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#Referee 1 

Thanks the reviewer for the valuable comments. We have revised the manuscript accordingly, with a point-by-point reply to 

the comments, and a marked-up manuscript version showing the changes made (text in red). 

 1. The transferability of LUR models across areas or cities varies greatly, given the large regional variability of 

predictive performances of LUR models. The authors are encouraged to strengthen the motivation why they 20 

developed one model to predict the air quality in northern Taiwan, or highlight/discuss the strengths of their LUR 

model, compared with previously established model.  

Response: In our original manuscript, we did include the motivation part (Line 57-68 and Line 15-17). 

 

P2, Line 57-68: “In addition, most previous Taiwan LUR studies used data from purpose-designed monitoring 25 

networks or combined purpose-designed and routine monitoring networks (Ho et al., 2015; Lee et al., 2014; 

Lee et al., 2015). …As a result, a general limitation of LUR models upon purpose-designed monitoring 

networks is that the established models may only reflect the situation the measurement period (Hoek et al., 

2008; Shi et al., 2020). Therefore, the development of long-term average LUR models for specific air 

pollutants using only routine monitoring networks should be explored, which is especially critical for 30 
epidemiological studies.” 

P1, Line 15-17: “To provide long-term air pollutant exposure estimates for epidemiological studies, it is 

essential to test the feasibility of developing land-use regression (LUR) models using only routine air quality 

measurement data and to evaluate the transferability of LUR models between nearby cities.” 

 35 

 2. L33-34: The health effect of aerosol is not adequately cited since air pollution has been well recognized to 

adversely affect cardiovascular diseases. The authors are suggested to consider citing Sun et al. 2011 (doi: 

10.1161/CIRCULATIONAHA.109.893461); Yin et al. 2020 (doi: 10.1021/acs.estlett.9b00735)  

Response: We added these two articles as references (Line 34-35, Line 507-508, and Line 553-555). 

 40 

P2, Line 34-35: “…such as lung function, and respiratory and cardiovascular diseases (Çapraz et al., 2017; 

Sun et al., 2010; Yin et al., 2020; Zhou et al., 2020).” 

P16, Line 507-508: Sun, Q., Hong, X. and Wold, L.E.: Cardiovascular effects of ambient particulate air 

pollution exposure. Circulation 121(25), 2755-2765, 2010. 

P17, Line 553-555: Yin, P., Guo, J., Wang, L., Fan, W., Lu, F., Guo, M., Moreno, S.B., Wang, Y., Wang, H., 45 

Zhou, M. and Dong, Z.: Higher risk of cardiovascular disease associated with smaller size-fractioned 

particulate matter. Environ. Sci. Technol. Lett. 7(2), 95-101, 2020. 

 3. L39: “estimating” -> “estimate” 

Response: Revised as suggested. 

 50 

P2, Line 41: “… estimate population exposure…” 

 

 4. L213: “Traffic emission is a major source of air pollution in urban areas of the TKMA (Lee et al., 2014; Wu et al., 

2017).” Please be more specific regarding the contribution of traffic emission to air pollution in TKMA, e.g., what is 

the percentage?  55 

Response: We did include the contribution percentage of traffic emission to air pollution (PM2.5 in the cited study) 

in TKMA (Line 216-218). 

 

P7, Line 216-218: “For instance, it was reported that gasoline and diesel vehicle emissions contributed 

approximately half of PM2.5 concentrations in Taipei City based on source apportionment analysis (Ho et al., 60 
2018).” 
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 5. L317-320: I am confused with the logic that the weak correlation between air pollution LUR model derived 

results and nearby-station measurements (Figure 6), makes the author believe in the notion that thereby air pollution 

LUR models may provide more accurate exposure estimates than nearby-station measurements. Please clarify it. 65 

Response: We have corrected our text to make the meaning clearer (Line 323-328). 

 

P11, Line 323-328: “A possible explanation is that LUR-model-based exposure estimates generally accounted 

for neighbourhood-scale variations of air pollutant concentrations, while the nearby-station measurements 

usually only revealed the urban-scale variability of air pollution (e.g., urban area versus suburban area 70 

versus rural area) (Marshall et al., 2008). The LUR-model-based exposure estimates and nearby-station 

measurements should be further validated if the air quality measurement data at residential locations of 

cohort participants (if not all, at least some of the participants) are available.” 
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#Referee 2 75 

Thanks the reviewer for the valuable comments. We have revised the manuscript accordingly, with a point-by-point reply to 

the comments, and a marked-up manuscript version showing the changes made (text in red). 

 Line 16: “develop” -> “developed” Line 16: “evaluate” -> “evaluated”  

Response: Revised as suggested. 

P1, Line 17: “In this study, we developed and evaluated…” 80 

 

 Line 23: this sentence should be revised for better readability. “with R2 and leave-one-out cross-validation 

(LOOCV) R2 values of > 0.72 and > 0.53, respectively.” ->“withR2of>0.72,andleave-one-outcross-

validation(LOOCV)R2valuesof>0.53.”  

Response: Revised as suggested. 85 

P1, Line 24-25: “with R2 values of > 0.72 and leave-one-out cross-validation (LOOCV) R2 values of > 0.53.” 

 

 Line 30: “our study” -> “this study”  

Response: Revised as suggested. 

P1, Line 31: “…, this study is the first to…” 90 

 

 Line 41: I do not think LUR is a standard modeling approach. It is just a typical approach. So, it is suggested to 

revise the sentence to be “land-use regression (LUR) is a widely used modeling approach to characterize long-term 

average air pollutant concentrations”  

Response: Agreed and revised. 95 

P2, Line 42-43: “…, land-use regression (LUR) is a widely used modeling approach…” 

 

 Line 46: “these stations” -> “the stations”  

Response: Done. 

P2, Line 48: “… surrounding the stations…” 100 

 

 Line55: “have been”->“were” 

Response: Revised. 

P2, Line 57: “… in the Taiwan region were limited…” 

 105 

 Line63: “is that the established models are usually only valid during the measurement period” -> “is that the 

established models only reflect the situation during the measurement period”  

Response: Done. 

P2, Line 65-66: “… may only reflect the situation…” 

 110 

 Line 73: what does the “they” mean? Does it mean the previous two studies cited before the sentence?  
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Response: The mentioned word was revised to make the meaning clearer. 

P3, Line 75: “Previous studies on the transferability of LUR models…” 

 

 Line 79: “The remainder of this paper ...” -> “This paper ...”  115 

Response: We decide to keep the phrase “the remainder of this paper…” because the Introduction section is not 

included here. 

 

 Line 119: “require” -> “requires”  

Response: It is correct to use “require” here because the subject of this sentence is “…estimates…”. 120 

P4, Line 120-121: “Daily and annual average estimates for the air pollutants require…” 

 

 Line 119: “is” -> “was”  

Response: Revised. 

P4, Line 121: “...; otherwise there was no value…” 125 

 

 Line 301: the opposite trend of NO2 and O3 is definitely the O3 titration in urban areas. This should be mentioned 

here.  

Response: The related information was added. 

P10, Line 303-304: “… were negatively correlated because of the strong NOx titration effect in urban areas…” 130 

 

 Table 3: the empty grids should be filled by grey color.  

Response: Modified as suggested. 

 

  135 
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 Figure 2: Green color is not a good choice for display and should not be used. I suggest the authors to change the 

green dots to black or blue so as to enhance the readability. The size of the texts in the figure should be enhanced.  

Response: Thanks the reviewer for the comment. We changed the green color to blue and enlarged the text sizes. 

 

Figure 2 140 
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 Figure 4: the size of the texts is too small. 

Response: We replotted Fig. 4 with the size of the texts enlarged. 145 

 

 

Figure 4 
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Abstract. To provide long-term air pollutant exposure estimates for epidemiological studies, it is essential to test the 165 

feasibility of developing land-use regression (LUR) models using only routine air quality measurement data and to evaluate 

the transferability of LUR models between nearby cities. In this study, we developed and evaluated the intercity 

transferability of annual average LUR models for ambient respirable suspended particulates (PM10), fine suspended 

particulates (PM2.5), nitrogen dioxide (NO2), and ozone (O3) in the Taipei–Keelung metropolitan area of northern Taiwan in 

2019. Ambient PM10, PM2.5, NO2, and O3 measurements at 30 fixed-site stations were used as the dependent variables, and a 170 

total of 156 potential predictor variables in six categories (i.e., population density, road network, land-use type, normalized 

difference vegetation index, meteorology, and elevation) were extracted using buffer spatial analysis. The LUR models were 

developed using the supervised forward linear regression approach. The LUR models for ambient PM10, PM2.5, NO2, and O3 

achieved relatively high prediction performance, with R2 values of > 0.72 and leave-one-out cross-validation (LOOCV) R2 

values of > 0.53. The intercity transferability of LUR models varied among the air pollutants, with transfer-predictive R2 175 

values of > 0.62 for NO2 and < 0.56 for the other three pollutants. The LUR-model-based 500 m × 500 m spatial distribution 

maps of these air pollutants illustrated pollution hotspots and the heterogeneity of population exposure, which provide 

valuable information for policymakers in designing effective air pollution control strategies. The LUR-model-based air 

pollution exposure estimates captured the spatial variability of exposure for participants in a cohort study. This study 

highlights that LUR models can be reasonably established upon a routine monitoring network but there exist uncertainties 180 

when transferring LUR models between nearby cities. To the best of our knowledge, this study is the first to evaluate the 

intercity transferability of LUR models in Asia.  

mailto:yimsteve@gmail.com
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1 Introduction 

Air pollution has been reported to be positively associated with a variety of health effect endpoints, such as lung function, 

and respiratory and cardiovascular diseases (Çapraz et al., 2017; Sun et al., 2010; Yin et al., 2020; Zhou et al., 2020). 185 

Exposure assessment of air pollution is a critical component of epidemiological studies (Cai et al., 2020; Hoek et al., 2008; 

Li et al., 2017). Cohort studies focusing on the long-term effect on specific diseases of exposure to air pollution require 

accurate exposure estimates for a large group of participants (e.g., thousands or more) over a defined time period (Brokamp 

et al., 2019; Morley and Gulliver, 2018; Zhou et al., 2020). Different air quality prediction methods, such as air dispersion 

models, atmospheric chemical transport models, satellite remote sensing, and various statistical methods, have been 190 

developed and applied to estimate air pollution (Yim et al., 2019a; Tong et al., 2018a; 2018b; Lou et al., 2018; Shi et al., 

2019) and population exposure (Gu and Yim 2016; Gu et al., 2018; Hao et al., 2016; Li et al., 2020; Hou et al. 2018; 

Michanowicz et al., 2016; Wang et al., 2019, 2020; Yim et al., 2019b, 2019c). Among these exposure assessment methods, 

land-use regression (LUR) is a widely used modeling approach to characterize long-term average air pollutant concentrations 

at a fine spatial scale, which provides high spatial resolution estimates of exposure for use in epidemiological studies 195 

(Bertazzon et al., 2015; Eeftens et al., 2016; Jones et al., 2020; Li et al., 2021). 

The LUR method is based on the principle that ambient air pollutant concentrations at fixed-site measurement stations are 

linearly associated with different environmental features (e.g., land use, population density, road network, and 

meteorological conditions) surrounding the stations (Anand and Monks, 2017; Lu et al., 2020; Naughton et al., 2018; Wu et 

al., 2017). In a city or even at a smaller spatial scale area (Yim et al. 2014), the LUR method is comparable to or sometimes 200 

even better than the approaches of satellite-remote-sensing-based air quality retrievals and air dispersion models in 

characterizing spatiotemporal variation in air pollution (Marshall et al., 2008; Shi et al., 2020). Following feasible 

procedures of data processing and analysis, established air pollution LUR models can be applied to predict concentrations of 

air pollutants at locations without measurements at multiple spatial scales or at residential locations of participants in 

epidemiological studies (Liu et al., 2016; Shi et al., 2020). 205 

In recent years, a large number of air pollution LUR studies have been conducted in different areas around the world (Jones 

et al., 2020; Lee et al., 2017; Liu et al., 2016; Liu et al., 2019; Lu et al., 2020; Miri et al., 2019; Ross et al., 2007; Wu et al., 

2017). However, the development and application of LUR models in the Taiwan region were limited (Hsu et al., 2019). In 

addition, most previous Taiwan LUR studies used data from purpose-designed monitoring networks or combined purpose-

designed and routine monitoring networks (Ho et al., 2015; Lee et al., 2014; Lee et al., 2015). For example, Lee et al. (2015) 210 

established LUR models for ambient particles of aerodynamic diameter less than or equal to 2.5 µm (PM2.5) using a purpose-

designed monitoring network of 20 sites in the Taipei metropolis. The purpose-designed monitoring campaign has the 

advantage of capturing short-term air pollution exposure profiles (Jones et al., 2020), but it typically requires extra human 

labor and resources (e.g., experimental materials) (Hoek et al., 2008). Moreover, it is almost impossible to conduct long-term 

measurement (e.g., over years) using purpose-designed monitoring networks (Ho et al., 2015; Lee et al., 2017). As a result, a 215 
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general limitation of LUR models upon purpose-designed monitoring networks is that the established models may only 

reflect the situation during the measurement period (Hoek et al., 2008; Shi et al., 2020). Therefore, the development of long-

term average LUR models for specific air pollutants using only routine monitoring networks should be explored, which is 

especially critical for epidemiological studies. 

The application of established LUR models to areas outside the study area can reduce extra efforts to develop new models 220 

(Poplawski et al., 2009). To date, a few studies have evaluated the transferability of air pollution LUR models within a city 

and between cities or countries (Allen et al., 2011; Patton et al., 2015; Vienneau et al., 2010; Yang et al., 2020). Direct 

transferability refers to predictor variables and coefficients of LUR models both being transferred (Allen et al., 2011), 

whereas transferability with calibration means that model coefficients are calibrated using air pollutant measurements from 

the target areas (Yang et al., 2020). Direct transferability is more meaningful because it can be applied in areas without air 225 

quality measurements (Allen et al., 2011; Yang et al., 2020). Previous studies on the transferability of LUR models 

concluded that the predictive performances of LUR models from one area to another were not consistent, ranging from poor 

(Marcon et al., 2015) to relatively acceptable predictive accuracy (Poplawski et al., 2009; Wang et al., 2014). Therefore, 

more studies should be conducted to assess the transferability of air pollution LUR models. 

In this study, annual average LUR models and spatial distribution maps were developed for ambient particles of 230 

aerodynamic diameter less than or equal to 10 µm (PM10), PM2.5, nitrogen dioxide (NO2), and ozone (O3) in northern Taiwan 

in 2019. In addition, the transferability of LUR models between cities in the study area was evaluated. The remainder of this 

paper is organized as follows: the Materials and methods section describes the study area, data collection and processing, 

LUR model establishment and validation, and prediction of the air pollution exposure surface; the Results and discussion 

section presents an overview of measurement data, established LUR models and their comparison with previous LUR 235 

models in Taiwan, the transferability of LUR models, the spatial distribution maps of ambient PM10, PM2.5, NO2, and O3 

concentrations, and PM2.5 exposure estimates for a cohort study; and the Conclusions section summarizes the main results 

and demonstrates the implications of the present study. 

2 Materials and methods 

2.1 Study area 240 

The Taipei–Keelung metropolitan area (TKMA), located in northern Taiwan, includes Taipei City, New Taipei City, and 

Keelung City. The TKMA is the political, cultural, and social-economic center of Taiwan. It covers an area of approximately 

2457 km2, and has 48 administrative districts (Chiu et al., 2019; Wang et al., 2018). The TKMA had a population of about 

7.03 million in 2019 (TWMOI, 2020), accounting for approximately 30% of the total population of Taiwan (Fig. 1(a)). The 

population densities of Taipei City, New Taipei City, and Keelung City were 10,175 people km-2, 2021 people km-2, and 245 

2826 people km-2, respectively, in 2019 (TWMOI, 2020). The numbers of registered motor vehicles were 1.76 million, 3.21 
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million, and 0.28 million in Taipei City, New Taipei City, and Keelung City, respectively, by the end of 2018 (TWMOTC, 

2020). 

The TKMA is situated in the subtropical region and on the downwind side of Mainland China. The built-up area of the 

TKMA is located in the central part of the Tamsui river basin surrounded by mountains, agricultural land, and forests (Fig. 250 

1(b) & (c)). The characteristics of the basin terrain can constrain the diffusion of polluted air masses and thus favor the 

accumulation of air pollution in urban areas (Yu and Wang, 2010). Local emission sources of air pollutants in the TKMA 

include vehicular exhaust, industrial emissions, and various sources related to residential activities (e.g., cooking) (Chen et 

al., 2020; Ho et al., 2018; Wu et al., 2017). In winter time, the long-distance transport of dust and polluted air masses under 

the northeast monsoon from the Asian continent results in a significant increase in concentrations of air pollutants (Chi et al., 255 

2017; Chou et al., 2010). 

2.2 Data collection and processing 

The Taiwan Environmental Protection Administration (TWEPA) operates 20 central air quality monitoring stations in the 

TKMA, of which 12 stations are in New Taipei City, 7 are in Taipei City, and 1 station is in Keelung City 

(https://airtw.epa.gov.tw/ENG/default.aspx). In addition, the Taipei Environmental Protection Agency (TPEPA) operates 10 260 

local air quality monitoring stations (https://www.tldep.gov.taipei/EIACEP_EN/Air_NormalStation.aspx). In total, these 

stations include 21 general stations, 6 traffic stations, 2 background stations, and 1 country park station (Fig. 1(a)). Detailed 

descriptions of sampling stations, measurement instruments, and quality assurance and control procedures are available in 

TWEPA (2020). Hourly measurements of ambient PM10, PM2.5, NO2, and O3 concentrations and the meteorological 

variables of temperature, wind speed, and relative humidity at the central stations from January 01, 2019 to December 31, 265 

2019 were collected from the Environment Resource database of TWEPA 

(https://erdb.epa.gov.tw/DataRepository/EnvMonitor/AirQualityMonitorDayData.aspx). In addition, hourly concentrations 

of ambient PM10, PM2.5, NO2, and O3 at the local stations from January 01, 2019 to December 31, 2019 were downloaded 

from the TPEPA website (https://www.tldep.gov.taipei/Public/DownLoad/AirAutoHour.aspx). We calculated daily average 

values of air pollutant concentrations and meteorological variables from hourly data, and calculated the annual average 270 

values from daily averaged data for the development of LUR models. Daily and annual average estimates for the air 

pollutants require at least 75% data completeness (Cai et al., 2020); otherwise there was no value estimate for that day or 

year. 

As presented in Table S1 and Fig. 1, the potential predictor variables of the road network, land use data, normalized 

difference vegetation index (NDVI), population density, and digital elevation data, which were frequently used in previous 275 

LUR studies, were collected. Land-use information was taken from the Land Use Investigation of Taiwan conducted by the 

National Land Surveying and Mapping Center (https://www.nlsc.gov.tw/LUI/Home/Content_Home.aspx). The Taiwan land-

use status is classified into 9 main categories, 41 subcategories, and 103 detailed items. As shown in Fig. 1(c), the 9 main 

https://airtw.epa.gov.tw/ENG/default.aspx
https://www.tldep.gov.taipei/EIACEP_EN/Air_NormalStation.aspx
https://erdb.epa.gov.tw/DataRepository/EnvMonitor/AirQualityMonitorDayData.aspx
https://www.tldep.gov.taipei/Public/DownLoad/AirAutoHour.aspx
https://www.nlsc.gov.tw/LUI/Home/Content_Home.aspx
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land-use categories are agriculture, forest, transportation, water bodies, built-up areas, public utilities, recreation, mining or 

salt production, and others (Chen et al., 2020). The road network from the Taiwan Ministry of Transportation and 280 

Communications includes three types of road: local roads, major roads, and expressways (Fig. 1(d)). The NDVI and 

elevation data were extracted from the database of the Resources and Environmental Sciences Data Center, Chinese 

Academy of Sciences (http://www.resdc.cn).  

The values of potential predictor variables in buffer sizes of 50 m, 100 m, 300 m, 500 m, 700 m, 1000 m, 2000 m, 3000 m, 

4000 m, and 5000 m surrounding the sampling stations were summarized for use in LUR model development. To ensure the 285 

consistency of results between model training and cross validation, we included only the potential predictor variables with at 

least 7 stations (i.e., around 25% of all stations) exhibiting different values and where the minimum or maximum values lay 

within three times the 10th to the 90th percentile range below or above the 10th and the 90th percentile (Wolf et al., 2017). 

2.3 Model development and validation 

The LUR models of ambient PM10, PM2.5, NO2, and O3 for the entire study area (the area-specific LUR models) were 290 

established using all 30 air quality monitoring stations. In addition, city-specific LUR models for New Taipei & Keelung 

City were developed using the 13 quality monitoring stations located in these two cities, and the established models were 

directly transferred to Taipei City. Similarly, city-specific LUR models for Taipei City were developed using the 17 quality 

monitoring stations located in this city, and the established models were directly transferred to New Taipei & Keelung City. 

In this study, we did not consider the calibration of model coefficients because we planned to evaluate the direct 295 

transferability of city-specific LUR models to another nearby city area when there were no routine air quality measurements. 

There is no standard modeling method for developing LUR models (Hoek et al., 2008). In this study, the supervised forward 

linear regression method (Cai et al., 2020; Eeftens et al., 2016; Xu et al., 2019) was used to develop the LUR models. This 

modeling method can ensure that only predictor variables following the plausible direction of effect are included and 

meanwhile the predictive accuracy of the established model is maximized. In brief, all potential predictor variables were 300 

included as candidate independent variables and a prior direction was assigned for each category of variable based on the 

atmospheric mechanism. The model construction started by including the predictor variable with the highest adjusted 

explained variance (R2). The remaining predictor variables were entered into the model if they met all of the following 

criteria: 1) the gain of the adjusted R2 was no less than 1%; 2) the direction of effect of the predictor variable was pre-

defined; 3) variables were added into the model when the probability of F was less than 0.05 and removed when the 305 

probability of F was greater than 0.10; 4) variables already included in the model retained the same direction of effect; and 

5) following previous studies (Chen et al., 2020; Marcon et al., 2015; Wang et al., 2014), the predictor variables with 

variance inflation factor (VIF) values larger than 3 were dropped to make a tradeoff between model interpretation and the 

predictive accuracy (Eeftens et al., 2016). Multiple buffer sizes of a specific variable (e.g., the length of local roads) could be 

selected in the final model as long as they followed the selection criteria (Henderson et al., 2007). 310 

http://www.resdc.cn/
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Standard diagnostic tests were applied to ensure that the LUR models were reasonably established (Li, 2020; Wolf et al., 

2017). The Cook’s distance value was calculated to detect the outliers of data points (i.e., stations) (Jones et al., 2020). Air 

pollutant observations with a Cook’s distance value greater than 1 would be excluded and the LUR model for this air 

pollutant would be re-established (Weissert et al., 2018; Wolf et al., 2017). In addition, Moran’s I values on the 

concentrations residuals of the final LUR models were calculated using ArcGIS software to evaluate the spatial 315 

autocorrelation (Bertazzon et al., 2015; Lee et al., 2017; Liu et al., 2016). The R2 and root mean square error (RMSE) were 

estimated to evaluate the performance of the models (Li et al., 2021). Furthermore, leave-one-out cross validation (LOOCV) 

was employed to evaluate the predictive capacity of the LUR models (Liu et al., 2019; Shi et al., 2020; Yang et al., 2020).  

Spatial analysis and calculations were performed using ArcGIS software, version 10.6 (ESRI Inc., Redlands, CA, USA). The 

statistical analysis was performed using R software, version 3.5.2 (R Core Team, 2018). 320 

2.4 Air pollution surface prediction 

The entire study area of the TKMA was divided into 9839 500 m × 500 m grid cells. The air pollutant concentrations at the 

centroids of the grid cells were estimated using the established area-specific LUR models. When the LUR models estimated 

negative concentration values, the concentration values of the grid cells were set to zero; when air pollutant concentration 

estimates exceeded the maximum observed concentrations by more than 20%, the concentrations of grid cells were set to 325 

120% of the maximum observed concentrations (Henderson et al., 2007). The area-specific LUR model-based negative and 

high concentration estimates accounted for only 0%, 4%, 2%, and 0% of PM10, PM2.5, NO2, and O3 estimates, respectively. 

Then the spatial distribution maps of ambient PM10, PM2.5, NO2, and O3 concentrations were created using the kriging 

interpolation method (Cai et al., 2020).  

3 Results and discussion 330 

3.1 Descriptive statistics of the air quality data 

In general, the included air quality monitoring stations were situated at different types of land uses across the TKMA (Table 

1 and Fig. 1(c)), which suggests that the collected data set has relatively good representativeness. The annual average PM10 

concentration of 39.3 µg m-3 at background stations was the highest, followed in descending order by traffic stations with 

33.6 µg m-3, general stations with 28.5 µg m-3, and the country park station with 15.7 µg m-3. The traffic stations and country 335 

park station had the highest and lowest annual average PM2.5 concentrations, respectively. The annual average PM2.5 

concentrations at general stations of 13.7 µg m-3 and background stations of 13.2 µg m-3 were comparable. Except for the 

country park station, the annual average PM10 and PM2.5 concentrations at other types of stations were higher than the air 

quality guidelines (AQGs) for PM10 and PM2.5 of 20.0 µg m-3 and 10.0 µg m-3, respectively, proposed by the World Health 

Organization (WHO) (WHO, 2006). The annual average NO2 concentration of 24.6 ppb at the traffic stations was the 340 
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highest, followed by general stations with 14.3 ppb. The annual average NO2 concentrations at background stations (3.81 

ppb) and the country park station (1.89 ppb) were significantly lower than those of general and traffic stations because they 

were farther away from traffic emissions. The annual average NO2 concentration at traffic stations (24.6 ppb) was slightly 

higher than the WHO NO2 AQG of 40.0 µg m-3 (about 21.3 ppb) (WHO, 2006), while other types of stations had annual 

average NO2 concentrations lower than this AQG. In contrast to NO2, the background stations (41.7 ppb) and the country 345 

park station (39.8 ppb) had higher annual average O3 concentrations than those of traffic stations (21.6 ppb) or general 

stations (29.4 ppb) (Table 1). 

3.2 The area-specific LUR models 

Fig. S1 shows that Cook’s distance values were below 1 for all the stations of the area-specific LUR models, suggesting that 

there were no station outliers in developing these LUR models. For PM10 and PM2.5 LUR models, Cook’s distance values 350 

ranged from almost 0.00 to around 0.72. The Cook’s distance values of the NO2 LUR model were between almost 0.00 and 

0.28, whereas the Cook’s distance values of the O3 LUR model were between almost 0.00 and 0.38 (Fig. S1). The final area-

specific LUR models and their corresponding predictive accuracy are summarized in Table 2 and Fig. 2. The model R2 

values ranged from 0.72 for PM2.5 to 0.91 for NO2, indicating a good fit for all air pollutants. PM10, NO2, and O3 LUR 

models performed well, with LOOCV R2 values being < 0.10 lower than the model R2 values. For PM2.5, the model was not 355 

as robust as those of other air pollutants, with the LOOCV R2 value being 0.19 lower than the model R2 value (Fig. 2). The 

reason for this is that the PM2.5 concentrations among the stations were not as discrete as those of other air pollutants (Table 

1 and Fig. 2). The significance of the predictor variables (p value) and VIF values all met the requirements for LUR model 

development. Moran’s I values were 0.0047, −0.072, 0.023, and −0.055 for the LUR models of ambient PM10, PM2.5, NO2, 

and O3. In addition, z-score values were 0.83, −0.79, 1.2, and −0.34 for ambient PM10, PM2.5, NO2, and O3 LUR models, 360 

respectively, indicating that the spatial patterns of concentration residuals of the LUR models do not appear to be 

significantly different from random (Fig. S2). 

The final area-specific LUR models consisted of three (for O3), four (for NO2), and five predictor variables (for PM10 and 

PM2.5) (Table 2). Consistent with the previous LUR studies of De Hoogh et al. (2018), Eeftens et al. (2016), Jones et al. 

(2020), Weissert et al. (2018) and Wolf et al. (2017), the established LUR models contained at least one traffic-related 365 

predictor variable in buffer sizes ranging from 50 m to 3000 m. Traffic emission is a major source of air pollution in urban 

areas of the TKMA (Lee et al., 2014; Wu et al., 2017). For instance, it was reported that gasoline and diesel vehicle 

emissions contributed approximately half of PM2.5 concentrations in Taipei City based on source apportionment analysis (Ho 

et al., 2018). Several previous LUR studies selected the population density variable as the final explanatory variable in their 

PM2.5 and NO2 LUR models (Ji et al., 2019; Meng et al., 2015; Rahman et al., 2017). However, it was not included in our 370 

final LUR models. A possible explanation is that the population density variable is moderately or highly correlated with the 

variables (e.g., the area of recreational land) included in our final LUR models. 
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As shown in Table 2, PM10 and PM2.5 LUR models included predictor variables of both small and large buffer sizes. The 

LUR model for PM10 included the area of forest land in a buffer size of 300 m, the area of built-up land in a buffer size of 50 

m, the area of recreational land in a buffer size of 2000 m, the area of transportation land in a buffer size of 100 m, and the 375 

area of waterbody land in a buffer size of 500 m. The PM2.5 LUR model included the area of transportation land within a 

300-m buffer, the area of major roads within a 100-m buffer, the area of forest land within a 700-m buffer, the area of 

recreational land within a 2000-m buffer, and the distance to the nearest major roads. For PM10 and PM2.5 LUR models, the 

direction of effect for transportation land and traffic roads was positive, while the direction of effect of other predictor 

variables was negative. Forest and urban green space land (i.e., recreational land) were included in both PM10 and PM2.5 380 

LUR models (Table 2). Ji et al. (2019), Jones et al. (2020), and Miri et al. (2020) included forest land or urban green space as 

the predictor variables in their final city-scale PM LUR models, demonstrating the mitigation effect of these land-use types 

on PM concentrations. Chen et al. (2019) and Jeanjean et al. (2016) reported the effectiveness of urban green space in 

mitigating PM pollution. The waterbody type of land-use reduced PM10 concentrations, as evidenced by the negative 

regression coefficient (Table 2). The waterbodies can make PM10 absorb moisture and increase sedimentation. In addition, 385 

large areas of water provide good conditions for the dispersion of air pollutants (Zhu and Zhou, 2019). 

For the NO2 LUR model, the four predictor variables included were the area of transportation land in buffer sizes of 3000 m 

and 50 m, the area of recreational land in a 1000-m buffer, and the sum of the length of local roads in a 1000-m buffer. The 

direction of effect for the recreational land was negative, while other predictor variables showed a positive effect (Table 2). 

The O3 LUR model included predictor variables with relatively small buffer sizes of less than 700 m. The three predictor 390 

variables were the area of transportation land in buffer sizes of 700 m and 50 m, and the area of public utilization land within 

a 300-m buffer. The directions of effect for these three variables were all negative (Table 2). The traffic-related predictor 

variables were important variables in predicting NO2 and O3 concentrations but in different directions of effect. Consistent 

with previous studies by De Hoogh et al. (2016), Eeftens et al. (2016), Lee et al. (2014), and Liu et al. (2019), the established 

NO2 LUR model also revealed the mitigation effect of urban green space (i.e., recreational land) on NO2 concentration. 395 

A comparison of this study with previous LUR studies in Taiwan is presented in Table S2. The predictive performance of the 

LUR model for ambient PM10 in this study was slightly worse than that of Lee et al. (2015) with an R2 value of 0.87. In 

addition, the R2 and LOOCV R2 values (0.72 and 0.53, respectively) of the PM2.5 LUR model in this study were lower than 

those of Ho et al. (2015) (an R2 value of 0.75 and an LOOCV R2 value of 0.62), Lee et al. (2015) (an R2 value of 0.95 and an 

LOOCV R2 value of 0.91), and Wu et al. (2017) (an R2 value of 0.90 and an LOOCV R2 value of 0.83), but higher than that 400 

of Wu et al. (2018) with an R2 value of 0.66. The NO2 LUR model performed better than that of Lee et al. (2014) and was 

comparable to that of Chen et al. (2020). Hsu et al. (2019) developed an O3 LUR model for the whole of Taiwan region, with 

an R2 value of 0.74 (Hsu et al., 2019). Our study established a reasonable LUR model for ambient O3 in the TKMA with an 

R2 value of 0.80 and an LOOCV R2 value of 0.70, which is a relatively high predictive performance. Compared with PM10, 

PM2.5, and NO2, the establishment of O3 LUR models has been limited in these previous Taiwan LUR studies (Table S2) or 405 
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in most of the LUR studies in other areas, but it is essential to establish O3 LUR models given that O3 is a toxic 

photochemical pollutant threatening human health and the ecosystem (Ning et al., 2020; Yim et al., 2019b). 

3.3 Transferability of the city-specific LUR models 

The city-specific LUR models for ambient PM10, PM2.5, NO2, and O3 in Taipei City and New Taipei & Keelung City are 

shown in Tables S3 and S4, respectively. The model R2 values of the Taipei City PM10, PM2.5, NO2, and O3 LUR models 410 

were 0.91, 0.64, 0.89, and 0.76, respectively (Tables S3), while the New Taipei City & Keelung City PM10, PM2.5, NO2, and 

O3 LUR models had R2 values of 0.63, 0.65, 0.95, and 0.93, respectively (Tables S4). In general, for each specific air 

pollutant, the predictive performance of these city-specific LUR models can be slightly higher or lower than those of the 

area-specific LUR models. Fig. 3 shows the transferability of LUR models between Taipei City and New Taipei & Keelung 

City. The city-specific LUR models performed worse in another city area than in the city where these models were 415 

established. For instance, the transfer-predictive R2 values of the Taipei LUR models were 0.31, 0.04, 0.62, and 0.56 for 

predicting ambient PM10, PM2.5, NO2, and O3 in New Taipei & Keelung City, respectively (Fig. 3). These values were 

substantially lower than the corresponding R2 values of the Taipei LUR models. The NO2 LUR models showed good 

transferability between the two city areas, with transfer-predictive R2 values higher than 0.62. However, the PM10, PM2.5, and 

O3 LUR models performed poorly when they were transferred between the two city areas, with transfer-predictive R2 values 420 

of < 0.31, < 0.37 and < 0.56, respectively (Fig. 3). Similar to the previous studies of Marcon et al. (2015) and Yang et al. 

(2020), these results suggested that there may be large uncertainties in transferring LUR models between cities, and even 

between nearby cities with similar geographic and urban design characteristics. The use of novel cost-effective methods 

(e.g., low-cost air quality sensors or satellite remote sensing approach) is therefore recommended to assess air pollution and 

associated population exposure in cities with limited fixed-site measurement stations. 425 

3.4 Spatial maps 

LUR-model-derived air pollution spatial distribution maps provide valuable and useful air pollutant concentration surfaces in 

the TKMA. In general, there was a good agreement between LUR-model-based concentration estimates and observations for 

PM10, PM2.5, NO2, and O3 (Fig. 4). For PM10 and PM2.5, there were certain differences between LUR-model-based 

concentration estimates and observations at the country park station (Fig. 4). A possible reason for this difference may be 430 

that the kriging interpolation method removed low-concentration estimates at this small area when the concentration 

estimates at nearby areas were higher. 

High concentrations of ambient PM10, PM2.5, and NO2 were predicted in the urban areas of Taipei City, New Taipei City, and 

Keelung City, and along the road network. The estimated PM10 and PM2.5 concentrations in urban areas were around 35.0 to 

40.9 µg m-3 and around 12.0 to 17.0 µg m-3, respectively, whereas the urban areas had NO2 concentrations of around 12.0 to 435 

31.7 ppb (Fig. 4). This spatial distribution pattern is understandable given that the traffic-related predictor variables were 
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included in the final PM10, PM2.5, and NO2 LUR models. A similar spatial pattern of PM2.5 concentrations was reported by 

Wu et al. (2017), which documented that high PM2.5 concentrations were distributed mainly in the urban areas of the TKMA 

and there were also scattered points of high PM2.5 concentrations in its outer ring. However, the estimated 2019 annual 

average PM2.5 concentrations in this study were significantly lower than those for 2006–2012 estimated by Wu et al. (2017). 440 

There was a clear decreasing trend in PM2.5 concentrations in the whole of Taiwan over the past decade (Ho et al., 2020; 

Jung et al., 2018). For example, Jung et al. (2018) reported that the estimated PM2.5 concentrations declined by 1.7 µg m-3 

and 1.6 µg m-3 in the morning and afternoon, respectively, per year over the whole of Taiwan during the period 2005–2015. 

O3 showed a generally opposite spatial variability pattern compared with the other three air pollutants, with lower 

concentrations (< about 32.0 ppb) in urban areas than in rural areas (Fig. 4). A possible explanation for this finding is that 445 

high concentrations of NO and NO2 in urban areas react with O3, resulting in a decrease in O3 concentration (Hsu et al., 

2019; Vardoulakis et al., 2011). 

Correlations of estimated concentrations of PM10, PM2.5, NO2, and O3 in the TKMA are shown in Table 3. Consistent with 

previous studies by Hoek et al. (2008), Lu et al. (2020), Vardoulakis et al. (2011), and Wolf et al. (2017), the spatial 

distribution maps revealed high spatial correlations among the four air pollutants. PM10 concentrations had strong positive 450 

correlations with PM2.5 and NO2, suggesting common sources of these three air pollutants. In contrast to this, PM10 

concentrations were negatively correlated with O3 concentrations, with a Pearson correlation coefficient (PCC) value of 

−0.730. Similarly, PM2.5 concentrations had a strong positive correlation with NO2 concentrations but showed a significant 

negative correlation with O3 concentrations. The concentrations of NO2 and O3 were negatively correlated because of the 

NOx titration effect in urban areas, with a PCC value of −0.920. Similar findings were reported by De Hoogh et al. (2018) 455 

and Lu et al. (2020).  

3.5 Air pollutant exposure estimates for a cohort study 

Air pollutant concentrations measured at nearby fixed-site stations are often used to represent exposures in epidemiological 

studies (Lin et al., 2016; Shi et al., 2020), but the spatial resolution of these estimates is relatively coarse due to the limited 

number of sampling stations (Bertazzon et al., 2015). In recent years, LUR modeling has become a more widely applied 460 

method to estimate air pollution exposures at a fine spatial scale (Lee et al., 2014; Wolf et al., 2017). Fig. S3 shows that there 

are differences between LUR-model-based air pollution exposure estimates and nearby-station measurements at residential 

locations of participants in a cohort study conducted in the TKMA. The average values of the LUR-estimated PM10, PM2.5, 

NO2, and O3 exposure concentrations were 36.0 µg m-3, 14.2 µg m-3, 18.0 ppb, and 29.2 ppb, respectively, whereas the 

corresponding nearby-station measurements were 27.7 µg m-3, 13.8 µg m-3, 16.3 ppb, and 28.6 ppb, respectively (Table S5). 465 

Compared with LUR-model-based estimates, the nearby-station measurements underestimated PM10, PM2.5, NO2, and O3 

exposures of cohort participants by 8.23 µg m-3, 0.41 µg m-3, 1.73 ppb, and 0.60 ppb, respectively (Table S5). In addition, 

the concentration ranges of LUR-estimated annual average PM10 (13.0–45.2 µg m-3), PM2.5 (6.96–19.9 µg m-3), NO2 (0.70–
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32.2 ppb), and O3 (17.5–44.0 ppb) exposure concentrations were larger than those of nearby-station measurements for PM10 

(22.3–40.3 µg m-3), PM2.5 (10.6–21.3 µg m-3), NO2 (2.90–32.2 ppb), and O3 (15.2–42.2 ppb) (Table S5 and Fig. 5). This 470 

indicates that the LUR-model-based exposure estimates can capture the large spatial variability in air pollutant exposure 

among the cohort participants. Similar findings have been reported in studies of Lee et al. (2014) and Marshall et al. (2008). 

Furthermore, the LUR-model-based PM10, PM2.5, NO2, and O3 exposure estimates and nearby-station measurements were 

weakly correlated, with linear regression R2 values ranging from 0.05 for PM10 to 0.19 for NO2 (Fig. 6). A possible 

explanation is that LUR-model-based exposure estimates generally accounted for neighborhood-scale variations of air 475 

pollutant concentrations, while the nearby-station measurements usually only revealed the urban-scale variability of air 

pollution (e.g., urban area versus suburban area versus rural area) (Marshall et al., 2008). The LUR-model-based exposure 

estimates and nearby-station measurements should be further validated if the air quality measurement data at residential 

locations of cohort participants (if not all, at least some of the participants) are available. 

3.6 Limitations 480 

This study is subject to several limitations. First, apart from the variables used in this study, more predictor variables (e.g., 

localized emission data and urban building morphology data) should be included and tested to develop LUR models. For 

example, Wu et al. (2017) and Chen et al. (2020) assessed the roles of two culturally specific emission sources, Chinese 

restaurants and temples, on the development of ambient PM2.5 and NO2 LUR models in Taiwan. More studies should be 

conducted to test the influence of different potential predictor variables on the development of LUR models (Hoek et al., 485 

2008). Second, like most linear regression techniques, the supervised forward linear regression method is not proficient in 

modeling extreme values (Jones et al., 2020). In addition, there may be complex and non-linear relationships between the 

explanatory variables and air pollutant concentrations (Wang et al., 2020). Other types of linear regression methods (Hoek et 

al., 2018; Shi et al, 2020) and the novel machine learning algorithms (Wang et al., 2020) can be tested in estimating surface-

level air pollutant concentrations in the further study. Third, the kriging interpolation method tends to remove air pollutant 490 

peak concentrations, resulting in an underestimation of air pollution exposure at pollution hotspots. Other spatial mapping 

methods should be considered in further studies. It is recommended that air pollutant concentrations at residential locations 

of participants should be estimated directly for cohort studies. Fourth, there may be uncertainty in spatial estimations of air 

pollutant concentrations with a limited number of sampling stations. Further studies are warranted to evaluate the influence 

of the number of sampling stations and their spatial distributions on the development of LUR models and the air pollution 495 

spatial maps.  

4 Conclusions 

Following standard development procedures, the annual average LUR models of ambient PM10, PM2.5, NO2, and O3 were 

established in the TKMA of northern Taiwan using only data from the routine monitoring network. These LUR models were 
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reasonable, based on the evaluation metrics of Cook’s distance, VIF, Moran’s I, and p values. The R2 values of the LUR 500 

models for ambient PM10, PM2.5, NO2, and O3 were 0.80, 0.72, 0.91, and 0.80, respectively. The traffic-related predictor 

variables were the major explanatory factors in the LUR models for all the studied air pollutants.  

The predictive performance varied greatly among air pollutants in examining the transferability of city-specific LUR models 

between New Taipei & Keelung City and Taipei City, with relatively high transfer-predictive R2 values for NO2. Therefore, 

this study highlights that the established LUR models in a city area can result in a large estimation bias when applied to 505 

another nearby city area with similar geographic and urbanization conditions. It is necessary to conduct more studies to 

evaluate and improve the intercity transferability of LUR models. 

The spatial distribution maps of the four air pollutants showed that the developed LUR models are reasonable in modeling 

the spatial variabilities of air pollution. Ambient PM10, PM2.5, and NO2 shared similar spatial variations, with relatively high 

concentrations in urban areas and along the road network. Ambient O3 presented a generally opposite spatial variability 510 

compared with PM10, PM2.5, or NO2. These estimated air pollution concentration surfaces provide information for the 

management of air pollution and exposure estimates for epidemiological studies. Compared with nearby-station 

measurements, the LUR-model-based concentration estimates captured a wider range of exposure to PM10, PM2.5, NO2, and 

O3 for participants in a cohort study in the TKMA. Further studies should pay more attention to utilizing other data sources 

(e.g., satellite remote sensing data) with comprehensive spatiotemporal coverage to validate the LUR-model-based 515 

estimations of air pollutant concentrations. 
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Table 1 Statistical description of measured air pollutants by different types of stations. 

Air pollutant Station type N Mean SD Min Max 

PM10 (µg m-3) 

General 21 28.5 2.84 22.3 35.0 

Traffic 6 33.6 4.57 27.3 40.3 

Background 2 39.3 2.11 37.8 40.8 

Country park* 1 15.7 - - - 

PM2.5 (µg m-3) 

General 21 13.7 1.36 10.6 15.4 

Traffic 6 16.8 2.98 13.3 21.3 

Background 2 13.2 0.44 12.9 13.6 

Country park 1 8.06 - - - 

NO2 (ppb) 

General 21 14.3 3.32 7.86 21.7 

Traffic 6 24.6 6.16 17.1 32.2 

Background 2 3.81 1.28 2.90 4.71 

Country park 1 1.89 - - - 

O3 (ppb) 

General 21 29.4 3.51 23.6 35.5 

Traffic 4 21.6 5.48 15.2 28.0 

Background 2 41.7 0.70 41.2 42.2 

Country park 1 39.8 - - - 

Note: N means the number of stations for this type; SD means the standard deviation; Min and Max refer to the minimum 

and maximum values of the air pollutant concentrations, respectively. *only one country park station, therefore there are no 

estimates of SD, Min, and Max values.  
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Table 2 Description of the 2019 annual average LUR models for ambient PM10, PM2.5, NO2, and O3 in the TKMA.  740 

Air pollutant Variables Coefficient Standard error p VIF Predictive accuracy 

PM10 

(constant) 38.5 1.4 < 0.001  NA 

R2 = 0.80;  
RMSE = 2.25;  

LOOCV R2 = 0.72; 
LOOCV RMSE = 

2.83. 

LU2_300 -7.71E-05 1.20E-05 < 0.001 1.4 

LU5_50 1.01E-03 4.39E-04 0.031 1.3 

LU7_2000 -7.06E-06 1.29E-06 < 0.001 1.8 

LU3_100 5.33E-04 1.19E-04 < 0.001 1.7 

LU4_500 -2.97E-05 9.82E-06 0.006 1.1 

PM2.5 

(constant) 13.7 1.0 < 0.001 NA  

R2 = 0.72;  
RMSE = 1.25;  

LOOCV R2 = 0.53; 
LOOCV RMSE = 

1.69. 

LU3_300 4.26E-05 1.25E-05 0.002 1.7 

R2_100 3.52E-04 1.05E-04 0.003 1.2 

LU2_700 -4.65E-06 1.34E-06 0.002 1.6 

LU7_2000 -2.20E-06 8.03E-07 0.012 2.2 

Dis_Major -5.70E+01 2.69E+01 0.045 1.1 

NO2 

(constant) 0.70 1.21 0.57  NA 

R2 = 0.91;  
RMSE = 2.01;  

LOOCV R2 = 0.88; 
LOOCV RMSE = 

2.40. 

LU3_3000 1.77E-06 2.80E-07 < 0.001 2.4 

LU3_50 2.35E-03 2.68E-04 < 0.001 1.3 

LU7_1000 -1.88E-05 3.30E-06 < 0.001 1.5 

RL3_1000 4.91E-05 1.55E-05 0.004 2.0 

O3 

(constant) 44.0 1.7 < 0.001  NA 
R2 = 0.80;  

RMSE = 2.64;  
LOOCV R2 = 0.72; 
LOOCV RMSE = 

3.15. 

LU3_700 -2.88E-05 4.00E-06 < 0.001 1.1 

LU3_50 -2.00E-03 3.65E-04 < 0.001 1.1 

LU6_300 -3.07E-05 1.20E-05 0.018 1.0 
Note: 
LU2_300, LU2_700: the area of forest in buffer sizes of 300 m and 700 m 
LU5_50: the area of built-up land in a buffer size of 50 m 
LU7_1000 and LU7_2000: the area of recreational land in buffer sizes of 1000 m and 2000 m 
LU3_50, LU3_100, LU3_300, LU3_700, and LU3_3000: the area of transportation land in buffer sizes of 50 m, 100 m, 300 745 
m, 700 m, and 3000 m 
LU4_500: the area of waterbody in a buffer size of 500 m 
R2_100: the area of major roads in a buffer size of 100 m 
Dis_Major: the distance to the nearest major roads 
RL3_1000: the length of local roads in a buffer size of 1000 m 750 
LU6_300: the area of public utilization land in a buffer size of 300 m 
VIF: the variance inflation factor 
LOOCV: leave-one-out cross validation 
RMSE: root mean square error 
NA: not available 755 
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Table 3 Pearson correlation coefficients (PCCs) among the estimated concentrations of ambient PM10, PM2.5, NO2, and O3. 

 Air pollutant PM10 PM2.5 NO2 O3 

PM10 1 0.775** 0.719** −0.730** 

PM2.5   1 0.761** −0.775** 

NO2     1 −0.920** 

O3       1 

Note: ** Correlation is significant at the 0.01 level (2-tailed).  
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Figure 1. The characteristics of the study area. (a) Population density and the location of air quality monitoring stations. 30 

air quality monitoring stations were included in this study. (b) Digital elevation. (c) Land use types. (d) The road network.  760 
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Figure 2. A comparison of LUR-predicted concentrations and observed concentrations of the studied air pollutants and the 

LOOCV-predicted concentrations and observed concentrations of the studied air pollutants. (a) PM10, (b) PM2.5, (c) NO2, and 

(d) O3. N is the sample size, and the solid line is the 1:1 line. 
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 765 
Figure 3. The changes in R2 values for direct transfer of ambient PM10, PM2.5, NO2, and O3 LUR models between Taipei 

City and New Taipei & Keelung City. 
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Figure 4. The spatial distribution of ambient air pollutant concentrations derived from established LUR models. (a) PM10, 770 

(b) PM2.5, (c) NO2, and (d) O3. The colored circles represent the observations from stations.  
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Figure 5. Box plots of nearby-station air pollutant measurements and LUR-model-based estimates of air pollutant 

concentration. (a) PM10, (b) PM2.5, (c) NO2, and (d) O3. The triangle symbol in each box is the mean value, the solid line is 

the median value, the box extends from the 25th to the 75th percentile, the whiskers (error bars) below and above the box are 775 

the 10th and 90th percentiles, and the lower and upper cycle symbols are outliers.  
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Figure 6. The linear regression of nearby-station air pollutant measurements and LUR-model-based air pollutant 

concentration estimates. (a) PM10, (b) PM2.5, (c) NO2, and (d) O3. 


