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Abstract. Information on the spatiotemporal characteristics of Beijing’s urban-rural near-surface air temperature difference, 

known as the canopy layer urban heat island (UHI), is important for future urban climate management strategies. This paper 

investigates the variation of near-surface air temperatures within Beijing at a neighbourhood-scale resolution (~ 100 m) during 

winter 2016 and summer 2017. We perform simulations using the urban climate component of the ADMS-Urban model with 

land surface parameters derived from both Local Climate Zone classifications and OpenStreetMap land use information. 20 

Through sensitivity simulations, the relative impacts of surface properties and anthropogenic heat emissions on the temporal 

variation of Beijing’s UHI are quantified. Measured UHI intensities between central Beijing (Institute of Atmospheric Physics) 

and a rural site (Pinggu) during the Atmospheric Pollution and Human Health in a Chinese Megacity (APHH-China) 

campaigns, peak during the evening at ~ 4.5 °C in both seasons. In winter, the nocturnal UHI is dominated by anthropogenic 

heat emissions but is underestimated by the model. Higher resolution anthropogenic heat emissions may capture the effects of 25 

local sources (e.g. residential buildings and adjacent major roads). In summer, evening UHI intensities are underestimated, 

especially during heatwaves. The inability to fully replicate the prolonged release of heat stored in the urban fabric may explain 

this. Observed negative daytime UHI intensities in summer are more successfully captured when surface moisture levels in 

central Beijing are increased. However, the spatial correlation between simulated air temperatures and satellite-derived land 

surface temperatures is stronger with a lower urban moisture scenario. This result suggests that near-surface air temperatures 30 

at the urban meteorological site are likely influenced by fine-scale green spaces that are unresolved by the available land cover 

data and demonstrates the expected differences between surface and air temperatures related to canopy layer advection. This 

study lays the foundations for future studies of heat-related health risks and UHI mitigation strategies across Beijing and other 

megacities.   

1 Introduction 35 

The urban heat island (UHI) phenomenon describes the positive temperature difference between urban environments and their 

surrounding rural areas (Oke, 1982; Arnfield, 2003; Grimmond et al. 2010). Within the urban atmosphere, distinct UHIs can 

be defined for the urban canopy layer, extending from the ground surface to mean building height, and the urban boundary 

layer, covering the remainder of the mixing layer above the urban canopy (Voogt and Oke, 2003). Different mechanisms drive  
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the development of each atmospheric UHI (Oke, 1982). Here, we focus on the canopy layer UHI, with raised temperatures 40 

resulting from the morphology of urban structures and street canyons, trapping incoming shortwave (SW) and outgoing 

longwave (LW) radiation, and the replacement of natural, permeable surfaces with impervious materials, such as concrete, 

which alters the urban surface heat energy balance (Estoque et al. 2017; Ao et al. 2018). The removal of vegetation and 

increased runoff of surface water lowers the proportion of net radiation partitioned to latent heat flux thereby reducing daytime 

urban evaporative cooling (Li et al. 2015; Wang et al. 2017; He et al. 2018). Heat stored throughout the day within the high 45 

thermal admittance urban fabric is released into a stabilising boundary layer at night creating a strong nocturnal UHI effect 

(Anandakumar, 1999; Grimmond and Oke, 1999). The continuous emission of heat from anthropogenic activities further 

enhances the urban-rural temperature contrast (Sailor, 2011; Gabey et al. 2019).  

In China, urbanisation has occurred rapidly in recent decades, with 59.6 % of the population reported to be living in 

urban areas in 2018, compared to 19.4 % in 1980 (National Bureau of Statistics, 2018; The World Bank, 2020). The UHI effect 50 

is well known to exacerbate and prolong extreme temperature events (Li et al. 2015; Jiang et al. 2019). As heatwaves are 

becoming more frequent in our warming climate (Krayenhoff et al. 2018; Zhao et al. 2018), the number of people in  China left 

vulnerable to heat-related illnesses is increasing (Tan et al. 2010; Bai et al. 2014; Gu et al. 2016). Most at risk from illnesses 

such as heat stroke are the elderly (Gu et al. 2016), of particular concern in China owing to its aging population (Li et al. 2016), 

and those without air conditioning (Zhao et al. 2018). The latter is of most significance at night when residents are at home 55 

and the UHI intensity (UHII), the magnitude of the urban-rural near-surface air temperature difference, is strongest (Liu et al. 

2007; Wang et al. 2017; He et al. 2020). Chen et al. (2016) estimateds that residents of Chinese megacities may spend up to 

40 % more time under extreme heat stress compared to those living in adjacent rural areas.   

A comprehensive understanding of the relative importance of surface radiative properties, urban morphology and 

anthropogenic heat emissions (AHEs) in driving spatiotemporal UHI variations across cities is essential for the development 60 

of successful urban planning strategies aimed at reducing the heat-related health burden. A common approach to quantifying 

a city’s UHI is to look at differences between near-surface air temperatures measured at in-situ urban and rural meteorological 

stations (Liu et al. 2007; Wang et al. 2017; Jiang et al. 2019). However, sparse observations (Santamouris, 2015) cause sharp 

temperature gradients between distinct urban microclimates to be unresolved (Hamilton et al. 2014; Aktas et al. 2017). 

Furthermore, variations in building morphology and other surface properties, combined with the lack of knowledge of the 65 

urban canopy observational footprints constrain UHI comparisons between cities (Oke, 2004; Schatz and Kucharik, 2014). A 

comparison of UHIIs observed across multiple Chinese cities by Jiang et al. (2019) found that Shanghai’s daily maximum 

UHII could alternate between afternoon and evening hours, depending on whether inland or coastal rural reference sites were 

chosen, due to the cooling effects of the daytime sea breezedepending on the chosen rural reference site, due to its coastal 

proximity and sea breeze effects.  70 

Satellite-derived land surface temperatures (LST) allow land cover and surface temperature to be studied across cities 

lacking dense near-surface air temperature observations (Kato and Yamaguchi, 2005; Zhou et al. 2013; Estoque et al. 2017). 

However, comparisons between the spatiotemporal variability of LSTs and near-surface air temperatures are limited by the 

differing controls of both variables, notably the relative importance of advection to the surface energy balance partitioning 

(Chandler, 1965; Roth et al. 1989). Lack of information on surface radiative properties, building geometry and urban 75 

atmospheric composition can further limit the use of LSTs by making the surface temperature difficult to derive (Morrison et 

al. 2020). Specifically, radiance measurements made by remote thermal sensors need to be corrected for spatially varying 

urban surface emissivities; walls or roofs of buildings may become oversampled at particularly low (~ 30 °) or high (~ 90 °) 

satellite viewing angles, with roofs typically constructed from lower thermal inertia materials than walls generating greater 

diurnal LST variabilitywalls or roofs of buildings may become oversampled depending on the satellite viewing angle; and 80 

cloud cover and urban pollution can strongly attenuate the upwelling thermal radiance, restricting the selection of satellite 

images to clear days to minimise signal interference (Roth et al. 1989; Voogt and Oke, 1998; Voogt and Oke, 2003; T. Wang 
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et al. 2019).  Furthermore, the use of high spatially resolved (~ 100 m) satellite data (e.g. Landsat 8) to investigate diurnal heat 

risk variability across cities is often restricted by its poor temporal resolution; Landsat 8 LSTs are typically available every 16 

days. Instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) provide images four times a day 85 

(Hough et al. 2020) but have much coarser spatial resolution (~ 1000 m). 

Urban climate models can be used to produce complete spatially and temporally resolved air temperature distributions 

across cities and thus provide a solution to the poor spatial coverage of air temperature measurements and the limitations 

associated with the derivation of LSTs from satellite data. Fine-scale modelling of urban climate is frequently undertakenUrban 

climate modelling is frequently undertaken to enable the testing of UHI mitigation strategies and the investigation of critical 90 

issues such as how the UHI impacts heat wave events and pollution dispersion (Wang et al.  2013; Chen et al. 2016; Fallman 

et al. 2016). Regional-scale climate models such as the Weather Research and Forecasting model (WRF) coupled with urban 

canopy modules that simulate the impact of urbanisation on climate at citywide scales are commonly used for these analyses 

(Loridan et al. 2010; Wang et al. 2013). Higher-resolution local-scale (~1 km) UHI effects can also be explored in detail with 

urban energy balance models, such as the Surface Urban Energy and Water Balance (SUEWS) model (Alexander et al. 2015), 95 

which incorporates detailed land cover data to calculate local perturbations to surface heat fluxes (Grimmond et al. 2010). 

However, the availability of land cover information in developing countries, where heat-related mortality rates in cities are 

highest (Kjellstrom et al. 2009), often restricts such studies. In fact, the Intergovernmental Panel on Climate Change’s (IPCC) 

fifth assessment report specifically highlighted the lack of detailed global urban land use datasets (IPCC, 2014). Stewart and 

Oke’s (2012) thermal classification scheme for neighbourhoods, termed local climate zones (LCZ), provides one solution. It 100 

has 10 urban and 7 rural classes that can be mapped by a variety of methods including using remote sensing data combined 

with local expert-based knowledge (Bechtel et al. 2015). LCZs are distinguished based on surface cover, structure, material 

and human activity, as they are designed to standardise the characterisation of near-surface temperature measurement sites in 

both urban and rural locations (Stewart and Oke, 2012; Ching et al. 2018).  

Here we incorporate LCZ data in neighbourhood-scale resolution (~100 m) urban climate simulations across Beijing 105 

using the ADMS-Urban Temperature and Humidity model (hereafter ADMS-Urban). This study aims to (a) quantify the 

relative impacts of urban surface properties and AHEs on Beijing’s canopy layer UHI during winter and summer periods, (b) 

produce neighbourhood-scale spatial distributions of near-surface air temperatures across urban Beijing and explore how they 

vary diurnally in summer, and (c) understand the extent to which summer heatwave periods affect daytime and nighttime 

UHIIs in Beijing. 110 

ADMS-Urban is chosen for this work as it can be used to capture the impact of fine-scale land cover variations on 

urban climate, therefore highlighting the microclimates where residents are most at risk from extreme temperatures and 

informing urban planners on the cooling effects of green spaces and waterways. Here we investigate the key processes driving 

neighbourhood-scale (~100m) near-surface air temperature variations across Beijing using the ADMS-Urban Temperature and 

Humidity model (hereafter ADMS-Urban). This local-scale urban climate model has been used for studies in megacities of 115 

contrasting climates such as London (Hamilton et al. 2014; Aktas et al. 2017) and Kuala Lumpur (K. Wang et al. 2019). As 

our simulations cover the two field campaign periods of the Atmospheric Pollution and Human Health in a Chinese megacity 

(APHH-China) programme (Shi et al. 2019), the results may assist the interpretations of related air quality measurement and 

modelling studies (Shi et al. 2019; Biggart et al. 2020; Squires et al. 2020; Zhao et al. 2020). ADMS-Urban studies in London 

focused only on specific urban developments (Hamilton et al. 2014) and building materials (Aktas et al. 2017), whereas in 120 

Kuala Lumpur the effects of AHEs were excluded (K. Wang et al. 2019). Several previous studies have implemented LCZs 

for UHI simulations, including in Dublin (Alexander et al. 2015), Madrid (Brousse et al. 2016) and Singapore (Mughal et al. 

2019). We build on this earlier work by combining a LCZ map for Beijing with the locations of fine-scale green spaces, 

waterways and buildings from OpenStreetMap (OSM).By adding the locations of buildings, green spaces and waterways using 
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OpenStreetMap (OSM), we build on the previous implementation of LCZs for UHI simulations in Dublin (Alexander et al. 125 

2015). 

Detailed descriptions of the ADMS-Urban model, its meteorological inputs and the development of surface parameter and 

AHE datasets are provided in Sect. 2. In Sect. 3, simulated neighbourhood-scale spatiotemporal near-surface air temperature 

variations across urban Beijing are evaluated using in-situ near-surface air temperature measurements and satellite-derived 

LSTs, with the impacts of extreme temperature events on Beijing’s UHI also explored. Section 4 provides a summary of this 130 

work’s findings, along with suggestions for study improvement and future applications. 

2 Methodology 

2.1 ADMS-Urban model description 

The neighbourhood-scale ADMS-Urban climate model calculates local perturbations to vertical profiles of temperature and 

humidity, representative of rural conditions upwind of the modelled urban area, in response to spatially varying surface 135 

parameters. These upwind profiles are calculated from near-surface meteorological measurements recorded outside the 

modelled urban area, ideally coinciding with air advecting towards the urban centre (i.e. upwind), and depend on the planetary 

boundary layer height (PBLH), surface roughness length (z0) and the stability parameter PBLH/LMO. LMO is the Monin-

Obukhov lengthADMS-Urban climate model calculates local perturbations to upwind vertical profiles of temperature and 

humidity in response to spatially varying neighbourhood-scale surface parameters. Calculations of upwind profiles, based on 140 

rural near-surface meteorological measurements, depend on the planetary boundary layer height (PBLH), surface roughness 

length (z0) and the stability parameter PBLH/LMO, where LMO is the Monin-Obukhov length, a measure of the relative 

importance of mechanical turbulence and buoyancy (Hood et al. 2018; CERC, 2020). Calculation of the local perturbations to 

these vertical profiles arises from surface thermal and morphological parameters modifying heat and moisture processes, 

allowing a 3-D temperature and humidity field to be modelled across the domain.  145 

The temperature and humidity perturbations are calculated by solving a coupled system of equations that govern heat 

and moisture processes at the ground (Carruthers and Weng, 1992; Raupach et al. 1992). The conservation of heat’s boundary 

conditions are dependent on moisture via the latent heat flux; and evaporative processes are temperature dependent. The 

equations account for the spatial variation of surface heat fluxes, moisture, mean airflow and vertical turbulent diffusion 

(CERC, 2018). Heat fluxes are governed by variations in net radiation (𝑄∗) and storage heat; airflow and turbulent diffusion 150 

are controlled by variations in surface roughness (z0); and the moisture terms depend on the surface’s resistance to evaporation 

which accounts for both surface wetness and sub-surface moisture, with water surfaces having near-zero surface resistance to 

evaporation (Table 1).  

Upwind 𝑄∗ is determined from near-surface, hourly meteorological measurements representative of conditions 

upwind of the model domain, following Eq. (1) (Holstag and van Ulden, 1983): 155 

 

where the first term represents the incoming SW radiation (𝐾+) absorbed by the surface, which is dependent on the upwind 

surface albedo (𝑟) defined around the edge of the modelled urban area. The second term in Eq. (1) accounts for the LW 

radiation released by the surface, a function of the upwind near-surface air temperature, T, and the downwelling LW radiation 

from the gaseous atmosphere and cloud cover (CL) are given by the third and fourth terms, respectively (Holstag and van 160 

Ulden, 1983).  

The upwind storage heat flux (𝐺) is calculated as a function of 𝑄∗ according to Eq. (2) (Camuffo and Bernardi, 1982):  

𝑄∗ =
(1 − 𝑟)𝐾+ − 5.67 × 10−8 𝑇4 + 5.31 × 10−13 𝑇6 + 60 (

𝐶𝐿

8 )

1.12
 

(1) 
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𝐺 = 𝑎1

𝑑𝑄∗

𝑑𝑡
+ 𝑎2𝑄∗ + 𝑎3 

(2) 

where  𝑎1(h), 𝑎2, and 𝑎3(W m-2) are coefficients that depend on the land cover and surface moisture (Grimmond et al. 1991; 

Grimmond and Oke, 1999), and vary sinusoidally throughout the year (Keogh et al. 2012; Sun et al. 2017). For this application, 

the coefficients selected correspond to a hybrid of urban and rural surface properties (Grimmond and Oke, 1999) that allow 165 

for both the influence of urban materials on heat exchanges as well as the advection of nighttime stable atmospheric conditions 

from the rural to urban areas, with annual mean 𝑎1=0.7 h, 𝑎2=0.3 and 𝑎3=-7.5 W m-2 (CERC, 2018). These values respectively 

represent the high proportion of 𝑄∗absorbed into the ground during the day in urban areas and re-released overnight, asymmetry 

relating to the urban fabric absorbing more heat in the early part of the day, and the model requirement that the upwind PBLH 

corresponds to stable conditions at night. In reality, in urban areas, the nocturnal release of stored heat is often sufficient to 170 

produce an upward convective heat flux and hence maintain an unstable PBL (Oke et al. 1999); in ADMS-Urban, this is 

modelled via perturbations to the upwind conditions. The model accounts for the diurnal variation of ground heat storage and 

release by summing the daytime storage heat flux and releasing it linearly throughout the evening.          

The magnitude of 𝑄∗ − 𝐺 determines the amount of energy available for partitioning between the latent (𝐿𝐸) and 

sensible heat fluxes (𝐻). Local perturbations (∆) to the upwind surface heat fluxes are calculated based on relative differences 175 

between upwind surface parameters defined around the edge of the modelled urban area and the spatially varying surface 

characteristics defined across the model domain, according to the surface energy balance equationLocal perturbations (∆) to 

the upwind surface heat fluxes are calculated based on relative differences between upwind and local surface parameters, 

according to the surface energy balance equation:   

The model requires the following surface parameters (Table 1): thermal admittance (J K-1 m-2 s-1/2), surface resistance to 180 

evaporation (s m-1), albedo, surface roughness length (z0) (m) and normalised building volume (NBV) (m). NBV is defined as 

the volume of buildings within a grid cell per grid cell area and provides a measure of the density of buildings across the 

domain. Local ∆𝑄∗ values depend on the urban-upwind differences in albedo and NBV. ∆𝐺 is based on spatial differences in 

the surface’s thermal properties (thermal admittance). Perturbations to energy lost through evaporation at the surface 

(∆𝐿𝐸) depend on locally varying surface resistance to evaporation, air temperature and surface moisture content. ∆𝐻 represents 185 

spatially varying rates at which heat energy is transferred from the surface to the atmosphere by convection. Local perturbations 

to the upwind temperature profile due to surface characteristics depend on the cumulative effect of ∆𝐻 and the local surface 

roughness length (z0) accounting for the impact of building morphology on advection and turbulent diffusion and hence heat 

transfer processes.   

2.2 Study period and meteorological input data 190 

Simulations are performed for the winter (10 November 2016 – 10 December 2016) and summer (17 May 2017 – 21 June 

2017) APHH-China measurement campaigns (Shi et al. 2019). These are periods of interest given the expected impact of the 

urban canopy layer UHI on air pollution dispersion.  Rural meteorological data for driving the model are available for the 

duration of both campaigns. 

For this study, a single set of meteorological measurements, representing upwind conditions, are used to drive the 195 

model.Upwind meteorological conditions are defined for this study using a single set of meteorological measurements.  Near-

surface air temperature and relative humidity (~ 8 m above ground level and ~ 50 m above sea level) recorded at the rural 

APHH-China field campaign site (Han, 2019) in Xibaidian village, Pinggu (40.17 °N, 117.05 °E) (hereafter the rural site), are 

used along with wind speed, wind direction and cloud cover data from the Beijing Capital International Airport Meteorology 

Observatory. Pinggu is located ~ 60 km north-east of the urban APHH-China field site at IAP (39.97 °N, 116.37 °E) (hereafter 200 

∆𝑄∗ − ∆𝐺 − ∆𝐿𝐸 =  ∆𝐻 
 

(3) 
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the urban site). The World Meteorological Organization (WMO) Beijing Capital International Airport Meteorology 

Observatory (https://ncdc.noaa.gov/, last access: 19 May 2020) is situated approximately halfway between the two sites, within 

the Sixth Ring Road (Fig. 1). Measurements of wind speed and direction from the airport site are used as the ‘rural’, or upwind 

data, instead of those from the rural site, as it is subject to WMO quality assurance and is likely to be less influenced by local 

frictional effects of neighbouring small buildings and vegetation, compared to the rural site, due its more exposed 205 

locationMeasurements of wind speed and direction from the airport site are used as the ‘rural’ data as it is subject to WMO 

quality assurance and is likely to be less influenced by local frictional effects of neighbouring small buildings and vegetation 

due to its more exposed location. Upwind vertical wind speed profiles are perturbed locally in the model, impacting heat 

advection, following modifications to PBL stability due to spatially varying heat fluxes and surface roughness.  

Incorporating near-surface air temperature measurements from a single rural meteorological station is a limitation of 210 

this study; ideally, we would use several rural meteorological sites distributed around the model domain, selecting the air 

temperature measurement from the site coinciding with upwind conditions. For this study, the only accessible upwind air 

temperature measurement data was from the rural field campaign site at Pinggu. However, dDuring the winter period, the 

predominant wind direction was from the north-east, situating the model domain downwind of the rural site. During the 

summer period, winds from the north and east are the most prevalent, however a growing frequency of south-westerly winds 215 

is also observed. Therefore, summer air temperatures measured at the rural site may be influenced at times by heat advection 

from urban Beijing.   

At the urban site, a ceilometer gathered attenuated backscatter that were analysed with the CABAM algorithm 

(Kotthaus and Grimmond, 2018) to provide the mixing layer height, the atmosphere’s lowest layer in contact with earth’s 

surface resulting from turbulent exchange (Shi et al. 2019; Hertwig et al. 2020). This was assumed to equate to the PBLH.   220 

2.3 ADMS-Urban surface parameters  

Near-surface air temperatures are modelled across the area contained within Beijing’s Sixth Ring Road (Fig. 1); the resolution 

of the model calculation grid is ~ 105 m. Thermal and morphological properties covering the modelled urban area and 

surrounding suburban regions are derived from OpenStreetMapThe model domain is the area contained within Beijing’s Sixth 

Ring Road (Fig. 1). Thermal and morphological properties covering the domain are derived from OpenStreetMap (OSM) data 225 

(https://openstreetmap.org/, last access: 9 March 2020) and LCZs mapped by the World Urban Database and Access Portal 

Tools (WUDAPT) project (http://www.wudapt.org/cities/in-asia/, last access: 19 May 2020). The function and plan area of 

specific buildings, green spaces and waterways are obtained from OSM (Fig. 2). Table A1 provides a full list of the OSM land 

use types and the thermal admittance, surface resistance to evaporation and albedo values assigned to each, based on data 

reported in the literature (Oke, 1982; Cox et al. 1999; Hamilton et al. 2014; CERC, 2018; K. Wang et al. 2019). 230 

OSM land use information is overlaid onto Beijing’s LCZ classes, which are mapped at 100 m resolution (Fig. 2). 

The methodology for generating LCZ maps for specific cities is well-documented (Stewart and Oke, 2012; Bechtel et al. 2015; 

Ching et al. 2018). For Beijing, there are 9 urban and 6 rural LCZ types (Fig. 2; Table 1). The surface parameters assigned to 

each LCZ (Table 1) are based on ranges of values suggested by Stewart and Oke (2012), derived from previous urban climate 

observational and numerical modelling studies. Following Ching et al. (2018), thermal admittance values are assigned by 235 

selecting the midpoints of the Stewart and Oke (2012) ranges. Estimates of surface resistance to evaporation are not provided 

with the LCZ data, therefore we use literature-reported values (Oke, 1982; Cox et al. 1999; Hamilton et al. 2014; CERC, 2018). 

A surface resistance to evaporation of 200 s m-1 is widely deemed in the literature to characterise urban surfaces, thus we 

assign it to LCZs described by Stewart and Oke (2012) as consisting entirely of impervious materials (LCZ 1-3, 8 and 10). 

However, to account for the high density of green spaces and prevalence of road wetting for cleaning purposes across urban 240 

Beijing, noted by Dou et al. (2019), we lower the surface resistance to evaporation given to LCZs described by Stewart and 

Oke (2012) as consisting of abundant pervious land cover (e.g. plants and trees) (LCZ 4-6 and 9) to 150 s m-1; this value is an 
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approximate midpoint between the surface resistance to evaporation values given to green spaces and urban surfaces (Table 

A1 and Table 1). Given the strong influence on daytime air temperatures of surface resistance to evaporation, this adjustment 

is made to ensure sufficient spatial heterogeneity in modelled air temperature is captured across central urban areasTo ensure 245 

we capture sufficient heterogeneity across central urban areas, a higher surface resistance to evaporation of 200 s m-1 is given 

to urban LCZs described by Stewart and Oke (2012) as consisting entirely of impervious materials (LCZ 1-3, 8 and 10), with 

150 s m-1 assigned to those comprising abundant pervious land cover (e.g plants and trees) (LCZ 4-6 and 9). The albedo values 

selected for each LCZ are the lower bounds of Stewart and Oke’s (2012) ranges, closely matching the literature-reported albedo 

values used for the OSM data. Surface roughness lengths (z0) correspond with the Davenport classes (Davenport et al. 2020) 250 

assigned to each LCZ by Stewart and Oke (2012). The NBV are calculated as the product of the midpoints of Stewart and 

Oke’s (2012) ranges for roughness element height and building surface fraction.        

A spatially weighted mean of the surface parameters is calculated at 100 m resolution (Fig. 3), matching the 

resolutions of the LCZ data and the model calculation grid (~ 105 m). Surface characteristics at the upwind meteorological 

site are represented by a 1 km border extending around the perimeter of each thermal and morphological surface parameter 255 

map in Fig. 3. Differences between upwind surface parameters and those within the model domain are used to calculate the 

urban temperature perturbations (Sect. 2.1). The surface information defined between the Sixth Ring Road and the 1 km upwind 

border (Fig. 3), covering suburban areas, is required in the model to prevent erroneous simulated temperatures associated with 

a sharp transition between urban and rural surface parametersA 1 km-width border around the edge of each map in Fig. 3 

defines the upwind conditions. Differences between upwind surface parameters, representing conditions at the rural site, and 260 

those within the model domain are used to calculate the urban temperature perturbations (Sect. 2.1). Upwind parameters (Table 

1) were derived from Stewart and Oke’s (2012) ranges for LCZ 9 based on its definition as a ‘natural setting with sparsely 

arranged buildings and abundant pervious land cover’, closely matching the environment at the rural site in Pinggu (Shi et al. 

2019). Stewart and Oke’s (2012) LCZ 9 parameter values were modified to those given in Table 1 following model sensitivity 

tests, with thermal admittance most notably reduced to 600  J K-1 m-2 s-1/2, accounting for the large increment of heat stored in 265 

Beijing’s urban fabric relative to neighbouring rural areas. Altitude effects on temperature are accounted for with use of terrain 

elevation data (Fig. 3f) (https://www.usgs.gov/land-resources/eros/coastal-changes-and-impacts/gmted2010, last access: 1 

April 2020). Urban Beijing is situated on a plain at an altitude of ~ 50 m, but mountainous terrain across rural areas lies to the 

north and west of the city (Fig. 3f).   

2.4 Anthropogenic heat emissions (AHE) 270 

The anthropogenic heat flux is not included in Eq. (3) and needs to be accounted for. The main sources include power, industry, 

transportation, residential and commercial building use, and human metabolism (Sailor, 2011; Lu et al. 2016; Yu et al. 2018). 

Our values are based on a mean summer AHE value estimated by Dou et al. (2019) at IAP using the Large scale Urban 

Consumption of Energy model (LUCY) (Lindberg et al. 2013). Their daily mean aggregate summer AHE (48.1 W m -2) is 

derived from national- and provincial-level energy consumption data and spatial proxy information (population density, gross 275 

domestic product and vehicle ownership rates) (Dou et al. 2019), a methodology also applied to other worldwide megacities 

such as London (Gabey et al. 2019) and Shanghai (Ao et al. 2018). For this study, we generate a 3 km resolution grid (Fig. 4) 

of aggregate AHEs, representing the sum of all AHE source sectors. First, the IAP value for summer (mean for June, July and 

August) is scaled to represent an annual mean AHE value based on literature-reported monthly scaling factors (Fig. 5) (Lu et 

al. 2016). This annual mean AHE for IAP is distributed spatially through further scaling by the magnitudes of AHE estimated 280 

for each LCZ class by Stewart and Oke (2012) relative to the AHE value for LCZ 1 (IAP is situated in LCZ 1), according to 

Eq. (4): 

𝐴𝐻𝐸𝑖 =
𝑋𝑖

𝑋1

×
𝑌𝐽𝐽𝐴

𝑀𝑆𝐹𝐽𝐽𝐴

 
(4) 
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where, 𝐴𝐻𝐸𝑖  is the annual mean AHE value for LCZ 𝑖 (𝑖 = 11-15 for LCZ A, B, D, E and G, respectively). 𝑋𝑖 and 𝑋1 represent 

the AHE value estimated by Stewart and Oke (2012) for LCZ 𝑖 and 1 (midpoint of range), respectively. 𝑌𝐽𝐽𝐴 is the summer 285 

(June, July and August) mean AHE calculated for IAP by Dou et al. (2019) and 𝑀𝑆𝐹𝐽𝐽𝐴 gives the mean scaling factor for 

summer months (Fig. 5). A spatially weighted mean of the LCZ-specific AHEs is calculated at 3 km resolution (Fig. 4).     , 

by scaling the IAP value (situated in LCZ 1) to the other LCZ classes based on the relative values given by Stewart and Oke 

(2012) for each LCZ classification. 

Single diurnal and monthly profiles are applied to the AHEs based on the profiles estimated by Lu et al. (2016). Lu 290 

et al. (2016) derived annual sectoral AHE totals for all provinces and municipalities in China from the officially published 

energy consumption statistics, obtained from a variety of sources (e.g. China Energy Statistical Yearbook). Weighted means 

of the diurnal and monthly temporal profiles for each sector, from Lu et al. (2016), are determined in relative proportion to the 

total annual sectoral AHEs estimated for the Beijing municipality. The nocturnal contribution from transportation is increased, 

following Biggart et al. (2020), to account for the influx of heavy-duty diesel trucks (HDDT) into urban Beijing after the 295 

daytime ban (06:00-23:00) within the Fourth Ring Road (Zhang et al. 2019). We assume approximate direct proportionality 

between air pollutant emissions (Biggart et al. 2020) and AHEs from HDDTs and increase the nocturnal transportation sector 

AHE component, estimated by Lu et al. (2016), by ~ a factor of 2after the daytime ban within the Fourth Ring Road (Zhang 

et al. 2019). 

The resulting monthly and diurnal aggregate AHE profiles (Fig. 5) have winter and summer peaks primarily caused 300 

by elevated heating and cooling activities, respectively, in residential and commercial buildings (Ichinose et al. 1999). 

Emissions are assumed to be proportional to electricity and heating fuel consumption (Lu et al. 2016). Elevated daytime AHEs 

with late morning and early evening peaks are predominantly from the combination of daytime commercial building thermal 

regulation and residential cooking and heating, with a smaller contribution from rush hour-related traffic volume maxima (Lee 

et al. 2009; Ao et al. 2018).  305 

AHEs are modelled as individual plumes with the ADMS-Urban air quality model (Owen et al. 2000; CERC, 2018) 

and build upon the local temperature perturbations caused by spatially varying surface characteristics (Sect. 2.1). All AHEs 

are assumed to be released into the atmosphere, then dispersed assuming quasi-Gaussian distributions driven by the upwind 

meteorological variables, PBLH and the PBLH/LMO stability parameter. The accumulation of dispersed plumes of 

anthropogenic heat gives an energy density field (𝐶𝑇), in units of J m-3, which is converted to a local air temperature increment 310 

(∆𝑇) in the model according to: 

∆𝑇 =
𝐶𝑇

𝜌𝑐𝑝

 
(5) 

 

where 𝜌 (1.225 kg m-3) and 𝑐𝑝 (1012 kJ kg-1 K-1) are standard values for the density and specific heat capacity of air at 15 °C 

(CERC, 2018). 

2.5 Model evaluation 315 

The magnitude and temporal variability of Beijing’s winter and summer canopy layer UHI are evaluated using hourly near -

surface air temperature measurements. Unlike city-scale urban climate modelling studies which commonly compare regional-

scale climate model output with the nearest meteorological measurement station to a model grid box (Chen et al. 2016; 

Fallmann et al. 2016; Chen et al. 2018), ADMS-Urban can simulate air temperatures at specific locations corresponding to the 

exact coordinates of measurement sites. We compare UHIIs modelled at the urban site at IAP, for the winter and summer 320 

periods, with measured UHIIs, calculated as the difference between near-surface air temperatures observed at the urban and 

rural sites. Air temperatures at the urban site are recorded at ~8 m above ground level and ~ 50 m above sea level, matching 
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the measurement height and terrain elevation of the temperature sensor at the rural site (Sect. 2.2). The following statistical 

performance measures are used for model evaluation:  

𝑟𝑜𝑜𝑡 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑒𝑟𝑟𝑜𝑟 (𝑅𝑀𝑆𝐸) =  √
1

𝑛
∑(𝑂𝑖 − 𝑀𝑖)2

𝑛

𝑖=1

 

 

(64) 

 

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑏𝑖𝑎𝑠 (𝐹𝑏) =  
𝑀 − 𝑂

0.5(𝑂 + 𝑀)
 

 
 

(75) 

 

𝑃𝑒𝑎𝑟𝑠𝑜𝑛′𝑠 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝑅) =  
1

𝑛 − 1
∑ (𝑀𝑖 −

𝑀

𝜎𝑀
)

𝑛

𝑖=1
(𝑂𝑖 −

𝑂

𝜎𝑂
) 

 

(86) 

  325 

where 𝑛 denotes the total number of matching hourly modelled (𝑀) and observed (𝑂) UHIIs; 𝑀 and 𝑂 indicate mean modelled 

and observed UHIIs, respectively, and 𝜎 is the standard deviation. 

Further measured-modelled air temperature comparisons are not possible due to a lack of access to other near-surface 

air temperature observations. However, satellite-derived LSTs are readily available for the Beijing area and, although the 

ADMS-Urban model does not calculate LST, the correlation between neighbourhood-scale spatial variations of modelled near-330 

surface air temperature and satellite-derived LST provides a useful comparison for model evaluation. This technique was also 

adopted by K. Wang et al. (2019) for high-resolution UHI simulations across Kuala Lumpur using ADMS-Urban to assist in 

the evaluation of modelled near-surface air temperature spatial patterns. Landsat 8 Operational Land Imager (OLI)/Thermal 

Infrared Sensor (TIRS) thermal band TIRS-1 data (https://www.usgs.gov/land-resources/nli/landsat, last access: 1 April 2020) 

is acquired at 100 m resolution, matching the modelled spatial resolution. LSTs are retrieved using the single-channel algorithm 335 

developed by Jiménez-Muñoz et al. (2009). We focus on the summer for this analysis given the stronger incoming SW, 

compared to winter, and hence the expected more direct relationship between LSTs and near-surface air temperatures (K. 

Wang et al. 2019), with near-surface air temperatures strongly influenced by the upwards flux of heat from the surface. Landsat 

8 LSTs are available for 23 May 2017 at 10:53 am (local time), a time with minimal cloud cover, and are compared with near-

surface air temperatures simulated on the same day at 11:00 am, both sampled on the same 100 m resolution grid. LSTs are 340 

compared with simulations that exclude AHEs as (a) previous studies have reported difficulties in determining the impact of 

AHEs on LSTs (Kato and Yamaguchi, 2005; Wang et al. 2017), and (b) micro-scale advection of heat released by nearby 

surfaces is known to uncouple LSTs and air temperatures (Roth et al. 1989; Voogt and Oke, 1998), thus we expect the release 

of anthropogenic heat to have a similarly strong influence on near-surface air temperatures and further contribute to differences 

with spatial LST variability. Due to the difficulty in determining the extent to which AHEs impact LSTs, reported in previous 345 

studies (Kato and Yamaguchi, 2005; Wang et al. 2017), LSTs are compared with simulations that exclude AHEs.   

2.65 Model experiments 

We perform simulations with four distinct model configurations, each involving different surface property or AHE scenarios 

(Table 2). The experiments are designed to identify how the modelled UHII can be optimised to best represent the observations 

by use of appropriate input parameters, thus providing insight into the key processes driving Beijing’s UHI in winter and 350 

summer. The Base case uses the initial surface parameters and AHEs (Sect. 2.3 and 2.4). Gabey et al. (2019) showed that the 

top-down approach for estimating AHEs, as used for the AHEs adopted for this study, tends to underestimate hotspots 

associated with dense inner-city road networks and compact building developments. Therefore, Base case AHE values are 
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increased by 50 % in the AHE50 case (Table 2). Given the unexpectedly high latent heat flux values measured previously at 

the IAP site (Dou et al. 2019), the surface resistance to evaporation values are reduced to 150 s m-1 in LCZ categories 1-3, 8 355 

and 10 (Table 1), and for all urban OSM land use types (Table A1) for the Evp150 case (Table 2). This matches the surface 

resistance to evaporation assigned to the upwind domain. The noAHE case is designed to isolate the contribution to Beijing’s 

UHI from land surface characteristics alone, hence AHEs are excluded.    

3 Results and Discussion 

First, we evaluate UHIIs simulated at the urban site for the winter and summer periods (Sect. 3.1). The neighbourhood-scale 360 

spatial variations of modelled near-surface air temperatures are assessed using satellite-derived LSTs in Sect. 3.2. Section 3.3 

investigates the extent to which spatial temperature patterns vary throughout the day, focussing on the spatiotemporal 

characteristics of neighbouring, but distinctly different, urban microclimates. Summer heat wave events are identified in Sect. 

3.4 and their impact on Beijing’s UHI is discussed.  

3.1 Model evaluation of diurnal UHII in winter and summer 365 

The winter and summer period mean observed canopy layer UHIIs (IAP-Pinggu) are 3.1 °C and 1.8 °C, respectively. These 

values are similar to those derived previously from a dense network of ground measurements in Beijing (Yang et al. 2013; 

Wang et al. 2017). Yang et al. (2013) reported winter and summer averages across central Beijing (within the Fourth Ring 

Road) of 2.4 °C and 1.5 °C, respectively. Base case simulated UHIIs are underestimated for both periods compared to the 

measurements, with the winter values less than half the observed UHIIs (RMSE = 2.90 and Fb = -0.76; Table 3). The summer 370 

underestimation is lower, however the RMSE is proportionally higher (Table 3).  

The UHI is known to have distinct diurnal characteristics (Oke et al. 2017), hence analysis of the model’s ability to 

simulate the diurnal UHII variation can inform on the daily varying contributions to urban climate perturbations from surface 

energy balance changes, AHEs and background meteorology. Measured UHIIs in winter and summer peak during the evening 

at ~ 4.5 °C (Fig. 6). However, other studies have found Beijing’s canopy layer UHII maximum to be up to a factor of 2 greater 375 

in winter compared to summer months (Liu et al. 2007; Wang et al. 2017). They attributed this to stronger winter AHEs from 

elevated energy consumption for building heating systems (Lu et al. 2016), which readily accumulate in Beijing’s frequently 

stable and shallow winter nocturnal boundary layer (Zhang et al. 2016), and more efficient nocturnal cooling in rural areas 

under frequent strong winter temperature inversions (Yang et al. 2013). Summertime nocturnal UHIIs are influenced more by 

the delayed release of heat stored within the urban fabric throughout the day (Oke et al. 1999; Wang et al. 2013), with a smaller 380 

proportion attributed to AHEs from residential air conditioning units (Zhao et al. 2018).  

Simulated evening UHII maxima are underestimated compared to measurements for all scenarios, with Base case 

values ~ 2.5 °C lower than measurements from 19:00 to 06:00 in winter and ~ 2 °C lower between 21:00 and 04:00 in summer 

(Fig. 6). However, previous studies of Beijing’s evening canopy layer UHI in summer measured at different central urban 

meteorological sites have reported mean values between 2 and 3 °C (Yang et al. 2013; Wang et al. 2017; Jiang et al. 2019), 385 

agreeing closely with our simulated results (Table 4; Fig. 6b). This suggests that Beijing’s canopy layer UHI exhibits strong 

spatial variability and that our local site characteristics at IAP may be incorrect. 

Increasing AHEs by 50 % reduces nocturnal measured-modelled discrepancies in winter by ~ 0.7 °C (Table 4; Fig. 

6a). However, a substantial model underestimation persists (~ 2 °C), with nighttime RMSE and fractional bias values of 3.11 

°C and -0.58, respectively (Table 4). These low simulated nocturnal UHIIs are likely related to the use of coarse resolution (3 390 

km) aggregate AHEs that fail to resolve strong, local emission sources around the urban site at IAP. The IAP temperature 

sensor is located ~ 110 m south of a busy road (Biggart et al. 2020) and is surrounded by high-rise buildings (Fig. 1), both of 

which are likely strong sources of anthropogenic heat, with nearby buildings also hindering the dispersion of heat at night. 
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Two of the four urban meteorological stations in Beijing used by Wang et al. (2017) are situated in green belts or parks, thus 

are likely to be less influenced by major local sources of AHEs, which may account for the lower nocturnal UHIIs observed 395 

there relative to IAP. Additionally, Cao et al. (2016) found a strong correlation between high concentrations of particulate 

matter over urban areas and the nocturnal UHI for several megacities in China due to enhanced atmospheric absorption and 

re-emission of LW radiation back to the surface, reducing the evening cooling rate. The ADMS-Urban radiation model does 

not account for nocturnal warming effects from haze pollution, which has been shown to change surface energy and water 

partitioning in Beijing (Kokkonen et al. 2019).  400 

Summer UHII underestimations at night, relative to measurements, are similarly reduced by ~ 0.6 °C with increased 

AHEs (Table 4; Fig. 6b), reflected by a fractional bias improvement from -0.61 to -0.4 (Table 4). The remaining measured-

modelled discrepancy is likely related to the model’s determination of nocturnal ground heat flux, with the restriction that 

modelled upwind PBL conditions remain stable at night (CERC, 2018). However, the evening release of stored heat in other 

dry, densely built megacities in summer, such as Mexico City (Oke et al. 1999), has been found to be of sufficient magnitude 405 

to maintain an upward flux of convective heat throughout the evening, therefore prolonging the warming of near-surface air.  

The lowest measured urban-rural near-surface air temperature differential occurs between 13:00 and 14:00 in both 

the winter and summer periods (Fig. 6). In summer, the observed mean UHII minimum is negative (-1.1 °C). Daytime UHIIs 

are largely controlled by the balance between (a) the urban-rural evapotranspiration differences based on vegetation amounts 

and irrigation behaviour in both areas (Oke et al. 1982; Grimmond et al. 1993; Estoque et al. 2017; He et al. 2020), and (b) the 410 

large storage heat fluxes associated with the building volumes and impervious materials of high thermal conductivity and heat 

capacity in urban areas (Anandakumar, 1999; Grimmond and Oke, 1999; Oke et al. 1999). Dry or limited vegetation will 

increase the UHII, but urban structures and materials can both shade and enhance storage heat fluxes leading to delayed 

turbulent heat fluxes, decreasing the urban near-surface temperatures. Negative afternoon UHIIs previously observed in 

Beijing (Wang et al. 2017) were ascribed to a substantial discrepancy between urban and rural measurement heights, but this 415 

is not a factor here (Sect. 2.2 and 2.5).  

Modelled daytime UHIIs with elevated AHEs exceed the observed values (~ 0.3 °C in winter and ~ 0.9 °C in summer, 

Table 4; Fig. 6). However, previously observed daytime UHIIs in central Beijing at multiple meteorological stations (Yang et 

al. 2013; Jiang et al. 2019) are of similar magnitude to the AHE50 case values. The model’s inability to replicate the negative 

daytime UHIIs observed at the urban site may be due to an underestimation of afternoon storage heat flux or possibly that 420 

there are nearby fine-scale green spaces, unresolved in the land cover data implemented for this study, that increase evaporative 

cooling at IAP and limit its representativeness of the central Beijing region.   

Model predictions of summer afternoon UHIIs are improved when urban surface resistance to evaporation is reduced 

from 200 s m-1 to 150 s m-1 (Evp150 case), with cooler urban air temperatures simulated as the latent heat flux (Eq. 3) is 

increased (R = 0.52; Fb = -0.17; Table 4). High moisture availability in central Beijing (i.e. low Bowen ratio = sensible heat 425 

flux/ latent heat flux), and specifically at IAP, has previously been observed (Dou et al. 2019) and is thought to be related to 

extensive use of water for road cleaning and for irrigating the high density of greenbelts in urban Beijing. Smaller decreases 

in simulated daytime temperature in winter, after increasing urban moisture levels, are due to weak levels of incoming SW 

radiation. Negligible differences (< 0.2 °C) occur in modelled winter UHIIs between AHE50 and Evp150 cases in contrast 

with substantial reductions to all values (0.5-1.5 °C) in summer (Fig. 7). Furthermore, the simulated diurnal temperature range 430 

in summer without AHEs (noAHE case) is three times higher than in winter (~ 2.5 °C) (Fig. 6), driven by much stronger 

incoming SW radiation, which enhances the urban-rural differences between available energy partitioning and therefore 

impacts  all the surface energy balance fluxes (Eq. 3). 

Differences between UHIIs simulated with and without AHEs (both cases with high urban moisture levels), quantify 

the diurnally averaged and hourly AHE contributions to the UHI in winter and summer (Fig. 6 and 7). These results suggest 435 

that Beijing’s urban warming in winter is dominated by AHEs, with a small contribution from surface radiative effects alone 
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between -0.5 °C and +0.1 °C. In summer, AHEs increase the modelled UHII by ~60-80% throughout the day (Fig. 6), peaking 

at 84 % at 8 pm, associated with heat released from residential cooling systems and rush hour traffic (Fig. 5) accumulating in 

a stabilising evening PBL (Shi et al. 2019; Hertwig et al. 2020). Wang et al. (2013) simulated a similar daily maximum AHE 

contribution to the UHI in Beijing of 75 %. Excluding AHEs causes winter and summer UHII biases to grow (RMSE = 4.05 440 

and 3.07, respectively), whereas the temporal variations become more similar (R = 0.62 and 0.76 in winter and summer, 

respectively; Table 3), reflected by the increased linearity between observed and noAHE modelled UHIIs in Fig. 7. 

Substantially larger error bars associated with both simulations that include AHEs are related to increased measured-modelled 

differences caused by simulated and real-world PBL dynamics differences and subsequent impacts on modelled heat 

dispersion. 445 

Quantifying the relative importance of urbanisation-induced surface energy balance changes, including AHEs, is 

useful for urban planners. Most notably, our results suggest that strategies aimed at reducing the daytime storage heat flux 

would help to decrease nighttime UHIIs in summer by reducing nocturnal heat release, hence lowering the cooling energy 

demand at night and therefore the contribution from AHEs to urban warming.    

3.2 High-resolution spatial temperature variations in summer 450 

Maps of near-surface air temperature provide information on the location and physical characteristics of the warmest urban 

microclimates that may pose the biggest health risk to residents during extreme heat events. Urban cool islands (higher rural 

versus urban temperatures) associated with waterways and green spaces (K. Wang et al. 2019), can also be identified.  

Neighbourhood-scale resolution (~ 100 m) maps of simulated air temperature (2.5 m above ground level) across urban 

Beijing on 23 May 2017 at 11:00 am are compared with Landsat 8 LSTs (Sect. 2.5) in Fig. 8. Due to the infrequency of Landsat 455 

8 satellite image availability (every 16 days), we are unable to test how variable the spatial correlation between LSTs and 

modelled near-surface air temperatures is with time. However, the comparison for this single hour during the summer period 

provides a useful guide for assessing the general model perfromance in capturing urban Beijing’s neighbourhood -scale air 

temperature patterns using a hybrid of LCZ and OSM land cover data. Near-surface temperatures are modelled with Base and 

Evp150 case surface resistance to evaporation values (AHEs excluded) to test the representativeness of the enhanced urban 460 

moisture scenario for the full model domain. 

Generally, the range of LSTs far exceeds that of near-surface air temperatures across urban areas. Large differences 

in thermal properties between impervious surfaces and the atmosphere, and different heating mechanisms, cause LSTs to heat 

more rapidly in response to the absorption at the surface of strong incident SW radiation in summer, whereas the atmosphere 

heats by convection (Anandakumar, 1999). Differences between LSTs and air temperatures vary diurnally, with the Landsat 465 

overpass time (11:00 am) coinciding with an atmospheric urban cool island in summer (Fig. 6b), but a growing surface urban 

heat island that peaks in the early afternoon (Meng et al. 2018; Li et al. 2020). Furthermore, air temperatures within the urban 

canopy are impacted by all of the energy exchange processes, including micro-scale advection of heat from nearby surfaces 

with varying moisture content, thermal properties and aerodynamic roughness, and therefore can become uncoupled from the 

LSTs (Voogt and Oke, 2003). These inherent differences between the two variables limit direct comparisons and thus the 470 

strength of the correlation to be expected; however, the relative spatial patterns are of interestThese inherent differences 

between the two variables limit direct comparisons, however, the relative spatial patterns are of interest. 

The LSTs range between 16 and 47 °C within the domain (Fig. 8). They generally peak within the 5th Ring Road and 

decrease with distance from the urban centre as the amount of green space increases (Estoque et al. 2017). Small areas of high 

LSTs in suburban zones between the 5th and 6th Ring Roads to the NW and SE (Fig. 8d) are reflective of the suburban expansion 475 

during the last decade observed by Liu et al. (2020). The modelled near-surface air temperatures at 11:00 am range between 

15 and 27 °C within the Sixth Ring Road (Fig. 8a and 8b). This spatial variation is greater during the early evening hours (not 

shown), when the canopy layer UHI peaks (Fig. 6b), with near-surface temperature hotspots more clearly defined.  



13 
 

Correlation between the spatial variation of LSTs and simulated near-surface air temperature improves when using 

the Base case surface resistance to evaporation values (R = 0.58), relative to the high urban moisture case (R = 0.52; Fig. 9). 480 

This is caused by modelled air temperature increases within the Fifth Ring Road of 2 to 3 °C (Fig. 8c) as a result of reduced 

daytime evaporative cooling. Near-surface air temperatures simulated with high urban moisture do not have the same general 

decrease with distance from the urban centre as seen in the LSTs (Fig. 8) because the spatial variability in the surface resistance 

to evaporation has been removed. This is reflected in Fig. 9b, with no relationship between the highest LSTs and Evp150 case 

simulated air temperatures. Equal urban and upwind surface resistance to evaporation values (150 s m-1) lead to simulated 485 

central urban air temperatures that are mainly controlled by the much greater thermal admittance values across the modelling 

domain versus the upwind domain. This lowers central urban near-surface air temperatures at 11:00 am, relative to suburban 

regions between the Fifth and Sixth Ring Roads that have lower thermal admittances (Fig. 2), producing a homogeneous urban 

near-surface air temperature distribution (Fig. 8b). This is further indication that local surface radiative cooling, likely due to 

nearby green spaces, differentiate the urban site from the mean conditions across the central Beijing region. Worse spatial 490 

correlation with LSTs, but better agreement with near-surface air temperature measurements, with increased urban moisture 

also reflects expected differences between LSTs and near-surface air temperatures. Micro-scale advection and turbulent 

diffusion within the urban canopy can mix warmer and cooler pockets of air, reducing the coupling between LSTs and air 

temperatures (Roth et al. 1989).   

The lowest LSTs and modelled air temperatures correlate most strongly (Fig. 9), corresponding with green spaces, 495 

waterways (Fig. 2) and areas of high elevation (Fig. 3). The model’s ability to capture these fine-scale urban cool islands, such 

as Qianhai Lake near the centre of Beijing (Fig. 2), in addition to the general urban temperature pattern, highlights the 

successful implementation for this study of the LCZ and OSM data. Increased correlation between modelled near-surface air 

temperatures and LSTs may require more detailed sub-divisions of urban land cover, such as specific information on building 

façade or roof materials as opposed to general descriptions of building function (Aktas et al. 2017).  500 

3.3 Spatiotemporal UHI variations near the airport 

Large-scale urban developments strongly impact local air temperatures, following the replacement of vegetative surfaces with 

expanses of concrete and asphalt, and  therefore affect the thermal comfort, cooling and heating energy demand, and air quality 

across neighbouring residential areas (Hamilton et al. 2014). In this section, we investigate the extent to which simulated 

spatial temperature patterns near Beijing Capital International Airport vary throughout the day due to different surface 505 

characteristics. Figure 10 shows a satellite image of the airport and its surroundings alongside maps (100 m resolution) of the 

surface properties that have the greatest influence on modelled near-surface air temperatures (CERC, 2018).  

Figure 11 presents modelled local temperature perturbations (excluding AHEs) relative to upwind values, across the 

region displayed in Fig. 10, at four different times of the day on 23 May 2017. At 05:00, prior to sunrise and in the absence of 

incoming SW radiation, modelled near-surface air temperatures at the airport are minimally affected by the underlying 510 

impervious surface (Fig. 11a). Cool regions adjacent to the Wenyu River, running SE to NW (Fig. 10), with UHIIs of ~ -2 to 

-3 °C are related to green spaces with both low thermal admittance and surface resistance to evaporation. 

At 14:00, when the mean canopy layer UHII at the urban site peaks (Fig. 6b), a clear spatial temperature pattern has 

developed (Fig. 11b). Modelled UHIIs at the airport site rise to ~6-8 °C caused by the high resistance to evaporation (200 s m-

1) and low albedo (0.08) of the airport runways (Table A1). The low albedo surface absorbs more of the strong daytime 515 

incoming SW radiation, with a greater proportion of the net radiation partitioned to the upwards convective flux of sensible 

heat due to the low surface moisture content. The fine-scale structure of the Wenyu River is clearly defined at 14:00 as the 

water’s near-zero resistance to evaporation cools near-surface temperatures relative to the neighbouring vegetation. 

After sunset, at 19:00, UHIIs to the north and west of the airport peak at ~7-9 °C, matching air temperatures at the 

airport (Fig. 11c). The higher thermal admittance of these areas, relative to the airport, causes the release of greater amounts 520 
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of stored heat in the early evening. Dispersion of this upwelling ground heat flux is inhibited by a stabilising nocturnal PBL, 

creating a positive temperature increment to the north of ~ 2 °C, relative to the cooling airport region, at 23:00 (Fig. 11d). 

Figure 12a shows the land cover at the residential (2) and forest (3) sites, marked in Fig. 10 and Fig. 11. The sites are 

only ~ 1 km apart, either side of the Wenyu River, but experience their own distinct microclimates driven by the underlying 

land surface characteristics. This is quantified in Fig. 12b by the mean summer diurnal modelled near-surface air temperature 525 

differences between the airport site and both the residential and forest sites.    

After sunrise, the temperature difference (ΔT) between the airport and both the residential and forest sites increases 

(Fig. 12b). ΔT rises more sharply at the forest site, due to its lower surface resistance to evaporation and therefore stronger 

evaporative cooling than in the residential area, and peaks at 14:00 when the airport is ~ 3 °C and ~ 5 °C warmer than the 

residential and forest sites, respectively (Fig. 12b). In the evening, after sunset, ΔT decreases to ~ 0.25 °C and ~ 0.5 °C a t the 530 

residential and forest sites (Fig. 12b), respectively, as spatial temperature variations due to surface characteristics reach a 

minimum (Fig. 11d). These negligible modelled nocturnal temperature differences (excluding AHEs) again highlight the 

dominant contribution from AHEs to UHIIs at night (Fig. 6).  

3.4 Impact of heatwaves on Beijing’s UHI             

Synergies between extreme heat events and UHIIs in Beijing are well-documented (Li et al. 2015; Chen et al. 2018; Jiang et 535 

al. 2019; He et al. 2020). Two heatwave periods during the summer are identified from (a) 18 May to 21 May, and (b) 14 June 

to 20 June (Fig. 13), with heatwave events defined here as three or more consecutive days with a daily maximum temperature 

(Tmax) at the urban site reaching at least 35 °C, following the Chinese Meteorology Administration heatwave definition (Tan 

et al. 2007; Jiang et al. 2019). In Fig. 13, red shaded regions mark hours with higher urban than rural temperatures and highlight 

the build-up of heat in urban Beijing during the evening. Blue shaded regions mark hours with higher rural than urban 540 

temperatures and emphasise the negative summer daytime UHI (Fig. 6b). 

Mean measured and modelled (Evp150 case) daytime (10:00 to 16:00) and nighttime (22:00 to 04:00) UHIIs for 

heatwave and non-heatwave days are presented in Fig. 14. Day and night hours are defined based on previous UHI-heatwave 

studies (Wang et al. 2017; Jiang et al. 2019).  

At night, the mean measured UHII is 5.3 °C on heatwave days, 1.1 °C higher than on non-heatwave days. Previous 545 

nocturnal UHII increments of similar magnitude during heatwaves in Beijing (Jiang et al. 2019) have been attributed to greater 

daytime storage heat flux, from stronger SW and LW radiation, and a therefore more prolonged period of evening heat release 

warming the near-surface (Li et al. 2015). Warmer nights lead to increased residential AHEs from air conditioning units, 

further strengthening the UHII (Zhao et al. 2018).  

Modelled UHIIs are underestimated by 31 % compared to measurements during non-heatwave nights. However, this 550 

increases to 56 % during heatwave nights and further suggests that the model-calculated evening stored heat release is too low 

(Sect. 3.1). Elevated daytime storage heat flux during heatwaves increases the model’s underestimation of ground heat release 

at night, hence the measured-modelled evening UHII discrepancy grows (Fig. 14). Furthermore, the model does not account 

for the day-to-day accumulation of stored heat during a heatwave period, only the diurnal variation, therefore the model’s 

underestimation of evening heat release grows incrementally throughout a heatwave. The use of the same diurnal AHE profile 555 

for all days also likely contributes, with the proportion of AHEs released at night expected to increase as cooling energy 

demand at night grows during heatwaves (Sailor and Vasireddy, 2006).  

During the day, the mean measured UHII is -1.34 °C on heatwave days, compared to -0.57 °C on non-heatwave days 

(Fig. 14). This is contrary to previous measurements of Beijing’s daytime UHII during extreme heat events which have shown 

an increase relative to normal days (Li et al. 2015; He et al. 2020) explained by (a) greater urban-rural evapotranspiration and 560 

sensible heat flux differences, (b) stable synoptic conditions associated with heatwaves reducing mixing between urban and 

rural air, and (c) elevated AHEs (Li and Bou-Zeid, 2013; Li et al. 2015; He et al. 2020). Therefore, the daytime heatwave UHII 
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decrease observed at the urban site is likely another example of the impact of local site characteristics (e.g. nearby vegetation) 

on air temperatures at IAP. Overall, extreme temperature events clearly worsen measured-modelled UHII comparisons in 

summer and model performance is substantially better under non-heatwave conditions.   565 

4 Conclusions 

We use the urban climate component of the ADMS-Urban model to investigate the spatiotemporal variations of Beijing’s 

canopy layer UHI. The diurnally varying contributions from land surface characteristics and anthropogenic heat emissions 

(AHEs) to urban heat island intensities (UHIIs), during winter and summer periods, are examined through four different 

simulations. Neighbourhood-scale resolution (100 m) maps of simulated near-surface air temperature within Beijing’s Sixth 570 

Ring Road are evaluated against satellite-derived LSTs. Interactions between heatwaves and Beijing’s UHI are also explored. 

Beijing’s winter UHI is dominated by AHEs, with negligible UHIIs simulated due to land surface radiative effects alone.

 Modelled nocturnal UHIIs are underestimated by ~ 2 °C compared with measurements at the urban meteorological 

site, located at the Institute of Atmospheric Physics (IAP), despite allowing for an increase of 50 % in AHEs. This suggests 

that the urban site is impacted by strong, local AHE sources (e.g. adjacent busy roads or residential buildings) that are 575 

unresolved by the aggregate 3 km AHEs generated for this study. Development of higher-spatially resolved AHEs (< 1 km) is 

recommended to fully capture Beijing’s winter UHI in future work.  

Modelled nocturnal UHII underestimations in summer relative to measured values at the urban site, which increase 

by ~ 25 % during heatwave days, are likely related to evening ground heat flux values simulated by ADMS-Urban that are too 

low due to restrictions on modelled upwind PBL stability. This effect is more pronounced during heatwaves as the 580 

accumulation of stored heat throughout extreme temperature events is not accounted for by the model and the diurnal AHEs 

profile used for this study is not adjusted to capture the likely greater proportion of AHEs released at night during heatwaves 

by residential cooling systems. Future modification of the model’s calculation of ground heat release is recommended to better 

represent the prolonged evening turbulent transfer of stored heat and replicate the large nocturnal UHIIs across parts of Beijing 

and other densely built megacities.  585 

Increased urban moisture levels improve the agreement between simulated and measured daytime UHII values in 

summer at the urban site. By reducing surface resistance to evaporation values from 200 s m-1 to 150 s m-1 across central urban 

areas, thereby enhancing daytime evaporative cooling, daytime measured-modelled UHII agreement greatly improves (Fb 

decrease from 1.26 to -0.17 and R value increase from 0.31 to 0.52). However, the spatial correlation between LSTs and 

modelled near-surface air temperatures across the domain is stronger with the Base case model configuration. This suggests 590 

that conditions at the urban site are impacted by evaporative cooling from local, fine-scale features that are not captured by the 

land use data and highlights the expected impact of small-scale advection within the urban canopy that can uncouple near-

surface air temperatures and LSTs. Further improvement to simulated spatial temperature variations at high-resolution requires 

more refined urban land use information (e.g. building materials) to enhance modelled temperature heterogeneity across centra l 

Beijing.      595 

The implementation of LCZ and OSM land use information for this neighbourhood-scale urban climate study has, 

however, generally proven successful, particularly in capturing cooler regions associated with green spaces, waterways and 

areas of high elevation. The benefits of urban planning strategies aimed at increasing the density of these cooler spaces are 

highlighted by an analysis of the local climate impact of Beijing Capital International Airport, revealing that typical daytime 

temperatures in summer can be up to ~ 5 °C warmer than nearby green spaces.  600 

This study provides critical information for urban planners on the key processes impacting Beijing’s canopy layer 

UHI. Reducing the heat-related mortality risk through effective UHI mitigation strategies in megacities such as Beijing is of 

ever-increasing importance and urgency in our warming climate. The methodologies and open data sources applied here 
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provide a framework that future neighbourhood-scale urban climate modelling studies, in other megacities with similarly 

limited data availability, can build on. 605 
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Appendix A 

Table A1: OpenStreetMap land use types (OSM, 2020) and surface parameters (thermal admittance, surface resistance to 620 
evaporation and albedo) based on literature-reported values (Oke, 1982; Cox et al. 1999; Hamilton et al. 2014; CERC, 2018). Land 

use types are allocated to urban, green or water categories shown in Fig. 2 and Fig. 12. 
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OSM land use type Thermal admittance 

(J K-1m-2s-1/2) 

Surface resistance to 

evaporation (s/m) 

Albedo 

Urban 

Residential 1500 150 0.18 

Industrial 1750 200 0.12 

Commercial 1500 200 0.12 

Railway 1150 200 0.08 

University 1500 200 0.12 

School 1500 200 0.12 

Substation 1500 200 0.08 

Parking 1205 200 0.08 

Fuel 1205 200 0.08 

College 1500 200 0.12 

Aerodrome 1205 200 0.08 

Train station 1500 200 0.12 

Hospital 1500 200 0.12 

Terminal 1500 200 0.12 

Plant 1500 200 0.12 

Pedestrian 1096 200 0.08 

Sports centre 1500 200 0.12 

Place of worship 1500 200 0.12 

Barracks 1500 200 0.08 

Platform 1205 200 0.08 

Stadium 1500 200 0.12 

Apartments 1500 200 0.12 

Cinema 1500 200 0.12 

Retail 1500 200 0.12 

Generator 1500 200 0.12 

Quarry 2220 200 0.08 

Green 

Park 600 115 0.2 

Farmland 1500 50 0.17 

Forest 1400 115 0.16 

Wood 1400 115 0.16 

Cemetery 600 70 0.2 

Common 600 70 0.2 

Grass 600 70 0.2 

Village green 600 70 0.2 

Garden 600 60 0.19 

Pitch 600 70 0.19 

Meadow 600 70 0.19 

Scrub 600 70 0.17 

Water 

Water 1545 10 0.08 

Riverbank 1545 10 0.08 

Reservoir 1545 10 0.08 



18 
 

Acknowledgements. This work was funded by the UK Natural Environment Research Council (NERC) Industrial studentship 

scheme with CASE support provided by Cambridge Environmental Research Consultants (CERC). We would also like to 

acknowledge the APHH-China programme. 

Financial support. This research has been supported by the Natural Environment Research Council (grant nos. NE/N007794/1, 

NE/N006941/1, NE/N006925/1, and NE/N006976/1). 655 

References 

Aktas, Y. D., Stocker, J., Carruthers, D., Hunt, J.: A sensitivity study relating to neighbourhood-scale fast local urban climate 

modelling within the built environment, Procedia Engineering, 198, 589-599, https://doi.org/10.1016/j.proeng.2017.07.113, 

2017. 

Alexander, P. J., Mills, G., Fealy, R.: Using LCZ data to run an urban energy balance model, Urban Climate, 13, 14-37, 660 

https://doi.org/10.1016/j.uclim.2015.05.001, 2015. 

Anandakumar, K.: A study on the partition of net radiation into heat fluxes on a dry asphalt surface, Atmos. Environ., 33, 

3911-3918, https://doi.org/10.1016/S1352-2310(99)00133-8, 1999. 

Ao, X., Grimmond, C. S. Grimmond, Ward, H. C., Gabey, A. M., Tan, J., Yang, X., Liu, D., Zhi, X., Liu, H., Zhang, N.: 

Evaluation of the surface urban energy and water balance scheme (SUEWS) at a dense urban site in Shanghai: sensitivity to 665 

anthropogenic heat and irrigation, Bull. Amer. Meteor. Soc., 19, 1983-2005, DOI: 

http://dx.doi.org/10.1175/JHMD180057.1, 2018. 

Arnfield, A. J.: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban 

heat island, Int. J. Climatol., 23, 1-26, DOI: 10.1002/joc.859, 2003. 

Bai, L., Ding, G., Gu, S., Bi, P., Su, B., Qin, D., Xu, G., Liu, Q.: The effects of summer temperature and heat waves on heat-670 

related illness in coastal city of China, 2011-2013, Environ. Res., 132, 212-219, https://doi.org/10.1016/j.envres.2014.04.002, 

2014. 

Bechtel, B., Alexander, P. J., Bohner, J., Ching, J., Conrad, O., Feddema, J., Mills, G., See, L., Stewart, I.: Mapping local 

climate zones for a worldwide database of the form and function of cities, Int. J. Geo-Inf., 4, 199-219, 

https://doi.org/10.3390/ijgi4010199, 2015. 675 

Biggart, M., Stocker, J., Doherty, R. M., Wild, O., Hollaway, M., Carruthers, D., Li, J., Zhang, Q., Wu, R., Kotthaus, S., 

Grimmond, S., Squires, F. A., Lee, J., Shi, Z.: Street-scale air quality modelling for Beijing during a winter 2016 measurement 

campaign, Atmos. Chem. Phys., 20, 2755-2780, https://doi.org/10.5194/acp-20-2755-2020, 2020. 

Brousse, O., Martilli, A., Foley, M., Mills, G., Bechtel, B.: WUDAPT, an efficient land use producing tool for mesoscale 

models? Integration of urban LCZ WRF over Madrid, Urban Clim., 17, 116-134, https:// doi.org/10.1016/j.uclim.2016.04.001, 680 

2016. 

Cambridge Environmental Research Consultants (CERC): ADMS-Urban Urban Air Quality Management System Version 4.1 

User Guide, available at: http://www.cerc.co.uk/environmental-software/assets/data/doc_userguides/CERC_ADMS-

Urban4.1.1_User_Guide.pdf, (last access: 6 April 2020), 2017. 

Cambridge Environmental Research Consultants (CERC): ADMS-Urban Temperature and Humidity Version 4.1 User Guide, 685 

available at :  http://www.cerc.co.uk/environmental-software/assets/data/doc_userguides/CERC_ADMS-

Urban_Temperature_and_Humidity_User_Guide.pdf (last access: 6 April 2020), 2018. 

Cambridge Environmental Research Consultants (CERC): Boundary layer structure specification, available at: 

https://www.cerc.co.uk/environmental-software/assets/data/doc_techspec/P09_01.pdf, , (last access: 15 July 2020), 2020. 

Camuffo, D., Bernardi, A.: An observational study of heat fluxes and their relationships with net radiation, Boundary-Layer 690 

Meteorology, 23, 359-368, https://doi.org/10.1007/BF00121121, 1982. 

https://doi.org/10.1016/j.proeng.2017.07.113
https://doi.org/10.1016/j.uclim.2015.05.001
https://doi.org/10.1016/S1352-2310(99)00133-8
http://dx.doi.org/10.1175/JHMD180057.1
https://doi.org/10.1016/j.envres.2014.04.002
https://doi.org/10.3390/ijgi4010199
https://doi.org/10.5194/acp-20-2755-2020
http://www.cerc.co.uk/environmental-software/assets/data/doc_userguides/CERC_ADMS-Urban_Temperature_and_Humidity_User_Guide.pdf
http://www.cerc.co.uk/environmental-software/assets/data/doc_userguides/CERC_ADMS-Urban_Temperature_and_Humidity_User_Guide.pdf
https://www.cerc.co.uk/environmental-software/assets/data/doc_techspec/P09_01.pdf
https://doi.org/10.1007/BF00121121


19 
 

Carruthers, D. J., Weng, W. S.: The effect of changes in surface resistance on temperature and humidity fields and fluxes of 

sensible and latent heat, Boundary-Layer Meteorology, 60, 185–199, https://doi.org/10.1007/BF00122068, 1992. 

Cao, C., Lee, X., Liu, S., Schultz, N., Xiao, W., Zhang, M., Zhao, L.: Urban heat islands in China enhanced by haze pollution, 

Nature Communications, 7, 12509, DOI: 10.1038/ncomms12509, 2016. 695 

Chandler, T. J.: The climate of London, Hutchinson & Co Ltd, London, 1965. 

Chen, L., Zhang, M., Wang, Y.: Model analysis of urbanization impacts on boundary layer meteorology under hot weather 

conditions: a case study of Nanjing, China, Theor. Appl. Climatol., 125, 713-728, DOI 10.1007/s00704-015-1535-6, 

2016.Chen, L., Zhang, M., Zhu, J., Wang, Y., Skorokhod, A.: Modeling impacts of urbanization and urban heat island 

mitigation on boundary layer meteorology and air quality in Beijing under different weather conditions, Journal of Geophysical 700 

Research: Atmospheres, 123, 4323-4344, https://doi.org/10.1002/2017JD027501, 2018. 

Ching, J., Mills, G., Bechtel, B., See, L., Fedema, J., Wang, X., Ren, C., Brousse, O., Martilli, A., Neophytou, M., 

Mouzourides, P., Stewart, I., Hanna, A., Ng, E., Foley, M., Alexander, P., Aliaga, D., Niyogi, D., Shreevastava, A., 

Bhalachandran, P., Masson, V., Hidalgo, J., Fung, J., Andrade, M., Baklanov, A., Dai, W., Milcinski, G., Demuzere, M., 

Brunsell, N., Pesaresi, M., Miao, S., Mu, Q., Chen, F., Theeuwes, N.: WUDAPT: An urban weather, climate, and 705 

environmental modelling infrastructure for the Anthropocene, Bull. Amer. Meteor. Soc., 99, 1907-1924, 

https://doi.org/10.1175/BAMS-D-16-0236.1, 2018. 

Cox, P. M., Betts, R. A., Bunton, C. B., Essery, R. L. H., Rowntree, P. R., Smith, J.: The impact of new land surface physics 

on the GCM simulation of climate and climate sensitivity, Climate Dynamics, 15, 183-203, 

https://doi.org/10.1007/s003820050276, 1999. 710 

Davenport, A. G., Grimmond, S. G., Oke, T. R., Wiering, J.: Estimating the roughness of cities and sheltered country, 

Estimating the roughness of cities and sheltered country. Preprints, 12th Conf. on Applied Climatology, Asheville, NC, Amer. 

Meteor. Soc., 96–99. 

Dou, J., Grimmond, S., Cheng, Z., Miao, S., Feng, D., Liao, M.: Summertime surface energy balance fluxes at two Beijing 

sites, Int. J. Climatol., 39, 2793-2810, https://doi.org/10.1002/joc.5989, 2019. 715 

Estoque, R. C., Murayama, Y., Myint, S. W.: Effects of landscape composition and pattern on land surface temperature: An 

urban heat island study in the megacities of Southeast Asia, Science of The Total Environment, 577, 349-359, 

https://doi.org/10.1016/j.scitotenv.2016.10.195, 2017. 

Fallmann, J., Forkel, R., Emeis, S.: Secondary effects of urban heat island mitigation measures on air quality, Atmos. Env., 

125, 199-211, https://doi.org/10.1016/j.atmosenv.2015.10.094, 2016. 720 

Gabey, A. M., Grimmond, C. S. B., Capel-Timms, I.: Anthropogenic heat flux: advisable spatial resolutions when input data 

are scarce, Theor. Appl. Climatol., 135, 791-807, https://doi.org/10.1007/s00704-018-2367-y, 2019.  

Grimmond, C. S. B., Cleugh, H. A., Oke, T. R.: An objective urban heat storage model and its comparison with other schemes, 

Atmos. Environ. Part B. Urban Atmosphere., 25, 311-326, https://doi.org/10.1016/0957-1272(91)90003-W, 1991.  

Grimmond, C. S. B., Oke, T. R., Cleugh, H. A.: The role of “rural” in comparisons of observed suburban-rural flux differences, 725 

International Association of Hydrological Sciences Publication, 212, 165-174, 1993. 

Grimmond, C. S. B., Oke, T. R.: Heat storage in urban areas: local-scale observations and evaluation of a simple model, J. 

Appl. Meteor., 38, 922-940, https://doi.org/10.1175/1520-0450(1999)038<0922:HSIUAL>2.0.CO;2, 1999. 

Grimmond, C. S. B., Blackett, M., Best, M. J., Barlow, J., Baik, J-J., Belcher, S. E., Bohnenstengal, S. I., Calmet, I., Chen, F., 

Dandou, A., Fortuniak, K., Gouvea, M. L., Hamdi, R., Hendry, M., Kawai, T., Kawamoto, Y., Kondo, H., Krayenhoff, E. S., 730 

Lee, S-H., Loridan, T., Martilli, A., Masson, V., Miao, S., Oleson, K., Pigeon, G., Porson, A., Ryu, Y-H., Salamanca, F., 

Shahua-Bar, L., Steeneveld, G-J., Tombrou, M., Voogt, J., Young, D., Zhang, N.: The International Urban Energy Balance 

Models Comparison Project: First Results from Phase 1, J. App. Met. Climatol., 49, 1268-1292, 

https://doi.org/10.1175/2010JAMC2354.1, 2010. 

https://doi.org/10.1175/BAMS-D-16-0236.1
https://doi.org/10.1007/s003820050276
https://doi.org/10.1002/joc.5989
https://doi.org/10.1016/j.atmosenv.2015.10.094
https://doi.org/10.1007/s00704-018-2367-y
https://doi.org/10.1016/0957-1272(91)90003-W
https://doi.org/10.1175/1520-0450(1999)038%3c0922:HSIUAL%3e2.0.CO;2


20 
 

Gu, S., Huang, C., Bai, L., Chu, C., Liu, Q.: Heat-related illness in China, summer of 2013, Int. J. Biometeorol., 60, 131-137, 735 

https://doi.org/10.1007/s00484-015-1011-0, 2016. 

Hamilton, I., Stocker, J., Evans, S., Davies, M., Carruthers, D.: The impact of the London Olympic Parkland on the urban heat 

island, J. Building Performance Simulation, 7, 119-132, https://doi.org/10.1080/19401493.2013.791343, 2014. 

Han, Y.: Meteorology and atmospheric chemistry measurements made at the Xibaidian, Beijing site during the summer and 

winter campaign, Centre for Environmental Data Analysis, available at: 740 

https://catalogue.ceda.ac.uk/uuid/60d5d5e095024831a6f45e4febe4a95e, (last access: 26 May 2020), 2020. 

He, X., Wang, J., Feng, J., Yan, Z., Miao, S., Zhang, Y., Xia, J.: Observational and modelling study of interactions between 

urban heat island and heatwave in Beijing, J. Clean. Prod., 247, 1-15, https://doi.org/10.1016/j.jclepro.2019.119169, 2020. 

Hertwig, D., Grimmond, S., Kotthaus, S., Vanderwel, C., Gough, H., Haeffelin, M., Robins, A.: Variability of physical 

meteorology in urban areas at different scales: implications for air quality, Faraday Discuss., DOI: 10.1039/D0FD00098A, 745 

2020. 

Holstag, A. A. M., Van Ulden, A. P.: A simple scheme for daytime estimates of the surface fluxes from routine weather data, 

J. Appl. Meteor., 22, 517-529, DOI: 10.1175/1520-0450(1983)022<0517:ASSFDE>2.0.CO;2, 1983. 

Hood, C., MacKenzie, I., Stocker, J., Johnson, K., Carruthers, D., Vieno, M., Doherty, R.: Air quality simulations for London 

using a coupled regional-to-local modelling system, Atmos. Chem. Phys., 18, 11221-11245, https://doi.org/10.5194/acp-18-750 

11221-2018, 2018. 

Hough, I., Just, A. C., Zhou, B., Dorman, M., Lepeule, J., Kloog, I.: A multi-resolution air temperature model for France from 

MODIS and Landsat thermal data, Environ. Res., 183, 1-11, https://doi.org/10.1016/j.envres.2020.109244, 2020. 

Ichinose, T., Shimodozono, K., Hanaki, K.: Impact of anthropogenic heat on urban climate in Tokyo, Atmos. Environ., 33, 

3897-3909, DOI: 10.1016/S1352-2310(99)00132-6, 1999. 755 

IPCC: Climate change 2014: impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. In: Field, C. B., 

Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y, O., Genova, 

R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P., White, L. L., Contribution of Working Group 

II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 

United Kingdom and New York, NY, USA, p. 1132, 2014. 760 

Jiang, S., Lee, X., Wang, J., Wang, K.: Amplified urban heat islands during heat wave periods, Journal of Geophysical 

Research: Atmospheres, 124, 7797-7812,  https://doi.org/10.1029/2018JD030230, 2019. 

Jiménez-Muñoz, J. C., Cristóbal, J., Sobrino J. A., Soria, G., Ninyerola, M., Pons, X: Revision of the single-channel algorithm 

for land surface temperature retrieval from landsat thermal-infrared data, 47, 339-349, DOI: 10.1109/TGRS.2008.2007125, 

2009. 765 

Kato, S., Yamaguchi, Y.: Analysis of urban heat-island effect using ASTER and ETM+ data: separation of anthropogenic heat 

discharge and natural heat radiation from sensible heat flux, Remote Sensing of Environment, 99, 44-54, 

https://doi.org/10.1016/j.rse.2005.04.026, 2005. 

Keogh, S., Mills, G., Fealy, R.: The energy budget of the urban surface: two locations in Dublin, Irish Geography, 45, 1-23, 

https://doi.org/10.1080/00750778.2012.689182, 2012. 770 

Kjellstrom, T., Holmer, I., Lemke, B.: Workplace heat stress, health and productivity – an increasing challenge for low and 

middle-income countries during climate change, Glob. Health Action., 2, 1-6, https://dx.doi.org/10.3402%2Fgha.v2i0.2047, 

2009. 

Kokkonen, T. V., Grimmond, S., Murto, S., Liu, H., Sundström, A-M., Järvi, L.: Simulation of the radiative effect of haze on 

the urban hydrological cycle using reanalysis data in Beijing, Atmos. Chem. Phys., 19, 7001-7017, https://doi.org/10.5194/acp-775 

19-7001-2019, 2019. 

https://doi.org/10.1007/s00484-015-1011-0
https://doi.org/10.1080/19401493.2013.791343
https://catalogue.ceda.ac.uk/uuid/60d5d5e095024831a6f45e4febe4a95e
https://doi.org/10.1016/j.jclepro.2019.119169
https://doi.org/10.1016/j.envres.2020.109244
https://doi.org/10.1029/2018JD030230
https://doi.org/10.1016/j.rse.2005.04.026
https://doi.org/10.1080/00750778.2012.689182
https://dx.doi.org/10.3402%2Fgha.v2i0.2047
https://doi.org/10.5194/acp-19-7001-2019
https://doi.org/10.5194/acp-19-7001-2019


21 
 

Kotthaus, S., Grimmond, C. S. B.: Atmospheric boundary-layer characteristics from ceilometer measurements. Part 1: A new 

method to track mixed layer height and classify clouds, Quarterly Journal of the Royal Meteorological Society, 144, 1525-

1538, DOI: 10.1002/qj.3299, 2018. 

Krayenhoff, E. S., Moustaoui, M., Broadbent, A. M., Gupta, V., Georgescu, M.: Diurnal interaction between urban expansion, 780 

climate change and adaptation in US cities, Nat. Clim. Change., 8, 1097-1103, https://doi.org/10.1038/s41558-018-0320-9, 

2019. 

Li, D., Bou-Zeid, E.: Synergistic interactions between urban heat islands and heat waves: The impact of cities is larger than 

the sum of its parts, J. App. Meteor. Climatol., 52, 2051-2064, https://doi.org/10.1175/JAMC-D-13-02.1, 2013. 

Li, D., Sun, T., Liu, M., Yang, L., Wang, L., Gao, Z.: Contrasting responses of urban and rural surface energy budgets to heat 785 

waves explain synergies between urban heat islands and heat waves, Environ. Res. Lett., 10, 5,  https://doi.org/10.1088/1748-

9326/10/5/054009, 2015. 

Li, L., Zha, Y., Zhang, J.: Spatial and dynamic perspectives on surface urban heat island and their relationships with vegetation 

activity in Beijing, China, based on Moderate Resolution Imaging Spectroradiometer data, International Journal of Remote 

Sensing, 41, 882-896, https://doi.org/10.1080/01431161.2019.1650985, 2020. 790 

Li, T., Horton, R. M., Bader, D. A., Zhou, M., Liang, X., Ban, J., Sun, Q., Kinney, P. L.: Aging will amplify the heat-related 

mortality risk under a changing climate: projection for the elderly in Beijing, China, Sci. Rep., 6, 1-9, doi: 10.1038/srep28161, 

2016. 

Lindberg, F., Grimmond, C. S. B., Yogeswaran, N., Kotthaus, S., Allen, L.: Impact of city changes and weather on 

anthropogenic heat flux in Europe 1995-2015, Urban Clim., 4, 1-15, http://dx.doi.org/10.1016/j.uclim.2013.03.002, 2013. 795 

Liu, W., Ji, C., Zhong, J., Jiang, X., Zheng, Z.: Temporal characteristics of the Beijing urban heat island, Theor. Appl. 

Climatol., 87, 213-221, https://doi.org/10.1007/s00704-005-0192-6, 2007. 

Liu, X., Zhou, Y., Yue, W., Li, X., Liu, Y., Lu, D.: Spatiotemporal patterns of summer urban heat island in Beijing, China 

using an improved land surface temperature, J. Clean. Prod., 257, 120529, https://doi.org/10.1016/j.jclepro.2020.120529, 

2020. 800 

Loridan, T., Grimmond, C. S. B., Grossman-Clarke, S., Chen, F., Tewari, M., Manning, K., Martilli, A., Kusaka, H., Best, M.: 

Trade-offs and responsiveness of the single-layer urban canopy parametrization in WRF: An offline evaluation using the 

MOSCEM optimization algorithm and field observations, Quart. J. Roy. Meteorol. Soc., 136, 997-1019, 

https://doi.org/10.1002/qj.614, 2010. 

Lu, Y., Wang, Q., Zhang, Y., Sun, P., Qian, Y.: An estimate of anthropogenic heat emissions in China, Int. J. Climatol., 36, 805 

1134-1142, DOI: 10.1002/joc.4407, 2016. 

Meng, Q., Zhang, L., Sun, Z., Meng, F., Wang, L.: Characterizing spatial and temporal trends of surface urban heat island 

effect in an urban main built-up area: A 12-year case study in Beijing, China, Remote Sensing of Environment, 204, 826-837, 

https://doi.org/10.1016/j.rse.2017.09.019, 2018. 

Morrison, W., Yin, T., Lauret, N., Guilleux, J., Kotthaus, S., Gastellu-Etchegorry, J-P., Norford, L., Grimmond, S.: 810 

Atmospheric and emissivity corrections for ground-based thermography using 3D radiative transfer modelling, Remote 

Sensing of Environment, 237, 1-24, https://doi.org/10.1016/j.rse.2019.111524, 2020. 

Mughal, M. O., Li, X-X., Yin, T., Martilli, A., Brousse, O., Dissegna, M. A., Norford, L. K.: High-resolution, Multilayer 

modelling of Singapore’s urban climate incorporating local climate zones, Journal of Geophysical Research: Atmospheres, 

124, 7764-7785, https://doi.org/10.1029/2018JD029796, 2019. 815 

National Bureau of Statistics: China Statistical Yearbook 2017, China Statistics Press, Beijing, 2018. 

Oke, T. R.: The energetic basis of the urban heat island, Quart. J. R. Met. Soc., 108, 1-24, 

https://doi.org/10.1002/qj.49710845502, 1982. 

https://doi.org/10.1038/s41558-018-0320-9
https://doi.org/10.1175/JAMC-D-13-02.1
https://doi.org/10.1088/1748-9326/10/5/054009
https://doi.org/10.1088/1748-9326/10/5/054009
https://doi.org/10.1080/01431161.2019.1650985
http://dx.doi.org/10.1016/j.uclim.2013.03.002
https://doi.org/10.1007/s00704-005-0192-6
https://doi.org/10.1016/j.jclepro.2020.120529
https://doi.org/10.1002/qj.614
https://doi.org/10.1016/j.rse.2017.09.019
https://doi.org/10.1016/j.rse.2019.111524
https://doi.org/10.1002/qj.49710845502


22 
 

Oke, T. R., Spronken-Smith, R. A., Jáuregui, E., Grimmond, C. S.: The energy balance of central Mexico City during the dry 

season, Atmos. Environ., 33, 3919-3930, https://doi.org/10.1016/S1352-2310(99)00134-X, 1999. 820 

Oke, T. R.: Initial guidance to obtain representative meteorological observations at urban sites, IOM Report No. 81, WMO/TD. 

No. 1250. World Meteorological Organization: Geneva, 2004. 

OpenStreetMap (OSM), available at: http://openstreetmap.org, (last access: 6 April 2020), 2020. 

Owen, B., Edmunds, H. A., Carruthers, D. J., Singles, R. J.: Prediction of total oxides of nitrogen and nitrogen dioxide 

concentrations in a large urban area using a new generation urban scale dispersion model with integral chemistry model, 825 

Atmos. Environ., 34, 397-406, https://doi.org/10.1016/S1352-2310(99)00332-5, 2000. 

Raupach M. R., Weng, W. S., Carruthers, D. J., Hunt, J. C. R.: Temperature and Humidity Fields and Fluxes Over Low Hills, 

Q. J. Roy. Met. Soc., 118, 191-225,  https://doi.org/10.1002/qj.49711850403 , 1992.   

Roth, M., Oke, T. R., Emery, W. J.: Satellite-derived urban heat islands from three coastal cities and the utilization of such 

data in urban climatology, International Journal of Remote Sensing, 10, 1699-1720, 830 

https://doi.org/10.1080/01431168908904002, 1989. 

Sailor, D. J., Vasireddy, C.: Correcting aggregate energy consumption data to account for variability in local weather, 

Environmental Modelling and Software, 21, 733-738, https://doi.org/10.1016/j.envsoft.2005.08.001, 2006. 

Sailor, D.: A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment, Int. J. 

Climatol., 31, 189-199, DOI: 10.1002/joc.2106, 2011. 835 

Sailor, D., Georgescu, M., Milne, J. M., Hart, M. A.: Development of a national anthropogenic heating database with an 

extrapolation for international cities, Atmos. Environ., 118, 7-18, https://doi.org/10.1016/j.atmosenv.2015.07.016, 2015. 

Santamouris, M., Cartalis, C., Synnefa, A., Kolokotsa, D.: On the impact of urban heat island and global warming on the power 

demand and electricity consumption of buildings – A review, Energy and Buildings, 98, 119-124, 

https://doi.org/10.1016/j.enbuild.2014.09.052, 2015. 840 

Shatz, J. D., Kucharik, C. J.: Seasonality of the urban heat island effect in Madison, Wisconsin, J. Appl. Meteor. Climatol., 53, 

2371-2386, https://doi.org/10.1175/JAMC-D-14-0107.1, 2014. 

Shi, Z., Vu, T., Kotthaus, S., Grimmond, S., Harrison, R. M., Yue, S., Zhu, T., Lee, J., Han, Y., Demuzere, M., Dunmore, R. 

E., Ren, L., Liu, D., Wang, Y., Wild, O., Allan, J., Barlow, J., Beddows, D., Bloss, W. J., Carruthers, D., Carslaw, D. C., 

Chatzidiakou, L., Crilley, L., Coe, H., Dai, T., Doherty, R., Duan, F., Fu, P., Ge, B., Ge, M., Guan, D., Hamilton, J. F., He, K., 845 

Heal, M., Heard, D., Hewitt, C. N., Hu, M., Ji, D., Jiang, X., Jones, R., Kalberer, M., Kelly, F. J., Kramer, L., Langford, B., 

Lin, C., Lewis, A. C., Li, J., Li, W., Liu, H., Loh, M., Lu, K., Mann, G., McFiggans, G., Miller, M., Mills, G., Monk, P., 

Nemitz, E., O’Connor, F., Ouyang, B., Palmer, P. I., Percival, C., Popoola, O., Reeves, C., Rickard, A. R., Shao, L., Shi, G., 

Spracklen, D., Stevenson, D., Sun, Y., Sun, Z., Tao, S., Tong, S., Wang, Q., Wang, W., Wang, X., Wang, Z., Whalley, L., Wu, 

X., Wu, Z., Xie, P., Yang, F., Zhang, Q., Zhang, Y., Zhang, Y., and Zheng, M.: Introduction to Special Issue – In-depth study 850 

of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing), Atmos. Chem. Phys., 19, 

7519-7546, https://doi.org/10.5194/acp-19-7519-2019, 2019. 

Squires, F. A., Nemitz, E., Langford, B., Wild, O., Drysdale, W. S., Acton, W. J. F., Fu, P., Grimmond, C. S. B., Hamilton, J. 

F., Hewitt, C. N., Hollaway, M., Kotthaus, S., Lee, J., Metzger, S., Pingintha-Durden, N., Shaw, M., Vaughan, A. R., Wang, 

X., Wu, R., Zhang, Q., Zhang, Y.: Measurements of traffic dominated pollutant emissions in a Chinese megacity, Atmos. 855 

Chem. Phys. Disc., https://doi.org/10.5194/acp-2019-1105, 2020. 

Stewart, I. D., Oke, T. R.: Local climate zones for urban temperature studies, Bull. Amer. Meteor. Soc., 93, 1879-1900, 

https://doi.org/10.1175/BAMS-D-11-00019.1, 2012. 

Sun, T., Wang, Z-H., Oechel, W. C., Grimmond, S.: The analytical objective hysteresis model (AnOHM v1.0): methodology 

to determine bulk storage heat flux coefficients, Geosci. Model Dev., 10, 2875-2890, https://doi.org/10.5194/gmd-10-2875-860 

2017, 2017. 

https://doi.org/10.1016/S1352-2310(99)00134-X
https://doi.org/10.1080/01431168908904002
https://doi.org/10.1016/j.envsoft.2005.08.001
https://doi.org/10.1016/j.atmosenv.2015.07.016
https://doi.org/10.1016/j.enbuild.2014.09.052
https://doi.org/10.1175/JAMC-D-14-0107.1
https://doi.org/10.5194/acp-2019-1105
https://doi.org/10.1175/BAMS-D-11-00019.1
https://doi.org/10.5194/gmd-10-2875-2017
https://doi.org/10.5194/gmd-10-2875-2017


23 
 

Tan, J., Zheng, Y., Song, G., Kalkstein, L. S., Kalkstein, A. J., Tang, X.: Heat wave impacts on mortality in Shanghai, 1998 

and 2003, Int. J. Biometeorol., 51, 193-200, DOI 10.1007/s00484-006-0058-3, 2007. 

Tan, J., Zheng, Y., Tang, X., Guo, C., Li, L., Song, G., Zhen, X., Yuan, D., Kalkstein, A. J., Li, F.: The urban heat island and 

its impact on heat waves and human health in Shanghai, Int. J. Biometeorol., 54, 75-84, DOI 10.1007/s00484-009-0256-x, 865 

2010. 

The World Bank: Urban population (% of total population) – China, available at: 

https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS?locations=CN, (last access: 6 April 2020), 2020. 

U.S. Geological Survey, Global Multi-resolution Terrain Elevation Data (GMTED2010), available at: 

https://www.usgs.gov/land-resources/eros/coastal-changes-and-impacts/gmted2010, (last access: 1 April 2020), 2020. 870 

U.S. Geological Survey, Landsat 8, available at: https://www.usgs.gov/land-resources/nli/landsat/landsat-8, (last access: 1 

April 2020), 2020. 

Voogt, J. A., Oke, T. R.: Effects of urban surface geometry on remotely-sensed surface temperature, International Journal of 

Remote Sensing, 19, 895-920, https://doi.org/10.1080/014311698215784, 1998. 

Voogt, J. A., Oke, T. R.: Thermal remote sensing of urban climates, Remote Sensing of Environment, 86, 370-384, 875 

https://doi.org/10.1016/S0034-4257(03)00079-8, 2003. 

Wang, K., Jiang, S., Wang, J., Zhou, C., Wang, X., Lee, X.: Comparing the diurnal and seasonal variabilities of atmospheric 

and surface urban heat islands based on the Beijing urban meteorological network, Journal of Geophysical Research: 

Atmospheres, 122, 2131-2154, https://doi.org/10.1002/2016JD025304, 2017. 

Wang, K., Aktas, Y. D., Stocker, J., Carruthers, D., Hunt, J., Malki-Epshtein, L.: Urban heat island modelling of a tropical 880 

city: case of Kuala Lumpur, Geosci. Lett., 6, 4, https://doi.org/10.1186/s40562-019-0134-2, 2019. 

Wang, T., Shi, J., Ma, Y., Husi, L., Comyn-Platt, E., Ji, D., Zhao, T., Xiong, C.: Recovering land surface temperature under 

cloudy skies considering the solar-cloud-satellite geometry: Application to MODIS and Landsat-8 data, Journal of Geophysical 

Research: Atmospheres, 124, 3401-3416, https://doi.org/10.1029/2018JD028976, 2019. 

Wang, M., Yan, X., Liu, J., Zhang, X.: The contribution of urbanization to recent extreme heat events and a potential mitigation 885 

strategy in the Beijing-Tianjin-Hebei metropolitan area, Theor. Appl. Climatol., 114, 407-416, DOI 10.1007/s00704-013-

0852-x, 2013. 

World Urban Database and Access Portal Tools (WUDAPT), Local Climate Zone map for Beijing created by Weibo Liu and 

Michael Foley, available at: http://www.wudapt.org/cities/in-asia, (last access: 19 May 2020), 2020.  

Yu, Y., Liu, J., Shao, W.: The estimation and effect of anthropogenic heat flux in Beijing, Energy Procedia, 152, 302-306, 890 

https://doi.org/10.1016/j.egypro.2018.09.129, 2018. 

Yang, P., Ren, G., Liu, W.: Spatial and temporal characteristics of Beijing urban heat island intensity, J. App. Meteor. 

Climatol., 52, 1803-1816, https://doi.org/10.1175/JAMC-D-12-0125.1, 2013. 

Zhang, S., Wu, Y., Yan, H., Du, X., Zhang, K. M., Zheng, X., Fu, L., Hao, J.: Black carbon pollution for a major road in 

Beijing: Implications for policy interventions of the heavy-duty truck fleet, Trans. Res. Part D: Trans. Environ., 68, 110-121, 895 

https://doi.org/10.1016/j.trd.2017.07.013, 2019. 

Zhang, Z., Zhang, X., Gong, D., Kim, S-J., Mao, R., Zhao, X.: Possible influence of atmospheric circulations on winter haze 

pollution in the Beijing-Tianjin-Hebei region, northern China, Atmos. Chem. Phys., 16, 561-571, https://doi.org/10.5194/acp-

16-561-2016, 2016. 

Zhao, D., Liu, G., Xin, J., Quan, J., Wang, Y., Wang, X., Dai, L., Gao, W., Tang, G., Hu, B., Ma, Y., Wu, X., Wang, L., Liu, 900 

Z., Wu, F.: The haze pollution under strong atmospheric oxidation capacity in summer in Beijing: Insights into the formation 

mechanism of atmospheric physicochemical process, Atmos. Chem. Phys. Disc., https://doi.org/10.5194/acp-2019-966, 2020. 

Zhao, L., Oppenheimer, M., Zhu, Q., Baldwin, J. W., Ebi, K. L., Bou-Zeid, E., Guan, K., Liu, X.: Interactions between urban 

heat islands and heat waves, Environ. Res. Let., 13, 3, https://doi.org/10.1088/1748-9326/aa9f73, 2018. 

https://www.usgs.gov/land-resources/eros/coastal-changes-and-impacts/gmted2010
https://www.usgs.gov/land-resources/nli/landsat/landsat-8
https://doi.org/10.1080/014311698215784
https://doi.org/10.1016/S0034-4257(03)00079-8
https://doi.org/10.1002/2016JD025304
https://doi.org/10.1186/s40562-019-0134-2
http://www.wudapt.org/cities/in-asia
https://doi.org/10.1016/j.egypro.2018.09.129
https://doi.org/10.1175/JAMC-D-12-0125.1
https://doi.org/10.5194/acp-2019-966
https://doi.org/10.1088/1748-9326/aa9f73


24 
 

Zhou, J., Chen, Y., Zhang, X., Zhan, W.: Modelling the diurnal variations of urban heat islands with multi-source satellite 905 

data, International Journal of Remote Sensing,  34, 7568-7588, https://doi.org/10.1080/01431161.2013.821576, 2013. 

 

 

 

 910 

 

 

 

 

 915 

 

 

 

 

 920 

 

 

 

 

 925 

 

 

 

 

 930 

 

 

 

 

 935 

https://doi.org/10.1080/01431161.2013.821576


25 
 

 

 

Figure 1. Beijing area and surroundings showing locations of (a) Beijing Capital International Airport Meteorology Observatory 

(airplane), (b) urban meteorological site at the Institute of Atmospheric Physics (IAP), (c) rural meteorological site in Pinggu and 

Sixth Ring Road (white line) marking the model domain. Source of satellite imagery: Esri World Imagery. 940 
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Figure 2. Sources of data used to determine model surface parameters for Beijing, covering the model domain within the Sixth Ring 945 
Road (red line), including (a) OpenStreetMap (OSM, 2020) land use (Table A1) and (b) local climate zones (LCZ) (WUDAPT, 2020). 

OSM land use overlaid onto LCZs across central Beijing (black square in b) is shown in (c), with the urban meteorological site at 

the Institute of Atmospheric Physics (IAP) also marked. © OpenStreetMap contributors 2020. Distributed under a Creative 

Commons BY-SA License.   
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 960 

Figure 3. Surface characteristics in Beijing area (100 m resolution) with Sixth Ring Road (white or black line), including (a) thermal 

admittance (J K-1 m-2 s-1/2), (b) surface resistance to evaporation (s m-1), (c) albedo, (d) surface roughness length (z0) (m), (e) 

normalised building volume (NBV) (m), and (f) terrain elevation (USGS, 2020). See Sect. 2.3 for data sources and method describing 

how parameter values were determined.  
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Figure 4. Aggregate anthropogenic heat emissions (AHE) (3 km resolution) across Beijing. Magnitudes based on Dou et al. (2019) 

with spatial weightings based on the local climate zone (LCZ) locations (Fig. 2) and Stewart and Oke’s (2012) AHE values for each 

LCZ classification. Sixth Ring Road and urban meteorological site (IAP) are marked. © OpenStreetMap contributors 2020. 980 
Distributed under a Creative Commons BY-SA License.   
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Figure 5. (a) Diurnal and (b) monthly anthropogenic heat emission (AHE) profiles. See Sect. 2.4 for method describing how profiles 

were determined.  
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Figure 6. Mean diurnal variation in measured and modelled urban heat island intensities (UHIIs) at the urban site in (a) winter and 

(b) summer. Modelled UHIIs from Base (black dotted), anthropogenic heat emissions + 50 % (AHE50; black dashed), high urban 

moisture (Evp150; blue) and anthropogenic heat emissions excluded (noAHE; pink) cases are presented. Measurements are marked 

by the red line. Shaded regions and error bars represent the 95 % confidence intervals for modelled and measured UHIIs, 1015 
respectivelyMean diurnal variation in measured and modelled urban heat island intensities (UHIIs) at the urban site in (a) winter 

and (b) summer. Modelled UHIIs from Base (black dotted), AHE50 (black dashed), Evp150 (blue) and noAHE (pink) cases are 

presented. Measurements are marked by the red line. Shaded regions and error bars represent the 95 % confidence intervals for 

modelled and measured UHIIs, respectively.    
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Figure 7. Hourly measured and modelled urban heat island intensities (UHIIs) for (a) winter and (b) summer periods. Modelled 

UHIIs from high urban moisture (Evp150; blue), anthropogenic heat emissions + 50 % (AHE50; grey) and anthropogenic heat 

emissions excluded (noAHE; pink) cases are presented. Measured UHIIs are grouped into bins (0.5 °C), points representing the 1030 
mean modelled UHII in the bin. Point sizes scaled by total number of hourly values per bin. Error bars represent 1 standard 

deviation of hourly modelled UHIIs in each binHourly measured and modelled urban heat island intensities (UHIIs) for (a) winter 

and (b) summer periods. Modelled UHIIs from Evp150 (blue), AHE50 (grey) and noAHE (pink) cases are presented. Measured 

UHIIs are grouped into bins (0.5 °C), points representing the mean modelled UHII in the bin. Point sizes scaled by total number of 

hourly values per bin. Error bars represent 1 standard deviation of hourly modelled UHIIs in each bin. 1035 
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Figure 8. Near-surface (2.5 m above ground level) air temperatures and land surface temperatures (LST) within Beijing’s Sixth 

Ring Road on 23 May 2017. Air temperatures modelled at 11:00 am, excluding anthropogenic heat emissions, with surface 

parameters from (a) Base, and (b) high urban moisture (Evp150) cases. (c) Differences between air temperatures modelled in (a) 1055 
and (b) (a minus b). (d) Landsat 8-derived LSTs (USGS, 2020) at 10:53 am. Beijing’s Fifth (outer) and Third (inner) Ring Roads 

marked by white (a, b and d) and black (c) linesNear-surface (2.5 m above ground level) air temperatures and land surface 

temperatures (LST) within Beijing’s Sixth Ring Road on 23 May 2017. Air temperatures modelled at 11:00 am, excluding 

anthropogenic heat emissions, with surface parameters from (a) Base, and (b) Evp150 cases. (c) Differences between air 

temperatures modelled in (a) and (b) (a minus b). (d) Landsat 8-derived LSTs (USGS, 2020) at 10:53 am. Beijing’s Fifth (outer) and 1060 
Third (inner) Ring Roads marked by white (a, b and d) and black (c) lines. © OpenStreetMap contributors 2020. Distributed under 

a Creative Commons BY-SA License.   
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Figure 9. Frequency (colour) of 100 m resolution Landsat 8-derived land surface temperatures (USGS, 2020) and near-surface (2.5 

m above ground level) air temperatures, modelled with surface parameters from (a) Base, and (b) high urban moisture (Evp150) 

cases, both excluding anthropogenic heat emissionsFrequency (colour) of 100 m resolution Landsat 8-derived land surface 

temperatures (USGS, 2020) and near-surface (2.5 m above ground level) air temperatures, modelled with surface parameters from 1090 
(a) 

Base, and (b) Evp150 cases, both excluding anthropogenic heat emissions. 
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Figure 10. Beijing Capital International Airport and its surroundings (a) (source of satellite imagery: Esri World Imagery), with 

locations of the airport (1), a residential area (2) and a forested region (3) indicated. Base case (b) thermal admittance, (c) surface 

resistance to evaporation and (d) albedo values (100 m resolution) within the region shown in (a).   
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Figure 11. Modelled urban heat island intensities using Base case surface parameters, excluding anthropogenic heat emissions, 

within the region shown in Fig. 10 at (a) 05:00, (b) 14:00, (c) 19:00, and (d) 23:00 on 23 May 2017. Airport (1), residential (2) and 

forest (3) sites are marked. Square marks area covered in Fig. 12a. 
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Figure 12. (a) Local climate zones (WUDAPT, 2020) combined with OpenStreetMap (OSM, 2020) data within the region marked in 

Fig. 11. See Fig. 11 for locations of Residential (2) and Forest (3) sites. (b) Mean summer diurnal modelled near-surface (2.5 m above 

ground level) air temperature differences (ΔT) between the airport and (pink) residential, and (blue) forest locations. (a), (b), (c) and 1125 
(d) marked in panel (b) correspond to the times of each modelled near-surface (2.5 m) air temperature map in Fig. 11. Shaded 

regions represent the 95 % confidence intervals for ΔT values. © OpenStreetMap contributors 2020. Distributed under a Creative 

Commons BY-SA License.   

 



33 
 

 1130 

Figure 13. Hourly measured air temperatures (~ 8 m above ground level) at the urban (red) and rural (blue) sites during the summer 

period (17 May – 21 June 2017). Two heatwave events (shaded grey regions) are highlighted from (a) 18 May to 21 May, and (b) 14 

June to 20 June 2017. Daily maximum temperature threshold for heatwave definition is also marked (black dashed line).   
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Figure 14. Mean measured (red) and high urban moisture (Evp150) case modelled (blue) urban heat island intensities (UHIIs) for 1150 
heatwave (HW) and non-heatwave (non-HW) days (Fig. 13) for day (10:00 to 16:00) and night (22:00 to 04:00) hours. Error bars 

represent 1 standard deviation of daily mean day and night UHIIs. Mean UHIIs for each period are marked either above or below 

error barsMean measured (red) and Evp150 case modelled (blue) urban heat island intensities (UHIIs) for heatwave (HW) and non-

heatwave (non-HW) days (Fig. 13) for day (10:00 to 16:00) and night (22:00 to 04:00) hours. Error bars represent 1 standard 

deviation of daily mean day and night UHIIs. Mean UHIIs for each period are marked either above or below error bars.        1155 
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Table 1. Surface parameter values assigned to Local climate zones (LCZ) mapped in Beijing (WUDAPT, 2020). Values, except for 1160 
surface resistance to evaporation, from Stewart and Oke (2012). See Sect. 2.3 for method describing how values are chosen from 

their ranges. Surface resistance to evaporation is based on literature-reported values (Oke, 1982; Cox et al. 1999; Hamilton et al. 

2014; CERC, 2018).  

LCZ  Description Thermal admittance 

(J K-1m-2s-1/2) 

Albedo Surface resistance to 

evaporation (s m-1) 

z0 (m) NBV (m) 

1 Compact high-rise 1650 0.1 200 2 12.5 

2 Compact midrise 1850 0.1 200 1 9.625 

3 Compact low-rise 1500 0.1 200 0.5 3.575 

4 Open high-rise 1600 0.12 150 2 7.5 

5 Open midrise 1700 0.12 150 0.5 5.25 

6 Open low-rise 1500 0.12 150 0.5 1.95 

8 Large low-rise 1500 0.15 200 0.25 2.6 

9 Sparsely built 1400 0.12 150 0.25 0.975 

10 Heavy industry 1750 0.12 200 0.25 2.5 

A Dense trees 1400 0.15 115 2 0.825 

B Scattered trees 1400 0.2 115 0.5 0.45 

D Low plants 600 0.2 70 0.1 0.025 

E Bare rock or paved 1850 0.225 200 0.005 0.00625 

G Water 1545 0.06 10 0.0002 0 

Upwind domain 

Rural site (LCZ 9 modified) 600 0.2 150 0.25 0.975 

 

 1165 

Table 2. Surface parameters and anthropogenic heat emissions (AHEs) used in the four model experiments.    
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Table 3. Statistical evaluation of modelled urban heat island intensities (UHIIs) at the urban site, for all hours of the day, during the 

winter (W) and summer (S) periods. Model experiments are described in Sect. 2.5. Mean UHIIs and statistics are calculated from 

matching hourly values. 
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Table 4. Statistical evaluation of modelled urban heat island intensities (UHIIs) for the winter (W) and summer (S) periods, as in 

Table 3, for daytime (D) (simulated K+ > 0) and nighttime (N) hours. 

Case Surface parameters AHEs 

Base As Table 1 and Table A1 As Fig. 4 and Fig. 5 

AHE50 Base Base + 50 % 

Evp150 Base with Evp (LCZ 1-3, 8, 10 and urban OSM) = 150 s m-1 Base + 50 % 

noAHE Base with Evp (LCZ 1-3, 8, 10 and urban OSM) = 150 s m-1 0 

UHII (°C) Model evaluation statistics 

Observed Modelled RMSE (°C) Fb R 

W S Case W S W S W S W S 

 

3.1 

 

1.8 

Base 1.4 1.3 2.90 2.66 -0.76 -0.30 0.47 0.48 

AHE50 2.0 1.8 2.69 2.69 -0.43 -0.02 0.39 0.44 

Evp150 1.9 1.2 2.68 2.49 -0.48 -0.44 0.43 0.59 

noAHE -0.1 -0.2 4.05 3.07 -2.00 -2.00 0.62 0.76 
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