again the residence times of the barren class show a distinct peak between 6 and 8km

height. Airmasses form the ’Sahara’ area agree with the barren class (Fig. 15 c). As expected, ’Europe’ is the dominant airmass

source in the lowest 6km height, but due to increasing residence times with height for the ’Sahara’ source, both are equally275

frequent in the upper troposphere. In the lidar observations, ’Europe’ is potentially undersampled by 70% between 1 and 10km

height, which is consistent with the grass/cropland and forest class also being undersampled. Barren land surfaces and ’Sahara’

are oversampled by approximately 20% up to 7km height. In the lowermost 2km height the land surface classes urban and

snow/ice also contribute to the airmass mixture and are slightly oversampled.
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Figure 14. Statistics of particle backscatter coefficient (a, as in Baars et al., 2016) and airmass source estimate based on FLEXPART particle

positions for the Finokalia campaign of PollyXT in June and July 2014. The land surface classification (b) and the named geographical areas

(c) are shown for the full duration (solid) and subsampled only for the periods with available lidar data (dotted). The subsampled residence

times are divided by the fraction of time covered. The reception height threshold is 2km.

6 Discussion and Conclusions280

In this study we propose an easy to use method for a continuous, height-resolved automated airmass source estimate. By the

combination of airmass transport modeling with geographical information, the dimensionality can be reduced and straightfor-

ward visualizations accelerate the interpretation of airmass origin. The airmass source estimate can be used to assist (profiling)

aerosol observations, as aerosol load and characteristics are strongly controlled by surface properties and atmospheric trans-

port. Three case studies illustrated the applicability at different sites and under different large scale flow conditions It was also285

shown
:
In

::
a
::::::
second

::::::::::
application,

:::
we

:::::::
showed how the source estimate supports the interpretation of lidar case studies and how

potential observation biases can be investigated for longer term campaigns.

The major constraints of the proposed method are discussed in the following. While the airmass transport itself is generally

covered well by trajectory models or LPDMs, the linkage to aerosol properties has to be done with care. Firstly, the reception

height is modeled by using the mixing depth of the input fields or fixed values for all surfaces and aerosol particles, where290

differences could be expected for dust, smoke or wildfire smoke. Nevertheless, the assumption for a general reception height

might be valid and can be improved in future. The 2km height used in this work were also reported by other studies (e.g.

for wildfires Val Martin et al., 2018) and seem to be applicable over wide ranges of climates and meteorological conditions.

Summarizing, a high residence time over a certain class is only a necessary, not a sufficient condition for aerosol load of an air

parcel.295
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Figure 15. Statistics of particle backscatter coefficient (a, as in Baars et al., 2016) and airmass source estimate based on FLEXPART particle

positions for the Krauthausen campaign of PollyXT in April and May 2013. The land surface classification (b) and the named geographical

areas (c) are shown for the full duration (solid) and subsampled only for the periods with available lidar data (dotted). The subsampled

residence times are divided by the fraction of time covered. The reception height threshold is 2km.

Secondly, aerosol particles might be removed by (wet) deposition between the source and observation site. Currently, such

processes are not sufficiently reproduced in trajectory models or LPDMs, as they require detailed representation of aerosol mi-

crophysics and precipitation amount. Some improvements in this regard incorporated in the most recent version of FLEXPART

(Pisso et al., 2019). However, deposition changes only the aerosol load of an air parcel, not the airmass source itself. Judging

from the airmass source residence times alone, this process cannot be distinguished from cases where no emission happened300

in the first place. These questions could be addressed in future with a full-fledged aerosol transport model that also includes a

tracer of airmass origin similar to the scheme shown here.

Some uncertainty is caused by the turbulent nature of the transport. For HYSPLIT a first estimate for the uncertainty of a

single parcel location is 20% of the distance from the trajectories origin (Stohl, 1998). Hence, for HYSPLIT a 27-member

ensemble was used, to attribute for this uncertainty. Compared to HYSPLIT, the LPDM FLEXPART allows for a more realistic305

representation to turbulent transport, as well as a better sampling, when using hundreds or thousands of particles. However, a

qualitatively good agreement between the both simulations suggests, that the presented airmass source estimate is rather robust

considering uncertainty in the models.

In summary, the described compromises are necessary to get a continuous, height-resolved automated and airmass source

estimate. The provided source code allows to use FLEXPART particle positions and HYSPLIT trajectories as an input. User-310

defined named geographical areas can be easily added. The runtime environment is provided as a docker container, including
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FLEXPART v10.4. With that setup one day of airmass source estimate with the resolution used in this study can be processed

in less than an hour on a standard desktop computer (2.1 GHz processor, 4 GB RAM, single-threaded).

Long-term
::::
Such

:::
an

:::::::::
automated

:::::::
airmass

::::::
source

::::::::
estimate

::::
can

:::::::
provide

:::::::
valuable

::::::::
auxiliary

::::::::::
information

::::
for

:::
the

:::::::
analysis

:::
of

::::::::
long-term

:
datasets of profiling aerosol observations, such as collected in the network of EARLINET (Pappalardo et al.,315

2014)are potential further use cases of such an automated airmass source estimate. The methodology could also be adaped

to exisiting
:::::::
adapted

::
to

::::::
existing

:
and future space-borne lidar observations, e.g. CALIPSO (Winker et al., 2009), AEOLUS (Re-

itebuch, 2012) or EarthCARE (Illingworth et al., 2015). A first estimate of airmass source could be used to constrain retrievals

of optical parameters by narrowing the assumed lidar ratioand ,
:::
as

::
in

:::
the

:::
case

:::
of

::::::::
CALIPSO

:::
or guide subsequent aerosol typing

:::::
based

::
on

::::::::
intensive

::::::
aerosol

::::::
optical

:::::::::
properties,

::
as

:::
in

:::
the

::::
case

::
of

::::::::
AEOLUS

::::
and

::::::::::
EarthCARE. But, simulating enough air parcels320

with sufficient along-track resolution might require further development.

With respect to
:::::
aerosol

:
typing, downstream products such as estimates of concentration of cloud condensation nuclei or ice

nucleating particles
::::::::::::::::::::::::
(Ansmann et al., 2019, 2020) will benefit by the airmass source estimate. Either being used on space-borne

or ground-based observations
::::::
Having

::::::
airmass

::::::
source

::::::::::
information

::::::::
available

:::
will

:::::::
advance

:::
the

:::::::::::::
implementation

:::
of

::::
such

::::::::
retrievals

:::
into

:::::::::
automatic

:::::::::
processing,

::
as

:::
the

::::::
single

:::::::
calculus

:::::
chain

:::::::::::::::::::
(D’Amico et al., 2015)

::
for

:::::::::::
EARLINET

::::
from

::::::
ground

:::
or

:::
for

:::::::::
EartCARE325

::::
from

:::::
space. Also further synergy between lidar target categorizations, such as Baars et al. (2017) and the source estimate

remain subject to further investigation.

Apart from the shown applications, the presented methodology can be utilized to assess profiles of airmass source when

planning field campaigns. Questions on where, when or how long to measure in order to capture a certain mix of aerosol

scenarios can easily be answered. In future the proposed method can be extended by further source maps, for example by dust330

source maps derived by the approach of Feuerstein and Schepanski (2018) or temporally varying information on wildfires as

well as snow and ice cover or biological productivity.

Code and data availability. The processing software “trace_airmass_source” as used for this publication is available under Radenz (2021).

The most recent version is available via GitHub: https://github.com/martin-rdz/trace_airmass_source (last access: 14.01.2021). A Docker

configuration is provied for a straightforward replication of the programming environment, including all dependencies. Meteorological fields335

for the backward simulations were obtained from ARL Archive and NOAA (2000). The data for the fire radiative power map is available at

Giglio (2000). The analysed PollyXT and airmass source data is available on request.
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Figure A1. HYSPLIT ensemble backward trajectories ending above Punta Arenas on the 20 May 2019 06 UTC at 5km height together with

the MODIS derived fire radiative power (Giglio, 2000). Dots along the trajectories indicate the height of the air parcel in 12 hour intervals.

MODIS derived fire radiative power of fires between 10 and 16 May 2019 is gridded to 2◦.
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