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Abstract. The influence of both anthropogenic and forest fire emissions, and their and subsequent chemical and 12 

physical processing, on the accuracy of weather and air-quality forecasts, was studied using a high resolution, on-line 13 

coupled air-quality model.  Simulations were carried out for the period 4 July  through 5 August 2019, at 2.5-km 14 

horizontal grid cell size, over a 2250 x 3425 km2 domain covering western Canada and USA, prior to the use of the 15 

forecast system as part of the FIREX-AQ ensemble forecast. Several large forest fires took place in the Canadian 16 

portion of the domain during the study period.  A feature of the implementation was the incorporation of a new on -17 

line version of the Canadian Forest Fire Emissions Predict ion System (CFFEPSv4.0).  This inclusion of 18 

thermodynamic forest fire plume-rise calculations directly into the on-line air-quality model allowed us to simulate 19 

the interactions between forest fire plume development and weather.   20 

Incorporating feedbacks resulted in weather forecast performance that exceeded or matched the no-feedback forecast, 21 

at greater than 90% confidence, at most times and heights in the atmosphere.  The feedback forecast out -performed 22 

the feedback forecast at 35 out of 48 statistical evaluation scores, for PM2.5, NO2 and O3.  Relative to the 23 

climatological cloud condensation nuclei and aerosol optical properties used in the no-feedback simulations, the on-24 

line coupled model’s aerosol indirect and direct effects were shown to result in feedback loops characterized by 25 

decreased surface temperatures in regions affected by forest fire plumes, decreases in stability within the smoke plume, 26 

increases in stability further aloft, and increased lower troposphere cloud droplet and raindrop number densities.  The 27 

aerosol direct and indirect effect reduced oceanic cloud droplet number densities and increased oceanic rain drop 28 

number densities, relative to the no-feedback climatological simulation.  The aerosol direct and indirect effects were 29 

responsible for changes to the near-surface PM2.5 and NO2 concentrations at greater than the 90% confidence level 30 

near the forest fires, with O3 changes remaining below the 90% confidence level.    31 

The simulations show that incorporating aerosol direct and indirect effect feedbacks can significantly improve the 32 

accuracy of weather and air quality forecasts, and that forest fire plume rise calculations within a on-line coupled 33 

model changes the predicted fire plume dispersion and emissions, the latter through changing the meteorology driving 34 

fire intensity and fuel consumption. 35 
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1 Introduction 36 

Atmospheric aerosol particles may be emitted (primary particles) or result from the condensation of the products of 37 

gas-phase oxidation reactions (secondary aerosol).  With increasing transport time from emission sources, the 38 

processes of coagulation (colliding particles stick adhere creating larger particles) and condensation (low volatility 39 

gases condense to particle surfaces) tend to result in particles which have a greater degree of internal mixing (internal 40 

homogeneous mixtures). Primary and near-source particles are more likely to have a single or a smaller number of 41 

chemical constituents (external mixtures).     42 

Atmospheric particles also modify weather through well-established pathways.  Under clear sky conditions, the 43 

particles may absorb and/or scatter incoming light, depending on their size, shape, mixing state (internal, external or 44 

combinations) and their composition.  The presence of the particles themselves may thus affect the radiative budget 45 

of the atmosphere, resulting in either positive or negative climate forcing (i.e. the absorption of a greater amount of 46 

incoming solar radiation versus increased scattering reflection of that radiation back out into space, a p rocess known 47 

as the Aerosol Direct Effect; ADE).  Aerosols can also alter the atmospheric radiative balance through interactions 48 

with clouds, this influence being referred to as the Aerosol Indirect Effect (AIE).  Three broad classes of categories 49 

by which cloud/aerosol interactions take place (Oreopoulos et al., 2020) include the first indirect effect, where higher 50 

aerosol loadings resulting in increasing numbers of cloud droplets with smaller sizes, hence increasing cloud albedo 51 

(Twomey et al., 1977), the second indirect effect, where higher aerosol loadings suppress the collision-coalescence 52 

activity of the smaller droplets, reducing precipitation/drizzle, changing cloud heights, and changing cloud lifetime in 53 

warm clouds (Albrecht, 1989), and aerosol “invigoration” of storm clouds, where higher aerosol loadings may result 54 

in delayed glaciation of cloud droplets, in turn leading to greater latent heat release and stronger convection (Rosenfeld 55 

et al., 2018).    56 

The uncertainties associated with the ADE and particularly AIE account for a large portion of the uncertainties in 57 

current climate model predictions for radiative forcing between 1750 and 2011 (Mhyre et al., 2013).  Carbon dioxide 58 

is believed to have a positive (warming) global radiative forcing of approximately 1.88 +/- 0.20 Wm-2, while the direct 59 

and indirect effects both have nominal values of approximately -0.45 Wm-2, with uncertainty ranges encompassing -60 

0.94 to +0.07 and -1.22 to 0.0 Wm-2 respectively.  These uncertainties have spurred research designed to better 61 

characterize the ADE and AIE, and reduce these uncertainties, through both observations and atmospheric modelling.   62 

Observational studies of the ADE have established its large impact; for example, high aerosol loading over Eurasian 63 

boreal forests has been found to double the diffuse fraction of global radiation (i.e. increased scattering), a change 64 

sufficient to affect plant growth characterized via gross primary production (Ezhova et al., 2018).  Aerosol assimilation 65 

of Geostationary Ocean Color Imager Aerosol Optical Depth (AOD) observations into a coupled meteorology-66 

chemistry model showed that South Korean  AOD values increased by as much as 0.15 with the use of assimilation; 67 

these increases corresponded to a local -31.39 W m-2 reduction in solar radiation received at the surface, and reductions 68 

in planetary boundary layer height, air temperature, and surface wind speed over land, and a deceleration of vertical 69 

transport (Jung et al., 2019). Other studies in East Asia have shown ADE decreasing local shortwave reaching the 70 

surface by -20 Wm-2 (Wang et al., 2016), as well as significant changes in surface particulate matter and gas 71 

concentrations in response to these radiation changes.   72 
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However, one commonality amongst the recent studies of the ADE for air-quality models is a tendency towards 73 

negative biases in predicted aerosol optical depths, potentially indicating systematic under-predictions in aerosol mass, 74 

aerosol size, and/or inaccuracies in the assumptions for shape and/or mixing state.  Mallet et al. (2017) noted this 75 

negative bias for regional climate model AOD predictions associated with large California forest fires compared to 76 

OMI and MRIS satellite observations.  Palacios-Pena et al. (2018) noted that high AOD events associated with forest 77 

fires were under-predicted by most models in a study employing a multi-regional-model ensemble.   The chosen AOD 78 

calculation methodology and mixing state assumptions employed in models also plays a role in systematic biases:  79 

Curci et al. (2015) compared aerosol optical depths, single scattering albedos, and asymmetry factors at different 80 

locations to observations, varying the source model for the aerosol composition, as well as the mixing state 81 

assumptions used in generating aerosol optical properties, for Europe and North America.  AODs were biased low by 82 

a factor of two or more, regardless of model aerosol inputs or mixing state assumptions at 440 nm, single scattering 83 

albedos were biased low by up to a factor of two, with the poorest performance for “core-shell” approaches, while 84 

asymmetry factor estimates showed no consistent bias relative to observations.  However, the assumed mixing state 85 

was clearly a controlling factor in the negative biases; the AOD predictions closest to the observations at 440 nm 86 

assumed an external mixture with particle sulphate and nitrate assumed to grow hygroscopically as pure sulphuric 87 

acid, lowering their refractive index with increasing aerosol size.  This mixing state assumption and the different 88 

homogeneous mixture assumptions gave the best fit for single scattering albedo relative to observations.   While not 89 

commenting on aerosol direct effect implications, Takeishi et al. (2020) noted that forest fire aerosols increase particle 90 

number concentrations but reduce their water uptake (hygroscopicity) relative to anthropogenic aerosols, with the 91 

latter effect reducing the resulting cloud droplet numbers by up to 37%.  Mixing state and hygroscopicity properties 92 

of aerosols were thus shown to have a controlling influence on the ADE. 93 

The AIE has often been shown to be locally more important for the radiative balance than ADE in terms of magnitude 94 

of the radiative forcing and response of predicted weather to AIE and ADE (Makar et al., 2015(a); Jiang et al., 2015; 95 

Nazarenko et al., 2017).  Several recent studies have attempted to characterize the relative importance of the AIE with 96 

the use of multi-year satellite observations, sometimes making use of models and data assimilation.  Saponaro et al. 97 

(2017) used MODIS/Aqua linked observations of aerosol optical depth and Ångström exponent to various cloud 98 

properties, noting that the cloud fraction, cloud optical thickness, liquid water path, and cloud top height all increased 99 

with increasing aerosol loading, while cloud droplet effective radius decreased, with the effects dominating at low 100 

levels (between 900 to 700 hPa).  Zhao et al. (2018) examined 30 years of cloud and aerosol data (1981-2011), and 101 

found that increasing aerosol loading up to  AOD < 0.08 increased cloud cover fraction and cloud top height, while 102 

further increases in aerosol loading (AOD  from 0.08 to 0.13) resulted in higher cloud tops, and larger cloud droplets.  103 

In polluted environments (AOD > 0.30) cloud droplet effective radius, optical depth and water path; cloud droplet 104 

effective radius increased with increasing AOD.  The first ADE was most sensitive to AOD in the AOD range 0.13 to 105 

0.30; and the reduction of precipitation efficiency associated with the second aerosol indirect effect occurred for AODs 106 

between 0.08 and 0.4, in oceanic areas downwind of continental sources.  107 

However, sources of uncertainty in AIE estimates persist, in part due to the number of poorly understood processes 108 

contributing to the atmospheric response to the presence of aerosols.  Nazerenko et al. (2017) showed that short-term 109 
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atmospheric radiative changes were reduced in magnitude when sea-surface temperature and sea-ice coupling was 110 

included in climate change simulations.  Suzuki et al. (2019) showed that the vertical structure of atmospheric aerosols, 111 

as well as their composition, had a significant influence on radiative forcing.  Penner et al. (2018) and Zhu et al. (2020) 112 

examined the impact of aerosol composition on cirrus clouds via ice nucleation, finding negative forcings for most 113 

forms of soot, but a contrary impact of secondary organic aerosols.  Rothenburg et al. (2018) noted that tests of aerosol 114 

activation schemes carried out under current climate conditions had little variability, but had much greater variability 115 

for pre-industrial simulations, implying that the available data for evaluation using current conditions may poorly 116 

constrain ADE and AIE parameterizations used in simulating in past climates.   117 

Forest fires are of key interest for improving the understanding and representation of ADE and AIE in models, due to 118 

the large amount of aerosols released during these biomass burning events.  Forest fire emissions and interactions with 119 

weather are also of interest due to the expectation that the meteorological conditions resulting in forest fires may 120 

become more prevalent in the future under climate change (Hoegh-Guldberg et al., 2018).  Observations of aerosol 121 

optical properties during long-range transport events of North American forest fire plumes to Europe showed 500 nm 122 

AOD values of 0.7 to 1.2 over Norway, with Ångström exponents exceeding 1.4 and absorbing angstrom exponents 123 

ranging from 1.0 to 1.25, along with single scattering albedos greater than 0.9 at the surface and up to 0.99 in the 124 

column over these sites (Markowicz et al., 2016).  Biomass burning was shown to have a specific set of optical 125 

properties relatively independent of fuel type for three different types of biomass burning in China (cropland), Siberia 126 

(mixed forest) and California (needleleaf forest).  The increase in upward radiative forcing at the top of the atmosphere 127 

due to fires being linearly correlated to AOD (R from 0.48 to 0.68), with slopes covering a relatively small range from 128 

20 to 23 W m-2 unit AOD-1.  O’Neill et al. (2001) showed that forest fires have a profound impact on aerosol optical 129 

depth in western Canada, accounting for 80% of the summer AOD variability in that region, with a factor of three 130 

increase in AOD levels from clear-sky to forest fire plume conditions.  O’Neill et al. (2001)’s analysis of TOMS 131 

AVHRR and GOES imagery suggested that forest fire aerosols increase in size with increasing downwind distance, 132 

due to secondary aerosol aging and condensation chemistry.  We note here that reanalyzing the data presented  in 133 

O’Neill et al. (2001) results in a linear relationship between fine mode particle effective radius (reff, m) and the base 134 

10 logarithm of distance from the fires (D, km) of 𝑟𝑒𝑓𝑓 = 0.0106 𝑙𝑜𝑔10(𝐷) + 0.1163,𝑅2 = 0.18).  Mallet et al. 135 

(2017) simulated AODs in the range 1 to 2 for biomass burning events, and also noted changes in direct radiative 136 

forcing at the top of the atmosphere from positive to negative in both model results and simulations, with increasing 137 

downwind distance from the sources.  Lu et al. (2017) carried out simulations with 5-km horizontal grid spacings for 138 

the eastern Russia forest fires of 2002 assuming an internal mixture for emitted aerosols with the WRF-CHEM model, 139 

and noted impacts on cloud formation for two different periods.  The first period was characterized by high cloud 140 

droplet and small ice nuclei numbers, where the fire plumes reduced cloud rain and snow water content, large scale 141 

frontal system dynamics were altered by smoke, and precipitation was delayed by a day.  The second period was 142 

characterized by high numbers for cloud droplets and ice nuclei, where the fire plumes reduced rain water content, 143 

increased snow water content, and precipitation locations changed locally across the simulation domain.  Russian 144 

forest fire simulations for 2010 with suites of on-line coupled air-quality models (Makar et al., 2015; Palacios-Pena 145 



5 
 

et al., 2018; Baro et al., 2017) showed substantial local impacts, such as reductions in average downward shortwave 146 

radiation of up to 80Wm-2 and temperature of -0.8 oC (Makar et al., 2015(a)).   147 

Given the above developments in direct and indirect parameterizations, and the increasing amount of information 148 

available for estimating forest fire emissions, the impact of forest fires on weather, in the context of weather 149 

forecasting, is worthy of consideration.  Air-quality model predictions of forest fire plumes have been provided to the 150 

public under operational forecast conditions of time- and memory-space limited computer resources (e.g. Chen et al., 151 

2019; James et al., 2018; Ahmadov et al., 2019, Pan  et al., 2017).  These simulations make use of satellite retrievals 152 

of forest fire hot-spots, climatological data on the extent of area burned by land use type, databases of fuel type linked 153 

to emission factors, and an a priori weather forecast to provide the meteorological inputs required to predict forest 154 

fire plume rise.  The latter point is worthy of note in the context of the direct and indirect feedback studies noted above 155 

– both climate and weather simulations with prescribed forest fire emissions have consistently resulted in large 156 

perturbations of weather patterns in the vicinity of the forest fires.  However, their approaches for predicting forest 157 

fire plume rise and fire intensity and fuel consumption in operational regional scale forecasts up until now have relied 158 

on weather forecast information provided a priori and hence lacking those meteorological feedback effects.   159 

The connection of the ADE and AIE within a regional air-quality and weather forecast model context is referred to as 160 

“coupling”, with such a model being described in that body of literature as “on-line coupled” (Galmarini et al., 2015)  161 

or “aerosol-aware” (Grell and Freitas, 2014).  However, several researchers have examined aerosol-radiative coupling 162 

along with fire spread and growth (as opposed to fire intensity and fuel consumption).  The latter work employs very 163 

high-resolution forest fire spread and growth models , and due to their very high resolution, an additional level of 164 

coupling, that of interaction of dynamic meteorology with the heat released by the fire, may be included.  However, 165 

the resolution requirements for these models (and their need for a relatively small computational time step) constrains 166 

their application to a relatively small region.   A requirement for these approaches is the use of a very high resolution 167 

fire growth model imbedded within the air-quality model.   At these resolutions, the simulated local-scale meteorology 168 

determines fire spread on the landscape, which in turn modifies the temperature and wind fields, in turn affecting 169 

future fire spread.  The seminal work on this topic was carried out by Clark et al. (1996), and Linn et al. (2002).  More 170 

recent work includes the development of the WRF-FIRE model (Mandel et al., 2011; Coen et al., 2013), with full 171 

chemistry added in the WRFSC model (Kochanski et al., 2016).  Examples of the resolution required for these models 172 

include inner domain resolutions of 444 m with an imbedded fire model mesh of 22.2 m resolution, and a time step of 173 

3.3 seconds (Kochanski et al., 2016); 1.33 km with an imbedded fire model mesh of 67.7m, and a time step of 2 174 

seconds (Kochanski et al., 2019), and 222m, with a fire model mesh of 22m and a time step of 2 seconds (Peace et 175 

al., 2015).  Kochanski et al (2016) also noted a 13 to 30 hour computational time requirement to run their high-176 

resolution modelling system. These modelling efforts allow for this additional level of coupling – but at the expense 177 

of additional computation time preventing, at the current state of supercomputer processing, their application on 178 

synoptic-scale forecast domains combined with a full gas chemistry and size-resolved multi-component particle 179 

chemistry representation.  Here we explore the effects of fire emissions characterized by fire intensity and fuel 180 

consumption modelling on the aerosol direct and indirect effects over synoptic scale domain.  Our coupling refers to 181 

that between the aerosols released by fires and other sources to meteorology through the ADE and AIE, with the 182 
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resulting changes in meteorology in turn influencing fire intensity andfuel consumption,, in turn influencing plume 183 

rise, emissions height, and distribution, closing this feedback loop.  We do not implement a very high resolution 184 

growth model, noting that this is impractical for operational forecasts at the current time, while showing that synoptic 185 

scale 2.5km simulations incorporating fire feedbacks may be carried out within an operational window with currently 186 

available supercomputers.  As shown below, we find that a sufficiently substantial feedback between the aerosol direct 187 

and indirect effects can be discerned to change the vertical distribution of emitted pollutants. 188 

A key consideration in parameterizing the AIE (via aerosol-cloud interaction) is the manner in which the cloud 189 

condensation process is represented in the meteorological component of the modelling system. In numerical weather 190 

prediction (NWP) models, clouds and precipitation are represented by a combination of physical parameterizations 191 

that are each targeted at a specific subset of moist processes. These include “implicit” (subgrid-scale) clouds generated 192 

by the boundary layer and the convection parameterization schemes (e.g Sundqvist, 1988), and “explicit” clouds from 193 

the grid-scale condensation scheme (Milbrandt and Yau, 2005(a,b), Morrison and Milbrandt, 2015, Milbrandt and 194 

Morrison, 2016).  Depending on the model grid these “moist physics” schemes vary in their relative importance.   195 

However, regardless of the horizontal grid cell size, the grid-scale condensation scheme plays a crucial role in 196 

atmospheric models, though to different degrees and using different methods, depending on the grid spacing and the 197 

corresponding relative contributions of the implicit schemes.  A grid-scale condensation scheme will in general consist 198 

of the following three components: 1) a subgrid cloud fraction parameterization (CF, or cloud “macrophysics” 199 

scheme); 2) a microphysics scheme; and 3) a precipitation scheme (Jouan et al., 2020).  The cloud fraction (CF) is the 200 

percentage of the grid element that is covered by cloud (and is saturated), even though the grid-scale relative humidity 201 

may be less than 100%. The microphysics parameterization computes the bulk effects of a complex set of cloud 202 

microphysical processes. If precipitating hydrometeors are advected by the model dynamics, the precipitation is said 203 

to be prognostic; if precipitation is assumed to fall instantly to the surface upon production, it is considered diagnostic. 204 

The precipitation “scheme” is not a separate component per se, since it simply reflects the level of detail in the 205 

microphysics parameterization, but it is a useful concept to facilitate the comparison of different grid -scale 206 

condensation parameterizations. 207 

With a wide range of grid cell sizes in current NWP models, there is a wide variety of types of condensation schemes 208 

and degrees of complexity in their various components. For example, cloud-resolving models (with grid spacing on 209 

the order of 1 km or less) have typically used detailed bulk microphysics schemes (BMSs), with prognostic 210 

precipitation, and no diagnostic or prognostic CF component (i.e. the CF is either 0 or 1).  Large-scale global models 211 

use condensation parameterizations, sometimes referred to as “stratiform” cloud schemes, typically with much simpler 212 

microphysics and diagnostic precipitation, but with more emphasis on the details of the CF. However, with continually 213 

increasing computer resources and decreasing grid spacing (both in research and operational prediction systems), the 214 

distinction between schemes designed for specific ranges of model resolutions is disappearing and condensation 215 

schemes are being designed or modified to be more versatile and usable across a wider range of model resolutions 216 

(e.g. Milbrandt and Morrison, 2016). 217 

Aerosol-cloud interactions and feedback mechanisms are difficult to represent in grid-scale condensation schemes 218 

with very simple microphysics components.  For example, to benefit from the predicted number concentrations of 219 
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cloud condensation nuclei and ice nuclei, the microphysics needs to be double-moment (predicting both mass and 220 

number) for at least cloud droplets and ice crystals, respectively.  Until recently, detailed BMSs were only used at 221 

cloud resolving scales, hence requiring these relatively high resolutions to be recommended in feedback modelling.  222 

In recent years, multi-moment BMSs have been used in operational NWP for model grid spacings of 2-4 km (e.g. 223 

Seity et al., 2010, Pinto et al., 2015, Milbrandt et al., 2016). Further, condensation schemes with detailed microphysics 224 

are starting to use non-binary CF components (e.g. Chosson et al., 2014, Jouan et al., 2020), thereby allowing detailed 225 

microphysics to be used at larger scales, and hence allowing the same indirect feedback parameterizations to be used 226 

at multiple scales.   Nevertheless, the expectation is that detailed parameterization will provide a more accurate 227 

representation of cloud formation at the near cloud-resolving scales, without the complicating aspect of a diagnostic 228 

CF, motivating the use of km-scale grid spacing for feedback studies. 229 

The formation of secondary aerosols from complex chemical reactions are another key consideration in feedback 230 

forecast implementation, given the impact of aerosol composition on aerosol optical and cloud formation properties, 231 

as described above.   232 

In the sections which follow, we describe our high resolution, on-line coupled air-quality model with on-line forest 233 

fire plume rise calculations, which was created as part of the FIREX-AQ air-quality forecast ensemble 234 

(https://www.esrl.noaa.gov/csl/projects/firex-aq/), to address the following questions: 235 

(1) Will a on-line coupled model of this nature provide improved forecasts of both weather and air-quality, using 236 

standard operational forecast evaluation tools, techniques and metrics of forecast confidence?  That is, despite the 237 

uncertainties in the literature as described above, are these processes sufficiently well described in our model that 238 

their use results in a formal improvement in forecast accuracy? 239 

(2) Are the changes in forest fire plume rise associated with implementing this process directly within a on-line 240 

coupled model sufficient to result in significant perturbations to weather predictions and to chemistry?  What are 241 

these perturbations? 242 

We employ our on-line coupled model with 2.5-km grid cell size domain covering most of western North America, 243 

and compare model results to surface meteorological and chemical observations, and to vertical column observations 244 

of temperature and aerosol optical depth (AOD), in order to quantitatively evaluate the effect of feedback coupling of 245 

the ADE and AIE on model performance.  We then compare feedback and no-feedback simulations to show the 246 

impacts of the ADE and AIE feedbacks on cloud and other meteorological predictions, and on key air quality variables 247 

(particulate matter, nitrogen dioxide, and ozone).  We begin our analysis with a description of our modelling platform. 248 

2 Model Description 249 

2.1 GEM-MACH 250 

The Global Environmental Multiscale – Modelling Air-quality and CHemistry (GEM-MACH) model in its on-line 251 

coupled configuration has been described elsewhere (Makar et al., 2015a,b; Gong et al., 2015, 2016).  The model 252 

combines the Environment and Climate Change Canada Global Environmental Multiscale weather numerical weather 253 

prediction model (GEM, Cote et al.,, 1998, Girard et al., 2014) with gas and particle process representation using the 254 
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on-line paradigm, with options for climatological versus full coupling between meteorology and chemistry.  GEM-255 

MACH’s main processes for the two configurations employed here are described in Table 1. 256 

Simulations were carried out with a 2.5-km horizontal grid cell spacing over a 900 x 1370 grid cell domain, covering 257 

most of western Canada and the USA (Figure 1).  The meteorological boundary conditions for the simulation were a 258 

combination of 10-km resolution GEM forecasts updated hourly (themselves originating in data assimilation analyses 259 

of real-time weather information; Figure 1(a)), and 2.5-km GEM simulations (Figure 1(c)) employing, in the northern 260 

portion of this 2.5-km domain, the Canadian Land Data Assimilation System (Carrera et al., 2015), to better simulate 261 

surface conditions.  Both “feedback” and “no feedback” simulations were carried out on a 30-hour forecast cycle 262 

(Figure 2). Following the usual practice for weather forecasts, the analysis -driven meteorological forecasts at 10 km 263 

resolution were updated operationally every 24 hours at 12 UT (Figure 2(a)).  These 10 km resolution weather forecasts 264 

were used to drive a 30-hour, 10-km resolution GEM-MACH forecast (Figure 1(b), Figure 2(b)), which employed 265 

ECMWF reanalysis data for North American chemical lateral conditions (Innes et al., 2019).  The 10-km resolution 266 

weather forecasts were also used to drive a 30-hour meteorology-only forecast at 2.5-km resolution on the high 267 

resolution domain (Figure 1(c), Figure 2(c)).  The last 24 hours of the 10-km resolution GEM-MACH forecast was 268 

also used to provide chemical lateral boundary conditions for the 24-hour 2.5km on-line coupled GEM-MACH 269 

simulation (Figure 1(c), Figure 2(d)).  The last 24 hours of the 2.5-km GEM simulation were used as meteorological 270 

initial and boundary conditions for the 24-hour 2.5-km on-line coupled GEM-MACH simulation (Figure 1(c), Figure 271 

2(d)).  The two stages of meteorology-only simulations were carried out to prevent chaotic drift from the observed 272 

meteorology, and to allow spin-up time for the cloud fields of that meteorology to reach equilibrium (6-hour 273 

timeframe).  Chemical initial concentrations for each consecutive forecast within the 2.5- km GEM-MACH model 274 

domain were “rolled over” or “daisy-chained” between subsequent forecasts without chemical data assimilation.  275 

Forecast performance scores presented here are for the inner 2.5-km domain from this set of linked 24 forecast 276 

simulations, mimicking operational forecast conditions. 277 

2.2 CFFEPS Version 4.0:  On-line forest-fire plume rise calculations 278 

In addition to the above algorithm improvements relative to GEM-MACH implementations, this model system setup 279 

has incorporated the first on-line calculation of forest-fire plume-rise by energy balance driven using on-line 280 

meteorology, in a new version of the Canadian Forest Fire Emissions Prediction System (CFFEPS).  The algorithms 281 

of CFFEPSv2.03 are described in detail and evaluated elsewhere (Chen et al., 2019), but will be outlined briefly here, 282 

as well as subsequent modifications to this forest fire emissions processing module.  283 

CFFEPS combines near-real-time satellite detection of forest fire hotspots with national statistics of burn areas by 284 

Canadian province and by specific fuel type across North America.  CFFEPS assumes persistence fire growth in the 285 

subsequent 24- to 72-hour forecasts with hourly fuel consumed calculated (kg m-2), based on GEM forecast 286 

meteorology and predicted fire intensity and fuel consumption in grid cells representing fire locations.  The modelled 287 

fire fuel consumption is then linked with combustion-phase specific emission factors (g kg-1) for fire specific emissions 288 

and chemical speciation.  Fire energy associated with the modelled combustion process is also estimated, and is used 289 

in conjunction with a priori forecasts of meteorology within the column to determine plume rise.  In its off-line/non-290 
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coupled configuration (Chen et al., 2019), CFFEPS carries out residual buoyancy calculations at five preset pressure 291 

levels (surface, 850, 700, 500, 250 mb). CFFEPS predicts plume injection heights, which are in turn used to 292 

redistribute the mass emissions below the plume top to the model hybrid levels.  This approach employed in 293 

CFFEPSv2.03 provided a substantial improvement in forecast accuracy relative to the previous approach employing 294 

modified Briggs (Briggs, 1965, Pavlovic et al., 2016) plume rise formulae in the offline GEM-MACH forecast system 295 

(Chen et al., 2019).  A recent evaluation of the plume heights predicted by CFFEPS was carried out utilizing MISR 296 

and TROPOMI satellite retrieval data (Griffin et al, 2020).  Seventy cases studied using MISR data showed good 297 

agreement between satellite and CFFEPS-predicted maximum and mean plume heights (maximum plume height 298 

observed versus predicted values and standard deviations:  1.7±0.9 versus 2.0±1.0 km; mean plume height observed 299 

versus predicted: 1.3±0.6 versus 1.3±0.4 km).  A larger number of case studied using TROPOMI data (671 in total) 300 

also showed a reasonable agreement, with CFFEPS showing a small tendency to overpredict heights (maximum 301 

observed versus predicted plume heights 2.2±1.6 versus 2.5±1.2 km; mean observed versus predicted plume heights 302 

0.7±0.5 versus 1.1±0.6 km).  303 

However, other work has shown the substantial impact of large forest fires on regional weather (Makar et al., 2015a; 304 

Palacios-Pena et al., 2018, Baro et al., 2017), including changes to the surface radiative balance and atmospheric 305 

stability.  These findings imply that plume rise calculations employing an a priori weather forecast lacking the impact 306 

of fire plumes via the ADE and AIE may not accurately predict the weather conditions critical to subsequent forest 307 

fire plume rise prediction.  In order to study this possibility, and to allow forest fire plumes to influence weather and 308 

hence subsequent fire spread/growth, several changes were made to CFFEPS implementation, resulting in version 4.0 309 

of CFFEPS, used here.  The process flow within CFFEPSv2.03 versus CFFEPSv4.0 are compared in Figure 3.  The 310 

original C language CFFEPSv2.03 code was converted to FORTRAN90, and following successful off-line 311 

comparisons to the original code, was then integrated as an on-line subroutine package within GEM-MACH itself, 312 

with the near-real-time satellite hotspot data and location fuel parameters being read into GEM-MACH directly 313 

(CFFEPSv4.0 is this new on-line package).  A key advantage of the CFFEPSv4.0 subroutine integration within GEM-314 

MACH is that the residual buoyancy calculations for plume injection heights are now carried out over the model 315 

hybrid model layers, rather than the five coarse resolution, prescribed pressure levels of CFFEPSv2.03, making 316 

complete use of GEM-MACH’s detailed vertical structure.  Additionally, CFFEPSv4.0 allows plume rise calculations 317 

to be updated during model runtime.  When GEM-MACH is run in on-line coupled mode, the ADE and AIE 318 

implementations allow model-generated aerosols to modify the predicted meteorology, in turn influencing predicted 319 

fire emissions and plume rise, closing these feedback loops.  The on-line implementation of CFFEPSv4.0 thus allows 320 

us to investigate the effects of meteorology on subsequent forest fire plume development, the changes to modelled 321 

aerosol compositions, and, ultimately, the feedbacks to weather.   322 

The formation of particles from forest fires affects meteorology on the larger scale via the ADE and AIE, in turn 323 

modifying the regional scale atmospheric features affecting fire growth, such as the temperature profiles below forest 324 

fire plumes.  However, we note that CFFEPSv4.0 employs forest fire heat to determine plume rise as a subgridscale 325 

thermodynamic process parameterization rather than a very high resolution explicit fire growth parameterization;  the  326 

very local scale weather modifications due to the addition of forest fire heat to the atmosphere are not incorporated 327 
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into fire spread or GEM microphysics.  Specifically, when the feedback version of GEM-MACH incorporating 328 

CFFEPSv4.0 is used in its on-line coupled configuration, CFFEPSv4.0 uses estimates of the heat released to calculate 329 

forest fire plume rise. These calculations employ lapse rates at the fire locations, that with feedbacks enabled, include 330 

the ADE and AIE generated by forest fire aerosols on atmospheric stability within the current on-line coupled model 331 

timestep.  This is in contrast to earlier off-line implementations of CFFEPS, which made use of a priori non-feedback 332 

weather forecast lapse rates.  To the best of our knowledge, this is the first implementation of a dynamic forest fire 333 

plume injection height scheme incorporated into a on-line coupled high-resolution, operational air quality forecast 334 

modelling system.  The impact of this feedback on both weather and air-quality can be substantial, as we show in the 335 

following sections. 336 

The locations of the daily forest hotspots detected during the study period, and the corresponding magnitude of the 337 

daily PM2.5 emissions generated by CFFEPS for each hotspot are shown in Figure 4.  Individual hotspots with the 338 

highest magnitude emissions are located in the state of Nevada (Figure 4(a), southern boxed region).  However, the 339 

largest ensemble emissions from a suite of hotspots occurs in northern Alberta (Figure 4(a), northern boxed region).  340 

Expanded views of the northern Alberta and Nevada hotspots are shown in Figure 4(b,c) respectively – the use of 341 

smaller symbols shows that the Alberta hotspots are groups representing large spreading fires, which overplotted in 342 

Figure 4(a), while the Nevada hotspots indicate single fires of small spatial extent and duration rather than larger 343 

spreading fires. The Alberta fires are thus the most significant sources of forest fire emissions in the study domain for 344 

the period analyzed here. 345 

 346 

2.2 Feedback and No-Feedback Simulations 347 

Two simulations were carried out for the period July 4th through August 5th 2019; a “feedback” (ADE and AIE 348 

feedbacks enabled – on-line coupled model) and a “no-feedback” simulation (ADE and AIE make use of GEM’s 349 

climatological aerosol radiative and CCN properties – the one-way coupled model).  During this period, five large 350 

forest fires took place in the northern portion of the modelling domain.  The two parallel combined meteorology and 351 

air-quality forecasts in the on-line coupled model with/without ADE and AIE coupling were evaluated for 352 

meteorological and air quality variables.  Following evaluation, the simulation mean values of hourly meteorological 353 

and chemical tracer predictions were compared to analyze the impact of on-line coupled ADE and AIE feedbacks on 354 

both sets of fields. 355 

3 Model Evaluation 356 

3.1 Meteorology Evaluation 357 

Surface meteorological conditions were evaluated at three-hour intervals from the start of both of the two sets of paired 358 

24-hour forecasts using standard metrics of weather forecast performance including mean bias (MB), mean absolute 359 

error (MAE), root mean square error (RMSE), correlation coefficient (R) and standard deviation ().  In all 360 

comparisons, a 90% percent confidence level assuming a normal distribution was used to identify statistically different 361 
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results between forecast simulations.   Note that 90% confidence levels are commonly used in meteorological forecast 362 

evaluation, with values of 80% to 85% recommended (Pinson and Kariniotakis, 2004) and up to 90% used (Luig et 363 

al., 2001) for variables such as wind speed,  rather than the 95% or 99% confidence levels in other fields, in recognition 364 

of the difficulties inherent in prognostic forecasts of the chaotic weather system.   Here, the confidence range 365 

formulation of Geer (2014) has been applied using a 90% confidence level in model predictions, with the statistical 366 

measures considered different at the 90% confidence level when the 90% confidence ranges do not overlap.   The 367 

surface meteorological evaluations shown here only include those variables and metrics where results were 368 

significantly different at the 90% confidence level. 369 

Several model forecast output variables were evaluated and the surface variables showing statistically significant 370 

differences relative to observations at the 90% confidence level included: 2 m temperature, surface pressure, 2 m 371 

dewpoint temperature, 10 m wind speed, sea-level pressure, and accumulated precipitation (the latter in 3 different 372 

metrics).  The comparisons are shown as time series in three-hourly intervals as a function of forecast hour prediction 373 

time forward from forecast hour 0, for grid cells corresponding to measurement locations in  Figures 5, 6, 7, 8, 9, 10, 374 

and 11 for each of these quantities, respectively.  Note that these statistics measure domain-wide performance, across 375 

all of the reporting stations within the model domain, during the sequence of 24-hour forecasts comprising the 376 

simulation period.  The duration of the time series in these comparison figures is thus a function of the duration of the 377 

contributing forecasts. 378 

Figure 5 shows an example analysis for surface temperature bias for the entire model domain.  Figure 5(a) sh ows the 379 

average model mean bias (MB) time series across all stations and all forecasts at the given forecast hours, while Figure 380 

5(b) shows the corresponding difference in the MB absolute values.  The difference plot in Figure 5(b) shows the 381 

feedback – no-feedback scores, such that scores below the zero line indicate superior performance of the feedback 382 

forecast, while those above the zero line indicate superior performance of the no-feedback forecast.  Here, the feedback 383 

forecast was statistically superior at forecast hours 3, 6, 15, 18 and 24 at the 90% confidence level at these forecast 384 

hours, and both simulations were at par (differences below the 90% confidence level) at hours  12 and 21, with the 385 

no-feedback forecast being superior at 90% confidence at hour 9.  The feedback forecast thus has superior 386 

performance, at greater than 90% confidence, over half of the forecast hours evaluated within the domain, equivalent 387 

performance at two hours (hours 12 and 21, both within 90% confidence limits), and inferior performance at one hour 388 

(hour 9), during the simulation period. 389 

All of the metrics for which surface temperature forecast performance differed at the 90% confidence level are shown 390 

in Figure 6.  In addition to MB, the scores for MAE, and RMSE showed superior forecast performance for the feedback 391 

relative to the no-feedback case at the 90% confidence level for hours 15 and 18, while the improvement for the 392 

correlation coefficient was only reached the 90% confidence level at hour 18.   393 

The meteorological forecast performance metrics with statistically significant differences for surface pressure, 394 

dewpoint temperature, and sea-level pressure are shown in Figures 7, 8, and 9 respectively.  The model performance 395 

differences in these three Figures show a similar pattern:  a degradation in performance with the use of feedbacks at 396 

hour 3, with the differences between the two forecasts either dropping below the 90% confidence level, or the feedback 397 

forecast showing an improvement by hour 9, followed by several hours in which the feedback forecast has a superior 398 
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performance, usually at greater than 90% confidence.  The duration of this latter period varies between the metrics, 399 

from up to 18 hours for MAE for surface pressure (Figure 7(b)) to 3 hours for the correlation coefficient of dew-point 400 

temperature (Figure 8(d)).   401 

The initial loss of performance for the feedback forecast may represent a form of “model spin -up” that may be unique 402 

to on-line coupled models, but may be affected or improved with further adjustments to the forecast cycling setup for 403 

the chemical species.  As noted earlier (Figure 2), in order to prevent chaotic drift from observed meteorology, we 404 

made use of a 30-hour 2.5-km resolution analysis-driven weather forecast to update our on-line coupled model’s initial 405 

meteorology at hour zero of each 24 hour forecast.  The cloud fields provided as initial conditions at hour zero include 406 

observation analysis for the 6 hours prior to hour zero - these have reached a quasi-equilibrium in the high-resolution 407 

weather forecast (Figures 2(b,e)) by the time they are used as init ial and boundary conditions in the on-line coupled 408 

model (Figure 2(c,f)).  However, the on-line coupled model’s aerosol fields at hour zero, used to initialize the 409 

subsequent forecast (Figure 2, dashed blue arrow), still reflect the locations of aerosol-cloud interactions in the 410 

previous on-line coupled simulation.  The initial three to six hours of feedback forecast degradation represents the 411 

time required for the on-line coupled model to reach a new equilibrium consistent between both its aerosol and the 412 

cloud fields.   413 

One possible solution for this model spin-up inconsistency would be to eliminate the intermediate driving 2.5-km 414 

meteorological simulation in favour of a longer 30-hour on-line coupled forecast with the first six hours removed as 415 

spin-up (i.e. extend the duration of steps (c) and (f) in Figure 2 to 30 hours, starting at UT hour 6).  The duration of 416 

the forecast experiments carried out here was limited to 24 hours due to limited computational resources, and, more 417 

importantly, the operational requirement for an on-time forecast delivery for the purpose of the FIREX-AQ field 418 

campaign.  The 24-hour forecast simulations carried out in Figure 2 (c,f) each required nearly 3 hours of 419 

supercomputer processing time; longer simulation periods were not possible within the operational window available 420 

for forecasting. 421 

Model 10-m windspeed forecasts were also improved with the incorporation of feedbacks for hours 3 and 6, for all 422 

metrics (Figure 10).  A decrease in MB performance at hours 21 and 24can also be seen in this Figure.   423 

Precipitation forecast performance from the two simulations varied depending on the metric chosen (Figure 11). The 424 

metrics in this case were based on the number of coincident precipitation “events” versus “non-events” as shown in 425 

contingency Table 2. 426 

The Heidke skill score { 𝐻𝑆𝑆 = 2 (𝐴𝐷 − 𝐵𝐶) [(𝐴 + 𝐶)(𝐶 + 𝐷) + (𝐴 + 𝐵)(𝐵 + 𝐷)]⁄  } measures the fractional 427 

improvement of the forecast over the number correct by chance.  The Frequency Bias { 𝐹𝐵 = (𝐴 + 𝐵) (𝐴 + 𝐶)⁄  } 428 

measures the frequency of event over-forecasts (FB>1) versus event under-forecasts (FB<1).  The Equitable Threat 429 

score { 𝐸𝑇𝑆 = (𝐴 − 𝐴) (𝐴 + 𝐶 + 𝐵 − �̃�),⁄  where 𝐴 = (𝐴 + 𝐵)(𝐴 + 𝐶) (𝐴 + 𝐵 + 𝐶 + 𝐷)⁄ } measures the observed 430 

and/or forecast events that were correctly predicted.  Following standard practice at Environment and Climate Change 431 

Canada, the HSS is used as a measure of total precipitation accumulated over a 6-hour interval, with no lower limit 432 

on the amount of precipitation defining an “event”, while FB and ETS define  precipitation “events” as being those 433 

with greater than 2mm / 6 hours – consequently FB and ETS have a smaller number of data points for comparison 434 

than HSS. 435 



13 
 

Figure 11 shows improvements to the on-line coupled precipitation forecast at the 90% confidence level were seen for 436 

the HSS 6-hour accumulated metric at hours 12 and 24, while the frequency bias index of 6-hour accumulated 437 

precipitation showed degradation at hours 6 and improved performance at hour 12, and the equitable threat score of 438 

6-hour accumulated precipitation showed significant differences at 90% confidence between the two simulations.  As 439 

is noted above, the latter two metrics employed a minimum 6-hour precipitation threshold of 2 mm prior to 440 

comparisons (this is the reason for the reduced number of points available for comparison in Figure 11(b,c) relative 441 

to Figure 11(a)).  These findings suggest that the on-line coupled model’s  improvements for total precipitation (Figure 442 

11(a)) are the result of slightly improved performance for relatively light precipitation events (< 2mm 6hr-1).. 443 

The amalgamated observations and model pairs of vertical temperature profile data from 39 radiosonde sites in western 444 

North America are shown in Figures 12 and 13.  Improvements in the forecasted temperature vertical profile with 445 

increasing forecast time are evident at 250, 300, 400, 500, and 850 hPa in the 12th hour forecast, with degradations at 446 

200 and 700 hPa (Figure 12).   Improvements at 300, 925 and 1000 hPa may be seen in the 24th hour (Figure 13) 447 

forecast; it is also worth noting the entire region at and below 300 hPa has improved temperature forecasts (mean 448 

values to the left of the vertical line), albeit not always at >90% confidence.  There are larger differences between the 449 

1000 hPa forecasts, though these also have the least number of contributing stations (i.e. only those located close to 450 

sea-level contribute to the lowest level temperature biases).  Other levels of the atmosphere showed no statistically 451 

significant change at the 90% confidence level in temperature profile forecast performance with the use of feedbacks.   452 

3.2 Chemistry Evaluation 453 

Improvements to air quality model performance metrics have been a focus for research since the 1980’s starting with 454 

dispersion model evaluation (Fox, 1981), and the identification of mean bias and normalized mean square error as 455 

potentially useful metrics to complement the Pearson correlation coefficient (Hanna, 1988).  More recently, the 456 

Pearson correlation coefficient has been noted as being capably of producing high values for relatively poor model 457 

results (Krause et al., 2005), as well as being unable to distinguish systematic model underestimation (Yu et al., 2006), 458 

unable to provide information on whether data series have a similar magnitude and capable of providing a false sense 459 

of relationship where none exists due to outliers (Duveiller et al., 2016) and clusters of model-observation pairs 460 

(Aggarwal and Ranganathan, 2016).  More recently, model evaluation has focused on metrics which do not have the 461 

tendency to weight the higher magnitude values unduly (a particularly useful property with air-quality variables which 462 

may vary by several orders of magnitude), which are dimensionless (allowing a comparison across different evaluated 463 

variables), and which are bounded and symmetric (properties allowing comparisons to be made and equally valued 464 

across the entire range of possible concentrations; e.g. Yu et al. (2006)).  Metrics such as the modified coefficient of 465 

efficiency (Legates and McCabe, 1999) and the more recent incarnations of the Index Of Agreement (Willmott et al., 466 

2012) are examples of the more recent metrics used for air-quality model evaluation.  Here, we have made use of a 467 

range of metrics spanning the literature on this topic, with the understanding that the properties of different metrics 468 

vary, that no single metric provides a perfect means of evaluating model performance, and that a variety of metrics  469 

should be applied.  The metrics used here span the variety that have appeared in the literature since the early 1980’s, 470 

and include Factor of 2, Mean Bias, Mean Gross Error, Normalized Mean Gross Error, Correlation Coefficient, Root 471 
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Mean Square Error, Coefficient of Efficiency, and Index of Agreement.  The formulae for these metrics and a brief 472 

description of their relative advantages and disadvantages appears in Appendix A (Supplemental Information). 473 

 474 

Both simulations’ performance for ozone (O3), nitrogen dioxide (NO2) and particulate matter with diameters less than 475 

2.5 m(PM2.5)  were evaluated using the above metrics, employing hourly AIRNOW data (USA: AQS network: 476 

https://www.epa.gov/aqs; Canada: NAPS network: http://maps-cartes.ec.gc.ca/rnspa-naps/data.aspx) and the openair 477 

package (Carslaw and Ropkins, 2012).  The summary performance metric scores for the two simulations grouped, 478 

according to contributing measurement network, are shown in Table 3, with boldface values indicating the better score 479 

for the given simulation case.  With respect to this table, we note that: 480 

(a) The feedback simulation generally outperforms the no-feedback simulation (more bold-face scores in the 481 

“feedback” rows, for 35 out of 48 metric comparisons). 482 

(b) Feedback forecast score improvements occurred were more noticeable for PM2.5 (usually first to second digit), 483 

followed by O3, with the NO2 scores often being the same for the first few digits. 484 

(c) We note that the boundary conditions employed for our 2.5km simulations had a strong impact on model air-485 

quality performance.  As described above, these boundary conditions originated in a 10-km resolution simulation 486 

making use of ECMWF global reanalysis values on its own lateral boundaries. The magnitudes of the statistics 487 

of Table 3 may be compared to the magnitudes of the statistics from our initial ACPD submission (which made 488 

use of a  MOZART 2009 reanalysis for chemical lateral boundary conditions for the 2.5km GEM-MACH 489 

domain).   The use of feedbacks had a similar relative impact on forecast performance (34 out of 48 statistics 490 

improving in the feedback forecast in the initial simulation, compared to 35 out of 48 statistics in the current 491 

work).  However, the net impact of the ECMWF-driven 10-km GEM-MACH values being used for chemical 492 

lateral boundary conditions, rather than the MOZART climatology, was a degradation of performance.   As we 493 

show below, however, the revised boundary conditions led to improvements in model aerosol optical depth 494 

performance relative to observations. 495 

 496 

The impact of lateral boundary conditions on model predictions can be seen when comparing MODIS retrievals of 497 

aerosol optical depth (AOD) with model predictions (Figure 14).  AOD is a function of both the particle’s abundance 498 

and optical properties, integrated throughout the vertical column.  However, direct comparisons between satellite and 499 

model-predicted AOD values must be undertaken with some care, due to the nature of the satellite retrieval quality 500 

assurance and control procedures, the motion of the orbiting spacecraft, and the scan time of the instrument.  The 501 

manner in which AOD is calculated introduces additional uncertainty due to the range of values which may be derived 502 

from the same aerosol speciation using different methodologies (Curci et al., 2015).  For a polar-orbiting instrument 503 

such as MODIS, the time at which overpasses occur varies with location, and valid satellite retrievals may not occur 504 

when the location being scanned is obscured by clouds.  Observed averages may be built up over multiple valid scans 505 

over time, but the number of valid scans contributing to the local average at any given location will vary, due to the 506 

time and space variation in cloud cover.  Here, individual valid Collection 6.1 MODIS/Aqua (MYD04_L2 507 

AOD_550_Dark_Target_Deep_Blue_Combined) 10 km resolution 550 nm AODs were matched in time and space to 508 

https://www.epa.gov/aqs
http://maps-cartes.ec.gc.ca/rnspa-naps/data.aspx
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the nearest model 2.5-km grid cell and output frequency hour.  Levy et al., (2013) contains details on the MODIS 509 

combined AOD product.  No averaging was employed in our comparison (Figure 14); all satellite overpass AOD 510 

pixels and matching model AOD pixels are shown..  Noting that the AOD colour scale is logarithmic, the model 511 

simulation driven using the ECMWF + 10-km resolution GEM-MACH for boundary conditions (Figure 14(b)) is a 512 

much better match to observations (Figure 14(a)) than the model simulation driven by MOZART climatological 513 

boundary conditions (Figure 14(c)).  The slope of the linear best fit line between all observation and model pairs in 514 

each case mirrors this finding, with the original (MOZART climatology) boundary conditions having a slope of 0.15 515 

and R2 of 0.0382, and the revised ECMWF + GEM-MACH 10-km boundary conditions having a slope of 0.56 and an 516 

R2 of 0.067.   517 

 518 

Previous work with CFFEPS by Chen et al. (2019) for the 2017 fire season has shown similar PM2.5 positive biases 519 

for western Canada, with MB of +5.8 µg m-3 (88 stations) and for Western USA with MB of +8.6 µg m-3 (221 stations).  520 

These positive biases (Chen et al., 2019) were higher specific to sub-regions closer to areas of active fires (MB of +12 521 

µg m-3 for the sub-region including the provinces of Alberta and British Columbia, and +29 µg m-3 for the sub-region 522 

comprising the states of Idaho, Montana, Oregon and Washington, respectively).  At least part of the positive biases 523 

may be due to 10km GEM-MACH forest fire emissions occurring in the state of Alaska being overestimated during 524 

the study period.  However, the ECMWF reanalysis also captures significant particulate mass crossing the Bering 525 

Strait from fires in Siberia during this period, so the relative contributions of fires within the low resolution GEM-526 

MACH domain and the ECMWF boundary conditions driving that domain are combined, and can’t be separated in 527 

the runs carried out here. 528 

The local AOD positive biases associated with fires could also be the result of the mixing state assumptions of the 529 

Mie code used here for generating aerosol optical properties.  These assumptions may also account for negative AOD 530 

biases over much of the remainder of the model domain.  As noted earlier, this overall negative bias of AOD 531 

predictions (both boundary condition configurations result in observation:model slopes less than unity) is a common 532 

problem in air-quality models, and may be due to assumptions regarding the model mixing state (Curci et al., 2015).  533 

That comparison of multiple mixing state assumptions on AOD with observations for European and North American 534 

modelling domains (Curci et al., 2015), showed a typical factor of two model under-prediction of 440 nm North 535 

American AOD across all mixing state assumptions, with European AOD negative biases ranging from unbiased to a 536 

factor of 2.  These earlier findings along with overestimates at forest fire plumes with our current homogeneous 537 

mixture approach at 550nm suggest that the hygroscopic growth may be overestimated for forest fire particles, in turn 538 

overestimating forest fire AODs locally, while external mixing assumptions may be required to improve model AOD 539 

performance elsewhere in the model domain. 540 

3.3 Model Evaluation Summary 541 

Overall, the incorporation of feedbacks in this study has resulted in improvements in weather and air-quality forecast 542 

accuracy, albeit with some caveats.  Weather forecast variables showed improvements at the 90% confidence level 543 

for several fields, and vertical profiles showed a matching performance or improvements at most levels and times.  544 
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Total precipitation scores also showed minor improvements or matching performance at the 90% confidence level.  A 545 

previously unexpected spin-up issue specific to on-line coupled models was noted:  the impact of on-line coupled 546 

particulate matter on cloud variables was sufficiently strong that cloud field adjustment in the first 6 hours of the 547 

forecast was required prior to some weather forecast variable improvements to be apparent (surface pressure, dewpoint 548 

temperature, sea-level pressure).  While the current forecast cycling duration was constrained by operational 549 

requirements, this suggests that forecast cycling should include both air-quality and meteorological variables during 550 

on-line coupled forecast spin-up periods.  That is, the model tracer concentrations 6 hours prior to the current forecast 551 

start-up could also be used during the initial meteorological spin-up period, thus allowing chemistry and cloud 552 

formation to spin-up simultaneously.  Scores for surface PM2.5, NO2, and O3 also generally improved with the 553 

incorporation of feedbacks (35 out of 48 comparisons showed improvements).  The choice of lateral boundary 554 

conditions was shown to have a significant impact on chemical performance within the model domain.  In comparison 555 

to satellite-based AOD values, the current model’s AOD values were generally biased low, with smaller magnitude 556 

biases being associated with the ECMWF + 10-km GEM-MACH boundary conditions.  The latter comparison also 557 

showed that large fires off-domain in Alaska and Siberia likely had a large impact on AODs in the eastern and northern 558 

section of the model domain, through comparison with our initial simulations.   559 

 560 

4 Effects of Feedbacks on Selected Simulation-Period Average Variables 561 

In this section, we compare time averages of the entire study period for the two simulations, both at the surface and in 562 

vertical cross-sections through the model domain, to illustrate some of the changes in both weather and air-quality 563 

associated with the incorporation of feedbacks. We have found differences at greater than 90% confidence between 564 

the predicted meteorological and chemical forecasts in the vicinity of the Alberta/Saskatchewan forest fires, as well 565 

as in contrasting changes between land and sea.  We note again here that the “no-feedback” simulation makes use of 566 

time and spatially invariant aerosol CCN and optical properties, within the meteorological portion of the model.  The 567 

comparisons thus show the differences associated with the use of climatological constant aerosol properties, and the 568 

on-line coupled model-generated aerosols. 569 

As in the meteorological evaluation, we have made use of 90% confidence levels in order to gauge the level of 570 

significance of the differences between the feedback and no-feedback simulations in the following analysis.   571 

The approach for representing model grid value 90% confidence levels is described in detail in SI Appendix A2.  The 572 

differences in the mean grid cell values between the simulations for which the above quantity is greater than unity 573 

differ at or greater than the 90% confidence level.  Differences in the mean values, as well as the value of the above 574 

ratio, are thus reported in the following section.                                 575 

4.1 Effects of Feedbacks on Time-Averaged Meteorology 576 

The feedback – no-feedback differences in the simulation-period average cloud droplet number density (number kg-1 577 

of air) and mass density (g water kg -1 of air) along centred cross-sections spanning the length and width of the 2.5-km 578 

resolution model domain are shown in Figure 15 (cross-section locations are shown in Figure 1).  The “Ocean”, 579 

“Land”, and “Forest Fire” regions identified are with reference to the approximate locations of these features along 580 
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these cross-sections.  Figure 15 also shows the confidence ratio values as described above – regions where the 581 

predicted mean values differ at or above the 90% confidence level are shown in red, while those differences below 582 

the 90% confidence interval are shown in blue.   Feedbacks increase the cloud droplet number density over the northern 583 

part of the domain, including the region impacted by the Alberta/Saskatchewan forest fires, from the surface up to 584 

about 500 mb (roughly equivalent to hybrid level 0.500), and decrease at higher elevations further to the south and 585 

along the length of the model domain into the western USA (Figure 15(a)).  Cloud droplet numbers also decrease over 586 

the ocean, but increase eastwards over the land (Figure 15(b)).  The latter is unrelated to the forest fires; this is an 587 

indication that the modelled aerosol number concentration over the ocean is much lower than the single climatological 588 

aerosol population assumed in the no-feedback run, resulting in lower cloud droplet number concentrations.  The 589 

changes are significant at the 90% confidence level from the surface up to hybrid level 0.60 in the northern region 590 

which is most impacted by forest fire smoke, and in isolated regions further aloft along the south to north cross-section 591 

(Figure 15(c)), and over the regions of the ocean in the west to east cross-section (Figure 15(d)).  Higher-than-592 

climatology aerosol loadings, a large portion of which are due to the forest fires, resulted increased cloud droplet 593 

number densities in the lower troposphere, while decreasing them in the mid-to-upper troposphere (Figure 15(a)).  594 

This impact of feedbacks is in accord with the satellite observations of Saponaro et al. (2017), and was also seen in 595 

Takeishi et al. (2020).  In contrast, cloud droplet mass density (i.e. cloud liquid water content) largely decreases across 596 

the domain along the north-south cross-section (Figure 15(e)), as well as over the ocean, with a varying pattern over 597 

the land in the east-west cross-section (Figure 15(f)).  The magnitudes and significance levels for the average change 598 

in cloud droplet mass are lower than for cloud droplet number, with the most significant differences occurring over 599 

the ocean (Figure 15(g,h)).   600 

Consistent with the cloud droplet number changes, rain droplet numbers and mass mixing ratios increase aloft with 601 

the feedback simulation, over both the forest region impacted by the forest fires (Figure 16(a,e)) and over the ocean 602 

(Figure 16(b,f)), with a varying impact over the land and more distant from the forest fire sources (Figure 16(f)).  The 603 

changes are significant at the 90% confidence level for rain droplet number in these regions (compare Figure 16(a) 604 

with 16(c); 16(b) with 16(d)), while the rain droplet mass changes sometimes reach but are usually below the 90% 605 

confidence level (Figure 16(g,h)).   606 

These results suggest that relative to the no-feedback simulation, which employs climatological aerosol CCN 607 

properties, the AIE in the feedback simulation is causing significant change in hydrometeor numbers, and a less 608 

significant increase in hydrometeor mass.   In the forest fire-impacted region, the ADE and AIE in the feedback 609 

simulation significantly increase the number of cloud droplets near the surface and throughout the middle to upper 610 

troposphere (Figure 15(a,c)).  The rain drop number in the middle troposphere (Figure 16(a,c)) also increases 611 

significantly between hybrid levels 0.90 to 0.70 (Figure 16(e,g)).  Near-surface rain drop number and rain drop mass 612 

differences throughout the cross sections (Figure 16(e,f)) fall below the 90% confidence level (Figure 16(g,h).         613 

Over the oceans, water droplet number and mass both decrease (Figure 15(b,f)), and raindrop number and mass 614 

increase (Figure 16(b,f)); more atmospheric water is converted to rain drops as a result of the feedbacks, relative to 615 

the climatology in the no-feedback simulation.  However, these changes are more significant aloft than at the surface, 616 

with the difference in both rain drop number and mass falling below the 90% confidence level near the surface.  We  617 
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interpret these changes as a shift in over-ocean liquid hydrometeor numbers and to a lesser degree the water mass aloft 618 

from cloud droplets to rain drops due to the AIE in the feedback setup relative to the climatology of the no -feedback 619 

simulation.  The changes occur at the 90% confidence level aloft, but the near-surface changes are smaller and are 620 

usually below the 90% confidence level.   621 

Differences in the average surface precipitation flux and the confidence ratio values are shown in Figure 17.  Changes 622 

in average precipitation (Figure 17(a)) appear random, though locally these differences are significant at the 90% 623 

confidence level (Figure 17(b)).  Both the magnitude of the differences and the frequency in their reaching the 90% 624 

confidence level increase south-westwards.  Given the local and episodic nature of rainfall events, the high level of 625 

significance in this case probably results from the presence or absence of individual rainfall events between the two 626 

simulations affecting the local average and standard deviations. 627 

Several systematic changes in the average values of the model’s meteorological output fields were noted due to the 628 

use of feedbacks relative to aerosol property climatologies (Figure 18), although all fall below the 90% confidence 629 

level for the difference in the mean values between the two simulations (Figure 19). Specific humidity increased in 630 

the region most affected by fires (Figure 18(a), surface air temperature decreased below the smoke plumes while 631 

increasing further south (Figure 18(b)), while dewpoint temperature decreased (Figure 18(c)), implying a decrease in 632 

relative humidity with feedbacks.  Surface pressure increased over the land (mostly east of the Rockies), particularly 633 

in the region downwind of the Alberta / Saskatchewan fires while decreasing over the ocean (Figure 18(d)).  Planetary 634 

boundary layer height increased over the land (Figure 18(e)) except in the immediate vicinity of the 635 

Alberta/Saskatchewan fires, consistent with decreased atmospheric stability in the lowest part of the atmosphere.  The 636 

friction velocity also increased with the use of feedbacks (Figure 18(f)); this is consistent with a decrease in stability 637 

and an increase in turbulent energy   The air temperature increases occur at the surface south of the forest-fire impacted 638 

region and above roughly 750 mb, decreasing temperatures from the surface in the forest-fire impacted region up to 639 

750 mb (Figure 20 (a,b)).  Feedbacks thus increase near-surface temperatures, relative to the no-feedback 640 

meteorological model’s simple aerosol climatology, in regions far from the fires, decreasing them near the fires, 641 

decrease temperatures in the lower free Troposphere, and increase temperatures further aloft.  All of these differences 642 

between feedback and no-feedback simulations, despite their large geographic range, fall below the local 90% 643 

confidence ratio.  However, when the differences in air temperature resulting associated with feedback and no-644 

feedback forecasts are compared to observations across the entire domain (as opposed to at gridpoint locations as in 645 

Figures 18 and 19) the 90% confidence level is exceeded both at the surface at specific forecast times (Figure 6(a)), 646 

and at multiple heights aloft at the 12th and 24th forecast hours (Figures 12, 13).   647 

4.2 Effects of Feedbacks on Time-Averaged Chemistry 648 

In the previous meteorological impacts section, changes in aerosol loading relative to the climatology, dominated by 649 

forest fires, were shown to have a significant impact on cloud formation and atmospheric temperatures through ADE 650 

and AIE.  These might be expected to in turn influence and be influenced by particulate matter emitted by the forest 651 

fires, with the plume rise of the forest fires dependent on the meteorological changes.  Air temperatures increase 652 

slightly in the model surface layer south of the fires (Figure 18(b), +0.01 to +0.05 oC) but decrease at greater 653 
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magnitudes through the rest of the lower Troposphere (surface near the fires to hybrid level 0.749, Figure 20(a)), with 654 

a maximum decrease of -0.5oC between hybrid levels 0.893 and 0.848. The reduction in temperatures between hybrid 655 

levels 0.90 to 0.70 from the impact of the smoke plumes is similar to the findings of Saponaro et al. (2017). These 656 

changes air temperatures implies a decrease in near-surface atmospheric stability associated with feedbacks, given 657 

that the overall temperature gradient from the surface has become more negative (that is, the ambient lapse rate has 658 

increased).  Rising air parcels will follow an adiabatic lapse rate; these increases in the ambient lapse rate imply that 659 

rising air parcels will have an increasing tendency to be warmer than their environment.  Feedbacks have thus reduced 660 

atmospheric stability within the forest fire smoke in the lowest part of the atmosphere; the atmosphere there has 661 

become more unstable.  Meanwhile, the feedbacks decrease the environmental lapse rate further aloft above the forest 662 

fire smoke, between hybrid levels 0.848 and 0.339.  Rising air parcels in this region following an adiabatic lapse rate 663 

will thus have an increasing tendency to be colder than their environment – the atmosphere above the smoke plumes 664 

has become more stable.  This is echoed by the response of the concentration fields to the near-surface stability change, 665 

as can be seen through comparisons of the PM2.5, NO2 and O3 surface concentrations changes (Figure 21) and as 666 

vertical cross-sections (Figures 22, 23, 24), respectively.  667 

Changes above the 90% confidence level for PM2.5 and NO2 occur near the forest fires themselves (red regions, near 668 

top of model domain, Figure 21(a,b)), though remain below 90% confidence for O3 (Figure 21(c)).   669 

Feedbacks result in near-surface PM2.5 decreases in the regions downwind of the forest fires (Figure 21(a), Figure 670 

22(a), note the large blue region and more intense blue region near surface in Figure 22(a)), suggesting less PM2.5 671 

mass is present near the surface due to the feedbacks.  Given the increase in near-surface stability below the fire 672 

plumes noted above, this change in the vertical distribution probably reflects a decrease in downward diffusive mixing 673 

of the forest fire plumes once aloft – the feedbacks thus have a tendency to increase the smoke plume concentrations 674 

aloft, by preventing the downward mixing of smoke injected by the fires.  These PM2.5 concentration effects rise 675 

above the 90% confidence level within the region closest to the fires.     676 

Feedbacks result in an increase in near-surface NO2 in several inland urban centers and less NO2 at surface level 677 

downwind (Figure 21(b), though these differences are only significant at the 90% confidence level within the forest 678 

fire plumes (Figure 21(e), Figure 23(c)).  Ocean versus land NO2 differences remain below the 90% confidence level.   679 

Feedbacks decreased lower Troposphere O3 near the forest fires (Figure 21(c), Figure 24(a)), while increasing O3 near 680 

above hybrid level 0.383.  The forest fires are also the only area where the differences in between mean ozone forecasts 681 

approach 90% confidence.   682 

Overall, the most significant effects of the feedbacks were: (1) increases in PM2.5 aloft and decreases near the surface 683 

in areas impacted by the fires , and (2) increases in NO2 aloft and decreases near the surface near the fires, to lesser 684 

extent than PM2.5, and (3) decreases in lower troposphere O3, particularly near the surface in the region impacted by 685 

the fires.   686 

The feedback-induced changes in primary and secondary pollutants in the forest fire regions are consistent with the 687 

decrease in atmospheric stability noted above – a greater proportion of the primary particulate matter and NO2 resulting 688 

from near-surface forest fire emissions of NO remain aloft with the addition of feedbacks.  The decrease in surface 689 

ozone and increase further aloft in the fire region (Figure 24(a)) spatially matches the decrease in surface NO2 (Figure 690 



20 
 

22(a)).  Chemically, this may imply that the changes associated with feedbacks occur in NOx-limited environments, 691 

i.e., with relatively high VOC/NOx ratios , since in these environments, decreases in NOx emissions may lead to 692 

decreases in the rate of secondary O3 formation.  Alternatively, the reduction in near-surface O3 concentrations may 693 

reflect a decrease in light levels reaching the surface due to cloud attenuation (aerosol indirect effect), with the 694 

resulting lower photolysis rates resulting in a reduction in surface photochemical ozone production. 695 

Our analysis thus suggests a net enhanced upward transport occurs in forest fire plumes due to feedbacks, and that this 696 

transport is linked to feedback-induced:  697 

(1) Increases in local near-surface atmospheric stability, reducing downward mixing of particulate plumes 698 

once aloft (Figure 22(a));  699 

(2) Increases in cloud droplet numbers throughout the lower troposphere (Figure 15(a));  and  700 

(3) Increases in rain drop numbers aloft (Figure 16(a)).    701 

This combination suggests the presence of an AIE feedback loop – increased lower atmosphere stability 702 

results a greater proportion of particulate matter remaining aloft, in turn resulting in more particles remaining at higher 703 

levels in the atmosphere where they may act as cloud condensation nuclei, increasing cloud droplets aloft (Figure 704 

15(a)).  This in turn results in increased lower middle troposphere cooling, through the 1st AIE (increase in cloud 705 

droplet numbers aloft leading to increased cloud albedo and cooling of the atmosphere below the cloud tops) while 706 

the corresponding decreases in particles and cloud condensation nuclei at lower levels results in a smaller near-surface 707 

impact on the AIE and ADE,  hence relatively minor changes on near-surface temperatures (Figure 20(a)).  This 708 

combination maintains a feedback-induced near-surface unstable temperature gradient, relative to the no-feedback 709 

simulation employing aerosol property climatologies.  We acknowledge that these changes in temperature fall below 710 

the 90% confidence level for the averages over all times, though note that differences in mean bias relative to 711 

observations for the two simulations became significantly different at specific times of day in the forecasts (Figure 712 

6(a), hours 3, 6, 15 and 18, corresponding to 15, 18, 3 and 6 UT, or 9 AM, 12 noon, 9 PM, and midnight MDT), 713 

implying that the temperature changes at these specific times reach a higher level of significance.  Similarly, Figures 714 

12 and 13 show reductions in the near-surface temperature biases with the use of feedbacks. 715 

4.3 Summary, Differences in Forecast Simulation-Period Averages  716 

Relative to the no-feedback simulation employing an aerosol climatology, the AIE feedback as simulated here is 717 

associated with increases in near-surface stability over both ocean and forest-fire influenced land areas.  Over oceans, 718 

near-surface particulate matter is removed as cloud condensation nuclei, resulting in increased cloud droplet numbers, 719 

maintaining the temperature gradient through the 1st aerosol indirect effect.  In the vicinity of forest fires, increases in 720 

near-surface stability result in more PM2.5 remaining aloft, increasing the availability of cloud condensation nuclei 721 

aloft, increasing cloud droplet numbers aloft, hence also maintaining the less stable near-surface temperature gradient 722 

through the 1st aerosol indirect effect.  We note that the ADE may also play a weak role, particularly in the southern 723 

part of the domain, where lower atmosphere temperature gradient increases are not accompanied by significant 724 

changes in cloud droplet numbers (Figure 15(a), southern half of the cross-section), but are accompanied by significant 725 
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though small magnitude increases in PM2.5 in the lower atmosphere (Figure 22(a), southern half of cross-section), 726 

and temperature profile changes (Figure 20) below the 90% confidence level. 727 

 728 

5 Conclusions 729 

The work carried out here suggests that the answers to our two research questions (“Can on-line coupled models 730 

improve both air-quality and meteorological forecasts?” and “Are the changes in forest fire forecasts associated with 731 

implementing forest fire emissions within a on-line coupled model sufficient to significantly perturb weather and 732 

chemistry?”) are both a qualified “yes”.  Within the high resolution domain size employed here, improvements or 733 

matching weather forecast performance was seen for most times and heights in the atmosphere, at greater than 90% 734 

confidence.  Improvements in model performance for surface PM2.5, NO2 and O3 were also found, across most 735 

statistical measures (35 out of 48 statistical evaluation scores showed improvements).  Comparing average vertical 736 

cross-sections, the chemical concentration changes associated with feedbacks were the most significant close to the 737 

forest fires in the northern portion of the domain.  There, increased net vertical transport associated with decreased 738 

near-surface stability lowered near-surface PM2.5 and NO2 concentrations and increased them aloft, and resulted in 739 

reduced surface O3. 740 

Our simulations suggest that aerosol optical depth in the region, as well as the overall chemical performance of the 741 

model, was strongly influenced by upwind boundary conditions.  AODs were biased low despite PM2.5 positive 742 

biases, suggesting that the homogeneous mixture approach for aerosol optical properties results in a general under-743 

prediction of aerosol optical depths, in accord with Curci et al. (2015), and that obtaining better data for forest fire 744 

aerosol optical properties should be a priority for future study, as well as an examination of external mixture 745 

approaches.  Positive AOD biases in the region affected by fires suggests that forest fire plumes have significantly 746 

different optical properties, and may be less hygroscopic, than industrial aerosols of comparable size.  Special / 747 

separate treatment of forest fire CCN and optical properties are therefore also recommended in future work.   748 

On-line coupling forest fire plume rise calculations with the weather parameters was shown to have a significant 749 

impact on the height of primary pollutants reached by forest fires, the formation of near-surface ozone near the forest 750 

fires, and on particulate matter.  These changes were largely driven by the AIE, which maintains an increased lapse 751 

rate (decreased near-surface stability) over the forest-fire-influenced and oceanic portions of the region studied.  Weak 752 

evidence for the influence of the ADE was shown in the southern part of the domain, where increas es in particulate 753 

matter were also accompanied by decreases in stability between the surface and the lower-middle troposphere (the 754 

differences were at a lower than 90% confidence level for these comparisons of temperatures averaged over all model 755 

times).    756 

Relative to the no-feedback aerosol climatology for CCN and aerosol optical properties, the simulations carried out 757 

here suggested that in the vicinity of forest fires feedbacks significantly increase cloud droplet number densities near 758 

the surface and aloft, and significantly increase rain drop number densities aloft , relative to forecasts driven by 759 

climatological aerosol properties.  Over the oceans, feedbacks decreased cloud droplet number density and increased 760 

rain drop number density aloft, relative to the simulation employing invariant CCN properties.  Oceanic cloud droplet 761 

mass increased to a lesser degree (with smaller regions above the 90% confidence level), as did rain drop mass (the 762 
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mean differences for which for the most part remained below the 90% confidence level).  This provides some evidence 763 

for a shift in atmospheric water mass associated with feedbacks from cloud water to rain over the oceans relative to 764 

the no-feedback climatology, though this shift occurred largely within the variability  of the cloud fields within each 765 

simulation.  Longer simulations may be needed to achieve higher confidence in this finding. 766 
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Tables: 1029 

 1030 

Model Process or 

Configuration 

Component 

Description Reference (where 

applicable) 

Base weather 

forecast model 

Global Environmental Multiscale (GEM), v4.9.8 Cote et al. (1998), 

Girard et al. (2014) 

Base air-quality 

model 

Global Environmental Multiscale – Modelling Air-quality and 

Chemistry (GEM-MACH) v2 

Moran et al. (2018) 

Aerosol Direct 

Effect  

Feedback simulations:  GEM-MACH’s predicted aerosol 

loading and Mie scattering using a binary water-dry aerosol 

homogeneous mixture assumption, at 4 wavelengths employed 

by GEM’s radiative transfer algorithms, and at additional 

wavelengths for diagnostic purposes. 

No-Feedback simulations:  invariant climatological values for 

aerosol optical properties are used. 

Makar et al. (2015a,b) 

Aerosol Indirect 

Effect  

Feedback simulations:  Modified P3 cloud microphysics 

scheme, driven by an aerosol size and speciation specific 

nucleation scheme (Abdul-Razzak and Ghan, 2002).  

No-feedback implementation:  P3 scheme driven by an 

invariant aerosol population of a single lognormal size 

distribution (with a geometric mean diameter of 100 nm and 

total aerosol number of 300 cm-3 consisting of pure ammonium 

sulphate).  

The prognostic cloud droplet number and mass mixing ratios 

from the P3 microphysics are then transferred back to the 

chemistry module for using in cloud processing of gases and 

aerosols (cloud scavenging and chemistry) calculations, 

completing the AIE feedback process loop in the case of the 

feedback implementation (Gong et al., 2015). 

Gong et al. (2015),  

Abdul-Razzak and 

Ghan (2002), Morrison 

and Milbrandt (2015), 

Milbrandt and 

Morrison (2016), 

Morrison and 

Grabowski (2008). 

Forest fire plume 

rise 

CFFEPSv4.0 (see text)  
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Gas-phase 

chemistry 

mechanism 

ADOMII mechanism, 42 gas species. Stockwell et al. (1989) 

Gas-Phase 

chemistry solver 

KPP-generated RODAS3 solver Sandu and Sander 

(2006) 

Cloud processing 

of aerosols 

Aqueous chemistry, scavenging of gases and aerosols, below-

cloud removal and wet deposition. 

Gong et al. (2015) 

Particle 

microphysics 

Sectional size distribution and 8 chemical species. Gong et al. (2003) 

Particle inorganic 

thermodynamics 

Local equilibrium subdomain approach Makar et al. (2003) 

Secondary organic 

aerosol formation 

Modified yield approach Stroud et al. (2018) 

Vertical diffusion Fully implicit approach, with surface fluxes as a boundary 

condition 

 

Advection Semi-Lagrangian approach, 3-shell mass conservation 

correction (ILMC approach) 

 

Forest canopy 

shading and 

turbulence. 

Light attenuation within forest canopies and turbulence 

reductions due to vegetation applied to thermal coefficients of 

diffusivity. 

Makar et al. (2017) 

Anthropogenic 

plume rise 

Parameterization calculating residual buoyancy of the rising 

plume. 

Akingunola et al. 

(2018). 

Meteorological 

modulation of 

aerosol crustal 

material 

Aerosol crustal material is inhibited when the soil water content 

is > 10%. 

 

Ammonia 

emissions and 

deposition 

Bi-directional flux parameterization employed. Whaley et al. (2018), 

Zhang et al. (2003). 

Methane treatment Reactive, emitted and transported tracer  

Leaf Area Index 

data 

MODIS retrievals used to create monthly LAI values for 

biogenic emissions, forest canopy shading and turbulence, 

deposition 
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Vehicle-induced 

turbulence 

Observation-based parameterization used to modify near-

surface coefficients of thermal diffusivity 

Makar et al. (2020) 

 1031 

Table 1.  GEM-MACH model configuration details and references . 1032 
 1033 

Event 

Forecast 

Event Observed 

Yes No 

Yes A B 

No C D 

 1034 
Table 2.  Event versus non-event contingency table.  A = number of events forecast and observed; B=number of events 1035 
forecast but not observed; C=number of events observed but not forecast; D = number of cases where events were neither 1036 
forecast nor observed. 1037 
  1038 
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 1039 

Chemical Region Simulation FO2 MB MGE NMGE R RMSE COE IOA 

PM2.5 Western 

Canada 

No 

Feedback 0.412 4.805 6.688 1.322 0.259 10.163 -1.476 -0.192 

Feedback 0.414 4.578 6.531 1.291 0.238 9.803 -1.418 -0.173 

Western 

USA 

No 

Feedback 0.556 1.953 5.349 0.823 0.254 8.571 -0.538 0.231 

Feedback 0.556 1.805 5.287 0.813 0.252 8.443 -0.520 0.240 

O3 Western 

Canada 

No 

Feedback 0.741 5.988 11.089 0.495 0.527 15.445 -0.223 0.388 

Feedback 0.745 5.891 10.969 0.490 0.527 15.268 -0.210 0.395 

Western 

USA 

No 

Feedback 0.865 1.731 10.702 0.285 0.693 14.279 0.249 0.625 

Feedback 0.866 1.770 10.663 0.284 0.694 14.225 0.252 0.626 

NO2 Western 

Canada 

No 

Feedback 0.437 -0.997 2.757 0.594 0.564 3.965 0.154 0.577 

Feedback 0.429 -1.037 2.758 0.595 0.565 3.936 0.154 0.577 

Western 

USA 

No 

Feedback 0.493 -0.346 2.341 0.572 0.653 3.674 0.177 0.588 

Feedback 0.483 -0.427 2.332 0.570 0.651 3.657 0.180 0.590 

 1040 

Table 3:  Summary performance metrics for ozone, nitrogen dioxide, and PM2.5.  Bold-face indicates the simulation with 1041 
the better performance score for the given metric, chemical species and sub-region, italics indicate a tied score, and regular 1042 
ont the simulation with the lower performance score.  FO 2:  fraction of scores within a factor of 2.  MB: Mean Bias.  MGE: 1043 
Mean Gross Error. NMGE:  Normalized Mean Gross Error.  R: Correlation Coefficient.  RMSE:  Root Mean Square 1044 
Error.  CO E: Coefficient of Error.  IO A:  Index of Agreement.  1045 



34 
 

Figures: 

 

 

Figure 1:  GEM-MACH domains:  (a) GEM meteorology 10km resolution forecast domain.  (b) GEM-MACH 10km resolution 

forecast domain.  (c) GEM-MACH inner 2.5-km grid resolution forecast domain for comparison to observations.  Red lines indicate 
locations of illustrative South to North and West to East cross -sections appearing in subsequent analysis in the text. 
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Figure 2:  Example time sequencing of model simulations used to generate the 2.5 -km GEM-MACH simulations carried out here.  

Green lines and print indicate GEM (weather forecast only) simulations), blue lines and print indicate 2.5 -km GEM-MACH 

simulations.  Arrows indicate data flow (light green: meteorological information; light blue: chemical information).  Steps (a) 

through (h) illustrate the sequence of forecasts used to generate two consecutive days of 2.5km GEM-MACH simulations.  Note that 

on-line coupling occurs only at the 2.5km GEM-MACH forecast level, in this sequencing. 
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Figure 3:  Process comparison between original (CFFEPSv2.03, left) and on-line (CFFEPSv4.0, right) forest fire emissions and 

vertical plume distribution algorithms. 
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Figure 4:  Hotspot locations during the study period, colour-coded by daily total tonnes PM2.5 emitted.  (a) Entire model 2.5-km 

domain, with northern Alberta and northern Nevada sub-regions as red dashed boxes; (b) northern Alberta zoom, with smaller 

symbols for individual hotspots showing the large fire regions; (c) northern Nevada zoom, to the same scale as (b), showing isolated 

hotspots with high emissions. 
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Figure 5:  Mean bias in surface temperature (oC) at forecast hours starting at 0 UT.  (a) Red line:  n o-feedback forecast values; blue 
line: feedback forecast values.  (b) Difference in absolute value of mean bias between the two forecasts (|𝑴𝑩| 𝒇𝒆𝒆𝒅𝒃𝒂𝒄𝒌 −

|𝑴𝑩| 𝒏𝒐−𝒇𝒆𝒆𝒅𝒃𝒂𝒄𝒌 ), with the region below 90% confidence level shown shaded grey.  Mean va lues above above/below the ‘0’ line, and 

outside of the shaded region thus indicate differences in the mean between the two forecasts which differ at or above the 90% 

confidence level.  Values of the difference which appear below/above the zero line and ou tside of the grey area thus indicate superior 

domain average performance for the feedback/no-feedback forecasts at each of the 3-hourly intervals, respectively.  Numbers 

appearing above the metric differences are the number of observations contributing to the calculated metrics. 
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Figure 6:  Summary meteorological performance comparison for surface temperature (C).  (a) mean bias, (b) mean absolute error, 

(c) root mean square error and (d) Pearson correlation coefficient.  90% confidence level shown in grey.  Numbers appearing a bove 

the absolute mean bias differences are the number of stations contributing to the calculated metrics.  
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Figure 7:  Summary meteorological performance comparison for surface pressure (hPa). (a) mean bias, (b) mean absolute error, (c) 

root mean square error, (d) Pearson correlation coefficient, and (e) standard deviation.  90% confidence level shown in grey.  

Numbers appearing above the absolute mean bias differences are the number of stations contributing to the calculated metrics.  
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Figure 8:  Summary meteorological performance comparison for dewpoint temperature (C). (a) mean bias, (b) mean absolute error, 

(c) root mean square error, (d) Pearson correlation coefficient, and (e) standard deviation.  90% confidence level shown in grey.  

Numbers appearing above the absolute mean bias differences are the number of stations contributing to the calculated metrics.  
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Figure 9:  Summary meteorological performance comparison for sea-level pressure (hPa). (a) mean bias, (b) mean absolute error, 

(c) root mean square error, (d) Pearson correlation coefficient, and (e) standard deviation.  90% confidence level shown in grey.  

Numbers appearing above the absolute mean bias differences are the number of stations contributing to the calculated metrics.  
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Figure 10:  Summary meteorological performance comparison for 10m windspeed (m s -1). (a) mean bias, (b) mean absolute error, 

(c) root mean square error, (d) Pearson correlation coefficient, and (e) standard deviation.  90% confidence level shown in grey.  

Numbers appearing above the absolute mean bias differences are the number of stations contributing to the calculated metrics.  
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Figure 11:  Precipitation performance evaluation (mm precipitation).  (a) Heike skill score of 6-hour accumulated precipitation (No-

Feedback – Feedback).  (b) Frequency bias index of 6-hour accumulated precipitation (threshold of 2 mm, No-Feedback – Feedback).  

(c) Equitable  Threat Score of 6-hour accumulated precipitation (threshold of 2 mm, No-Feedback – Feedback). 
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Figure 12:  Forecast hour 12 (0 UT) summary upper air temperature performance comparison for air temperature (mean bias, C). 

(a) Difference in absolute value of mean bias in temperature, (feedback forecast – no-feedback forecast).  Grey regions represent 

90% confidence levels, blue symbols: pressure levels at which the feedback mean bias outperforms the no -feedback mean-bias at > 

90% confidence.  Red symbols:  pressure levels at which the no-feedback mean bias outperforms the feedback mean bias at > 90% 

confidence.   90% confidence level shown in grey.  (b) Mean bias in upper air temperature for feedback (blue) and no -feedback (red) 

(C).  Numbered values on the profiles indicate the number of observed data -model pairs at each pressure level. 
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Figure 13:  Forecast hour 24 (12 UT) summary upper air temperature performance comparison for air temperature (mean bias, C).  

(a,b) as in Figure 12. 

 



47 
 

 

Figure 14: 550nm AO D comparison.  (a) All MO DIS observations sampled over the model domain and forecast duration and (b) 
GEM-MACH 2.5km simulation, driven by 10km GEM-MACH simulations, in turn driven by ECMWF Reanalysis for 2.5km domain 

boundary conditions .  (c) GEM-MACH 2.5km simulation, driven by MO ZART climatological boundary conditions.  
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Figure 15.  (a,b) Difference in mean (Feedback – No-Feedback) cloud droplet number simulations along south to north and east to 

west cross-sections through the middle of the model domain.  (c,d) Corresponding significance level of mean cloud droplet number 

differences using the confidence ratio defined in equation (1) – red areas indicate ratio values greater than unity, i .e., significance at 

or above the 90% confidence level.  (e ,f) Difference in mean cloud droplet mass (g kg -1) (g,h) Corresponding significance level of 
mean cloud droplet mass difference.    Note:  the vertical axis in hybrid coordinates does not show all model levels for clarity; the model 

has much finer resolution in the lower part of the atmosphere than shown, and the portion of the vertical domain shown encomp asses 

only the lower half of the levels in the model.   
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Figure 16.  (a,b) Difference in mean (Feedback – No-Feedback) rain drop number simulations along south-to-north and east-to-west 

cross-sections through the middle of the model domain.  (c,d) Corresponding  significance level of mean rain drop number differences 

using the confidence ratio defined in equation (1) – red areas indicate ratio values greater than unity, i .e., significance at or above 
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the 90% confidence level.   (e,f) Difference in rain cloud drop mass (g kg-1) (g,h) Corresponding significance level of mean rain drop 

mass difference. 

 

 

 

  

 
Figure 17: (a) Average (Feedback – No Feedback) total surface precipitation during the simulation period.  (b) 90% confidence ratio 

– values greater than 1 indicate significantly different results at the 90% confidence level.  
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Figure 18: Differences in average meteorological fields (feedback – no-feedback; red values indicate more positive values in the 

feedback simulation than in the no-feedback simulation).  Panels show average difference in: (a) specific humidity (g kg -1); (b) air 

temperature (C), (c) dewpoint temperature (C), (d) surface pressure (mb),  (e) planetary boundary layer height (m), (f) frict ion 

velocity (m s -1). 
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Figure 19:  90% confidence ratios, same fields as Figure 19.  Values greater than 1 indicate significantly different results at or greater 

than the 90% confidence level. 
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Figure 20: (a,b) Difference in mean (Feedback – No-Feedback) temperature simulations along south-to-north and east-to-west cross-

sections through the middle of the model domain.  (c,d) Corresponding confidence ratio of mean temperature differences – red areas 

indicate ratio values greater than unity, i .e., significance at or above the 90% confidence level.   
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Figure 21:  (a,b,c) Difference (Feedback – No-Feedback) in surface mean PM2.5 (ug m -3), NO 2 (ppbv) and O 3 (ppbv), respectively.  

(d,e ,f) Corresponding confidence ratio of mean differences – red areas indicate ratio values greater than unity, i .e., significance at  

or above the 90% confidence level. 
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Figure 22:  (a,b) Difference (Feedback – No-Feedback) in predicted mean PM2.5 (ug m-3), along domain-center South-North and 

West – East cross-sections.  (c,d)  Corresponding confidence ratio of mean differences – red areas indicate ratio values greater than 

unity, i .e., significance at or above the 90% confidence level.  Note that colour bar scales differ between (a) and (b).  
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Figure 23: (a,b) Difference (Feedback – No-Feedback) in predicted mean NO 2 (ppbv), along domain-center South-North and West 

– East cross-sections.  (c,d)  Corresponding confidence ratio of mean differences – red areas indicate ratio values greater than unity, 

i .e ., significance at or above the 90% confidence level.  
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Figure 24: (a,b) Difference (Feedback – No-Feedback) in predicted mean O3 (ppbv), along domain-center South-North and West – 

East cross-sections.  (c,d)  Corresponding confidence ratio of mean differences – red areas indicate ratio values greater than unity, 

i .e ., significance at or above the 90% confidence level.  Note that colour bar scales differ between (a) and (b).  

 


