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Abstract. The influence of both anthropogenic and forest fire emissions, and their and subsequent chemical and physical 12 

processing, on the accuracy of weather and air-quality forecasts, was studied using a high resolution, on-line coupled air-13 

quality model.  Simulations  were carried out for the period 4 July  through 5 August 2019, at 2.5-km horizontal grid cell size, 14 

over a 2250 x 3425 km2 domain covering western Canada and USA, prior to the use of the forecast system as part of the 15 

FIREX-AQ ensemble forecast. Several large forest fires took place in the Canadian portion of the domain during the study 16 

period.  A feature of the implementation was the incorporation of a new on-line version of the Canadian Forest Fire Emissions 17 

Prediction System (CFFEPSv4.0).  This inclusion of thermodynamic forest fire plume-rise calculations directly into the on-18 

line air-quality model allowed us to simulate the interactions between forest fire plume development and weather.   19 

Incorporating feedbacks resulted in weather forecast performance that exceeded or matched the no-feedback forecast, at greater 20 

than 90% confidence, at most times and heights in the atmosphere.  The feedback forecast out-performed the feedback forecast 21 

at 35 out of 48 statistical evaluation scores, for PM2.5, NO2 and O3.  Relative to the climatological cloud condensation nuclei 22 

and aerosol optical properties used in the no-feedback simulations, the on-line coupled model’s aerosol indirect and direct 23 

effects were shown to result in feedback loops characterized by decreased surface temperatures in regions affected by forest 24 

fire plumes, decreases in stability within the smoke plume, increases in stability further aloft, and increased lower troposphere 25 

cloud droplet and raindrop number densities.  The aerosol direct and indirect effect reduced oceanic cloud droplet number 26 

densities and increased oceanic rain drop number densities, relative to the no-feedback climatological simulation.  The aerosol 27 

direct and indirect effects were responsible for changes to the near-surface PM2.5 and NO2 concentrations at greater than the 28 

90% confidence level near the forest fires, with O3 changes remaining below the 90% confidence level.    29 

The simulations show that incorporating aerosol direct and indirect effect feedbacks can significantly improve the accuracy of 30 

weather and air quality forecasts, and that forest fire plume rise calculations within a on-line coupled model changes the 31 
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predicted fire plume dispersion and emissions, the latter through changing the meteorology driving fire intensity and fuel 32 

consumption. 33 

1 Introduction 34 

Atmospheric aerosol particles may be emitted (primary particles) or result from the condensation of the products of gas-phase 35 

oxidation reactions (secondary aerosol).  With increasing transport time from emission s ources, the processes of coagulation 36 

(colliding particles stick adhere creating larger particles) and condensation (low volatility gases condense to particle surfaces) 37 

tend to result in particles which have a greater degree of internal mixing (internal homogeneous mixtures). Primary and near-38 

source particles are more likely to have a single or a smaller number of chemical constituents (external mixtures).     39 

Atmospheric particles also modify weather through well-established pathways.  Under clear sky conditions, the particles may 40 

absorb and/or scatter incoming light, depending on their size, shape, mixing state (internal, external or combinations) and t heir 41 

composition.  The presence of the particles themselves may thus affect the radiative budget of the atmosphere, resulting in 42 

either positive or negative climate forcing (i.e. the absorption of a greater amount of incoming solar radiation versus increased 43 

scattering reflection of that radiation back out into space, a process known as the Aerosol Direct Effect; ADE).  Aerosols can 44 

also alter the atmospheric radiative balance through interactions with clouds, this influence being referred to as the Aerosol 45 

Indirect Effect (AIE).  Three broad classes of categories by which cloud/aerosol interactions take place (Oreopoulos et al., 46 

2020) include the first indirect effect, where higher aerosol loadings resulting in increasing numbers of cloud droplets with  47 

smaller sizes, hence increasing cloud albedo (Twomey et al., 1977), the second indirect effect, where higher aerosol loadings 48 

suppress the collision-coalescence activity of the smaller droplets, reducing precipitation/drizzle, changing cloud heights, and 49 

changing cloud lifetime in warm clouds (Albrecht, 1989), and aerosol “invigoration” of storm clouds, where higher aerosol 50 

loadings may result in delayed glaciation of cloud droplets, in turn leading to greater latent heat release and stronger convection 51 

(Rosenfeld et al., 2018).    52 

The uncertainties associated with the ADE and particularly AIE account for a large portion of the uncertainties in current 53 

climate model predictions for radiative forcing between 1750 and 2011 (Mhyre et al., 2013).  Carbon dioxide is believed to 54 

have a positive (warming) global radiative forcing of approximately 1.88 +/- 0.20 Wm-2, while the direct and indirect effects 55 

both have nominal values of approximately -0.45 Wm-2, with uncertainty ranges encompassing -0.94 to +0.07 and -1.22 to 0.0 56 

Wm-2 respectively.  These uncertainties have spurred research designed to better characterize the ADE and AIE, and reduce 57 

these uncertainties, through both observations and atmospheric modelling.   58 

Observational studies of the ADE have established its large impact; for example, high aerosol loading over Eu rasian boreal 59 

forests has been found to double the diffuse fraction of global radiation (i.e. increased scattering), a change sufficient to  affect 60 

plant growth characterized via gross primary production (Ezhova et al., 2018).  Aerosol assimilation of Geostationary Ocean 61 

Color Imager Aerosol Optical Depth (AOD) observations into a coupled meteorology-chemistry model showed that South 62 

Korean  AOD values increased by as much as 0.15 with the use of assimilation; these increases corresponded to a local -31.39 63 
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W m-2 reduction in solar radiation received at the surface, and reductions in planetary boundary layer height, air temperature, 64 

and surface wind speed over land, and a deceleration of vertical transport (Jung et al., 2019). Other studies in East Asia have 65 

shown ADE decreasing local shortwave reaching the surface by -20 Wm-2 (Wang et al., 2016), as well as significant changes 66 

in surface particulate matter and gas concentrations in response to these radiation changes.   67 

However, one commonality amongst the recent studies of the ADE for air-quality models is a tendency towards negative biases 68 

in predicted aerosol optical depths, potentially indicating systematic under-predictions in aerosol mass, aerosol size, and/or 69 

inaccuracies in the assumptions for shape and/or mixing state.  Mallet et al. (2017) noted this negative bias for regional climate 70 

model AOD predictions associated with large California forest fires compared to OMI and MRIS satellite observations.  71 

Palacios-Pena et al. (2018) noted that high AOD events associated with forest fires were under-predicted by most models in a 72 

study employing a multi-regional-model ensemble.   The chosen AOD calculation methodology and mixing state assumptions 73 

employed in models also plays a role in systematic biases:  Curci et al. (2015) compared aerosol optical depths, single scattering 74 

albedos, and asymmetry factors at different locations to observations, varying the source model for the aerosol composition, 75 

as well as the mixing state assumptions used in generating aerosol optical properties, for Europe and North America.  AODs 76 

were biased low by a factor of two or more, regardless of model aerosol inputs or mixing state assumptions at 440 nm, single 77 

scattering albedos were biased low by up to a factor of two, with the poorest performance for “core-shell” approaches, while 78 

asymmetry factor estimates showed no consistent bias relative to observations.  However, the assumed mixing state was clearly  79 

a controlling factor in the negative biases; the AOD predictions closest to the observations at 440 nm assumed an external 80 

mixture with particle sulphate and nitrate assumed to grow hygroscopically as pure sulphuric acid, lowering their refractive 81 

index with increasing aerosol size.  This mixing state assumption and the different homogeneous mixture assumptions gave 82 

the best fit for single scattering albedo relative to observations.   While not commenting on aerosol direct effect implications, 83 

Takeishi et al. (2020) noted that forest fire aerosols increase particle number concentrations but reduce their water uptake 84 

(hygroscopicity) relative to anthropogenic aerosols, with the latter effect reducing the resulting cloud droplet numbers by up 85 

to 37%.  Mixing state and hygroscopicity properties of aerosols were thus shown to have a controlling influence on the ADE. 86 

The AIE has often been shown to be locally more important for the radiative balance than ADE in terms of magnitude of the 87 

radiative forcing and response of predicted weather to AIE and ADE (Makar et al., 2015(a); Jiang et al., 2015; Nazarenko et 88 

al., 2017).  Several recent studies have attempted to characterize the relative importance of the AIE with the use of multi-year 89 

satellite observations, sometimes making use of models and data assimilation.  Saponaro et al. (2017) used MODIS/Aqua 90 

linked observations of aerosol optical depth and Ångström exponent to various cloud properties, noting that the cloud fraction, 91 

cloud optical thickness, liquid water path, and cloud top height all increased with increasing aerosol loading, while  cloud 92 

droplet effective radius decreased, with the effects dominating at low levels (between 900 to 700 hPa).  Zhao et al. (2018) 93 

examined 30 years of cloud and aerosol data (1981-2011), and found that increasing aerosol loading up to  AOD < 0.08 94 

increased cloud cover fraction and cloud top height, while further increases in aerosol loading (AOD  from 0.08 to 0.13) 95 

resulted in higher cloud tops, and larger cloud droplets.  In polluted environments (AOD > 0.30) cloud droplet effective radius, 96 

optical depth and water path; cloud droplet effective radius increased with increasing AOD.  The first ADE was most sensitive 97 
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to AOD in the AOD range 0.13 to 0.30; and the reduction of precipitation efficiency associated with the second aerosol indirect 98 

effect occurred for AODs between 0.08 and 0.4, in oceanic areas downwind of continental sources.  99 

However, sources of uncertainty in AIE estimates persist, in part due to the number of poorly understood processes contributing 100 

to the atmospheric response to the presence of aerosols.  Nazerenko et al. (2017) showed that short-term atmospheric radiative 101 

changes were reduced in magnitude when sea-surface temperature and sea-ice coupling was included in climate change 102 

simulations.  Suzuki et al. (2019) showed that the vertical structure of atmospheric aerosols, as well as their composition, had 103 

a significant influence on radiative forcing.  Penner et al. (2018) and Zhu et al. (2020) examined the impact of aerosol 104 

composition on cirrus clouds via ice nucleation, finding negative forcings for most forms of soot, but a contrary impact of 105 

secondary organic aerosols.  Rothenburg et al. (2018) noted that tests of aerosol activation schemes carried out under current 106 

climate conditions had little variability, but had much greater variability for pre-industrial simulations, implying that the 107 

available data for evaluation using current conditions may poorly constrain ADE and AIE parameterizations used in simulating 108 

in past climates.   109 

Forest fires are of key interest for improving the understanding and representation of ADE and AIE in models, due to the large 110 

amount of aerosols released during these biomass burning events.  Forest fire emissions and interactions with weather are also 111 

of interest due to the expectation that the meteorological conditions resulting in forest fires may become more prevalent in the 112 

future under climate change (Hoegh-Guldberg et al., 2018).  Observations of aerosol optical properties during long-range 113 

transport events of North American forest fire plumes to Europe showed 500 nm AOD values of 0.7 to 1.2 over Norway, with 114 

Ångström exponents exceeding 1.4 and absorbing angstrom exponents ranging from 1.0 to 1.25, along with single scattering 115 

albedos greater than 0.9 at the surface and up to 0.99 in the column over these sites (Markowicz et al., 2016).  Biomass burning 116 

was shown to have a specific set of optical properties relatively independent of fuel type for three different types of biomass 117 

burning in China (cropland), Siberia (mixed forest) and California (needleleaf forest).  The increase in upward radiative forcing 118 

at the top of the atmosphere due to fires being linearly correlated to AOD (R from 0.48 to 0.68), with slopes covering a 119 

relatively small range from 20 to 23 W m-2 unit AOD-1.  O’Neill et al. (2001) showed that forest fires have a profound impact 120 

on aerosol optical depth in western Canada, accounting for 80% of the summer AOD variability in that region, with a factor 121 

of three increase in AOD levels from clear-sky to forest fire plume conditions.  O’Neill et al. (2001)’s analysis of TOMS 122 

AVHRR and GOES imagery suggested that forest fire aerosols increase in size with increasing downwind distance, due to 123 

secondary aerosol aging and condensation chemistry.  We note here that reanalyzing the data presented  in O’Neill et al. (2001) 124 

results in a linear relationship between fine mode particle effective radius (reff, m) and the base 10 logarithm of distance from 125 

the fires (D, km) of 𝑟𝑒𝑓𝑓 = 0.0106 𝑙𝑜𝑔10(𝐷) + 0.1163,𝑅2 = 0.18).  Mallet et al. (2017) simulated AODs in the range 1 to 2 126 

for biomass burning events, and also noted changes in direct radiative forcing at the top of the atmosphere from positive to 127 

negative in both model results and simulations, with increasing downwind distance from the sources.  Lu et al. (2017) carried 128 

out simulations with 5-km horizontal grid spacings for the eastern Russia forest fires of 2002 assuming an internal mixture for 129 

emitted aerosols with the WRF-CHEM model, and noted impacts on cloud formation for two different periods.  The first period 130 

was characterized by high cloud droplet and small ice nuclei numbers, where the fire plumes reduced cloud ra in and snow 131 
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water content, large scale frontal system dynamics were altered by smoke, and precipitation was delayed by a day.  The second 132 

period was characterized by high numbers for cloud droplets and ice nuclei, where the fire plumes reduced rain water content, 133 

increased snow water content, and precipitation locations changed locally across the simulation domain.  Russian forest fire 134 

simulations for 2010 with suites of on-line coupled air-quality models (Makar et al., 2015; Palacios-Pena et al., 2018; Baro et 135 

al., 2017) showed substantial local impacts, such as reductions in average downward shortwave radiation of up to 80Wm-2 and 136 

temperature of -0.8 oC (Makar et al., 2015(a)).   137 

Given the above developments in direct and indirect parameterizations, and the increasing amount of information available for 138 

estimating forest fire emissions, the impact of forest fires on weather, in the context of weather forecasting, is worthy of 139 

consideration.  Air-quality model predictions of forest fire plumes have been provided to the public under operational forecast 140 

conditions of time- and memory-space limited computer resources (e.g. Chen et al., 2019; James et al., 2018; Ahmadov et al., 141 

2019, Pan  et al., 2017).  These simulations make use of satellite retrievals of forest fire hot-spots, climatological data on the 142 

extent of area burned by land use type, databases of fuel type linked to emission factors, and an a priori weather forecast to 143 

provide the meteorological inputs required to predict forest fire plume rise.  The latter point is worthy of note in the context of 144 

the direct and indirect feedback studies noted above – both climate and weather simulations with prescribed forest fire 145 

emissions have consistently resulted in large perturbations of weather patterns in the vicinity of the forest fires.  However, 146 

their approaches for predicting forest fire plume rise and fire intensity and fuel consumption in operational regional scale 147 

forecasts up until now have relied on weather forecast information provided a priori and hence lacking those meteorological 148 

feedback effects.   149 

The connection of the ADE and AIE within a regional air-quality and weather forecast model context is referred to as 150 

“coupling”, with such a model being described in that body of literature as “on-line coupled” (Galmarini et al., 2015)  or 151 

“aerosol-aware” (Grell and Freitas, 2014).  However, several researchers have examined aerosol-radiative coupling along with 152 

fire spread and growth (as opposed to fire intensity and fuel consumption).  The latter work employs very high-resolution 153 

forest fire spread and growth models, and due to their very high resolution, an additional level of coupling, that of interaction 154 

of dynamic meteorology with the heat released by the fire, may be included.  However, the resolution requirements for these 155 

models (and their need for a relatively small computational time step) constrains their application to a relatively small reg ion.   156 

A requirement for these approaches is the use of a very high resolution fire growth model imbedded within the air-quality 157 

model.   At these resolutions, the simulated local-scale meteorology determines fire spread on the landscape, which in turn 158 

modifies the temperature and wind fields, in turn affecting future fire spread.  The seminal work on this topic was carried out 159 

by Clark et al. (1996), and Linn et al. (2002).  More recent work includes the development of the WRF-FIRE model (Mandel 160 

et al., 2011; Coen et al., 2013), with full chemistry added in the WRFSC model (Kochanski et al., 2016).  Examples of the 161 

resolution required for these models include inner domain resolutions of 444 m with an imbedded fire model mesh of 22.2 m 162 

resolution, and a time step of 3.3 seconds (Kochanski et al., 2016); 1.33 km with an imbedded fire model mesh of 67.7m, and 163 

a time step of 2 seconds (Kochanski et al., 2019), and 222m, with a fire model mesh of 22m and a time step of 2 seconds 164 

(Peace et al., 2015).  Kochanski et al (2016) also noted a 13 to 30 hour computational time requirement to run their high-165 
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resolution modelling system. These modelling efforts allow for this additional level of coupling – but at the expense of 166 

additional computation time preventing, at the current state of supercomputer processing, their application on synoptic -scale 167 

forecast domains combined with a full gas chemistry and size-resolved multi-component particle chemistry representation.  168 

Here we explore the effects of fire emissions characterized by fire intensity and fuel consumption modelling on the aerosol 169 

direct and indirect effects over synoptic scale domain.  Our coupling refers to that between the aerosols released by fires and 170 

other sources to meteorology through the ADE and AIE, with the resulting changes in meteorology in turn influencing fire 171 

intensity andfuel consumption,, in turn influencing plume rise, emissions height, and distribution, closing this feedback loop.  172 

We do not implement a very high resolution growth model, noting that this is impractical for operational forecasts at the current 173 

time, while showing that synoptic scale 2.5km simulations incorporating fire feedbacks may be carried out within an 174 

operational window with currently available supercomputers.  As shown below, we find that a sufficiently substantial feedback 175 

between the aerosol direct and indirect effects can be discerned to change the vertical distribution of emitted pollutants. 176 

A key consideration in parameterizing the AIE (via aerosol-cloud interaction) is the manner in which the cloud condensation 177 

process is represented in the meteorological component of the modelling system. In numerical weather prediction (NWP) 178 

models, clouds and precipitation are represented by a combination of physical parameterizations that are each targeted at a 179 

specific subset of moist processes. These include “implicit” (subgrid-scale) clouds generated by the boundary layer and the 180 

convection parameterization schemes (e.g Sundqvist, 1988), and “explicit” clouds from the grid-scale condensation scheme 181 

(Milbrandt and Yau, 2005(a,b), Morrison and Milbrandt, 2015, Milbrandt and Morrison, 2016).  Depending on the model grid 182 

these “moist physics” schemes vary in their relative importance.   183 

However, regardless of the horizontal grid cell size, the grid-scale condensation scheme plays a crucial role in atmospheric 184 

models, though to different degrees and using different methods, depending on the grid spacing and the corresponding relative 185 

contributions of the implicit schemes.  A grid-scale condensation scheme will in general consist of the following three 186 

components: 1) a subgrid cloud fraction parameterization (CF, or cloud “macrophysics” scheme); 2) a microphysics scheme; 187 

and 3) a precipitation scheme (Jouan et al., 2020).  The cloud fraction (CF) is the percentage of the grid element that is covered 188 

by cloud (and is saturated), even though the grid-scale relative humidity may be less than 100%. The microphysics 189 

parameterization computes the bulk effects of a complex set of cloud microphysical processes. If precipitating hydrometeors 190 

are advected by the model dynamics, the precipitation is said to be prognostic; if precipitation is assumed to fall instantly to 191 

the surface upon production, it is considered diagnostic. The precipitation “scheme” is not a separate component per se, since 192 

it simply reflects the level of detail in the microphysics parameterization, but it is a useful concept to facilitate the comparison 193 

of different grid-scale condensation parameterizations. 194 

With a wide range of grid cell sizes in current NWP models, there is a wide variety of types of condensation schemes and 195 

degrees of complexity in their various components. For example, cloud-resolving models (with grid spacing on the order of 1 196 

km or less) have typically used detailed bulk microphysics schemes (BMSs), with prognostic precipitation, and no diagnostic 197 

or prognostic CF component (i.e. the CF is either 0 or 1).  Large-scale global models use condensation parameterizations, 198 

sometimes referred to as “stratiform” cloud schemes, typically with much simpler microphysics and diagnostic precipitation, 199 
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but with more emphasis on the details of the CF. However, with continually increasing computer resources and decreasing 200 

grid spacing (both in research and operational prediction systems), the distinction between schemes designed for specific 201 

ranges of model resolutions is disappearing and condensation schemes are being designed or modified to be more versatile 202 

and usable across a wider range of model resolutions (e.g. Milbrandt and Morrison, 2016). 203 

Aerosol-cloud interactions and feedback mechanisms are difficult to represent in grid-scale condensation schemes with very 204 

simple microphysics components.  For example, to benefit from the predicted number concentrations of cloud condensation 205 

nuclei and ice nuclei, the microphysics needs to be double-moment (predicting both mass and number) for at least cloud 206 

droplets and ice crystals, respectively.  Until recently, detailed BMSs were only used at cloud resolving scales, hence requiring 207 

these relatively high resolutions to be recommended in feedback modelling.  In recent years, multi-moment BMSs have been 208 

used in operational NWP for model grid spacings of 2-4 km (e.g. Seity et al., 2010, Pinto et al., 2015, Milbrandt et al., 2016). 209 

Further, condensation schemes with detailed microphysics are starting to use non-binary CF components (e.g. Chosson et al., 210 

2014, Jouan et al., 2020), thereby allowing detailed microphysics to be used at larger scales, and hence allowing the same 211 

indirect feedback parameterizations to be used at multiple scales.   Nevertheless, the expectation is that detailed 212 

parameterization will provide a more accurate representation of cloud formation at the near cloud-resolving scales, without the 213 

complicating aspect of a diagnostic CF, motivating the use of km-scale grid spacing for feedback studies. 214 

The formation of secondary aerosols from complex chemical reactions are another key consideration in feedback forecast 215 

implementation, given the impact of aerosol composition on aerosol optical and cloud formation properties, as described above.   216 

In the sections which follow, we describe our high resolution, on-line coupled air-quality model with on-line forest fire plume 217 

rise calculations, which was created as part of the FIREX-AQ air-quality forecast ensemble 218 

(https://www.esrl.noaa.gov/csl/projects/firex-aq/), to address the following questions: 219 

(1) Will a on-line coupled model of this nature provide improved forecasts of both weather and air-quality, using standard 220 

operational forecast evaluation tools, techniques and metrics of forecast confidence?  That is, despite the uncertainties in 221 

the literature as described above, are these processes sufficiently well described in our model that their use results in a 222 

formal improvement in forecast accuracy? 223 

(2) Are the changes in forest fire plume rise associated with implementing this process directly within a on-line coupled model 224 

sufficient to result in significant perturbations to weather predictions and to chemistry?  What are these perturbations? 225 

We employ our on-line coupled model with 2.5-km grid cell size domain covering most of western North America, and 226 

compare model results to surface meteorological and chemical observations, and to vertical column observations of 227 

temperature and aerosol optical depth (AOD), in order to quantitatively evaluate the effect of feedb ack coupling of the ADE 228 

and AIE on model performance.  We then compare feedback and no-feedback simulations to show the impacts of the ADE 229 

and AIE feedbacks on cloud and other meteorological predictions, and on key air quality variables (particulate matter, nitrogen 230 

dioxide, and ozone).  We begin our analysis with a description of our modelling platform. 231 
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2 Model Description 232 

2.1 GEM-MACH 233 

The Global Environmental Multiscale – Modelling Air-quality and CHemistry (GEM-MACH) model in its on-line coupled 234 

configuration has been described elsewhere (Makar et al., 2015a,b; Gong et al., 2015, 2016).  The model combines the 235 

Environment and Climate Change Canada Global Environmental Multiscale weather numerical weather prediction model 236 

(GEM, Cote et al.,, 1998, Girard et al., 2014) with gas and particle process representation using the on-line paradigm, with 237 

options for climatological versus full coupling between meteorology and chemistry.  GEM-MACH’s main processes for the 238 

two configurations employed here are described in Table 1. 239 

Simulations were carried out with a 2.5-km horizontal grid cell spacing over a 900 x 1370 grid cell domain, covering most of 240 

western Canada and the USA (Figure 1).  The meteorological boundary conditions for the simulation were a combination of 241 

10-km resolution GEM forecasts updated hourly (themselves originating in data assimilation analyses of real-time weather 242 

information; Figure 1(a)), and 2.5-km GEM simulations (Figure 1(c)) employing, in the northern portion of this 2.5-km 243 

domain, the Canadian Land Data Assimilation System (Carrera et al., 2015), to better simulate surface conditions.  Both 244 

“feedback” and “no feedback” simulations were carried out on a 30-hour forecast cycle (Figure 2). Following the usual practice 245 

for weather forecasts, the analysis-driven meteorological forecasts at 10 km resolution were updated operationally every 24 246 

hours at 12 UT (Figure 2(a)).  These 10 km resolution weather forecasts were used to drive a 30-hour, 10-km resolution GEM-247 

MACH forecast (Figure 1(b), Figure 2(b)), which employed ECMWF reanalysis data for North American chemical lateral 248 

conditions (Innes et al., 2019).  The 10-km resolution weather forecasts were also used to drive a 30-hour meteorology-only 249 

forecast at 2.5-km resolution on the high resolution domain (Figure 1(c), Figure 2(c)).  The last 24 hours of the 10-km resolution 250 

GEM-MACH forecast was also used to provide chemical lateral boundary conditions for the 24-hour 2.5km on-line coupled 251 

GEM-MACH simulation (Figure 1(c), Figure 2(d)).  The last 24 hours of the 2.5-km GEM simulation were used as 252 

meteorological initial and boundary conditions for the 24-hour 2.5-km on-line coupled GEM-MACH simulation (Figure 1(c), 253 

Figure 2(d)).  The two stages of meteorology-only simulations were carried out to prevent chaotic drift from the observed 254 

meteorology, and to allow spin-up time for the cloud fields of that meteorology to reach equilibrium (6-hour timeframe).  255 

Chemical initial concentrations for each consecutive forecast within the 2.5- km GEM-MACH model domain were “rolled 256 

over” or “daisy-chained” between subsequent forecasts without chemical data assimilation.  Forecast performance scores 257 

presented here are for the inner 2.5-km domain from this set of linked 24 forecast simulations, mimicking operational forecast 258 

conditions. 259 

2.2 CFFEPS Version 4.0:  On-line forest-fire plume rise calculations 260 

In addition to the above algorithm improvements relative to GEM-MACH implementations, this  model system setup has 261 

incorporated the first on-line calculation of forest-fire plume-rise by energy balance driven using on-line meteorology, in a 262 

new version of the Canadian Forest Fire Emissions Prediction System (CFFEPS).  The algorithms of CFFEPSv2.03 are 263 
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described in detail and evaluated elsewhere (Chen et al., 2019), but will be outlined briefly here, as well as subsequent 264 

modifications to this forest fire emissions processing module.  265 

CFFEPS combines near-real-time satellite detection of forest fire hotspots with national statistics of burn areas by Canadian 266 

province and by specific fuel type across North America.  CFFEPS assumes persistence fire growth in the subsequent 24- to 267 

72-hour forecasts with hourly fuel consumed calculated (kg m-2), based on GEM forecast meteorology and predicted fire 268 

intensity and fuel consumption in grid cells representing fire locations.  The modelled fire fuel consumption is then linked with 269 

combustion-phase specific emission factors (g kg -1) for fire specific emissions and chemical speciation.  Fire energy associated 270 

with the modelled combustion process is also estimated, and is used in conjunction with a priori forecasts of meteorology 271 

within the column to determine plume rise.  In its off-line/non-coupled configuration (Chen et al., 2019), CFFEPS carries out 272 

residual buoyancy calculations at five preset pressure levels (surface, 850, 700, 500, 250 mb). CFFEPS predicts plume injection 273 

heights, which are in turn used to redistribute the mass emissions below the plume top  to the model hybrid levels.  This 274 

approach employed in CFFEPSv2.03 provided a substantial improvement in forecast accuracy relative to the previous approach 275 

employing modified Briggs (Briggs, 1965, Pavlovic et al., 2016) plume rise formulae in the offline GEM-MACH forecast 276 

system (Chen et al., 2019).  A recent evaluation of the plume heights predicted by CFFEPS was carried out utilizing MISR 277 

and TROPOMI satellite retrieval data (Griffin et al, 2020).  Seventy cases studied using MISR data showed good agreement 278 

between satellite and CFFEPS-predicted maximum and mean plume heights (maximum plume height observed versus 279 

predicted values and standard deviations:  1.7±0.9 versus 2.0±1.0 km; mean plume height observed versus predicted: 1.3±0.6 280 

versus 1.3±0.4 km).  A larger number of case studied using TROPOMI data (671 in total) also showed a reasonable agreement, 281 

with CFFEPS showing a small tendency to overpredict heights (maximum observed versus predicted plume heights 2.2±1.6 282 

versus 2.5±1.2 km; mean observed versus predicted plume heights 0.7±0.5 versus 1.1±0.6 km).  283 

However, other work has shown the substantial impact of large forest fires on regional weather (Makar et al., 2015a; Palacios-284 

Pena et al., 2018, Baro et al., 2017), including changes to the surface radiative balance and atmospheric stability.  These 285 

findings imply that plume rise calculations employing an a priori weather forecast lacking the impact of fire plumes via the 286 

ADE and AIE may not accurately predict the weather conditions critical to subsequent forest fire plume rise prediction.  In 287 

order to study this possibility, and to allow forest fire plumes to influence weather and hence subsequent fire spread/growth, 288 

several changes were made to CFFEPS implementation, resulting in version 4.0 of CFFEPS, used here.  The process flow 289 

within CFFEPSv2.03 versus CFFEPSv4.0 are compared in Figure 3.  The original C language CFFEPSv2.03 code was 290 

converted to FORTRAN90, and following successful off-line comparisons to the original code, was then integrated as an on-291 

line subroutine package within GEM-MACH itself, with the near-real-time satellite hotspot data and location fuel parameters 292 

being read into GEM-MACH directly (CFFEPSv4.0 is this new on-line package).  A key advantage of the CFFEPSv4.0 293 

subroutine integration within GEM-MACH is that the residual buoyancy calculations for plume injection heights are now 294 

carried out over the model hybrid model layers, rather than the five coarse resolution, prescribed pressure levels of 295 

CFFEPSv2.03, making complete use of GEM-MACH’s detailed vertical structure.  Additionally, CFFEPSv4.0 allows plume 296 

rise calculations to be updated during model runtime.  When GEM-MACH is run in on-line coupled mode, the ADE and AIE 297 
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implementations allow model-generated aerosols to modify the predicted meteorology, in turn influencing predicted fire 298 

emissions and plume rise, closing these feedback loops.  The on-line implementation of CFFEPSv4.0 thus allows us to 299 

investigate the effects of meteorology on subsequent forest fire plume development, the changes to modelled aerosol 300 

compositions, and, ultimately, the feedbacks to weather.   301 

The formation of particles from forest fires affects meteorology on the larger scale via the ADE and AIE, in turn modifying 302 

the regional scale atmospheric features affecting fire growth, such as the temperature profiles below forest fire plumes.  303 

However, we note that CFFEPSv4.0 employs forest fire heat to determine plume rise as a subgridscale thermodynamic process 304 

parameterization rather than a very high resolution explicit fire growth parameterization;  the very local scale weather 305 

modifications due to the addition of forest fire heat to the atmosphere are not incorporated into fire spread or GEM 306 

microphysics.  Specifically, when the feedback version of GEM-MACH incorporating CFFEPSv4.0 is used in its on-line 307 

coupled configuration, CFFEPSv4.0 uses estimates of the heat released to calculate forest fire plume rise. These calculations 308 

employ lapse rates at the fire locations, that with feedbacks enabled, include the ADE and AIE generated by forest fire aerosols 309 

on atmospheric stability within the current on-line coupled model timestep.  This is in contrast to earlier off-line 310 

implementations of CFFEPS, which made use of a priori non-feedback weather forecast lapse rates.  To the best of our 311 

knowledge, this is the first implementation of a dynamic forest fire plume injection height scheme incorporated into a on-line 312 

coupled high-resolution, operational air quality forecast modelling system.  The impact of this feedback on both weather and 313 

air-quality can be substantial, as we show in the following sections. 314 

The locations of the daily forest hotspots detected during the study period, and the corresponding magnitude of the daily PM2.5 315 

emissions generated by CFFEPS for each hotspot are shown in Figure 4.  Individual hotspots with the highest magnitude 316 

emissions are located in the state of Nevada (Figure 4(a), southern boxed region).  However, the largest ensemble emissions 317 

from a suite of hotspots occurs in northern Alberta (Figure 4(a), northern boxed region).  Expanded views of the northern 318 

Alberta and Nevada hotspots are shown in Figure 4(b,c) respectively – the use of smaller symbols shows that the Alberta 319 

hotspots are groups representing large spreading fires, which overplotted in Figure 4(a), while the Nevada hotspots indicate 320 

single fires of small spatial extent and duration rather than larger spreading fires. The Alberta fires are thus the most significant 321 

sources of forest fire emissions in the study domain for the period analyzed here. 322 

 323 

2.2 Feedback and No-Feedback Simulations 324 

Two simulations were carried out for the period July 4th through August 5th 2019; a “feedback” (ADE and AIE feedbacks 325 

enabled – on-line coupled model) and a “no-feedback” simulation (ADE and AIE make use of GEM’s climatological aerosol 326 

radiative and CCN properties – the one-way coupled model).  During this period, five large forest fires took place in the 327 

northern portion of the modelling domain.  The two parallel combined meteorology and air-quality forecasts in the on-line 328 

coupled model with/without ADE and AIE coupling were evaluated for meteorological and air quality variables.  Following 329 
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evaluation, the simulation mean values of hourly meteorological and chemical tracer predictions were compared to analyze 330 

the impact of on-line coupled ADE and AIE feedbacks on both sets of fields. 331 

3 Model Evaluation 332 

3.1 Meteorology Evaluation 333 

Surface meteorological conditions were evaluated at three-hour intervals from the start of both of the two sets of paired 24-334 

hour forecasts using standard metrics of weather forecast performance including mean bias (MB), mean absolute error (MAE), 335 

root mean square error (RMSE), correlation coefficient (R) and standard deviation ().  In all comparisons, a 90% percent 336 

confidence level assuming a normal distribution was used to identify statistically different results between forecast simulations.   337 

Note that 90% confidence levels are commonly used in meteorological forecast evaluation, with values of 80% to 85% 338 

recommended (Pinson and Kariniotakis, 2004) and up to 90% used (Luig et al., 2001) for variables such as wind speed,  rather 339 

than the 95% or 99% confidence levels in other fields, in recognition of the difficulties inherent in  prognostic forecasts of the 340 

chaotic weather system.   Here, the confidence range formulation of Geer (2014) has been applied using a 90% confidence 341 

level in model predictions, with the statistical measures considered different at the 90% confidence level when the 90% 342 

confidence ranges do not overlap.   The surface meteorological evaluations shown here only include those variables and metrics 343 

where results were significantly different at the 90% confidence level. 344 

Several model forecast output variables were evaluated and the surface variables showing statistically significant differences 345 

relative to observations at the 90% confidence level included: 2 m temperature, surface pressure, 2 m dewpoint temperature, 346 

10 m wind speed, sea-level pressure, and accumulated precipitation (the latter in 3 different metrics).  The comparisons are 347 

shown as time series in three-hourly intervals as a function of forecast hour prediction time forward from forecast hour 0, for 348 

grid cells corresponding to measurement locations in Figures 5, 6, 7, 8, 9, 10, and 11 for each of these quantities, respectively.  349 

Note that these statistics measure domain-wide performance, across all of the reporting stations within the model domain, 350 

during the sequence of 24-hour forecasts comprising the simulation period.  The duration of the time series in these comparison 351 

figures is thus a function of the duration of the contributing forecasts. 352 

Figure 5 shows an example analysis for surface temperature bias for the entire model domain.  Figure 5(a) sh ows the average 353 

model mean bias (MB) time series across all stations and all forecasts at the given forecast hours, while Figure 5(b) shows the 354 

corresponding difference in the MB absolute values.  The difference plot in Figure 5(b) shows the feedback – no-feedback 355 

scores, such that scores below the zero line indicate superior performance of the feedback forecast, while those above the zero 356 

line indicate superior performance of the no-feedback forecast.  Here, the feedback forecast was statistically superior at forecast 357 

hours 3, 6, 15, 18 and 24 at the 90% confidence level at these forecast hours, and both simulations were at par (differences 358 

below the 90% confidence level) at hours  12 and 21, with the no-feedback forecast being superior at 90% confidence at hour 359 

9.  The feedback forecast thus has superior performance, at greater than 90% confidence, over half of the forecast hours 360 



12 
 

evaluated within the domain, equivalent performance at two hours (hours 12 and 21, both within 90% confidence limits), and 361 

inferior performance at one hour (hour 9), during the simulation period. 362 

All of the metrics for which surface temperature forecast performance differed at the 90% confidence level are shown in Figure 363 

6.  In addition to MB, the scores for MAE, and RMSE showed superior forecast performance for the feedback relative to the 364 

no-feedback case at the 90% confidence level for hours 15 and 18, while the improvement for the correlation coefficient was 365 

only reached the 90% confidence level at hour 18.   366 

The meteorological forecast performance metrics with statistically significant differences for surface pressure, dewpoint 367 

temperature, and sea-level pressure are shown in Figures 7, 8, and 9 respectively.  The model performance differences in these 368 

three Figures show a similar pattern:  a degradation in performance with the use of feedbacks at hour 3, with the differences 369 

between the two forecasts either dropping below the 90% confidence level, or the feedback forecast showing an improvement 370 

by hour 9, followed by several hours in which the feedback forecast has a superior performance, usually at greater than 90% 371 

confidence.  The duration of this latter period varies between the metrics, from up to 18 hours for MAE for surface pressure 372 

(Figure 7(b)) to 3 hours for the correlation coefficient of dew-point temperature (Figure 8(d)).   373 

The initial loss of performance for the feedback forecast may represent a form of “model spin-up” that may be unique to on-374 

line coupled models, but may be affected or improved with further adjustments to the forecast cycling setup for the chemical 375 

species.  As noted earlier (Figure 2), in order to prevent chaotic drift from observed meteorology, we made use of a 30-hour 376 

2.5-km resolution analysis-driven weather forecast to update our on-line coupled model’s initial meteorology at hour zero of 377 

each 24 hour forecast.  The cloud fields provided as initial conditions at hour zero include observation analysis for the 6 h ours 378 

prior to hour zero - these have reached a quasi-equilibrium in the high-resolution weather forecast (Figures 2(b,e)) by the time 379 

they are used as initial and boundary conditions in the on-line coupled model (Figure 2(c,f)).  However, the on-line coupled 380 

model’s aerosol fields at hour zero, used to initialize the subsequent forecast (Figure 2, dashed blue arrow), still reflect the 381 

locations of aerosol-cloud interactions in the previous on-line coupled simulation.  The initial three to six hours of feedback 382 

forecast degradation represents the time required for the on-line coupled model to reach a new equilibrium consistent between 383 

both its aerosol and the cloud fields.   384 

One possible solution for this model spin-up inconsistency would be to eliminate the intermediate driving 2.5-km 385 

meteorological simulation in favour of a longer 30-hour on-line coupled forecast with the first six hours removed as spin-up 386 

(i.e. extend the duration of steps (c) and (f) in Figure 2 to 30 hours, starting at UT hour 6).  The duration of the forecast 387 

experiments carried out here was limited to 24 hours due to limited computational resources, and, more importantly, the 388 

operational requirement for an on-time forecast delivery for the purpose of the FIREX-AQ field campaign.  The 24-hour 389 

forecast simulations carried out in Figure 2 (c,f) each required nearly 3 hours of supercomputer processing time; longer 390 

simulation periods were not possible within the operational window available for forecasting. 391 

Model 10-m windspeed forecasts were also improved with the incorporation of feedbacks for hours 3 and 6, for all metrics 392 

(Figure 10).  A decrease in MB performance at hours 21 and 24can also be seen in this Figure.   393 
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Precipitation forecast performance from the two simulations varied depending on the metric chosen (Figure 11). The metrics 394 

in this case were based on the number of coincident precipitation “events” versus “non-events” as shown in contingency Table 395 

2. 396 

The Heidke skill score { 𝐻𝑆𝑆 = 2 (𝐴𝐷 − 𝐵𝐶) [(𝐴 + 𝐶)(𝐶 + 𝐷) + (𝐴 + 𝐵)(𝐵 + 𝐷)]⁄  } measures the fractional improvement 397 

of the forecast over the number correct by chance.  The Frequency Bias { 𝐹𝐵 = (𝐴 + 𝐵) (𝐴 + 𝐶)⁄  } measures the frequency 398 

of event over-forecasts (FB>1) versus event under-forecasts (FB<1).  The Equitable Threat score {  𝐸𝑇𝑆 =399 

 (𝐴 − 𝐴̃) (𝐴 + 𝐶 + 𝐵 − 𝐴̃),⁄  where 𝐴̃ = (𝐴 + 𝐵)(𝐴 + 𝐶) (𝐴 + 𝐵 + 𝐶 + 𝐷)⁄ } measures the observed and/or forecast events 400 

that were correctly predicted.  Following standard practice at Environment and Climate Change Canada, the HSS is used as a 401 

measure of total precipitation accumulated over a 6-hour interval, with no lower limit on the amount of precipitation defining 402 

an “event”, while FB and ETS define precipitation “events” as being those with greater than 2mm / 6 hours – consequently FB 403 

and ETS have a smaller number of data points for comparison than HSS. 404 

Figure 11 shows improvements to the on-line coupled precipitation forecast at the 90% confidence level were seen for the HSS 405 

6-hour accumulated metric at hours 12 and 24, while the frequency bias index of 6-hour accumulated precipitation showed 406 

degradation at hours 6 and improved performance at hour 12, and the equitable threat score of 6-hour accumulated precipitation 407 

showed significant differences at 90% confidence between the two simulations.  As is noted above, the latter two metrics 408 

employed a minimum 6-hour precipitation threshold of 2 mm prior to comparisons (this is the reason for the reduced number 409 

of points available for comparison in Figure 11(b,c) relative to Figure 11(a)).  These findings suggest that the on-line coupled 410 

model’s  improvements for total precipitation (Figure 11(a)) are the result of slightly improved performance for relatively light 411 

precipitation events (< 2mm 6hr-1).. 412 

The amalgamated observations and model pairs of vertical temperature profile data from 39 radiosonde sites in western North 413 

America are shown in Figures 12 and 13.  Improvements in the forecasted temperature vertical profile with increasing forecast 414 

time are evident at 250, 300, 400, 500, and 850 hPa in the 12th hour forecast, with degradations at 200 and 700 hPa (Figure 415 

12).   Improvements at 300, 925 and 1000 hPa may be seen in the 24th hour (Figure 13) forecast; it is also worth noting the 416 

entire region at and below 300 hPa has improved temperature forecasts (mean values to the left of the vertical line), albeit not 417 

always at >90% confidence.  There are larger differences between the 1000 hPa forecasts, though these also have the least 418 

number of contributing stations (i.e. only those located close to sea-level contribute to the lowest level temperature biases).  419 

Other levels of the atmosphere showed no statistically significant change at the 90% confidence level in temperature profile 420 

forecast performance with the use of feedbacks.   421 

3.2 Chemistry Evaluation 422 

Improvements to air quality model performance metrics have been a focus for research since the 1980’s starting with dispersion 423 

model evaluation (Fox, 1981), and the identification of mean bias and normalized mean square error as potentially useful 424 

metrics to complement the Pearson correlation coefficient (Hanna, 1988).  More recently, the Pearson correlation coefficient 425 

has been noted as being capably of producing high values for relatively poor model results (Krause et al., 2005), as well as 426 
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being unable to distinguish systematic model underestimation (Yu et al., 2006), unable to provide information on whether data 427 

series have a similar magnitude and capable of providing a false sense of relationship where none exists due to outliers 428 

(Duveiller et al., 2016) and clusters of model-observation pairs (Aggarwal and Ranganathan, 2016).  More recently, model 429 

evaluation has focused on metrics which do not have the tendency to weight the higher magnitude values unduly (a particularly 430 

useful property with air-quality variables which may vary by several orders of magnitude), which are dimensionless (allowing 431 

a comparison across different evaluated variables), and which are bounded and symmetric (properties allowing comparisons 432 

to be made and equally valued across the entire range of possible concentrations; e.g. Yu et al. (2006)).  Metrics such as the 433 

modified coefficient of efficiency (Legates and McCabe, 1999) and the more recent incarnations of the Index Of Agreement 434 

(Willmott et al., 2012) are examples of the more recent metrics used for air-quality model evaluation.  Here, we have made 435 

use of a range of metrics spanning the literature on this topic, with the understanding that the properties of different metrics 436 

vary, that no single metric provides a perfect means of evaluating model performance, and that a variety of metrics  should be 437 

applied.  The metrics used here span the variety that have appeared in the literature since the early 1980’s, and include Factor 438 

of 2, Mean Bias, Mean Gross Error, Normalized Mean Gross Error, Correlation Coefficient, Root Mean Square Error, 439 

Coefficient of Efficiency, and Index of Agreement.  The formulae for these metrics and a brief description of their relative 440 

advantages and disadvantages appears in Appendix A (Supplemental Information). 441 

 442 

Both simulations’ performance for ozone (O3), nitrogen dioxide (NO2) and particulate matter with diameters less than 2.5 443 

m(PM2.5)  were evaluated using the above metrics, employing hourly AIRNOW data (USA: AQS network: 444 

https://www.epa.gov/aqs; Canada: NAPS network: http://maps-cartes.ec.gc.ca/rnspa-naps/data.aspx) and the openair package 445 

(Carslaw and Ropkins, 2012).  The summary performance metric scores for the two simulations grouped, according to 446 

contributing measurement network, are shown in Table 3, with boldface values indicating the better score for the given 447 

simulation case.  With respect to this table, we note that: 448 

(a) The feedback simulation generally outperforms the no-feedback simulation (more bold-face scores in the “feedback” rows, 449 

for 35 out of 48 metric comparisons). 450 

(b) Feedback forecast score improvements occurred were more noticeable for PM2.5 (usually first to second digit), followed 451 

by O3, with the NO2 scores often being the same for the first few digits. 452 

(c) We note that the boundary conditions employed for our 2.5km simulations had a strong impact on model air-quality 453 

performance.  As described above, these boundary conditions originated in a 10-km resolution simulation making use of 454 

ECMWF global reanalysis values on its own lateral boundaries. The magnitudes of the statistics of Table 3 may be 455 

compared to the magnitudes of the statistics from our initial ACPD submission (which made use of a MOZART 2009 456 

reanalysis for chemical lateral boundary conditions for the 2.5km GEM-MACH domain); these earlier results are shown 457 

in the S.I.,  Table A2   The use of feedbacks had a similar relative impact on forecast performance (34 out of 48 statistics 458 

improving in the feedback forecast in the initial simulation, compared to 35 out of 48 statistics in the current work).  459 

However, the net impact of the ECMWF-driven 10-km GEM-MACH values being used for chemical lateral boundary 460 

https://www.epa.gov/aqs
http://maps-cartes.ec.gc.ca/rnspa-naps/data.aspx
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conditions, rather than the MOZART climatology, was a degradation of performance:  comparing the equivalent entries 461 

in Table 3 and Table A2, it can be seen that 71 out of 96 scores were better with the earlier use of the MOZART reanalysis.  462 

As we show below, however, the revised boundary conditions led to improvements in model aerosol optical depth 463 

performance relative to observations. 464 

 465 

The impact of lateral boundary conditions on model predictions can be seen when comparing MODIS retrievals of aerosol 466 

optical depth (AOD) with model predictions (Figure 14).  AOD is a function of both the particle’s abundance and optical 467 

properties, integrated throughout the vertical column.  However, direct comparisons between satellite and model-predicted 468 

AOD values must be undertaken with some care, due to the nature of the satellite retrieval quality assurance and control 469 

procedures, the motion of the orbiting spacecraft, and the scan time of the instrument.  The manner in which AOD is calculated 470 

introduces additional uncertainty due to the range of values which may be derived from the same aerosol speciation using 471 

different methodologies (Curci et al., 2015).  For a polar-orbiting instrument such as MODIS, the time at which overpasses 472 

occur varies with location, and valid satellite retrievals may not occur when the location being scanned is obscured by clouds.  473 

Observed averages may be built up over multiple valid scans over time, but the number of valid scans contributing to the local 474 

average at any given location will vary, due to the time and space variation in cloud cover.  Here, individual valid Collection 475 

6.1 MODIS/Aqua (MYD04_L2 AOD_550_Dark_Target_Deep_Blue_Combined) 10 km resolution 550 nm AODs were 476 

matched in time and space to the nearest model 2.5-km grid cell and output frequency hour.  Levy et al., (2013) contains details 477 

on the MODIS combined AOD product.  No averaging was employed in our comparison (Figure 14); all satellite overpass 478 

AOD pixels and matching model AOD pixels are shown..  Noting that the AOD colour scale is logarithmic, the model 479 

simulation driven using the ECMWF + 10-km resolution GEM-MACH for boundary conditions (Figure 14(b)) is a much better 480 

match to observations (Figure 14(a)) than the model simulation driven by MOZART climatological boundary conditions 481 

(Figure 14(c)).  The slope of the linear best fit line between all observation and model pairs in each case mirrors this finding, 482 

with the original (MOZART climatology) boundary conditions having a slope of 0.15 and R2 of 0.0382, and the revised 483 

ECMWF + GEM-MACH 10-km boundary conditions having a slope of 0.56 and an R2 of 0.067.   484 

 485 

Previous work with CFFEPS by Chen et al. (2019) for the 2017 fire season has shown similar PM2.5 positive biases for western 486 

Canada, with MB of +5.8 µg m-3 (88 stations) and for Western USA with MB of +8.6 µg m-3 (221 stations).  These positive 487 

biases (Chen et al., 2019) were higher specific to sub-regions closer to areas of active fires (MB of +12 µg m-3 for the sub-488 

region including the provinces of Alberta and British Columbia, and +29 µg m-3 for the sub-region comprising the states of 489 

Idaho, Montana, Oregon and Washington, respectively).  At least part of the positive biases may be due to 10km GEM-MACH 490 

forest fire emissions occurring in the state of Alaska being overestimated during the study period.  However, the ECMWF 491 

reanalysis also captures significant particulate mass crossing the Bering Strait from fires in Siberia during this period, so the 492 

relative contributions of fires within the low resolution GEM-MACH domain and the ECMWF boundary conditions driving 493 

that domain are combined, and can’t be separated in the runs carried out here. 494 
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The local AOD positive biases associated with fires could also be the result of the mixing state assumptions of the Mie code 495 

used here for generating aerosol optical properties.  These assumptions may also account for negative AOD biases over much 496 

of the remainder of the model domain.  As noted earlier, this overall negative bias of AOD predictions (both boundary condition 497 

configurations result in observation:model slopes less than unity) is a common problem in air-quality models, and may be due 498 

to assumptions regarding the model mixing state (Curci et al., 2015).  That comparison of multiple mixing state assumptions 499 

on AOD with observations for European and North American modelling domains (Curci et al., 2015), showed a typical factor 500 

of two model under-prediction of 440 nm North American AOD across all mixing state assumptions, with European AOD 501 

negative biases ranging from unbiased to a factor of 2.  These earlier findings along with overestimates at forest fire plumes 502 

with our current homogeneous mixture approach at 550nm suggest that the hygroscopic growth may be overestimated for 503 

forest fire particles, in turn overestimating forest fire AODs locally, while external mixing assumptions may be required to 504 

improve model AOD performance elsewhere in the model domain. 505 

We note that the combined use of the ECMWF global reanalysis and a 10km resolution GEM-MACH simulation to provide 506 

boundary conditions for our 2.5km domain resulted in a degradation of model performance for surface PM2.5, O3, and NO2, 507 

for 71 out of 96 statistical scores, compared to the use of a MOZART2009 reanalysis for 2.5km domain boundary conditions.  508 

The improvement associated with the use of feedbacks was maintained, showing that the impact of feedbacks is a robust 509 

finding.  However, the performance degradation associated with the change of boundary conditions is a source of concern.   510 

We also note that, while AOD performance has improved with the use of the ECMWF + GEM-MACH10km boundary 511 

conditions in Figure 14, significant overestimates of AOD occur with the use of these boundary conditions, in several regions 512 

in the USA.  This may be seen by comparing Figure 14 (a) and Figure 14 (b) for the states of Montana, Wyoming, Nevada, 513 

New Mexico and Utah, where the dark blue colours in the observations (14(a)) indicate observed AODs less than 0.01, whereas 514 

the ECMWF+GEM-MACH 10km driven simulation (14(b)) indicate values of 0.03 to 0.05).  This is consistent with the 515 

increase in positive surface bias in PM2.5 associated with the use of the ECMWF + GEM-MACH 10km boundary conditions 516 

(e.g., Feedback runs having Western Canada and  Western USA positive biases of PM2.5 of 4.578 and 1.805 μg m-3 (Table 1), 517 

compared to the MOZART2009 reanalysis driven run values of 0.236 and -1.786 μg m-3, Table A2, respectively).   The 518 

boundary condition setup thus accounts for a substantial increase in overall surface PM2.5 mass, with the use of 519 

ECMWF+GEM-MACH 10km increasing mean PM2.5 by  4.34 and 3.59 μg m-3 in western Canada and USA respectively 520 

relative to the use of MOZART2009. 521 

The reduction in performance may thus be due to two possible causes (or their combination): (1) the domain within the GEM-522 

MACH 10km simulation might be sufficiently large, and the emissions in the regions between the 10km boundaries and the 523 

2.5km domain sufficiently in error, that the 2.5km simulation accuracy is adversely affected;  (2) the ECMWF reanalysis 524 

employed on the outermost boundary of the 10km domain contributes sufficient PM2.5, NO2 and O3 to the simulations that 525 

the innermost domain model performance at the surface is adversely affected.  That is, the degradation in performance may be 526 

associated with the GEM-MACH 10km simulation, the ECMWF reanalysis, or a combination of both factors.   527 
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In order to examine the potential impact of the ECMWF reanalysis used as the outermost domain boundary conditions, we 528 

evaluated the ECMWF reanalysis using the same observation data, station locations, and performance metrics as was used for 529 

our 2.5km simulations– the results of this analysis are shown in Supplemental Information Tables A3 (PM2.5), A4 (O3) and 530 

A5 (NO2).  This additional analysis shows that the ECMWF reanalysis values during the study period have higher positive 531 

biases for PM2.5 and O3, and lower negative biases for NO2, than the corresponding 2.5km GEM-MACH simulations.  A 532 

similar pattern occurs for the other statistical metrics, with the ECMWF reanalysis usually having a reduced performance for 533 

most statistical scores for PM2.5, O3, and NO2 over the study region in comparison to the high resolution model simulations 534 

carried out here.  The ECMWF reanalysis was also evaluated for the same time period for the entire North American domain, 535 

in Tables A3 to A5; the scores for this last analysis suggest that the performance of the reanalysis relative to observations is 536 

similar over the continent, and is not limited to our study area.  We note that the ECMWF reanalysis has relatively low spatial 537 

and time resolution compared to the 2.5km simulations carried out here (0.75ox0.75o versus 2.5 km x 2.5km, 3 hourly output 538 

values compared to 1 hour output values), and relatively coarse resolution for particle sizes (e.g. 3 size bins compared to the 539 

12 bins used within GEM-MACH; these issues may factor into the performance scores.  The comparison does not rule out the 540 

possibility that GEM-MACH’s 10km resolution simulations may also contribute adversely to our 2.5km model performance.  541 

However, our analysis suggests that our use of the ECMWF reanalysis for boundary conditions on our outermost domain likely 542 

accounts for at least some of the performance degradation in our modelling system, compared to the MOZART2009 boundary 543 

condition simulation carried out earlier.   544 

3.3 Model Evaluation Summary 545 

Overall, the incorporation of feedbacks in this study has resulted in improvements in weather and air-quality forecast accuracy, 546 

albeit with some caveats.  Weather forecast variables showed improvements at the 90% confidence level for several fields, and 547 

vertical profiles showed a matching performance or improvements at most levels and times.  Total precipitation scores also 548 

showed minor improvements or matching performance at the 90% confidence level.  A previously unexpected spin-up issue 549 

specific to on-line coupled models was noted:  the impact of on-line coupled particulate matter on cloud variables was 550 

sufficiently strong that cloud field adjustment in the first 6 hours of the forecast was required prior to some weather forecast 551 

variable improvements to be apparent (surface pressure, dewpoint temperature, sea-level pressure).  While the current forecast 552 

cycling duration was constrained by operational requirements, this suggests that forecast cycling should include both air-553 

quality and meteorological variables during on-line coupled forecast spin-up periods.  That is, the model tracer concentrations 554 

6 hours prior to the current forecast start-up could also be used during the initial meteorological spin-up period, thus allowing 555 

chemistry and cloud formation to spin-up simultaneously.  Scores for surface PM2.5, NO2, and O3 also generally improved 556 

with the incorporation of feedbacks (35 out of 48 comparisons showed improvements).  The choice of lateral boundary 557 

conditions was shown to have a significant impact on chemical performance within the model domain.  In comparison to 558 

satellite-based AOD values, the current model’s AOD values were generally biased low, with smaller magnitude biases being 559 

associated with the ECMWF + 10-km GEM-MACH boundary conditions.  The latter comparison also showed that large fires 560 
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off-domain in Alaska and Siberia likely had a large impact on AODs in the eastern and northern section of the model domain, 561 

through comparison with our initial simulations .   562 

 563 

4 Effects of Feedbacks on Selected Simulation-Period Average Variables 564 

In this section, we compare time averages of the entire study period for the two simulations, both at the surface and in vert ical 565 

cross-sections through the model domain, to illustrate some of the changes in both weather and air-quality associated with the 566 

incorporation of feedbacks. We have found differences at greater than 90% confidence between the predicted meteorological 567 

and chemical forecasts in the vicinity of the Alberta/Saskatchewan forest fires, as well as in contrasting changes between land 568 

and sea.  We note again here that the “no-feedback” simulation makes use of time and spatially invariant aerosol CCN and 569 

optical properties, within the meteorological portion of the model.  The comparisons thus show the differences associated with 570 

the use of climatological constant aerosol properties, and the on-line coupled model-generated aerosols. 571 

As in the meteorological evaluation, we have made use of 90% confidence levels in order to gauge the level of significance of 572 

the differences between the feedback and no-feedback simulations in the following analysis.   573 

The approach for representing model grid value 90% confidence levels is described in detail in SI Appendix A2.  The 574 

differences in the mean grid cell values between the simulations for which the above quantity is greater than unity differ at  or 575 

greater than the 90% confidence level.  Differences in the mean values, as well as the value of the above ratio, are thus reported 576 

in the following section.                                 577 

4.1 Effects of Feedbacks on Time-Averaged Meteorology 578 

The feedback – no-feedback differences in the simulation-period average cloud droplet number density (number kg-1 of air) 579 

and mass density (g water kg -1 of air) along centred cross-sections spanning the length and width of the 2.5-km resolution 580 

model domain are shown in Figure 15 (cross-section locations are shown in Figure 1).  The “Ocean”, “Land”, and “Forest 581 

Fire” regions identified are with reference to the approximate locations of these features along these cross-sections.  Figure 15 582 

also shows the confidence ratio values as described above – regions where the predicted mean values differ at or above the 583 

90% confidence level are shown in red, while those differences below the 90% confidence interval are shown in blue.   584 

Feedbacks increase the cloud droplet number density over the northern part of the domain, including the region impacted by 585 

the Alberta/Saskatchewan forest fires, from the surface up to about 500 mb (roughly equivalent to hybrid level 0.500), and 586 

decrease at higher elevations further to the south and along the length of the model domain into the western USA (Figure 587 

15(a)).  Cloud droplet numbers also decrease over the ocean, but increase eastwards over the land (Figure 15(b)).  The latter is 588 

unrelated to the forest fires; this is an indication that the modelled aerosol number concentration over the ocean is much lower 589 

than the single climatological aerosol population assumed in the no-feedback run, resulting in lower cloud droplet number 590 

concentrations.  The changes are significant at the 90% confidence level from the surface up to hybrid level 0.60 in the northern 591 

region which is most impacted by forest fire smoke, and in isolated regions further aloft along the south to north cross-section 592 

(Figure 15(c)), and over the regions of the ocean in the west to east cross-section (Figure 15(d)).  Higher-than-climatology 593 
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aerosol loadings, a large portion of which are due to the forest fires, resulted increased cloud droplet number densities in the 594 

lower troposphere, while decreasing them in the mid-to-upper troposphere (Figure 15(a)).  This impact of feedbacks is in 595 

accord with the satellite observations of Saponaro et al. (2017), and was also seen in Takeishi et al. (2020).  In contrast, cloud 596 

droplet mass density (i.e. cloud liquid water content) largely decreases across the domain along the north-south cross-section 597 

(Figure 15(e)), as well as over the ocean, with a varying pattern over the land in the east-west cross-section (Figure 15(f)).  The 598 

magnitudes and significance levels for the average change in cloud droplet mass are lower than for cloud droplet number, with  599 

the most significant differences occurring over the ocean (Figure 15(g,h)).   600 

Consistent with the cloud droplet number changes, rain droplet numbers and mass mixing ratios increase aloft with the 601 

feedback simulation, over both the forest region impacted by the forest fires (Figure 16(a,e)) and over the ocean (Figure 602 

16(b,f)), with a varying impact over the land and more distant from the forest fire sources (Figure 16(f)).  The changes are 603 

significant at the 90% confidence level for rain droplet number in these regions (compare Figure 16(a) with 16(c); 16(b) with 604 

16(d)), while the rain droplet mass changes sometimes reach but are usually below the 90% confidence level (Figure 16(g,h)).   605 

These results suggest that relative to the no-feedback simulation, which employs climatological aerosol CCN properties, the 606 

AIE in the feedback simulation is causing significant change in hydrometeor numbers, and a less significant increase in 607 

hydrometeor mass.   In the forest fire-impacted region, the ADE and AIE in the feedback simulation significantly increase the 608 

number of cloud droplets near the surface and throughout the middle to upper troposphere (Figure 15(a,c)).  The rain drop 609 

number in the middle troposphere (Figure 16(a,c)) also increases significantly between hybrid levels 0.90 to 0.70 (Figure 610 

16(e,g)).  Near-surface rain drop number and rain drop mass differences throughout the cross sections (Figure 16(e,f)) fall 611 

below the 90% confidence level (Figure 16(g,h).         612 

Over the oceans, water droplet number and mass both decrease (Figure 15(b,f)), and raindrop number and mass increase 613 

(Figure 16(b,f)); more atmospheric water is converted to rain drops as a result of the feedbacks, relative to the climatology in 614 

the no-feedback simulation.  However, these changes are more significant aloft than at the surface, with the difference in both 615 

rain drop number and mass falling below the 90% confidence level near the surface.  We interpret these changes as a shift in 616 

over-ocean liquid hydrometeor numbers and to a lesser degree the water mass aloft from cloud droplets to rain drops due to 617 

the AIE in the feedback setup relative to the climatology of the no-feedback simulation.  The changes occur at the 90% 618 

confidence level aloft, but the near-surface changes are smaller and are usually below the 90% confidence level.   619 

Differences in the average surface precipitation flux and the confidence ratio values are shown in Figure 17.  Changes in 620 

average precipitation (Figure 17(a)) appear random, though locally these differences are significant at the 90% confidence 621 

level (Figure 17(b)).  Both the magnitude of the differences and the frequency in their reaching the 90% confidence level 622 

increase south-westwards.  Given the local and episodic nature of rainfall events, the high level of significance in this case 623 

probably results from the presence or absence of individual rainfall events between the two simulations affecting the local 624 

average and standard deviations. 625 

Several systematic changes in the average values of the model’s meteorological output fields were noted due to the use of 626 

feedbacks relative to aerosol property climatologies (Figure 18), although all fall below the 90% confidence level for the 627 
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difference in the mean values between the two simulations (Figure 19). Specific humidity increased in the region most affected 628 

by fires (Figure 18(a), surface air temperature decreased below the smoke plumes while increasing further south (Figure 18(b)), 629 

while dewpoint temperature decreased (Figure 18(c)), implying a decrease in relative humidity with feedbacks.  Surface 630 

pressure increased over the land (mostly east of the Rockies), particularly in the region downwind of the Alberta / 631 

Saskatchewan fires while decreasing over the ocean (Figure 18(d)).  Planetary boundary layer height increased over the land 632 

(Figure 18(e)) except in the immediate vicinity of the Alberta/Saskatchewan fires , consistent with decreased atmospheric 633 

stability in the lowest part of the atmosphere.  The friction velocity also increased with the use of feedbacks (Figure 18(f)); 634 

this is consistent with a decrease in stability and an increase in turbulent energy   The air temperature increases occur at the 635 

surface south of the forest-fire impacted region and above roughly 750 mb, decreasing temperatures from the surface in the 636 

forest-fire impacted region up to 750 mb (Figure 20 (a,b)).  Feedbacks thus increase near-surface temperatures, relative to the 637 

no-feedback meteorological model’s simple aerosol climatology, in regions far from the fires, decreasing them near the fires, 638 

decrease temperatures in the lower free Troposphere, and increase temperatures further aloft.  All of these differences between 639 

feedback and no-feedback simulations, despite their large geographic range, fall below the local 90% confidence ratio.  640 

However, when the differences in air temperature resulting associated with feedback and no-feedback forecasts are compared 641 

to observations across the entire domain (as opposed to at gridpoint locations as in Figures 18 and 19) the 90% confidence 642 

level is exceeded both at the surface at specific forecast times (Figure 6(a)), and at multiple heights aloft at the 12th and 24th 643 

forecast hours (Figures 12, 13).   644 

4.2 Effects of Feedbacks on Time-Averaged Chemistry 645 

In the previous meteorological impacts section, changes in aerosol loading relative to the climatology, dominated by forest 646 

fires, were shown to have a significant impact on cloud formation and atmospheric temperatures through ADE and AIE.  These 647 

might be expected to in turn influence and be influenced by particulate matter emitted by the forest fires, with the plume rise 648 

of the forest fires dependent on the meteorological changes.  Air temperatures increase slightly in the model surface layer south 649 

of the fires (Figure 18(b), +0.01 to +0.05 oC) but decrease at greater magnitudes through the rest of the lower Troposphere 650 

(surface near the fires to hybrid level 0.749, Figure 20(a)), with a maximum decrease of -0.5oC between hybrid levels 0.893 651 

and 0.848. The reduction in temperatures between hybrid levels 0.90 to 0.70 from the impact of the smoke plumes is similar 652 

to the findings of Saponaro et al. (2017). These changes air temperatures implies a decrease in near-surface atmospheric 653 

stability associated with feedbacks, given that the overall temperature gradient from the surface has become more negative 654 

(that is, the ambient lapse rate has increased).  Rising air parcels will follow an adiabatic lapse rate; these increases in the 655 

ambient lapse rate imply that rising air parcels will have an increasing tendency to be warmer than their environment.  656 

Feedbacks have thus reduced atmospheric stability within the forest fire smoke in the lowest part of the atmosphere; the 657 

atmosphere there has become more unstable.  Meanwhile, the feedbacks decrease the environmental lapse rate further aloft 658 

above the forest fire smoke, between hybrid levels 0.848 and 0.339.  Rising air parcels in this region following an adiabatic 659 

lapse rate will thus have an increasing tendency to be colder than their environment – the atmosphere above the smoke plumes 660 
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has become more stable.  This is echoed by the response of the concentration fields to the near-surface stability change, as can 661 

be seen through comparisons of the PM2.5, NO2 and O3 surface concentrations changes (Figure 21) and as vertical cross-662 

sections (Figures 22, 23, 24), respectively.  663 

Changes above the 90% confidence level for PM2.5 and NO2 occur near the forest fires themselves (red regions, near top of 664 

model domain, Figure 21(a,b)), though remain below 90% confidence for O3 (Figure 21(c)).   665 

Feedbacks result in near-surface PM2.5 decreases in the regions downwind of the forest fires (Figure 21(a), Figure 22(a), note 666 

the large blue region and more intense blue region near surface in  Figure 22(a)), suggesting less PM2.5 mass is present near 667 

the surface due to the feedbacks.  Given the increase in near-surface stability below the fire plumes noted above, this change 668 

in the vertical distribution probably reflects a decrease in downward diffusive mixing of the forest fire plumes once aloft – the 669 

feedbacks thus have a tendency to increase the smoke plume concentrations aloft, by preventing the downward mixing of 670 

smoke injected by the fires.  These PM2.5 concentration effects rise above the 90% confidence level within the region closest 671 

to the fires.     672 

Feedbacks result in an increase in near-surface NO2 in several inland urban centers and less NO2 at surface level downwind 673 

(Figure 21(b), though these differences are only significant at the 90% confidence level within the forest fire plumes (Figure 674 

21(e), Figure 23(c)).  Ocean versus land NO2 differences remain below the 90% confidence level.   675 

Feedbacks decreased lower Troposphere O3 near the forest fires (Figure 21(c), Figure 24(a)), while increasing O3 near above 676 

hybrid level 0.383.  The forest fires are also the only area where the differences in between mean ozone forecasts approach 677 

90% confidence.   678 

Overall, the most significant effects of the feedbacks were: (1) increases in PM2.5 aloft and decreases near the surface in areas 679 

impacted by the fires, and (2) increases in NO2 aloft and decreases near the surface near the fires, to lesser extent than PM2.5, 680 

and (3) decreases in lower troposphere O3, particularly near the surface in the region impacted by the fires .   681 

The feedback-induced changes in primary and secondary pollutants in the forest fire regions are consistent with the decrease 682 

in atmospheric stability noted above – a greater proportion of the primary particulate matter and NO2 resulting from near-683 

surface forest fire emissions of NO remain aloft with the addition of feedbacks.  The decrease in surface ozone and increase 684 

further aloft in the fire region (Figure 24(a)) spatially matches the decrease in surface NO2 (Figure 22(a)).  Chemically, this 685 

may imply that the changes associated with feedbacks occur in NOx-limited environments, i.e., with relatively high VOC/NOx 686 

ratios, since in these environments, decreases in NOx emissions may lead to decreases in the rate of secondary O3 formation.  687 

Alternatively, the reduction in near-surface O3 concentrations may reflect a decrease in light levels reaching the surface due to 688 

cloud attenuation (aerosol indirect effect), with the resulting lower photolysis rates resulting in a reduction in surface 689 

photochemical ozone production. 690 

Our analysis thus suggests a net enhanced upward transport occurs in forest fire plumes due to feedbacks, and that this transport 691 

is linked to feedback-induced:  692 

(1) Increases in local near-surface atmospheric stability, reducing downward mixing of particulate plumes once aloft 693 

(Figure 22(a));  694 
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(2) Increases in cloud droplet numbers throughout the lower troposphere (Figure 15(a));  and  695 

(3) Increases in rain drop numbers aloft (Figure 16(a)).    696 

This combination suggests the presence of an AIE feedback loop – increased lower atmosphere stability results a 697 

greater proportion of particulate matter remaining aloft, in turn resulting in more particles remaining at higher levels in the 698 

atmosphere where they may act as cloud condensation nuclei, increasing cloud droplets aloft (Figure 15(a)).  This in turn 699 

results in increased lower middle troposphere cooling, through the 1st AIE (increase in cloud droplet numbers aloft leading to 700 

increased cloud albedo and cooling of the atmosphere below the cloud tops) while the corresponding decreases in particles and 701 

cloud condensation nuclei at lower levels results in a smaller near-surface impact on the AIE and ADE,  hence relatively minor 702 

changes on near-surface temperatures (Figure 20(a)).  This combination maintains a feedback-induced near-surface unstable 703 

temperature gradient, relative to the no-feedback simulation employing aerosol property climatologies.  We acknowledge that 704 

these changes in temperature fall below the 90% confidence level for the averages over all times, though note that differences 705 

in mean bias relative to observations for the two simulations became significantly different at specific times of day in the 706 

forecasts (Figure 6(a), hours 3, 6, 15 and 18, corresponding to 15, 18, 3 and 6 UT, or 9 AM, 12 noon, 9 PM, and midnight 707 

MDT), implying that the temperature changes at these specific times reach a higher level of significance.  Similarly, Figures 708 

12 and 13 show reductions in the near-surface temperature biases with the use of feedbacks. 709 

4.3 Summary, Differences in Forecast Simulation-Period Averages  710 

Relative to the no-feedback simulation employing an aerosol climatology, the AIE feedback as simulated here is associated 711 

with increases in near-surface stability over both ocean and forest-fire influenced land areas.  Over oceans, near-surface 712 

particulate matter is removed as cloud condensation nuclei, resulting in increased cloud droplet numbers, maintaining the 713 

temperature gradient through the 1st aerosol indirect effect.  In the vicinity of forest fires, increases in near-surface stability 714 

result in more PM2.5 remaining aloft, increasing the availability of cloud condensation nuclei aloft, increasing cloud droplet 715 

numbers aloft, hence also maintaining the less stable near-surface temperature gradient through the 1st aerosol indirect effect.  716 

We note that the ADE may also play a weak role, particularly in the southern part of the domain, where lower atmosphere 717 

temperature gradient increases are not accompanied by significant changes in cloud droplet numbers (Figure 15(a), southern 718 

half of the cross-section), but are accompanied by significant though small magnitude increases in PM2.5 in the lower 719 

atmosphere (Figure 22(a), southern half of cross-section), and temperature profile changes (Figure 20) below the 90% 720 

confidence level. 721 

 722 

5 Conclusions 723 

The work carried out here suggests that the answers to our two research questions (“Can on-line coupled models improve both 724 

air-quality and meteorological forecasts?” and “Are the changes in forest fire forecasts associated with implementing forest 725 

fire emissions within a on-line coupled model sufficient to significantly perturb weather and chemistry?”) are both a qualified 726 

“yes”.  Within the high resolution domain size employed here, improvements or matching weather forecast performance was 727 
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seen for most times and heights in the atmosphere, at greater than 90% confidence.  Improvements in model performance for 728 

surface PM2.5, NO2 and O3 were also found, across most statistical measures (35 out of 48 statistical evaluation scores showed 729 

improvements).  Comparing average vertical cross-sections, the chemical concentration changes associated with feedbacks 730 

were the most significant close to the forest fires in the northern portion of the domain.  There, increased net vertical transport 731 

associated with decreased near-surface stability lowered near-surface PM2.5 and NO2 concentrations and increased them aloft, 732 

and resulted in reduced surface O3. 733 

Our simulations suggest that aerosol optical depth in the region, as well as the overall chemical performance of the model, was 734 

strongly influenced by upwind boundary conditions.  AODs were biased low despite PM2.5 positive biases, suggesting that 735 

the homogeneous mixture approach for aerosol optical properties results in a general under-prediction of aerosol optical depths, 736 

in accord with Curci et al. (2015), and that obtaining better data for forest fire aerosol optical properties should be a priority 737 

for future study, as well as an examination of external mixture approaches.  Positive AOD biases in the region affected by fires 738 

suggests that forest fire plumes have significantly different optical properties, and may be less hygroscopic , than industrial 739 

aerosols of comparable size.  Special / separate treatment of forest fire CCN and optical properties are therefore also  740 

recommended in future work.   741 

On-line coupling forest fire plume rise calculations with the weather parameters was shown to have a significant impact on the 742 

height of primary pollutants reached by forest fires, the formation of near-surface ozone near the forest fires, and on particulate 743 

matter.  These changes were largely driven by the AIE, which maintains an increased lapse rate (decreased near-surface 744 

stability) over the forest-fire-influenced and oceanic portions of the region studied.  Weak evidence for the influence of the 745 

ADE was shown in the southern part of the domain, where increases in particulate matter were also accompanied by decreases 746 

in stability between the surface and the lower-middle troposphere (the differences were at a lower than 90% confidence level 747 

for these comparisons of temperatures averaged over all model times).    748 

Relative to the no-feedback aerosol climatology for CCN and aerosol optical properties, the simulations carried out here 749 

suggested that in the vicinity of forest fires feedbacks significantly increase cloud droplet number densities near the surface 750 

and aloft, and significantly increase rain drop number densities aloft, relative to forecasts driven by climatological aerosol 751 

properties.  Over the oceans, feedbacks decreased cloud droplet number density and increased rain drop number density aloft, 752 

relative to the simulation employing invariant CCN properties.  Oceanic cloud droplet mass increased to a lesser degree (with 753 

smaller regions above the 90% confidence level), as did rain drop mass (the mean differences for which for the most part 754 

remained below the 90% confidence level).  This provides some evidence for a shift in atmospheric water mass associated 755 

with feedbacks from cloud water to rain over the oceans relative to the no-feedback climatology, though this shift occurred 756 

largely within the variability of the cloud fields within each simulation.  Longer simulations may be needed to achieve higher 757 

confidence in this finding. 758 

 759 
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Tables: 1006 

 1007 

Model Process or 

Configuration 

Component 

Description Reference (where 

applicable) 

Base weather 

forecast model 

Global Environmental Multiscale (GEM), v4.9.8 Cote et al. (1998), 

Girard et al. (2014) 

Base air-quality 

model 

Global Environmental Multiscale – Modelling Air-quality and 

Chemistry (GEM-MACH) v2 

Moran et al. (2018) 

Aerosol Direct 

Effect  

Feedback simulations:  GEM-MACH’s predicted aerosol 

loading and Mie scattering using a binary water-dry aerosol 

homogeneous mixture assumption, at 4 wavelengths employed 

by GEM’s radiative transfer algorithms, and at additional 

wavelengths for diagnostic purposes. 

No-Feedback simulations:  invariant climatological values for 

aerosol optical properties are used. 

Makar et al. (2015a,b) 

Aerosol Indirect 

Effect  

Feedback simulations:  Modified P3 cloud microphysics 

scheme, driven by an aerosol size and speciation specific 

nucleation scheme (Abdul-Razzak and Ghan, 2002).  

No-feedback implementation:  P3 scheme driven by an 

invariant aerosol population of a single lognormal size 

distribution (with a geometric mean diameter of 100 nm and 

total aerosol number of 300 cm-3 consisting of pure ammonium 

sulphate).  

The prognostic cloud droplet number and mass mixing ratios 

from the P3 microphysics are then transferred back to the 

chemistry module for using in cloud processing of gases and 

aerosols (cloud scavenging and chemistry) calculations, 

completing the AIE feedback process loop in the case of the 

feedback implementation (Gong et al., 2015). 

Gong et al. (2015),  

Abdul-Razzak and 

Ghan (2002), Morrison 

and Milbrandt (2015), 

Milbrandt and 

Morrison (2016), 

Morrison and 

Grabowski (2008). 
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Forest fire plume 

rise 

CFFEPSv4.0 (see text)  

Gas-phase 

chemistry 

mechanism 

ADOMII mechanism, 42 gas species. Stockwell et al. (1989) 

Gas-Phase 

chemistry solver 

KPP-generated RODAS3 solver Sandu and Sander 

(2006) 

Cloud processing 

of aerosols 

Aqueous chemistry, scavenging of gases and aerosols, below-

cloud removal and wet deposition. 

Gong et al. (2015) 

Particle 

microphysics 

Sectional size distribution and 8 chemical species. Gong et al. (2003) 

Particle inorganic 

thermodynamics 

Local equilibrium subdomain approach Makar et al. (2003) 

Secondary organic 

aerosol formation 

Modified yield approach Stroud et al. (2018) 

Vertical diffusion Fully implicit approach, with surface fluxes as a boundary 

condition 

 

Advection Semi-Lagrangian approach, 3-shell mass conservation 

correction (ILMC approach) 

 

Forest canopy 

shading and 

turbulence. 

Light attenuation within forest canopies and turbulence 

reductions due to vegetation applied to thermal coefficients of 

diffusivity. 

Makar et al. (2017) 

Anthropogenic 

plume rise 

Parameterization calculating residual buoyancy of the rising 

plume. 

Akingunola et al. 

(2018). 

Meteorological 

modulation of 

aerosol crustal 

material 

Aerosol crustal material is inhibited when the soil water content 

is > 10%. 
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Ammonia 

emissions and 

deposition 

Bi-directional flux parameterization employed. Whaley et al. (2018), 

Zhang et al. (2003). 

Methane treatment Reactive, emitted and transported tracer  

Leaf Area Index 

data 

MODIS retrievals used to create monthly LAI values for 

biogenic emissions, forest canopy shading and turbulence, 

deposition 

 

Vehicle-induced 

turbulence 

Observation-based parameterization used to modify near-

surface coefficients of thermal diffusivity 

Makar et al. (2020) 

 1008 

Table 1.  GEM-MACH model configuration details and references . 1009 
 1010 

Event 

Forecast 

Event Observed 

Yes No 

Yes A B 

No C D 

 1011 
Table 2.  Event versus non-event contingency table.  A = number of events forecast and observed; B=number of events forecast but 1012 
not observed; C=number of events observed but not forecast; D = number of cases where events were neither forecast nor observed. 1013 
  1014 
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 1015 

Chemical Region Simulation FO2 MB MGE NMGE R RMSE COE IOA 

PM2.5 Western 

Canada 

No 

Feedback 0.412 4.805 6.688 1.322 0.259 10.163 -1.476 -0.192 

Feedback 0.414 4.578 6.531 1.291 0.238 9.803 -1.418 -0.173 

Western 

USA 

No 

Feedback 0.556 1.953 5.349 0.823 0.254 8.571 -0.538 0.231 

Feedback 0.556 1.805 5.287 0.813 0.252 8.443 -0.520 0.240 

O3 Western 

Canada 

No 

Feedback 0.741 5.988 11.089 0.495 0.527 15.445 -0.223 0.388 

Feedback 0.745 5.891 10.969 0.490 0.527 15.268 -0.210 0.395 

Western 

USA 

No 

Feedback 0.865 1.731 10.702 0.285 0.693 14.279 0.249 0.625 

Feedback 0.866 1.770 10.663 0.284 0.694 14.225 0.252 0.626 

NO2 Western 

Canada 

No 

Feedback 0.437 -0.997 2.757 0.594 0.564 3.965 0.154 0.577 

Feedback 0.429 -1.037 2.758 0.595 0.565 3.936 0.154 0.577 

Western 

USA 

No 

Feedback 0.493 -0.346 2.341 0.572 0.653 3.674 0.177 0.588 

Feedback 0.483 -0.427 2.332 0.570 0.651 3.657 0.180 0.590 

 1016 

Table 3:  Summary performance metrics for ozone, nitrogen dioxide, and PM2.5.  Bold-face indicates the simulation with the better 1017 
performance score for the given metric, chemical species and sub-region, italics indicate a tied score, and regular font the simulation 1018 
with the lower performance score.  FO 2:  fraction of scores within a factor of 2.  MB: Mean Bias.  MGE: Mean Gross Error.  NMGE:  1019 
Normalized Mean Gross Error.  R: Correlation Coefficient.  RMSE:  Root Mean Square Error.  CO E: Coefficient of Error.  IO A:  1020 
Index of Agreement. 1021 
  1022 
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 1023 

Figures: 1024 

 1025 

 1026 

Figure 1:  GEM-MACH domains:  (a) GEM meteorology 10km resolution forecast domain.  (b) GEM-MACH 10km resolution 1027 
forecast domain.  (c) GEM-MACH inner 2.5-km grid resolution forecast domain for comparison to observations.  Red lines indicate 1028 
locations of illustrative South to North and West to East cross -sections appearing in subsequent analysis in the text. 1029 
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 1030 

 1031 

1032 
Figure 2:  Example time sequencing of model simulations used to generate the 2.5 -km GEM-MACH simulations carried out here.  1033 
Green lines and print indicate GEM (weather forecast only) simulations), blue lines and print indicate 2.5 -km GEM-MACH 1034 
simulations.  Arrows indicate data flow (light green: meteorological information; light blue: chemical information).  Steps (a) 1035 
through (h) illustrate the sequence of forecasts used to generate two consecutive days of 2.5km GEM-MACH simulations.  Note that 1036 
on-line coupling occurs only at the 2.5km GEM-MACH forecast level, in this sequencing. 1037 
 1038 
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 1039 

Figure 3:  Process comparison between original (CFFEPSv2.03, left) and on -line (CFFEPSv4.0, right) forest fire emissions and 1040 
vertical plume distribution algorithms. 1041 
 1042 
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 1043 

Figure 4:  Hotspot locations during the study period, colour-coded by daily total tonnes PM2.5 emitted.  (a) Entire model 2.5-km 1044 
domain, with northern Alberta and northern Nevada sub-regions as red dashed boxes; (b) northern Alberta zoom, with smaller 1045 
symbols for individual hotspots showing the large fire regions; (c) northern Nevada zoom, to the same scale as (b), showing isolated 1046 
hotspots with high emissions. 1047 
 1048 
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  1049 
Figure 5:  Mean bias in surface temperature (oC) at forecast hours starting at 0 UT.  (a) Red line:  n o-feedback forecast values; blue 1050 
l ine: feedback forecast values.  (b) Difference in absolute value of mean bias between the two forecasts (|𝑴𝑩| 𝒇𝒆𝒆𝒅𝒃𝒂𝒄𝒌 −1051 

|𝑴𝑩| 𝒏𝒐−𝒇𝒆𝒆𝒅𝒃𝒂𝒄𝒌 ), with the region below 90% confidence level shown shaded grey.  Mean values above above/below the ‘0’ line, and 1052 

outside of the shaded region thus indicate differences in the mean between the two forecasts which differ at or above the 90% 1053 
confidence level.  Values of the difference which appear below/above the zero line and ou tside of the grey area thus indicate superior 1054 
domain average performance for the feedback/no-feedback forecasts at each of the 3-hourly intervals, respectively.  Numbers 1055 
appearing above the metric differences are the number of observations contributing to the calculated metrics. 1056 
 1057 
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 1058 
Figure 6:  Summary meteorological performance comparison for surface temperature (C).  (a) mean bias, (b) mean absolute error, 1059 
(c) root mean square error and (d) Pearson correlation coefficient.  90% confidence level shown in gre y.  Numbers appearing above 1060 
the absolute mean bias differences are the number of stations contributing to the calculated metrics.  1061 
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 1062 
Figure 7:  Summary meteorological performance comparison for surface pressure (hPa). (a) mean bias, (b) mean absolute error,  (c) 1063 
root mean square error, (d) Pearson correlation coefficient, and (e) standard deviation.  90% confidence level shown in grey.   1064 
Numbers appearing above the absolute mean bias differences are the number of stations contributing to the calculated metrics . 1065 
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 1066 
Figure 8:  Summary meteorological performance comparison for dewpoint temperature (C). (a) mean bias, (b) mean absolute error, 1067 
(c) root mean square error, (d) Pearson correlation coefficient, and (e) standard deviation.  90% confidence level shown in grey.  1068 
Numbers appearing above the absolute mean bias differences are the number of stations contributing to the calculated metrics.  1069 
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1070 
Figure 9:  Summary meteorological performance comparison for sea-level pressure (hPa). (a) mean bias, (b) mean absolute error, 1071 
(c) root mean square error, (d) Pearson correlation coefficient, and (e) standard deviation.  90% confidence level shown in grey.  1072 
Numbers appearing above the absolute mean bias differences are the number of stations contributing to the calculated metrics.  1073 
 1074 
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 1075 
Figure 10:  Summary meteorological performance comparison for 10m windspeed (m s -1). (a) mean bias, (b) mean absolute error, 1076 
(c) root mean square error, (d) Pearson correlation coefficient, and (e) standard deviation.  90% confidence level shown in grey.  1077 
Numbers appearing above the absolute mean bias differences are the number of stations contributing to the calculated metrics.  1078 
 1079 
 1080 
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1081 
Figure 11:  Precipitation performance evaluation (mm precipitation).  (a) Heike skill score of 6-hour accumulated precipitation (No-1082 
Feedback – Feedback).  (b) Frequency bias index of 6-hour accumulated precipitation (threshold of 2 mm, No-Feedback – Feedback).  1083 
(c) Equitable  Threat Score of 6-hour accumulated precipitation (threshold of 2 mm, No-Feedback – Feedback). 1084 
 1085 
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 1086 
Figure 12:  Forecast hour 12 (0 UT) summary upper air temperature performance comparison for air temperature (mean bias, C). 1087 
(a) Difference in absolute value of mean bias in temperature, (feedback forecast – no-feedback forecast).  Grey regions represent 1088 
90% confidence levels, blue symbols: pressure levels at which the feedback mean bias outperforms the no -feedback mean-bias at > 1089 
90% confidence.  Red symbols:  pressure levels at which the no-feedback mean bias outperforms the feedback mean bias at > 90% 1090 
confidence.   90% confidence level shown in grey.  (b) Mean bias in upper air temperature for feedback (blue) and no -feedback (red) 1091 
(C).  Numbered values on the profiles indicate the number of observed data -model pairs at each pressure level. 1092 
 1093 
 1094 
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1095 
Figure 13:  Forecast hour 24 (12 UT) summary upper air temperature performance comparison for air temperature (mean bias, C).  1096 
(a,b) as in Figure 12. 1097 
 1098 
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 1099 

Figure 14: 550nm AO D comparison.  (a) All MO DIS observations sampled over the model domain and forecast duration and (b) 1100 
GEM-MACH 2.5km simulation, driven by 10km GEM-MACH simulations, in turn driven by ECMWF Reanalysis for 2.5km domain 1101 
boundary conditions .  (c) GEM-MACH 2.5km simulation, driven by MO ZART climatological boundary conditions.  1102 
 1103 
 1104 
 1105 
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 1106 
Figure 15.  (a,b) Difference in mean (Feedback – No-Feedback) cloud droplet number simulations along south to north and east to 1107 
west cross-sections through the middle of the model domain.  (c,d) Corresponding significance level of mean cloud droplet number 1108 
differences using the confidence ratio defined in equation (1) – red areas indicate ratio values greater than unity, i .e., significance at 1109 
or above the 90% confidence level.  (e ,f) Difference in mean cloud droplet mass (g kg -1) (g,h) Corresponding significance level of 1110 
mean cloud droplet mass difference.    Note:  the vertical axis in hybrid coordinates does not show all model levels for clarity; the model 1111 
has much finer resolution in the lower part of the atmosphere than shown, and the portion of the vertical domain shown encomp asses 1112 
only the lower half of the levels in the model.   1113 
 1114 
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 1115 

 1116 
Figure 16.  (a,b) Difference in mean (Feedback – No-Feedback) rain drop number simulations along south-to-north and east-to-west 1117 
cross-sections through the middle of the model domain.  (c,d) Corresponding significance level of mean rain drop number differences 1118 
using the confidence ratio defined in equation (1) – red areas indicate ratio values greater than unity, i .e., significance at or above 1119 
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the 90% confidence level.   (e,f) Difference in rain cloud drop mass (g kg -1) (g,h) Corresponding significance level of mean  rain drop 1120 
mass difference. 1121 
 1122 
 1123 
 1124 
  1125 

 1126 
Figure 17: (a) Average (Feedback – No Feedback) total surface precipitation during the simulation period.  (b) 90% confidence ratio 1127 
– values greater than 1 indicate significantly different results at the 90% confidence level. 1128 
 1129 
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 1130 
Figure 18: Differences in average meteorological fields (feedback – no-feedback; red values indicate more positive values in the 1131 
feedback simulation than in the no-feedback simulation).  Panels show average difference in: (a) specific humidity (g kg-1); (b) air 1132 
temperature (C), (c) dewpoint temperature (C), (d) surface pressure (mb),  (e) planetary boundary layer height (m), (f) frict ion 1133 
velocity (m s -1). 1134 
 1135 



54 
 

 1136 

Figure 19:  90% confidence ratios, same fields as Figure 19.  Values greater than 1 indicate significantly different results at or greater 1137 
than the 90% confidence level. 1138 
 1139 
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 1140 
Figure 20: (a,b) Difference in mean (Feedback – No-Feedback) temperature simulations along south-to-north and east-to-west cross-1141 
sections through the middle of the model domain.  (c,d) Corresponding confidence ratio of mean temperature differences – red areas 1142 
indicate ratio values greater than unity, i .e., significance at or above the 90% confidence level.   1143 
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 1144 
Figure 21:  (a,b,c) Difference (Feedback – No-Feedback) in surface mean PM2.5 (ug m -3), NO 2 (ppbv) and O 3 (ppbv), respectively.  1145 
(d,e ,f) Corresponding confidence ratio of mean differences – red areas indicate ratio values greater than unity, i .e., significance at  1146 
or above the 90% confidence level. 1147 
 1148 
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 1149 
Figure 22:  (a,b) Difference (Feedback – No-Feedback) in predicted mean PM2.5 (ug m-3), along domain-center South-North and 1150 
West – East cross-sections.  (c,d)  Corresponding confidence ratio of mean differences – red areas indicate ratio values greater than 1151 
unity, i .e., significance at or above the 90% confidence level.  Note that colour bar scales differ between (a) and (b).  1152 
  1153 
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 1156 

 1157 
Figure 23: (a,b) Difference (Feedback – No-Feedback) in predicted mean NO 2 (ppbv), along domain-center South-North and West 1158 
– East cross-sections.  (c,d)  Corresponding confidence ratio of mean differences – red areas indicate ratio values greater than unity, 1159 
i .e ., significance at or above the 90% confidence level.  1160 
  1161 
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 1163 
Figure 24: (a,b) Difference (Feedback – No-Feedback) in predicted mean O3 (ppbv), along domain-center South-North and West – 1164 
East cross-sections.  (c,d)  Corresponding confidence ratio of mean differences – red areas indicate ratio values greater than unity, 1165 
i .e ., significance at or above the 90% confidence level.  Note that colour bar scales differ between (a) and (b).  1166 
 1167 


