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Abstract. Theinfluence of both anthropogenic and forest fire emissions, and their and subsequent chemical and
physical processing, on the accuracy of weather arggiaiity forecasts, was studied using a high res olutioqine

coupled aiquality model. Simulations were carried out for the period 4 July through 5 August 2019kt 2.5
horizontal grid cell sizegver a2250 x 3425 khdomain covering western Canada and USA, prior to the use ofthe
forecast system as part oEtRFIREXAQ ensemble forecast. Several large forest fires took place in the Canadian
portion of the domain during the study period. A feature ofthe implementation was the incorporation ofa newon
line version of the Canadian Forest Fire Emissions Piiedic®ystem (CFFEPSv4.0). This inclusion of
thermodynamic forest fire plumise calculations directly into the dine airquality model allowed us to simulate

the interactions between forestfire plume development and weather.

Incorporating feedbackssulted in weather forecast performance that exceeded or matchedehdlvark forecast,

at greater than 90% confidence, at most times and heights in the atmosphere. The feedback fgpedasnedit

the feedback forecast at 35 out of 48 statisticalation scores, for PM2.5, N@Gnd Q. Relative to the
climatological cloud condensation nucleiand aerosol optical properties used infedeback simulations, thoer
inecoupled model ds aerosol i ndir e cfgedbackldopsicharaetarized bg f f e c t
decreasedurface temperatur@sregions affected by forest fire plumdscreases in stabilityithin the smoke plune
increases in stabilitiurtheraloft,and increased lower troposphere cloud droplet and raindrop ndetgties. The
aerosol direct and indirect effect reduced oceanic cloud droplet number densities and increased oceanic rain drop
number densities, relative to the-feedback climatological simulation. The aerosol direct and indirect effects were
resposible for changes to threearsurface PM2.5 and N@oncentrationsit greater than the 90% confidence level
nearthe forest fires, with-®hanges remaining below the 90% confidence level.

The simulations show that incorporating aerosol direct andeioidé@ffect feedbacks can significantly improve the
accuracy of weather and air quality forecasts, and that forest fire plume rise calculations aitfiireaoupled

model changes the predicted fire plume dispersion and emissions, the latter throggigchameteorology driving

fire intensity and fuel consumption
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1 Introduction

Atmospheric aerosol particles may be emitted (primary patrticles) or result from the condensation of the products of
gasphase oxdation reactions (secondary aerosol). Wiétreasing transport time from emission sources, the
processsof coagulation (colliding particles stick adhere creating larger particles) and condensation (low volatilty
gases condense to particle surfaces) tendto result in particles which have aggeatanf internal mixing (internal
homogeneous mixtures). Primary and reaurce particles are more likely to have a single or a smaller number of
chemical constituents (external mixtures).

Atmospheric particles also modify weather throughweflalished pathways. Under clear sky conditions, the
particles may absorb and/or scatterincoming light, depending on their size, shape, mixing state (internal, external or
combinations) and their composition. The presence ofthe particles themselvessrafjeitiithe radiative budget

of the atmosphere, resulting in either positive or negative climate forcing (i.e. the absorption of a greater amount of
incoming solar radiation versus increased scattering reflection of thatradiation back outinto spaesskpown

as the Aerosol Direct Effect; ADE). Aerosols can also alter the atmospheric radiative balance through interactions
with clouds, this influence beingreferred to as the Aerosol Indirect Effect (AIE). Three broad classes of categories
by whichcloud/aerosolinteractions take place (Oreopaatied.,2020) include the first indirect effect, where higher
aerosolloadings resulting in increasing numbers of cloud droplets with smaller sizes, hence increasing cloud albedo
(Twomeyet al.,1977), thesecond indirect effect, where higher aerosol loadings suppress the calisiescence

activity of the smaller droplets, reducing precipitation/drizzle, changing cloud heights, and changing cloud lifetime in
warm clouds (Al brewhtg,0rla28 »d)no aonfd saerransal ofuid,.s, where
in delayed glaciation of cloud droplets, in turn leading to greater latent heat release and stronger convection (Rosenfeld
etal.,2018).

The uncertainties associated with the ADE aadicularly AIE account for a large portion of the uncertainties in
current climate model predictions for radiative forcing between 1750 and 2011 (bttatr2013. Carbon dioxde

is believed to have a positive (warming) global radiative forciragppfoximately 1.88 +0.20 Wn¥, while the direct

and indirect effects both have nominal values of approxime@ety Wn?, with uncertainty ranges encompassing

0.94 to +0.07 anel.22 to 0.0 W respectively. These uncertainties have spurred reseasitined to better
characterize the ADE and AIE, and reduce these uncertainties, through both observations and atmospheric modelling.
Observational studies ofthe ADE have established its large impact; for example, high aerosolloading over Eurasian
boreal forests has been found to double the diffuse fraction of global radiation (i.e. increased scattering), a change
sufficient to affect plant growth characterized via gross primary production (Eghalv2018). Aerosolassimilation

of Geostationary €ean Color Imager Aerosol Optical Depth (AOD) observations into a coupled meteorology
chemistry model showed that South Korean AOD values increased by as much as 0.15with the use ofassimilation;
these increases corresponded to a i8¢289 W it redudion in solar radiation received at the surface, and reductions

in planetary boundary layer height, air temperature, and surface wind speed overland, and a deceleration of vertical
transport (Jungt al.,2019). Other studies in East Asia have shown AB&reasing local shortwave reaching the
surface by-20 Wm? (Wanget al.,2016), as well as significant changes in surface particulate matter and gas

concentrations in response to these radiation changes.
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However, one commonality amongst the recent studliehe ADE for aiguality models is a tendency towards
negative biases in predicted aerosol optical depths, potentially indicating systematjgrad®ions in aerosol mass,
aerosol size, and/or inaccuracies in the assumptions for shape and/ostateg Malleet al. 2017) noted this
negative bias for regional climate model AOD predictions associated with large California forest fires compared to
OMIand MRIS satellite observations. Palaeitenaet al. 2018) noted thathigh AOD events asstadawith forest

fires were undepredicted by mostmodels in a study employing a mefiionalmodel ensemble. The chosen AOD
calculation methodology and mixing state assumptions employed in models also plays a role in systematic biases:
Curciet al. 2015) compared aerosol optical depths, single scattering albedos, and asymmetry factors at different
locations to observations, varying the source model for the aerosol composition, as well as the mixng state
assumptions used in generating aerosol ogticgderties, for Europe and North America. AODs were biased low by

a factor of two or more, regardless of modelaerosolinputs or mixing state assumptions at 440 nm, single scattering
albedos were biased low by up to a factor of two, with the poorest pemia n ¢ e -sf toer| Ifioc oarpepr oa c h e s
asymmetry factor estimates showed no consistent bias relative to observations. However, the assumed mixing state
was clearly a controlling factor in the negative biases; the AOD predictions closest to thetminseat240 nm
assumed an external mixture with particle sulphate and nitrate assumed to grow hygroscopically as pure sulphuric
acid, lowering their refractive indexwith increasing aerosol size. This mixing state assumption and the different
homogeneoumixture assumptions gave the best fit for single scattering albedo relative to obsenatitlesnot
commenting on aerosol direct effect implicatiorekeishiet al. 2020) noted that forest fire aerosols increase particke
number concentrations bwtduce their water uptake (hygroscopicigfative to anthropogenic aerosalsth the

latter effect reducing the resulting cloud droplet numbers by up to Bifing state and hygroscopicity properties

of aerosols were thus shown to have a controllifigemce onthe ADE.

The AIE has oftenbeen shownto belocally more importantfor the radiative balance than ADE in terms of magnitude
of the radiative forcing and response of predicted weather to AIEand ADE (Bta&kaR015a), Jianget al.,2015;
Nazarenkoet al.,2017). Severalrecent studies have attempted to characterize the relativeimportance of the AIE with
the use of multyear satellite observations, sometimes making use of models and data assimilation. Shpbnaro
(2017) used MODIS/Aquinked observations of aerosol optical depth and Angstrém exponent to various cloud
properties, noting that the cloud fraction, cloud optical thickness, liquid water path, and cloudtop heightallincreased
with increasing aerosol loading, while cloud plet effective radius decreased, with the effects dominating at low
levels (between 900to 700 hPa). Zkeaal.(2018) examined 30 years of cloud and aerosol data-A®8), and

found that increasing aerosolloading up to AOD < 0.08 increased cleadi@xtion and cloud top height, whie
furtherincreases in aerosolloading (AOD from0.08 to 0.13) resultedin higher cloud tops, and larger cloud droplets.
In polluted environments (AOD > 0.30) cloud droplet effective radius, optical depth angatiecloud droplet
effective radius increased with increasing AOD. Thefirst ADEwas most sensitiveto AOD in the AOD range 0.13to
0.30; and the reduction of precipitation efficiency associated with the second aerosolindirect effect occurred for AODs
between 0.08 and 0.4, in oceanic areas downwind of continental sources.

However, sources of uncertainty in AIE estimates persist, in part due to the number of poorly understood processes
contributing to the atmospheric response to the presence of aeisptsenket al. 2017) showed that shetgm



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

136
137
138
139
140
141
142
143
144
145

atmospheric radiative changes were reduced in magnitude whearfsze temperature and sea coupling was

included in climate change simulations. Suatkil. 2019) showed that the vertical structofatmospheric aerosols,

as wellas their composition, had a significantinfluence onradiative forcing. FR¢ahg2018) and Zhet al. 2020)

examined the impact of aerosol composition on cirrus clouds via ice nucleation, finding negative forengs f

forms of soot, buta contrary impactof secondary organic aerosols. Rothetddu@018) noted thattests of aerosol
activation schemes carried out under current climate conditions had little variability, but had much greater variabiity
for pre-industrial simulations, implying that the available data for evaluation using current conditions may poorly
constrain ADE and AIE parameterizations used in simulating in past climates.

Forest fires are of key interestfor improving the understandidgegpresentation of ADE and AIEin models, due to

the large amountof aerosols released during these biomass burning events. Forestfire emissions and interactions with
weather are also of interest due to the expectation that the meteorological cendiidaiting in forest fires may
become more prevalent in the future under climate change (Haeldbherget al, 2018). Observations of aerosol

optical properties during lorgnge transport events of North American forest fire plumes to Europe showed 500

AOD values of0.7 to 1.2 over Norway, with Angstrdomexponents exceeding 1.4 and absorbing angstromexponents
ranging from 1.0 to 1.25, along with single scattering albedos greater than 0.9 at the surface and up to 0.99 in the
column over these sites @vkowiczet al.,2016). Biomass burning was shown to have a specific set of optical
properties relatively independent of fuel type for three differenttypes of biomass burningin China (cropland), Sibera
(mixed forest) and California (needleleaf forest)e increase in upward radiative forcing at the top of the atmosphere

due to fires beinglinearly correlatedto AOD (R from0.48 to 0.68), with slopes covering a relatively smallrange from
20 to 23 W it unit AOD™. O ét Wle(2001) showed that forest fires have a profound impact on aerosol optical
depth in western Canada, accounting for 80% of the summer AOD variability in that region, with a factor of three
increase in AOD levels from cleaky to forest fire plume condition® 6 Neetal.  001) 6 s anal ysi s
AVHRR and GOES imagery suggested that forest fire aerosols increase in size with increasing downwind distance,
due to secondary aerosol aging and condensation chemistry. We note here that reanalyzing thertath pre

O 6 N etial.(2001) results in alinear relationship between fine mode patrticle effective radiomjrand the base

10 logarithm of distance from the fires (D, km)iof T18ip @ @ 1 p fo T P Malletet al.

(2017) sinnlated AODs in the range 1 to 2 for biomass burning events, and also noted changes in direct radiative
forcing at the top ofthe atmosphere frompositive to negative in both model results and simulations, with increasing
downwind distance fromthe sourcési et al. 2017) carried out simulations witHn horizontal grid spacings for

the eastern Russia forest fires of 2002 assuming an internal mixture for emitted aerosols with-GldBVRRodel,

and noted impacts on cloud formation for two differentqusi The first period was characterized by high cloud
droplet and smallice nucleinumbers, where the fire plumes reduced cloud rain and snow water content, large scale
frontal system dynamics were altered by smoke, and precipitation was delayed byThdaecond period was
characterized by high numbers for cloud droplets and ice nuclei, where the fire plumes reduced rain water content,
increased snow water content, and precipitation locations changed locally across the simulation domain. Russian
forest fire simulations for 2010 witBuites of on-line coupled akquality models (Makaet al.,2015; Palaciofena

(
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etal.,2018; Baraet al.,2017) showed substantial localimpacts, such as reductions in average downward shorwave
radiation of up to 80Wrhand temperature 6d.8°C (Makaret al.,2015a)).

Given the above developments in direct and indirect parameterizations, and the increasing amount of information
available for estimating forest fire emissions, the impact of forest fires on weatltee gontext of weather
forecasting, is worthy of consideration. Ajuality model predictions of forestfire plumes have been provided to the
public under operational forecast conditions of tiemed memoryspace limited computer resources (e.g. Ghteh

2019; Jamest al.,2018; Ahmadoet al.,2019, Paret al.,2017). These simulations make use of satellite retrievals

of forest fire hotspots, climatological data onthe extent of area burned by land use type, databases of fuel type linked
to emissdn factors, and aa priori weather forecast to provide the meteorological inputs required to predict forest
fire plume rise.The latter point is worthy of note in the context of the directand indirect feedback studies noted above
T both climate and weher simulations with prescribed forest fire emissions have consistently resulted in large
perturbations of weather patterns in the vicinity of the forest fires. However, their approaches for predicting forest
fire plume rise and firgtensity and fustonsumptionin operational regional scale forecasts up untilnow have reled

on weather forecast information providegrioriand hence lacking those meteorological feedback effects.

The connection of the ADE and A¥thin a regionahir-quality and wather forecast modebntexis referred to as
ficouplingo, wi tdescibadnthathodyrwdlitbratleesb dfiiom@ c ou p | eal.®016)Gal mar i
or A aa&wa@©mltand Freitas, 2014However, several researchers have exanaeeasciradiative couplng

along withfire spread and growtfas opposed to fiiatensity and fuel consumptipnThe latter work employs very
high-resolution forest fire spread and growth mogafsd due to their very high resolution, an additionalllee
coupling that ofinteraction of dynamic meteorology withe heat released blye fire,may be included. However,

the resolution requirements for these models (and their need for a relatively small computational time step) constrains
theirapplicatbon to a relatively smallregion. A requirement forthese approaches is the use of a very high resolution
fire growth modelimbedded within the-gjuality model. At these resolutions, gieulated locakcalemeteorology
determines fire spread on tldscapgewhich inturn modifiesthe temperature and wind fields, in turn affecting
future fire spreadThe seminal work on this topic was carried ouClayket al.(1996, andLinn et al.(2002). More

recent work includes the development of the WARRE model (Mandett al.,2011; Coeret al.,2013), with full
chemistry added in the WRFSC model (Kochaeskil., 2016). Examples ofthe resolution required for these models
include inner domain resolutions of 444 m with an imbedded fire model me&l2afizesolution, and a time step of

3.3 secondé&ochanskiet al.,2016) 1.33 km with an imbedded fire model mesh of 67.7m, and a time step of 2
secondgKochansket al.,, 2019),and 222m, with a fire model mesh of 22m and a time step of 2 sq@aratwet

al., 2015). Kochanskiet al(2016)also noted a 13 to 30 hour computational time requirement to run their high
resolution modelling system. These modelling efforts allow for this additional level of coilflintcat the expense

of additional canputation time preventing, at the current state of supercomputer processing, their application on
synopticscale forecast domains combined with a full gas chemistry andesieédvzed mulicomponent partice
chemistry representation. Here we explore tifeces of fire emissions characterized by firtensity and fuel
consumptionmodelling on the aerosol direct and indirect effects over synoptic scale domato u@ling refers to

that between the aerosols releasedirbg and other sources to meteomy through the ADE and AIE, with the
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resulting changes in meteorology in turn influendirgintensityanduel consumption,in turn influencingplume

rise, emissions heighand distribution, closing this feedback laoye do not implement a very highasolution

growth model, noting thatthis is impractical for operational forecasts at the current time, while showing that synoptic
scale 2.5km simulations incorporating fire feedbacks may be carried out within an operational window with currently
availalde supercomputers. As shown below, we find that a sufficiently substantial feedback between the aerosol direct
and indirect effects can be discerned to change the vertical distribution of emitted pollutants.

A key consideratioin parameterizinghe AlE (via aerosokloud interaction) is the manner in which ttleud
condensation process is represented imigteorological component of thdeling systemln numerical weather

prediction (NWP)models, clouds and precipitation are represented by a cdimhiodphysical parameterizations

that are each targeted at a specific -scaddoadsgeneratedno i st
by the boundary layer and the convection parameterizatiiemes (e.g Sundquist, 1988 d &G ek Pl cl ouds f
the gridscale condensation sche(Milorandt and Yau, 2005(a,b), Morrison and Milbrandt, 2015, Milbrandt and
Morrison,2016)Depending on the model grid these fimoist phys
However, egardéss of thehorizontal grid cell sizethe gridscale condensation scheme plays a crucial role in
atmospheric models, thoughto different degrees and using differentmethods, depending on the grid spacing and the
corresponding relative contributions of iplicit schemesA grid-scale condensation scheme willin geneoakist

of the fdlowing three components: 1) subgrid cloud fraction parameterization (CF, or doufimacr op hysi ¢
scheme); 2) enicrophysics schemend 3) gprecipitation schem@ouaretal, 2020) The cloud fraction (CF) is the
percentage ofthe grid element thatis covered by cloud (andis saturated), even thougisthéegathtive humidity

may be less than 100%. The microphygiasameterizatiosomputes the bulk effés of a complex set of cloud
microphysical processes. If precipitating hydrometeors are advected by the modeldynamics, the precipitationis said

to beprognosticif precipitation is assumed to fallinstantly to the surface upon production, it is ceasitigmnostic

The precipitation Aschemed is not a separate compone

microphysics parameterization, but it is a useful concept to facilitate the comparison of differesxtalgrid
condensation pameterizations.

With a wide range of gridell sizesn current NWP models, there is a wide variety of types of condensation schemes
and degrees of complexity in their various components. For example;resolding modelgwith grid spacing on

the orderof 1 km or lesshave typically used detailed bulk microphysics schemes (BM@),prognostic
precipitation, aneshodiagnostic or prognosticF component.g.the CFis either 0 or 1)Largescale global models

use condensation parameterizations,someme s r ef erred t o as fistratiformd cl
microphysics and diagnostic precipitatibnt with more emphasim the details of the CF. However, with continualy
increasing computer resources and decreasing grid s pacthgn(lbes earch and operational prediction systems), the
distinction between schemes designed for specific ranges of model resolutions is disappearing and condensation
schemes are being designed or modified to be more versatile and usable across ageidgrmadel resolutions

(e.g. Milbrandt and Morrison, 2016).

Aerosolcloud interactions and feedback meckasiare difficult to represent grid-scalecondensation schemes

with very simple microphysics componentor example, to benefit from the predid number concentrations of

(0



220  cloud condensation nuclei and ice nuclei, the microphysics needs to be-ohontat (predicting both mass and

221  number) for at least cloud droplets and ice crystals, respectideliil recently,detailed BMSswvere only used at

222  cloud resolving scales, hence requiring these relatively high resoltdgibesrecommended feedback modelling.

223  In recent years, muithoment BMSs have been used in operational NWP for model grid spacingskoi Ze.g.

224  Seityetal, 2010, Pinteet d., 2015, Milbrandét al, 2016). Further, condensation schemes with detailed microphysics
225  are starting touse nesinary CF components (e.g. Chosebal, 2014, Jouaet al.,2020), thereby allowing detaied

226  microphysicsto be used at larger scaled faance allowing the same indirect feedback parameterizations to be used
227 at multiple scales. Nevertheless, the expectation is that detailed parameterization will provide a more accurate
228 representation of cloud formation at the near clmsiblving scalesvithoutthe complicating aspect of a diagnostic

229 CF, motivating the use of ksrale grid spacing for feedback studies.

230 The formation osecondanaerosols from complex chemical reactions are another key consideration in feedback
231 forecastimplementationjgen the impact of aerosol composition aerosol optical and cloud formation properties,
232  asdescribed above.

233  In the sections which follow, we describe our high resolutorine coupled aiquality model with ordine forest

234  fire plume rise calculationsyhich was created as part of the FIREXQ airquality forecast ensemble

235  (https://www.esrl.noaa.gov/csl/projects/firag/), to address the following questions:

236 (1) Will a on-line coupged model of this nature provide improved forecastsathweather and aiguality, using

237 standard operational forecast evaluation tools, techniques and metrics of forecast confidence? Thatis, despite the
238 uncertainties in the literature as describbdve, are these processes sufficiently well described in our model that
239 their use results in a formal improvement in forecast accuracy?

240 (2) Arethe changes in forest fire plume rise associated with implementing this process directly witlivea

241 coupled mdel sufficientto result in significant perturbations to weather predictions and to chemistry? Whatare
242 these perturbations?

243  We employ ouon-line coupled modelwith 2-:&m grid cell size domain covering most of western North America,

244  and compare modedsults to surface meteorological and chemical observations, and to vertical column observations
245  oftemperature and aerosol optical depth (AOD), in order to quantitatively evaluate the effect of feedback coupling of
246  the ADE and AIE on model performance. \then compare feedback and-feedback simulations to show the

247  impacts ofthe ADE and AIE feedbacks on cloud and other meteorological predictions, and on key air quality variables
248  (particulate matter, nitrogendioxide, and ozone). We begin our analisia eéscription of our modelling platform

249  2Model Description
250 2.1GEM-MACH

251  The Global Environmental MultiscaleModelling Air-quality and CHemistry (GEMMACH) model in itson-line
252  coupled configuration has been described elsewhere (Makdr,2015a,b Gonget al.,2015, 2016). Themodel
253 combines the Environment and Climate Change Canada Global Environmental Multis cale weather numerical weather
254  prediction model (GEM, Cotet al., 1998 Girardet al.,2014) with gas and particle process representasing the
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on-line paradigm, with options for climatological versus full coupling between meteorology and che@iSky.

MACHO6s main processes for the two configurations empl
Simulations were carried out with a & harizontal grid cellspacing over a 900 x 1370 grid cell domain, covering

most of western Canada and the USA (Figure 1). The meteorological boundary conditions for the simulation were a
combination of 1&kmresolutionGEM forecasts updated hourly (thems elogiginating in data assimilation analyses

of realtime weather informatioprigure 1(a), and 2.5%km GEM simulationgFigure 1(c)employing in the northem

portion of ths 2.5km domain, the Canadian Land Data Assimilation System (Catafg2015) to better simulate
surface conditions. Both fAfeedbacko ahouforBcasbcycee edbac
(Figure 2). Following the usual practice for weather forecasts, the ardiyss meteorological forecasts at 10 km
resoltionwere updated operationally every 24 hours at 1Fgdjlire 2(a)) These 10 kmresolutiaveatheforecasts

wereused to drive a 3@our, 16km resolution GEMMACH forecast (Figure 1(b), Figure 2(b)), which employed

ECMWF reanalysis data fdlorth Armericanchemical lateradonditions (Inne®t al.,2019). The 1&m resolution

weather forecasts were also used to drid®aour meteorologyonly forecast at 2:8m resolution on the high

resolution domairfFigure 1(c), Figure 2(c)). The last 24 hours of th&rhdesolution GEMMACH forecastwas

also used to provide chemical lateral boundary conditions for the@42.5kmon-line couplel GEM-MACH

simulation (Figure 1(c), Figure 2(d)). The last 24 haifthe 2.5km GEM simulation were usexb meteorological

initial and boundary conditions for the-Béur 2.5km on-line couplel GEM-MACH simulation(Figure 1(c), Figure

2(d)). The two stages of meteoroleggly simulations were carried out to prevent dizadrift from the observed
meteorology, and to allow spimp time for the cloud fields of that meteorology to reach equilibrivcsmo{&

timeframg. Chemical initial concentrations for each consecutive forecast within thie2. GEM-MACH model

domainwee fAroll ed evhern ;i eadn bDeawegn subsequent forecasts
Forecast performance scomesented herare for the inner 2:6m domain from this set of linked 24 forecast
simulations, mimicking operational forecasnditions.

2.2CFFEPS Version 4.0: Online forest-fire plume rise calculations

In addition to the above algorithmimprovements relative to GBEMCH implementations, this model system setup
has incorporated the first dine calculation of foresfire plumerise by energy balanariven usingonine
meteorology, in a new version ofthe Canadian Forest Fire Emissions Prediction System (CFFEPS). The algorithms
of CFFEPSv2.03 are describedin detailand evaluated elsewheree(@he2019), but will be atlined briefly here,

as well as subsequent modifications to this forest fire emissions processing module.

CFFEPS combines newaltime satellite detection of forest fire hotspots with national statistics of burn areas by
Canadian province and by spexffiel type across North America. CFFEPS assumes persistence fire growth in the
subsequent 24to 72hour forecasts with hourly fuel consumed calculated (K rhased on GEM forecast
meteorology and predicted firgensity and fuel consumptiamgrid cells representing fire locations. The modeled

fire fuel consumption is then linked with combustjamase s pecific emis sion factors (g'kfpr fire s pecific emissions

and chemical speciation. Fire energy associated with the modelled combustios ipralsesestimated, and is used

in conjunction witha prioriforecasts of meteorology within the column to determine plume rise. In-dis@fion



291  coupled configuratio(Chenet al., 2019) CFFEPS carries out residual buoyancy calculations at fivefpessure

292 levels (surface, 850, 700, 500, 250 mb). CFFEPS predicts plume injection heights, which are in turn used to
293 redistribute the mass emissions below the plume top to the model hybrid levels. This approach employed in
294  CFFEPSv2.03 provided a subsialimprovement in forecast accuracy relative to the previous approach employing
295  modified Briggs Briggs, 1965, Pavloviet al.,2016 plume rise formulae in the offline GEMIACH forecast system

296 (Chenet al.,2019). A recentevaluation ofthe plume heights predicted by CFFEPS was carried out utilizing MISR
297 and TROPOMI satellite retrieval data (Griffin et al, 2020). Seventy cases studied using MISR data showed good
298 agreement between satellite and CFFHaRSIicted marmum and mean plume heights (maxmum plume height

299 observedversus predicted values and standard deviationg.9lversus 2.01.0 km; mean plume height observed

300 versuspredicted: 1.3.6 versus 1.30.4 km). A larger number of case studied using TROP@Afa (671 in total)

301 also showed a reasonable agreement, with CFFEPS showing a small tendency to overpredict heights (maxmum
302 observedversus predicted plume heights 2@ versus 2.51.2 km; mean observed versus predicted plume heights

303 0.7 0.5 versus1.10.6 km).

304 However, otherwork has shown the substantialimpact of large forest fires on regional weathes{sllakai5a;

305 PalaciosPeneet al.,2018,Baro et al.,2017), including changes to the surface radiative balance and atmospheric
306 stability. These findings imply thatplume rise calculations employing priori weather forecast lacking the impact

307 offire plumes via the ADE and AIE may not accurately predict the weather conditions critical to subsequent forest
308 fire plumerise prediction. In oedtto study this possibility, and to allow forest fire plumes to influence weather and
309 hence subsequent fire spread/growth, several changes were made to CFFEPS implementation, resulting in version 4.0
310 of CFFEPS, used here. The process flow within CFFERPSwW&rsus CFFEPSv4.0 are compared in Figuréhe

311 original C language CFFEPSv2.03 code was converted to FORTRAN9O, and following succedsiel off

312 comparisons to the original code, was then integrated as-re@ubroutine package within GEMACH itseff,

313  with the neareatltime satellite hotspot data and location fuel parameters being read intéM28H directly

314 (CFFEPSvV4.0 is this new dime package). A key advantage ofthe CFFEPSv4.0 subroutine integration within GEM
315 MACH s that the residual layancy calculations for plume injection heights are now carried out over the model
316 hybrid model layers, rather than the five coarse resolution, prescribed pressure levels of CFFEPSv2.03, making
317 completeuseof GEMMACHG6s det ai |l ed vienaly, CRFEPSv4® dllows mume riseecalculaténg d i t
318 to be updated during model runtime. When GEM\CH is run in on-line couplel mode, the ADE and AIE

319 implementations allow modglenerated aerosols to modify the predicted meteorology, in turn influeneiigted

320 fire emissions and plume rise, closing these feedback Iddpesonline implementation of CFFEPSv4Busallows

321 us to investigate the effects of meteorology on subsequetdt foe plume developmerihe changes to modeled

322  aerosolcompositiaand ultimately, the feedbacks to weather.

323 The formation of particles from forest fires affects meteorology on the larger scale via the ADE and AIE, in tum
324  modifying the regional scale atmospheric features affecting fire growth, such as the tempeofites below forest

325 fire plumes.However, we note that CFFEPSv4.0 employs forest fire heat to determine plume rise as a subgridscale
326 thermodynamic process parameterization ratherthana very high resolution explicit fire growth parameterization; the

327 very local scale weather modifications due to the addition of forest fire heat to the atmosphere are not incorporated



328 into fire spread or GEM microphysics. Specifically, when the feedback version ofNGEEH incorporating

329 CFFEPSv4.0 is used in issHinecoupled configuration, CFFEPSv4.0 uses estimates of the heatreleased to calculate
330 forestfire plumerise. These calculations employ lapse rates at the fire locations, that with feedbacks enabled, include
331 the ADEand AIE generated by forest fire aerosalsitmospheric stability within the curremtline couple model

332 timestep. Thisis in contrast to earlier-tirie implementations of CFFEPS, which made usepriori non-feedback

333  weather forecast lapse rateko the best of our knowledge, this ig fitrst implementation of a dynamic forest fire

334  plume injection height scheme incorporated intmdine coupled higkresolutionoperationahir quality forecast

335 modelling system. The impact ofthis feedback on both weather agdadity can be subst#ial, as we show in the

336 following sections.

337 The locations of the dalily forest hotspots detected during the study period, and the corresponding magnitude of the
338 daily PM2.5 emissions generated by CFFEPS fohdwtspot are shown in Figure #hdividual hotspots with the

339 highest magnitude emissions are locateithe state of Nevada (Figuréd, southern boxed region). However, the

340 largestensemble emissions froma suite of hotspots occurs in noribertaAFigure &), northern boxedegion).

341 Bxanded views of the northern Alberta and Nevhdtspots are shown in Figur@#£) respectively the use of

342  smaller symbols shows that the Alberta hotspots are groups representing large spreadingciirevengiotted in

343  Figure 4a), whilethe Nevada hotspots indicate single fires of small spatial extent and duration rather than larger
344  spreading fires. The Alberta fires are thus the mostsignificant sources of forest fire emissions in the study domain for
345  the period analyzed here

346

347 2.2Feedmack and NoFeedback Simulations

348  Two simulations were carried out for the period Julytdrough August52 0 1 9 ; a fifeedbacko (A
349 feedbacks enablédon-linec o upl ed mo dfed ¢ d manadk ca siinnoul ati on (ADE and
350 climatologcal aerosol radiative and CCN propertiethe oneway couplednodel). During this period, five large

351 forestfires tookplace in the northern portion of the modelling domain. The two parallel combined meteorology and

352 air-quality forecasts in then-line coupled model with/without ADE and AIE coupling were evaludbed

353 meteorological and air quality variablg=sollowing evaluation, the simulation mean values of hourly meteorological

354  and chemicaltracer predictions were compared to analyze the impaeired coupled ADE and AlE feedbacks on

355 both sets offields.

356 3 Model Evaluation
357 3.1Meteorology BEvaluation

358  Surface meteorological conditions were evaluated at-tiwaeintervals fromthe start of both of the two sets of pared
359 24-hourforecasts using stdard metrics of weather forecast performance including mean bias (MB), mean absolute
360 error (MAE), root mean square error (RMSE), correlation coefficient (R) and standard dewsatiom (all

361 comparisons, a 90% percentconfidencelevelassuming a normal distribution was used to identify statistically different

10
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results betweenforecast simulations. Note that 90% confidence levels are commonly used in meteorological forecast
evaluaton, with values of 80% to 85% recommended (Pinson and Kariniotakis, 2004) and up to 90% ustd (Luig
al.,2001) for variables such as wind speed, ratherthanthe 95% or 99% confidence levels in other fields, in recognition
of the difficulties inherent imprognostic forecasts of the chaotic weather system. Here, the confidence range
formulation of Geer (2014) has been applied using a 90% confidence level in model predictions, with the statistical
measures considered different at the 90% confidenceddnezi the 90% confidence ranges do not overlap. The
surface meteorological evaluations shown here only include those variables and metrics where results were
significantly different at the 90% confidence level.

Several model forecast output variables waraluated and the surface variables showing statistically significant
differences relative to observations at the 90% confidence level included: 2 m temperature, surface pressure, 2 m
dewpoint temperature, 10 m wind speed;lsgal pressure, and accumigld precipitation (the latter in 3 different
metrics). The comparisons are shown as time series inlibtely intervals as a function of forecast hour prediction

time forward from forecast hour O, for grid cells corresponding to measurementlocakinses 5, 6, 7, 8, 9, 10,

and 11 foreach ofthese quantities, respectively. Notethat these statistics measuraitiEpairformance, across

all of the reporting stations within the model domain, during the sequenceh@i?4orecasts comprisingeh
simulation period. The duration of the time series in these comparisonfigures is thus a function of the duration of the
contributing forecasts.

Figure 5 shows an example analysis for surface temperature bias for the entire modeldomain. Figoves3(e) sh
average modehean biasNIB) time series across all stations and all forecasts atthe given forecast hours, while Figure
5(b) shows the corresponding difference in the MB absolute values. The difference plot in Figure 5(b) shows the
feedback no-feedback scores, such that scores below the zero line indicate superior performance of the feedback
forecast, while those above the zero line indicate superior performance coféleelback forecast. Here, the feedback
forecast was statistically supermtrforecast hours 3, 6, 183 and 24at the 90% confidence level at these forecast
hours, and both simulations were at par (differences below the 90% confidence level) atzemnus21, with the
no-feedback forecast being superior at 90% confidendeoar @ The feedback forecast thus has superor
performance, at greater than 90% confidence, over half ofthe forecast hours evaluated within the qoixrakamf
performance awo hours(hours 12 and 21, both within 90% confidence limits)d inferor performance at one hour
(hour9) during the simulation period.

All of the metrics for which surface temperature forecast performance differed atthe 90% confidence level are shown
in Figure 6. In addition to MB, the scores for MAE, and RMSE showed superior forecast performance for the feedback
relative to the ndeedback case at the 90% confidence level for hdrand 18 while the improvement for the
correlation coefficient was only reached the 90% confidence lelielLatl8

The meteorological forecast performance metrics with statistically significant diflesefor surface pressure,
dewpoint temperature, and slegel pressure are shownin Figures 7,8, and 9respectively. The model performance
differences in these three Figures show a similar pattern: a degradationin performance with the use offeedbacks
hour 3, with the differences between the two forecasts either dropping below the 90% confidence level, or the feedback
forecast showing an improvement by hour 9, followed by severalhours in which the feedback forecast has a superior
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performance, usugllat greater than 90% confidence. The duration of this latter period varies between the metrics,

fromup to 18 hours for MAE for surface pressure (Figure 7(b)) to 3 hours fostiedation coefficienvf dewpoint

temperature (Figure 8(d)).

Theinitial |l oss of

performance for the feedpackhfhormawsbem

toon-line coupled models, butmay be affected orimproved with further adjustments to the forecast cycling setup for

the chemical species. As noteaklier (Figure 2), in order to prevent chaotic drift from observed meteorology, we

made use ofa Iour 2.5kmresolution analysidriven weather forecasttoupdateominec o upl ed model 6s

meteorology at hour zero of each 24 hour foreclisé cloud fields provided as initial conditions athour zero include

observation analysis forthe 6 hours prior to hour zdrese have reached a guaguilibriumin the highresolution

weather forecast (Figures 2(b,e)) by the time they are usediakaind boundary conditions in tbe-line coupled

model (Figure 2(c,0).

However, tlminec o u p | e d aenosoffiedds @t frour zero, used to initialize the

subsequent forecast (Figure 2, dashed blue arrow), still reflect the locations of -eod @iteractions in the

previouson-line coupled simulation.Theinitial three to sixhours of feedback forecast degradation represents the

time required for thenline coupled model to reach a new equilibrium consistent between both its aerosol and the

cloud fields.

One possible solution for this model sfip inconsistency would be to eliminate the intermediate drivingr.5

meteorological simulation in favour of a longer#8uron-line coupled forecast with the first sixhours removed as

spinup (i.e. extend the duration of steps (c) and (f) in Figure 2 to 30 hours, starting at UT hour 6). The duration of

the forecast experiments carried out here was limited to 24 hours due to limited computational resources, and, more

importantly, the operationagquirement for an otime forecast delivery for the purpose of the FIRER field

campaign. The 2hour forecast simulations carried out in Figure 2 (c,f) each required nearly 3 hours of

supercomputer processing time; longer simulation periods weressibfe within the operational window available

for forecasting.

Model 16m windspeed forecasts were also improved with the incorporation of feedbacks for hours 3 and 6, for all

metrics (Figure 10). A decrease in MB performance at hours 21 and 24che alsen in this Figure.

Precipitation forecast performance fromthe two simulations varied depending on the metric chosen (Figure 11). The

metrics in this caswer e

contingency Tablg.
The Heidke skill score {O°Y'YC 0O 6 6] 06 6 6 O 0 O
improvement of the forecast over the number correct by chance. The FrequencydBiasg 6 j 6 06 }

based on the number

of coi-eacentend o esch @

6 'O } measures the fractional

measures the frequency of event efegecasts (FB>1) versus event unff@ecasts (FB<1). The Equitable Threat

score{OY'Y 0 0 O O

P

b hwhered 6 6 6 6] 0

60 O 'O}measures the observed

and/or forecastevents thatwere correctly predidtedlowing standard practice at Environment and Climate Change

Canada, the HSS is used as a measure of total precipitation accumulated-owar a&erval, with no lower limit

on t he

amount

of

precipitation

peé¢chpngainoMevene 0t s

with greater than 2mm/ 6 houirsconsequently FB and ETS have a smaller number of data points for comparson

than HSS.
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Figure 11 shows improvements to treline coupled precipitation forecast at the 90% confiddexeel were seen for

the HSS éhour accumulated metrigt hours12 and 24, while the frequency bias index efi@ur accumulated
precipitation showed degradation at houas 1@l improved performance at hour aBd the equitable threat score of
6-houraccumudted precipitation showesdgnificant differences at 90% confidence betweenthe two simulafiens

is noted above, the latter two metrics employed a minimuhow precipitation threshold of 2 mm prior to
comparisons (this is the reason for the reducedber of points available for comparison in Figure 11(b,c) relative

to Figure 11(a)). These findings suggest thabthiinec o u p| e d mo dnents fokotal preaippation (Figure
11(a))arethe result olightly improved performance for relatilyglight precipitation events (< 2mm 6Hr.

The amalgamated observations and model pairs of vertical temperature profile datafrom 39 radiosonde sites in westem
North America are shown in Figures 12 and 13. Improvements in the forecasted tempertitateradile with
increasing forecasttime are eviden2s®, 300, 400, 500, ar@$0 hPa in the f2hour forecaswith degradations at

200 and 700 hPgrigure 12) Improvements at 30025 and 1000 hPaay be seein the 24 hour (Figure 13)

forecast; it is also worth noting the entire region at and below 300 hPa has improved temperature forecasts (mean
values to the left of the verticalline), albeit not always at >90% confiddiwere are larger differences between the

1000 hPaforecasts, thoudtese also have the least number of contributing stations (i.e. only those located close to
sealevel contribute to the lowest level temperature biases). Other levels of the atmosphere showed no statisticaly
significant changat the 90% confidence lehie temperature profile forecast performance with the use of feedbacks.

3.2Chemistry Bvaluation

|l mprovements to air quality model performance metrics

dispersion model evaluation (Fox, 1984jd the identification of mean bias and normalized mean square error as
potentially useful metrics to complement the Pearson correlation coefficient (Hanna, 1988). More recently, the
Pearson correlation coefficient has been noted as being capably oéipmphligh values for relatively poor model

results (Krausetal, 2005), as well as being unable to distinguis h systematic model underestimatbal(Y2006),

unable to provide information on whether data series have a similar magnitude andafgabiding a false sense

of relationship where none exsts due to outliers (Duveiierl., 2016) and clusters of modahservation pais
(Aggarwaland Ranganathan, 2016). More recently, model evaluation has focused on metrics which do not have the
tendency toweightthe higher magnitude values unduly (a particularly useful property\gitiality variables which

may vary by several orders of magnitude), which are dimensionless (allowing a comparison across different evaluated
variables), and whichra bounded and symmetric (properties allowing comparisons to be made and equally valued
across the entire range of possible concentratigsYuet al.(2006). Metrics such as the modified coefficient of
efficiency (Legates and McCabe, 1999) and the more recentincarnations of the IndexOf Agreement &halmott

2012) are examples of the more recent metrics used fquality model evaluation. Heregwave made use of a

range of metricspanning the literature on this topigith the understanding that the properties of different metrics

vary, that no single metric provides a perfect means of evaluating model performance, and that a variety of metrics
should be applied. The metrics used here span the
and include Factor of 2, Mean Bias, Mean Gross Error, Normalized Mean Gross Error, Correlation Coefficient, Root

13
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Mean Square Error, Céfieient of Efficiency, and Index of Agreement. The formulae for these metrics and a brief
description of their relative advantages and disadvantages appears in AppendixA (Supplemental Information).

Bot h simulati ons 0 3)mirogémioxdesNOyaad faniculatenaterwith dia@eters less than
2.5 M(PM2.5) were evaluated usitige above metrics, employimgurly AIRNOW data USA: AQS network

https://www.epa.gov/ag€anadaNAPSnetwork http://mapscartes.ec.gc.ca/rmspmps/data.aspand theopenair

package (Carslaw and Ropkins, 201Zhe summary performance metric scores for the two simulationgegiou

accordingto contributing measurement network, are shown in Bakith boldface values indicating the better score

for the given simulation case. With respectto thistable, we notethat:

(@) The feedback simulation generally outperforms thdesabak simulation (more boldace scores in the
i f e e drows, ik3Dout of 48 metric comparisohns

(b) Feedbackforecast score improvements occurred were more noticeable for PM2.5 (usually first to second digit),
followed by Q, with the NQ scores often being the same for the first few digits.

(c) Wenote that the boundary conditions employe@dour 2.5km simulations had a strong impact on model air
guality performanceAs describedlaove, these boundary conditions originateal ¥®km resoldion simulation
making use oECMWFglobal reanalysis values on its olateral boundarieslhe magnitudes of the statistics
of Table 3may be compared to the magnitudes of the statistics fromour &REBD submission (which made
use of a MOZART 2009 reanalysis fochemicallateral boundary conditions for the 2.5km GHEWACH
domain. The use of feedbacks hadimilarrelative impact on forecast performance (34 out of 48 statistics
improving in the feedback forecast in théial simulation, comparetb 35out of 48 statistics in the cunent
work). However, the net impact of the ECMWFven 16km GEM-MACH values being used for chemical
lateral boundary conditions, rather than the MOZART climatolegs a degradation of performancAs we
show belav, however, the revised boundary conditions led to improvements in model aerosol optical depth
performance relative to observations.

The impact of lateral boundary conditions on model predictions can be seen when comparing MODIS retrievals of
aerosolopt al depth (AOD) with model predictions (Figure
and optical properties, integrated throughoutthe vertical column. However, direct comparisons between satellite and
modelpredicted AOD values must liedertaken with some care, due to the nature of the satellite retrieval quality
assurance and control procedures, the motion of the orbiting spacecraft, and the scan time of the inStieiment.
mannerin which AOD is calculated introduces additional ttaicety due to the range of values which may be derived

from the same aerosol speciation using different methodologies éCaicP015). For a polaforbiting instrument

such as MODIS, the time at which overpasses occur varies with location, arshtellite retrievals may not occur

when the location being scanned is obscured by clouds. Observed averages may be built up over multiple valid scans
overtime, but the number of valid scans contributing to the localaverage at any given locatioy wdlliedo the

time and space variation in cloud cover. Here, individual valid Collection 6.1 MODIS/Aqua (MYD04_L2

AOD_550_Dark_Target Deep_Blue_Combined) 10 km resolution 550 nm AODs were matched in time and space to
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the nearest model 2i&n grid cell andoutput frequency hour. Lewst al.,(2013) contains details on the MODIS
combined AOD productNo averaging was employed in our comparison (Figure 14); all satellite overpass AOD
pixels and matching model AOD pixels are shawNoting that the AOD colar scale is logarithmic, the model
simulation driven using the ECMWF +-kin resolution GEMMACH for boundary conditions (Figure 14(b)) s a
much better match to observations (Figure 14(a)) than the model simulation driven by M@EA&RBlogical
boundanconditions (Figure 14(c)). The slope of the linear bestfit ine between all observation and model pais in
each case mirrors this finding, with the original (MOZART climatology) boundary conditions having a slope 0of 0.15
and Rof 0.0382, and the revidECMWF + GEMMACH 10-km boundary conditions having a slope of 0.56 and an

R? 0f 0.067.

Previous work with CFFEPS by Chenal. (2019) for the 2017 fire season has shown sifis spositive biases

for western Canada, with MB of +58 m?* (88 stations) and for Western USA with MB of +ggsm? (221 stations).

These positive biases (Chetral.,2019) were higher specific to swegions closer to areas of active fires (MB of +12

ug m?® for the sukregionincluding the provinces of Albeaad British Columbia, and +2@ m® for the subregion
comprising the states of Idaho, Montana, Oregon and Washington, res pecfivédgst part of the positive biases

may be due to 10km GEMNACH forest fire emissions occurring in the state of Alals&mg overestimatedliring

the study period. However, the ECMWF reanalysis also captures significant particulate mass crossing the Bering
Strait from fires in Siberia during this period, so the relative contributions of fires within the low resolutibn GE
MACH domain and the ECMWF boundary conditions driving
the runs carried out here.

The local AOD positive biasesssociated with firesould also be the result of the mixing state assumptions of the

Mie code used here for generating aerosol optical properties. These assumptions may also accountfor negative AOD
biases over much of the remainder of the model domain. As noted earlier, this overall negative bias of ACD
predictiongboth boundary conditiononfigurations result in observation:model slopes less than igédyommon
problemin akquality modelsand may be due to assumptions regarding the model mixing statedCalr2015).

That comparison of multiple mixing state assumptions on A@Dabservations for European and North American
modelling domains (Curat al.,2015), showed a typical factor of two model ungezdiction of 440 nm North
American AOD across allmixing state assumptions, with European AOD negative biases rangimipfesed to a

factor of 2. These earlier findings along with overestimates at forest fire plumes with our current homogeneous
mixture approach at 550nmsuggest thatthe hygroscopic growth may be overestimated for forest fire particles, in tum
overestimang forest fire AODs locally, while external mixing assumptions may be required to improve model AOD
performance elsewherein the modeldomain.

3.3Model BEvaluation Summary

Overall, the incorporation of feedbacks in this study has resulted in improveamertther and ajuality forecast
accuracyalbeit with some caveatdVeather forecast variables showed improvements at the 90% confidence level
for several fields, and vertical profiles shoveethatching performance mnprovementsat most levels andhtes
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Total precipitation scores alsbhowed minorimprovements or matching performance at the 90% confidencélevel

previously unexpected spup issue specific ton-line coupled models was noted: the impactodine coupled

particulate matter on cloud variables was sufficiently strong that cloud field adjustment in the first 6 hours of the

forecast was required prior to some weather forecast variable improvements to be apparent (surface pressure, dewpoint

temperaturgsealevel pressure). While the current forecast cycling duration was constrained by operational

requirements, this suggests that forecast cycling should include bqthediiy and meteorological variables during

on-line couplel forecast spiup period. Thatis, the modeltracer concentrations 6 hours prior to the current forecast

startup could also be used during the initial meteorological-sipirperiod, thus allowing chemistry and cloud

formation to spirup simultaneously. Scores for surf@d25, NO,, and Q also generally improved with the

incorporation ofeedbackq35 out of 48 comparisons showed improvement)e choice of lateral boundary

conditions was shown to have a significantimpact on chemical performance within the model dio o@rimparison
mo with $né@aller mAgdiidde v al ue s
biases being associated with the ECMWF -kdDGEM-MACH boundary conditions The latter comparison also

to sateliteb ased AOD

showedthatlarge firesfeflomain in Alaskand Siberidikely had a large impacton AODs in the eastern and northem

val ues, t he

current

section of the model domaithrough comparison with our initial simulatians

4 Effects of Feedbacks on Selected SimulatiePeriod Average Variables

In thissection, we comparetime averages of the entire study period for the two simulations, both at the surface and in

vertical crosssections through the model domain, to illustrate some of the changes in both weatheqaalty/air

associated with the incorgadion of feedbacks. We have found differences at greater than 90% confidence between

the predicted meteorologicaland chemical forecasts in the vicinity of the Alberta/Saskatchewan forest fires, as well

as in contrasting changes betweenland andsea We e

again fieeedbalc&d shewuwfiadi on
time and spatially invariant aerosol CCN and optical properties, within the meteorological portion of the model. The

comparisonshus show the differences associated withuse of climatoloigal constanaerosol propertieand the

on-line coupled modefienerated aerosols

As in the meteorological evaluation, we have made use of 90% confidence levels in order to gauge the level of

significance of the differences between the feedback affiebaback simulations in the following analysis.

The approach for representing model grid value 90% confidence levels is described in detailin SI Appéltaix A2.

differences in the mean grid cell values between the simulations for which the abovey gugntiater than unity

differ at or greater than the 90% confidence level. Differences in the mean values, as well as the value ofthe above

ratio, are thus reportedin the following section.

4.1Effects of Feedbacks offime-Averaged Meteorology

The feedback no-feedback differences in the simulatipariod average cloud dropletnumber density (numbler kg

of air) and mass density (g waterkaof air) along centred crosections spanning the length and width oftsdm

resolutionmodel domain are shown in Figurd (crosssectiorlocationsa r e

fiLando,

and

ifForest

Fireo

16

regions

shown in Figure
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these crossections. Kjure B also shows the confidence ratio values as described dhregions where the
predicted mean values differ at or above the 90% confidence level are shown in red, while those differences below
the 90% confidence interval are shownin blue. Feddliacrease the cloud droplet number density over the northem
part of the domain, including the region impacted by the Alberta/Saskatchewan forest fires, fromthe surface up to
about500 mb (roughly equivalent to hybrid leveb00), and decreass highe elevationdurtherto the soutand

along the length of the modeldomain into the western USA (Fidi@a) 1 Cloud dropletnumbers also decrease over

the ocean, butincrease eastwards over the land (Fi§g. 1The lattelis unrelated to the forefites; this is an
indication thatthe modelled aerosolnumber concentration over the ocean is much lowesthgtettienatological

aerosol population assumed in thefeedback run, resulting in lower cloud droplet number concentratiomes.
changearesignificant at the 90% confidence level from the surface up to hybrid l&gei0the northern region

which is most impacted by forestfire smo&ad in isolated regiorfarther aloftalong the south to north cressction

(Figure B(c)), and ovethe regions othe ocean in the west to east cresstion (Figure 3(d)). Higherthan
climatology aerosol loadgs, a large portion of which adeie to the forest fires, resulted increased cloud droplet
number densities in the lower troposphere, whilerdasing them in the migb-upper troposphergigure 15(a))

This impact of feedbacks is in accord with the satellite observations of Sapbaar@017), and was also seen in
Takeishket al.(2020). In contrast, cloud droplet mass derfséyclouw liquid water content) largely decreases across

the domain along the norouth crossection (Figure3(e)), as well as overthe ocean, with a varying pattern over

the land in the eastiest crosssection (Figure&(f)). The magnitudes and significarlegels for the average change

in cloud droplet mass are lower than for cloud droplet number, with the most significant differences occurring over
the ocean (Figures{g,h)).

Consistent with the cloud droplet number changes, rain droplet numbers andixinegs gatios increaseloft with

the feedback simulatipaver both the forest region impacted by the forest fires (Figifeee)) and over the ocean
(Figure B(b,f), with a varying impact over the land and more distantfromthe forest fire soureae (B{f)). The

changes are significant at the 90% confidence level for rain droplet number in these regions (compa&djigure 1
with 16(c); 16(b) with 16(d)), while the rain droplet mass changemetimes reach but are usuélglow the 90%
confidencdevel(Figure 16(g,h))

These results suggest that relative to thdemalback simulation, which employs climatological aerosol CCN
properties, the AIE in the feedback simulation is causing significant change in hydrometeor numbers, and a less
significart increase in hydrometeor mass. In the foresifigacted region, the ADE and AIE in the feedback
simulation significantly increase the number of cloud droplets near the surfate@nghouthe middle to upper
troposphere (Figure5{a,c)). The raindrop number in the middle troposphere (Figuséa)) also increases
significantly between hybrid levels 0.90to 0.70 (Figws@)). Neaisurface rain drop number and rain drop mass
differences throughout the cross sections (Fig6fe, ) fall belov the 90% confidence level (Figuré(d,h).

Over the oceans, water droplet number and mass both decrease (B{gi)e &nd raindrop number and mass
increase (Figureglb,f)); more atmospheric water is converted to rain drops as a resultfeétimcks, relative to

the climatology in the néeedback simulation. However, these changes are more significantaloft than at the surface,
with the difference in both rain drop number and mass falling below the 90% confidencelevel nearthe surface. We
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interpret these changes as a shift in enagran liquid hydrometeor numbers andto a lesser degree the water mass aloft
from cloud droplets to rain drops due to the AIEin the feedback setup relative to the climatology efettback
simulation. Thechanges occur at the 90% confidence level aloft, but theseface changes are smaller and are
usually belowthe 90% confidencelevel.

Differences in the averagerfaceprecipitation fluxand the confidenceratio values are shown in Figui@€Hangs

in average precipitation (Figur@(a)) appear random, though locally these differences are significant at the 90%
confidence level (Figurerfb)). Both the magnitude ofthe differences and the frequency in their reaching the 90%
confidence level inciesesouthwestwards. Given the local and episodic nature of rainfall emépthigh level of
significance in this case probably results fromthe presence or absence of individual rainfall events between the two
simulations affectingthe local averagelatandard deviations.

Several systematic changes in the average values of
use of feedbacks relative to aerosol property climatologies (Figuralthough all fall below the 90% confidence
level for the difference in the mean values between the two simulations (E@ugpecific humidity increased in

the region most affected by fires (Figure 18(a), surtdcemperaturelecreased below the smoke plumes whie
increasing further sou(Rigure 13(b)), whiledewpoint temperature decreased (Figie)), implying a decrease in
relative humidity with feedbacks. Surface pressure increasadhe landmostly eastof the Rockiegjarticulary

in the region downwind of the Alberta/ Saskatchrfireswhile decreasing over the ocean (Figure 18(dPlnetary
boundary layer height increased over the land (Figws)l except in the immediate vicinity of the
Alberta/Saskatchewan firesonsistent with decreased atmospheric stabilitlye lowest part of the atmospheréhe

friction velocity also increased with the use of feedbacks (Figk{fg;Ihis is consistent with a decrease in stabilty

and an increase in turbulent energy The airtemperature incoeaseatthe surfagmuth of the foredtre impacted
regionand aboveoughly 750 mbdecreamg temperatures fromthe surface in the fof@estimpacted region up to

750 mb (Figure 20 (a,h)) Feedbacks thus increasearsurface temperatureeelative to theno-feedback
meteorological model 63nregionsfatfrem thefirerx deordasirg themrzear the foeg, y
decrease temperatures in the lower free Tropospnedéncrease temperatures further alaft of thesedifferences
between feedback and fi@edback simulationsiespite their large geographic range, fall belowloizal 90%
confidenceratio. However, when the differences in air temperature reswdtigpciated with feedback and-no
feedbackforecastre compared tobservationgcross themtire domainas opposed to at gridpoint locations as in
Figures 18 and )3he 90% confidendevelis exceeded both at the surface at specific forecast times (Figure 6(a))
and at multiple heights aloft at the"ehd 24 forecast hours (Figures 12)13

4.2Effects of Feedbacks on Timé\veragedChemistry

In the previous meteorologicalimpacts section, changes in aerosol loading relative to the climatology, dominated by
forest fires, were shownto have a significant impact on cloud formation angtriosemperatures through ADE
and AIE. These might be expected toin turn influence and be influenced by particulate matter emitted by the forest
fires, with the plume rise of the forest fires dependent on the meteorological changes. Air tempamases i
slightly in the model surface laysouth of the fire{Figure B(b), +0.01 to +0.09C) but decrease at greater
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magnitudes throughthe rest of the lower Tropospbkeiddce near thefires to hybrid level 0.749, Figure 204ah
amaxmum decirese 0f0.5C between hybrid levels @8and 0.88 The reduction in temperatures between hybrid
levels 0.90 to 0.70 from the impact of the smoke plumes is similar to the findings of Sapimlaf2017).These
changesir temperatures implies a decreased@ars urfaceatmospheric stability associated with feedbacks, given
that the overall temperature gradient from the surface has become more rdugttisethe ambient lapse rate has
increased)Rising air parcelsvill follow an adiabatic lapse rate; these increases in the ambient lapse rate imply that
rising air parcels willhave an increasing tendency to be warmer thantheir environment. Feedbacks have thus reduced
atmospheric stability within the forest fire skaoin the lowest part of the atmosphere; the atmosphere there has
become more unstabl&eanwhile, thdeedbacks decrease the environmental lapséurdther aloftabovethe forest

fire smoke between hybrid levels 0.848 and 0.3B8sing air parcels ithis region following an adiabatic lapse rate

will thus have an increasing tendency to be colder than their environthenatmosphere above the smoke plumes
hasbecome more stabl@his is echoed by the response of the concentration fields to theunteare stability change,

as can be seen through comparisons of the PM2.5aN@Q surface concentrations changes (Figuljea®d as

vertical crosssections (Figures223, 24), respectively.

Changes above the 90% confidence léoePM2.5 and N@occur nearthe forest fires themselves (red regions, near
top of modeldomain, Figurelga,b)) though remain below 90% confidence for O3 (Figure 21(c))

Feedbacks result in neanrface PM2.5 decreases in the regions downwind of the forest fires (Bigaiyd-igure

22(a), note the large blue region and more intense blue region near suFape@2%a)), suggesting less PM25

mass is present near the surface due to the feedb@nlen the increase in neaurface stability below the fire
plumes nogd above, this change in the vertical distribution probably reflects a decrease in downward diffusive mixing
of the forest fire plumes once albfthe feedbacks thus have a tendency to increase the smoke plume concentrations
aloft, by preventing the dowrasd mixing of smoke injected by the fire¥hese PM2.5 concentration effects rise
above the 90% confidence levelwithin the region closestto the fires.

Feedbacks result in an increase in raaface NQ@in several inland urban centers and less 8iQurface level
downwind (Figure 2(b), though these differences are only significant at the 90% confidence levelwithin the forest
fire plumes (FigureHe), Figure 23(c) Ocean versus land N@ifferences remain below the 90% confidence level
Feedbaks decreasddwer Tropospher®; near the forestfires (Figuréd@), Figure 2(a)), while increasing ¢hear

above hybrid level 0.383he forest fires are also the only areawhere the differences in between mean ozone forecasts
approach 90% confidence

Overall, the most significant effects of the feedbacks werefgases in PM2.5 aloft and decreases near the surface

in areas impacted by the fireend (2)ncreases in Ngaloft and decreases near the surface near the fires, to lesser
extenttharPM2.5, and (3) decreases in lower tropospherp&ticularly near the surfacein the region impacted by

the fires

The feedbacknduced changes in primary and secondary pollutants in the forest fire regions are consistent with the
decrease in atmospfitestability noted aboviea greater proportion of the primary particulate matter and&&ilting

from nearsurface forest fire emissions of N@main aloftwith the addition of feedbacks. The decrease in surface
ozone and increase further aloft in fineregion (Figure 2(a)) spatially matches tlieecrease in surfateO, (Figure
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22(a)). Chemically this may imply that the changes associated with feedbacks occur iHili2d environments,
i.e., with relatively high VOC/NOXx ratiossince in these efronmentsdecreases in NOx emissions may lead to
decreasesin the rate of secondagfo@nation. Alternatively, the reduction in neaiurface @concentrations may
reflect a decrease in light levels reaching the surdaeeto cloud attenuation (aerdgwalirect effect) with the
resulting lower photolysis rates resulting in a reductionin surface photochemical ozone production.
Ouranalysis thus suggeataeenhanced upward transport occurs in forest fire plumes due to feedbacks, and that this
transprt is linked to feedbaekduced:

(1) Increasein localnearsurfaceatmospheric stabilityreducing downward mixing of particulate plumes
once alof{Figure 2(a));

(2) Increases in cloud droplet numb#moughout the lower troposphdFfégure B(a)), and

(3) Increases in rain drop numbers aloft (Figg@.)).

This combination suggests the presence of an AIE feedback lmapeased lower atmosp hestabilty
resultsa greater proportion of particulate matter remaining afotitirn resultingn more particlesemaining ahigher
levels in the atmosphere where they may act as cloud condensation nuclei, increasing cloud droplets aloft (Figure
15(a)). This in turn results in increased lower middle troposphere cooling, throughAlte (increase in cloud
droplet numbers aloft leading to increased cloud albedo and cooling of the atmosphere below the cloud tops) whie
the corresponding decreases in particles and cloud condensation nuclei at lower levels results in a sisaif@enear
impact on the AIE and ADE, hence relatively minor changes onswetace temperatures (Figur@@). This
combination maintains a feedbacklucednearsurfaceunstable temperature gradient, relative to thefesalback
simulation employing aerosal@perty climatologiesWe acknowledge thatthese changes in temperature fallbelow
the 90% confidence level for the averages over all times, though note that differences in mean bias relative to
observations for the two simulations became significantigréint at specific times of day in the forecasts (Figure
6(a), hours 3, 6, 15 and 18, corresponding to 15, 18, 3 and 6 UT, or 9 AM, 12 noon, 9 PM, and midnight MDT),
implying that the temperature changes at these specific times reach a higher lewdflcds@p. Similarly, Figures
12 and 13 showreductions in the nearface temperature biases with the use of feedbacks.

4.3Summary, Differences in Forecast SimulatiorPeriod Averages

Relative to the ndeedback simulation employing an aerosol climagyl, the AIE feedback as simulated here is
associated witincreasem nearsurfacestability over both ocean and fordse influenced land areas. Over oceans,
nearsurface particulate matter is removed as cloud condensation nuclei, resulting isédctead droplet numbers,
maintaining the temperature gradient through tleetosol indirect effect. In the vicinity of forest firessreases
nearsurfacestability result inmorePM2.5remainingaloft, increasing the availability of cloud condation nuclei

aloft, increasing cloud dropletnumbers aloft, hence also maintainitegtséable neasurfaceaemperature gradient
throughthe %aerosolindirect effect. We note that the ADE may also play a weak role, particularly in the southem
pat of the domain, where lower atmosphere temperature gradientincreases are not accompanied by significant

changes in cloud droplet numbers (Figu@), southern half of the cressction), but are accompanied by significant
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though small magnitude incresssin PM2.5 in the lower atmosphere (Figu2éa®, southern half of crosection),
and temperature profile changes (Figuigizlow the 90% confidence level.

5Conclusions

The work carried out here suggests that the answers to our two research qestiGmm-tine coupled models
improvebothalqual ity and meteorological forecasts?0 and AATr
implementing forest fire emissions withira-line coupled model sufficient to significantly perturb weatgl
chemistny? 0 ) a r qualifiedfit yhe S@bhin thehigh resolution domain size employkeére jmprovementor
matchingweather forecast performaneas seen for most times and heights in the atmosphere, at greater than 90%
confidence. Improvementin model performance fasurfacePM2.5, NQ and Q were also found, across most
statistical measurg85 out of 48 statistical evaluation scores showed improvemeddshparing average vertical
crosssections, the chemical concentration changes assbuidtefeedbacks were the most significant close to the
forest fires in the northern portion of the domairhere, increaseletvertical transport associated witlecreased
nearsurface stabilityowered neasurfacsPM2.5 andNO: concentrations and ineased themalofindresuliedin

reduced surfaceO

Our simulations suggest that aerosol optical depth in the region, as well as the overall chemical performance of the
model, was strongly influenced by upwind boundary conditions. AODs were biaseddpitelPM2.5 positive
biasessuggeshgthat the homogeneous mixture approach for aerosol optical properties results in a general under
prediction of aerosol optical depths, in accord with Cetdal. 2015),and that obtaining better data for forest fr
aerosol optical properties should be a priority for future study, as well as an examinagkterofll mixture
approachesPositive AOD biases in the region affected by feeggests that forest fire plumes have significantly
different optical propeigs, and may be less hygroscopitan industrial aerosols of comparable size. Special /
separate treatment of forest fire CCN and optical properties are therefore also recommended in future work.

On-line coupling forest fire plume rise calculations lwithe weather parameters was shown to have a significant
impact on the height of primary pollutants reached by forestfires, the formation efurése ozone near the forest

fires, and on particulate matter. These changes were largely driven by thehilEmaintains an increaslagse
rate(decreased neasurfacestability) over the foresfire-influenced and oceanic portions of the region studied. Weak
evidence forthe influence ofthe ADEwas shown in the southern part of the domain, wheremicrpasticulate

matter were also accompanieddgcreasen stability between the surface and the lowiddle troposphere (the
differences were at a lower than 90% confidence levelforthese comparisons of temperatures averaged over allmodel
times).

Relative to the ndeedback aerosol climatology for CCN and aerosol optical properties, the simulations carried out
here suggestedthat in the vicinity of forestfires feedbacks significantly increase cloudrdrojilet densitiesear

the surfacendaloft, and significantly increase rain drop number densities,alelfitive to forecasts driven by
climatological aerosol propertie®©ver the oceans, feedbacks decreased cloud droplet number density and increased
rain drop number density alpfelativeto the simulation employing invariant CCN propetrti€seanic cloudiroplet

mass increasedto a lesserdegree (with smaller regions above the 90% confidence level), as did rain drop mass (the
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mean differences for which for the most partremained belo@90%teconfidence level). This provides some evidence

for a shiftin atmospheric water mass associated with feedbacks fromcloud waterto rain overthe oceans relative to
the nofeedback climatology, though this shift occurred largely within the variablfiitiye cloud fields within each
simulation. Longer simulations may be needed to achieve higher confidencein this finding.
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1029
1030

Tables:

Model Process or| Description Reference  (where
Configuration applicable)
Component
Base weathel Global Environmental Multiscale (GEM), v4.9.8 Cote et al (1998),
forecast model Girardet al. (2014)
Base airquality | Global Envionmental Multiscalé Modelling Air-quality and| Moranet al. (2018)
model Chemistry (GEMMACH) v2
Aerosol Direct| Feedback simulatons: GEMACHO®G s pr edi| Makaret al (2015a,b)
Effect loading and Mie scattering using a binary waley aeroso

homogeneous mixtussumption, at 4 wavelengths employ

by GEM6s radiative trans

wavelengths for diagnostic purposes.

No-Feedback simulations: invariant climatological values

aerosol optical properties are used.
Aerosol Indirect| Feedback simulations: Modified P3 cloud microphyl Gong et al (2015),
Effect scheme, driven by an aerosol size and speciation sp AbdulRazzak ang

nucleation scheme (Abdilazzak and Ghan, 2002).
No-feedback implementation: P3 scheme driven by
invariant aerosolpopulation of a single lognormal si
distribution (with a geometric mean diameter of 100 nm
total aerosol number of 300 cheonsisting of pure ammoniu
sulphate).

The prognostic cloud droplet number and mass mixing r
from the P3 microphysicsra then transferred back to t
chemistry module for using in cloud processing of gases
aerosols (cloud scavenging and chemistry) calculat
completing the AIE feedback process loop in the case g

feedback implementation (Goegal., 2015).

Ghan (2002), Mrrison
and Mibrandt (2015)

Milbrandt and
Morrison (2016),
Morrison and

Grabowski (2008).

Forest fire plumg

rise

CFFEPSVA4.0 (see text)
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Gasphase ADOMII mechanism, 42 gas species. Stackwellet al. (1989)
chemistry

mechanism

GasPhase KPP-generated RODASS3 solver Sandu and Sand
chemistry solver (2006)

Cloud processing

Agqueous chemistry, scavenging of gases and aerosols,-1

Gonget al. (2015)

of aerosols cloud removal and wet deposition.
Particle Sectional size distribution and 8 chemical species. Gonget al (2003)
microphysics

Particle inorganig
thermodynamics

Local equilibrium subdomain approach

Makaret al. (2003)

Secondary organi
aerosol formation

Modified yield approach

Stroudet al. (2019

Vertical diffusion

Fully implicit approach, with surface fluxes as a boung

condition
Advection SemilLagrangian approach, -ghell mass conservatig

correction (ILMC approach)
Forest canopy Light attenuation within foresttanopies and turbulen{ Makaret al. (2017)
shading ang reductions due to vegetation applied to thermal coefficien
turbulence. diffusivity.
Anthropogenic Parameterization calculating residual buoyancy of the r| Akingunola et al
plume rise plume. (2018).
Meteorological Aerosol crustal material is inhibited when the soil water co
modulation of| is > 10%.
aerosol crustg
material
Ammonia Bi-directional flux parameterization employed. Whaley et al (2018),
emissions an( Zhanget al. (2003).
deposition
Methane treatent| Reactive, emitted and transported tracer
Leaf Area Indeq MODIS retrievals used to create monthly LAl values
data biogenic emissions, forest canopy shading and turbulg

deposition
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Vehicleinduced | Observatiorbased parameterizatiomsed to modify neaf Makaret al (2020)

turbulence surface coefficients of thermal diffusivity

1031

%ggg Table 1. GEM-MACH model configuration details and references
Event Event Observed
Forecast | Yes No
Yes A B
No C

1034

1035 Table 2. Event versus nonevent contingencytable. A = number of events forecast and observed; B=number of ewents
1036 forecast but not observed; C=number of events observed but not forecast; D = number of cases where events were neither
1037 forecastnorobserved.

1038
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1039

Chemical | Region | Simulation | FO2 | MB MGE | NMGE | R RMSE | COE |IOA

PM2.5 Western| No
Canada | Feedback |0.412 | 4.805 | 6.688 | 1.322 0.259 | 10.163 | -1.476 |-0.192
Feedback | 0.414 | 4578 | 6531 | 1.291 |[0.238 |9.803 |-1.418 |-0.173
Western| No
USA Feedback | 0556 |1.953 | 5.349 | 0.823 0.254 | 8571 -0.538 | 0.231
Feedback | 0556 |1.805 | 5.287 | 0.813 | 0.252 | 8.443 |-0.520 | 0.240

O3 Western| No
Canada | Feedback | 0.741 | 5.988 | 11.089 | 0.495 0.527 | 15.445 -0.223 | 0.388
Feedback | 0.745 | 5.891 | 10.969| 0.490 0.527 15.268 -0.210 | 0.395

Western| No
USA Feedback | 0.865 | 1.731 | 10.702 | 0.285 0.693 14.279 0.249 0.625
Feedback | 0.866 | 1.770 | 10.663| 0.284 0.694 | 14.225 | 0.252 | 0.626

NO:2 Western| No
Canada | Feedback | 0.437 | -0.997 | 2.757 | 0.594 0.564 3.965 0.154 0.577
Feedback | 0.429 | -1.037 | 2.758 0.595 0.565 | 3.936 0.154 0.577
Western| No
USA Feedback | 0.493|-0.346| 2.341 | 0.572 0.653 | 3.674 0.177 | 0.588
Feedback | 0.483|-0.427| 2.332 | 0.570 0.651 | 3.657 0.180 | 0.590

1040

1041  Table 3: Summary performance metrics for ozone, nitrogen dioxide, and PM2.5. Bokéace indicates the simulation with
1042  the better performance scordor the give n metric, chemical species and sukegion, italics indicate a tied score, and regular
1043 ontthe simulation with the lower performance score FO 2: fraction of scores within a factor of 2. MB: Mean Bias. MGE
1044  Mean Gross Error. NMGE  Normalized Mean Gross Error. R: Correlation Coefficient. RMSE Root Mean Square

1045 Eror. COE: Coefficient of Error. I0A: Index of Agreement.
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Figures:
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Figure 1. GEM-MACH domains: (a) GEM meteorology10km resolution forecast domain. (b) GEMMACH 10km resolution
forecastdomain. (ClGEM-MACH inner 2.5km grid resolutionforecast domain forcomparison to observations. Red linesindicate
locations of illustrative South to North and West to East crosssections appearingin subsequent analysisinthe text
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Time

12UT, 6UT, 12UT, 12 UT,
Day1 Day2 Day2 Day 3 (3)
L 1 1 1
Meteorological Initial and boundary conditions from
archived North American 10km P3 simulations. 6UT,| 12UT, 6UT, 12UT,
Chemical initial and boundary conditions from Da‘Z Daxz Dalv 3 DBX 3 (b)
ECMWF Reanalysis.
Meteorological Initial and boundary  guT, 12UT, 12UT,
conditions from archived North Day2 Day2 Day 3 ’( )
American 10km P3 simulations L L ! &
Meteorological initial and boundary conditions from 1207
GEM 2.5km P3 forecast. Chemical boundary conditions DayZ' Day3’ (d) ‘
from previous 10km GEM-MACH simulation. Chemical L :
initial conditions from ECMWEF reanalysis. "
12UT, 6uUT, 12UT, 1207,
Day 2 Day3 Day3 Day 4
L 1 F 1
n
[
5 _— Eas . [ ]
Meteorologl'cal Initial and l?oundz-?ry cond|t|or.ls frf:rp'archlvefi' 6UT,| 1201 1201,
North American 10km P3 simulations. Chemical initial conditions pay 3/ pay3 Day 4
from previous 10km GEM-MACH forecast. Chemical boundary L 2 ]
conditions from ECMWF Reanalysis. a
[
Meteorological Initial and boundary gaUT; 1; UT3' 1D2 Uz'
conditions from archived North Y 2% a‘i
American 10km P3 simulations :
[ ]
Meteorological initial and boundary conditions from GEM 2.5km L
P3 forecast. Chemical boundary conditions from GEM-MACH 1207, 12U,
10km simulation. Chemical initial conditions from previous 2.5km Da\P Da¥4

GEM-MACH simulation.

GEM archived 10km forecasts, North
American domain, created using
meteorological analyses and original
microphysics, Day 1 to Day 3.

GEM-MACH 30 hour, 10km no-feedback
forecasts, Western North American
domain, using P3 microphysics.

GEM 30 hour, 2.5km forecasts, Western
North American domain, using P3
microphysics.

GEM-MACH hour 2.5km forecasts
(feedback and no-feedback) Western North
American domain, using P3 microphysics.

GEM archived 10km forecasts, North

American domain, created using
@ meteorological analyses and original

microphysics, Day 2 to Day 4.

GEM-MACH 30 hour, 10km no-feedback

(f) forecasts, Western North American
domain, using P3 microphysics.

GEM 30 hour, 2.5km forecasts, Western

( North American domain, using P3
microphysics.

GEM-MACH hour 2.5km forecasts

(h)‘ (feedback and no-feedback) Western North
American domain, using P3 microphysics.

Figure 2: Example time sequencing of model simulations used to generate the X\ GEM-MACH simulations carried out here.
Green linesand print indicate GEM (weather forecast only) simulations), blue lines and print indicate 2.5%m GEM-MACH
simulations. Arrows indicate data flow (light green: meteorological information; light blue: chemical information). Stepsd)
through (h) illustrat e the sequence of forecasts used to generate two consecutive days of 2.5km-®BCH simulations. Note that
on-line coupling occurs only atthe 2.5km GEMMACH forecast level, in this sequencing.
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Operational Experimental

Configuration Configuration
(CFFEPSV2.03) (CFFEPSV4.0)
Satellite
Satellite Meteorology: Retrievals
Retrievals 72 hour forecast (hotspots)
(hotspots) sfc, 850, 700, 500, = =
250 mb temperatures
GEM_#/I_ACH
Offline Fire GEMﬂlrnamics
bemhgggur GEM %/sics
GEM-MACH
Speciated, Size resolved, Chemistry
vertically distributed Online Fire behavior
emissions (outputfile) model, providing
speciated, size-
! resplved, ver.ticallly
GEM-MACH dlstrlbutedtemlssmns

Figure 3: Process comparison between original (CFFEPSv23Qleft) and online (CFFEPSV4.0, right) forest fire emissions and
vertical plume distribution algorithms.
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Figure 4. Hotspot locations during the study period, colourcoded by daily total tonnes PM2.5 emitted. (a) Entire model 2&m
domain, with northern Alberta and northern Nevada sub-regions as red dashed boxes; (b) northern Alberta zoom, with smaller
symbols for individual hotspots showingthe large fire regions; (c) northern Nevada zoom, to the same scale as (b), showing isolated
hotspots with high emissions.

37



