Scattering and Absorption Cross-sections of Atmospheric Gases in the Ultraviolet-Visible Wavelength Range (307 - 725 nm)

Quanfu He¹, Zheng Fang¹, Ofir Shoshamin^{2,3}, Steven S. Brown^{4,5}, Yinon Rudich^{1*}

¹ Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel

² Department of Environmental Physics, Israel Institute for Biological Research (IIBR), Ness-Ziona 74100, Israel

³ Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, CA 91125, USA.

⁴ Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, 325, Broadway, Boulder, CO 80305, USA

⁵ Department of Chemistry, University of Colorado, 216 UCB, Boulder, CO 80309, USA

Correspondence to: Yinon Rudich (vinon.rudich@weizmann.ac.il)

Figure S1. Performance of the BBCES system. (a) Cavity transmission spectra of N_2 at 1015 hPa and 295.65K. (b) Mirror reflectivity measured using N_2 and He as references. (c) The vacuum effective optical pathlength of the cavities.

Figure S2: Validation of the CRD systems (404 nm left, 662 nm right). The measured light intensity (a,c) decay in a nitrogen-filled cavity fitted to an exponential decay (solid orange line) with time constant $\tau_{0-404} = 29.0 \ \mu$ sec and $\tau_{0-662} = 162.9 \ \mu$ sec up to 5 e-folding times of τ_0 . The residuals (b, d) show no apparent structure from other time constants, indicating the decays follow a single exponential.

Figure S3. Correlations between the extinction coefficients (unit, cm^{-1}) obtained from the BBCES and CRDs.

Figure S4. The relative difference of the Rayleigh scattering cross-sections calculated by the refractive index derived in this study and from literature.