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Abstract. Stratospheric radiative damping increases as atmospheric carbon dioxide concentration rises.
We use the one-dimensional mechanistic models of the QBO to conduct sensitivity experiments and
find that when atmospheric carbon dioxide concentration increases, the simulated QBO period shortens
due to the enhancing of radiative damping in the stratosphere. This result suggests that increasing
stratospheric radiative damping due to rising CO> may play a role in determining the QBO period in a
warming climate along with wave momentum flux entering the stratosphere and tropical vertical

residual velocity, both of which also respond to increasing CO,.

1. Introduction

The quasi-biennial oscillation (QBO) dominates the variability of the equatorial middle and lower
stratosphere and is characterized by a downward propagating zonal wind regime that regularly changes
from westerlies to easterlies. The QBO period ranges from 22 to 34 months with its average being
slightly longer than 28 months. The QBO not only manifests itself in the equatorial zonal winds, but also
leaves an imprint on the temperature in both the tropics and extratropics (Baldwin et al., 2001 and
references therein).

The QBO has far-reaching implications for global weather and climate systems. First of all, the QBO

exerts a marked influence on the distribution and transport of various chemical constituents such as
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ozone (O3) (e.g., Hasebe, 1994), water vapor (H20) (e.g., Kawatani et al., 2014), methane (CH4), nitrous
oxide (N20), hydrogen fluoride (HF), hydrochloric acid (HC1), odd nitrogen species (NOy) (e.g.,
Zawodny and McCormick, 1991), and volcanic aerosol (Trepte and Hitchman, 1992). Secondly, it is
well appreciated that the QBO influences the extratropical circulation in the winter stratosphere, which
1s commonly known as the Holton—Tan effect (Holton and Tan, 1980; Labitzke, 1982). It has been noted
that the effect of the QBO on the extratropical winter stratosphere impacts the severity of stratospheric
ozone depletion (e.g., Lait et al., 1989). Furthermore, taking account of the QBO improves the simulation
and predictability of the extratropical troposphere (e.g., Marshall and Scaife, 2009). Finally, through its
modulation of temperature and vertical wind shear in the vicinity of the tropical tropopause, the QBO
influences tropical moist convection (Collimore et al., 2003; Liess and Geller, 2012), the El Nifio-
Southern Oscillation (ENSO) (Gray et al., 1992; Huang et al., 2012; Hansen et al. 2016), the Hadley
circulation (Hitchman and Huesmann, 2009), the tropospheric subtropical jet (Garfinkel and Hartmann,
2011a, 2011b), the boreal summer monsoon (Giorgetta et al., 1999), and the Madden-Julian Oscillation
(Yoo and Son, 2016). Intriguingly, the QBO is also reported to influence the activities of tropical
cyclones (Gray et al., 1984; Ho et al., 2009), albeit this issue is still unsettled (Camargo and Sobel, 2010)
and needs further study.

Efforts to understand and simulate the QBO have been ongoing ever since its discovery by Ebdon
(1960) and Reed et al. (1961). Lindzen and Holton (1968) and Holton and Lindzen (1972) developed
the classical theory of the QBO. Namely, as waves propagate upward, they are attenuated by thermal
damping, encounter critical levels, and accelerate and decelerate the mean flow, providing momentum
sources for both the westerly and easterly phases of the QBO.

Holton and Lindzen’s (1972) model (hereafter referred to as HL model) was further simplified by

Plumb (1977), the elegance of which made it a standard paradigm for the QBO. In Plumb’s (1977)
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Boussinesq formulation, the QBO period is inversely dependent upon both the momentum flux and
thermal dissipation rate. Hamilton (1981) further highlighted the role of the radiative damping rate on
both the realistic vertical structure and the realistic period of the QBO.

By adopting higher vertical resolutions and incorporating various gravity wave parameterization
schemes, many state-of-the-art climate models have shown the capability to self-consistently simulate
the QBO (Scaife et al., 2000; Giorgetta et al., 2002, 2006; Rind et al., 2014, 2020; Geller et al., 2016a;
Richter et al., 2020a, 2020b). Given the important implications of the QBO for the global climate system,
it is natural to ask how the QBO will change in a warming climate.

Giorgetta and Doege (2005) showed a shortening of the QBO period in their doubled CO;
experiments. They reasoned that both the weakening of the tropical upwelling and the prescribed
increase of gravity wave sources lead to the reduction of the QBO period in a warming climate. However,
most climate models project a strengthening rather than weakening of tropical upwelling in a warmer
climate (Butchart et al., 2006; Butchart 2014; Li et al., 2008). Employing a model without any
parametrized non-orographic gravity waves, Kawatani et al. (2011) demonstrated that the intensifying
tropical upwelling in a warming climate dominates the counteracting effect of enhanced wave fluxes and
consequently projected a lengthening of the QBO period. Using fixed sources of parametrized gravity
waves, Watanabe and Kawatani (2012) also projected the QBO longer period in a warming climate and
pointed out that the lengthening of the QBO is due to the stronger tropical upwelling. Analyzing four
Coupled Model Intercomparison Project phase 5 (CMIP5) models that could simulate a reasonable QBO,
Kawatani and Hamilton (2013) found that the projected trends of the QBO period were inconsistent in
sign. They further investigated the 60-year operational balloon-borne radiosonde observations provided
by the Free Berlin University and detected no significant trend in the QBO period. Richter et al. (2020b)

investigated the response of the QBO in a doubled and quadrupled CO2 climate among eleven models
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that participated in Phase 1 of the Stratospheric-tropospheric Processes And their Role in Climate QBO-
initiative (QBO1i; Butchart et al., 2018), and found no consensus on how the QBO period would respond
to a changing climate. Recently, Butchart et al. (2020) evaluated ten Coupled Model Intercomparison
Project phase 6 (CMIP6) models with realistic QBO in two Shared Socioeconomic Pathways (SSPs,
Gidden et al., 2019) scenario simulations and surprisingly found that the QBO period shortens in seven
of those ten models in both in both SSP3-7.0 and SSP5-8.5 scenarios although only two and three models
show a significant shortening trend in the respective scenarios.

It 1s challenging to ascertain the trend of the QBO period in a warming climate. On one hand, a
speeding-up of the Brewer-Dobson circulation in a warming climate leads to a lengthening of the QBO
period in most climate models. On the other hand, there is a robust increase in the vertical component of
the EP flux for both eastward and westward propagating waves (Richter et al., 2020b; Butchart et al.,
2020), indicating that the QBO period shortens due to the enhanced wave driving in a warming climate.
The competing effects between enhanced wave driving and a faster Brewer-Dobson circulation suggests
that trends in the QBO period are likely to be small and difficult to detect due to the large cycle-to-cycle
variability that is reproduced by climate models (Butchart et al., 2020). In addition, uncertainty in the
representation of the parameterized gravity waves make it more elusive to detect the trend of the QBO
period in a warming climate (Schirber et al., 2015; Richter et al., 2020b).

Given the fact that the QBO period is influenced by the radiative damping (Plumb 1977; Hamilton
1981), a natural question to ask is whether it could play a role on the trend of the QBO in a warming
climate. Plass (1956) showed that when the CO; concentration is increased from 330 ppmv to 660 ppmv,
the cooling rate increases significantly in the middle and upper stratosphere while it is not changed below
the 24 km height level. The cooling rate is increased by more than 50% around the 40 km height level

(see his Figure 8).
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It is well-known that enhanced wave fluxes entering the stratosphere and stronger tropical upwelling
individually play a dominant role in determining the trends in the QBO period in a warming climate.
Does the competing effect between them leave some room for increasing stratospheric radiative damping
to exert an influence on the QBO period? In this paper, we use the HL model to isolate the effect of
radiative damping on the QBO period by assuming that the momentum flux entering the stratosphere
doesn’t change in our experiments. Observational and modeling studies (Andrews et al., 1987; Kawatani
et al., 2009, 2010, 2011; Richter et al., 2020b; Holt et al., 2020) showed that the wave forcing spectrum
is similar to a discrete two-wave spectrum rather than red-noise or white-noise, all of which are
illustrated in Saravanan (1990). Accordingly, the QBO is indeed sensitive to stratospheric radiative
damping, and the HL model is suitable for us to conduct the sensitivity test.

The remainder of this paper is organized as follows. Section 2 investigates the sensitivity of the QBO
period to the radiative damping using HL’s original model. Section 3 explores the sensitivity of the QBO
period to the radiative damping using a modified HL model where the semiannual forcing is removed.

Discussion and conclusions are presented in Sections 4 and 5 respectively.

2. Sensitivity of the QBO period to enhanced stratospheric radiative damping in the original HL
model

In the HL model the governing equation of mean flow emerges after the primitive momentum
equation is meridionally averaged over some suitable latitudinal belt over the equator.
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where U is mean zonal wind, p, is mean density, F; is the meridionally averaged vertical Eliassen-Palm
flux associated with wave i, the index i refers to the individual waves, K, is a vertical eddy diffusion
coefficient, t is time, 3 is altitude, and G is semiannual forcing identical to that specified by HL.

The F; is are evaluated with Lindzen's (1971) WKB formalism for equatorial waves in shear. When
only infrared cooling acts to damp the waves the formulae for F; are

Fo(z) = Agexp| — a—N_dz (2)
J k(c —u)?

17km

for the Kelvin wave, and

_ : N k2 (3 —
F,(z) = A, exp l_ J k3(czﬂ_ = <1 — (uﬁ C)> dz 3)
17km

for the mixed Rossby-gravity wave. As in HL, the wavenumber k, the phase speed ¢, and A, are chosen
to be 21 /(40,000 km), 30 m s~ %, and 0.04 m? s~2p,(17 km), respectively for the Kelvin wave while
they are equal to —27/(10,000 km), —30 m s~ !, and —0.04 m? s~2p,(17 km), respectively for the
mixing Rossby-gravity wave. In Eq. (1), K, = 0.3 m? s™1, which is also the same as in HL. In addition,
B = 2Q/a, where Q is earth’s rotation rate, and a is earth’s radius. HL's boundary conditions stipulated
that u = 0 at the lowest model level (17 km) and constrained u to vary semiannually at the top level (35
km).

In our control run that is used to depict the present-day QBO all the model parameters are identical

to those used by HL in their original simulation. The Brunt-V4iiséld frequency

- |9(%% 4, 9
N = To(dz+ ) (4)

‘p
In Eq. (4), g is gravity, T, is mean temperature, and ¢, is specific heat of dry air at constant pressure.

HL set N in Eq. (4) to 2.16 X 1072s ~! with a scale height H = 6 km. In addition, the Newtonian
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cooling profile in our control run, i.e., @(z) in Egs. (2) and (3), is also identical to that in the original
HL model and depicted in FiG. 1 as the black line. Namely, a(%z) in the control run increases from
(21 day) ~! at 17 km to (7 day) ~! at 30 km and is kept at (7 day) ~! between 30 km and 35 km. Fels
(1985) explicated why this cooling rate is suitable for simulating the QBO on the basis of the scale-
dependent effect of radiative damping (Fels 1982). Hamilton (1981) demonstrated that the proper choice
of a(z) is crucial in simulating a realistic vertical structure of the QBO.

Eq. (1) was integrated for 100 years using the forward-backward scheme (Matsuno, 1966). The
vertical resolution was 250 m and identical to that in HL. The time step was 12 hr, i.e., one half of used
in HL, because the 24-hr time step resulted in numerical instability in our integration.

Fi1G. 2a shows the time—height section of the monthly averaged mean zonal wind simulated over the
first 20 years using the HL model. Both the QBO and the semiannual oscillation (SAO) are conspicuous.
The fast Fourier transform (FFT) method is used to calculate the frequency power spectra. In order to
more accurately derive the QBO period, the model was run for 100 years to increase the spectral

resolution. Frequency—height sections of the power spectral densities (PSD) over zero to the Nyquist

1 1
frequency, i.e., 0.5 cycle/month, depict two sharp lines (peaks) at 20 and P cycle/month, respectively

(not shown). In order to better visualize the magnitudes of the PSD, we show two truncated frequency—
height sections with FIG. 2b and FIG. 2¢ highlighting the QBO and the SAO respectively. FIG. 2b shows
that the QBO dominates over the model domain. The peak frequency corresponds to the period of 30
months. FIG. 2¢ shows the SAO dominates near the model top due to the fact a semiannual forcing was
imposed in the altitudes from 28 to 35 km.

It is worth mentioning that the QBO period shown here is longer than 26.5 months reported in the HL
paper (see their FiG. 1). Using the HL model parameters, the QBO period simulated by Plumb (1977)

was close to three years (refer to his FIG. 8a), which is longer than our simulated QBO period, i.e., 30.0
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months. Although we could not explain why our simulated QBO period is longer than that simulated by

HL, we found that when the upper boundary condition is changed from u = 14 sin (w,t) and w, =

1% day~?! used in the HL’s original model (refer to their Egs. (2)) to Z—Z = 0 used in Plumb (1977), the

simulated QBO period becomes 34.3 month (figure not shown). In other words, when we adopted the
stress-free upper boundary condition as in Plumb (1977), our simulated QBO period is comparable to
that simulated by him, which lends credence to our reconstruction of the HL. model.

As mentioned in Section 1, when the atmospheric carbon dioxide concentration is doubled the cooling
rate increases significantly in the middle and upper stratosphere while it is not changed below the 24 km
height level. The cooling rate is increased by more than 50% around the 40 km height level (Plass, 1956).
Accordingly, the Newtonian cooling profile in our experimental run, i.e., @(z) in Egs. (2) and (3), is

specified in FIG. 1 as the red line. Namely, a (%) in the experimental run increases from (21 day) ~! at
17 km to %day‘1 at 24 km, which is identical to that in the control run from 17 km to 24 km. We
increased a(z) in the experimental run between 30 km and 35 km by 30% relative to that in the control
run. In other words, a(z) is kept at %day ~1 between 30 km and 35 km in the experimental run. The

percentage increase in a(z) for the doubled CO; above 30 km shown in FIG. 1 is comparable to that

shown by Plass (1956) in his Figure 8. Between 24 km and 30 km, a(z) in the experimental run is
formulated linearly with height from 99—1 day~? at 24 km to at % day ~1! at 30 km.

In order to properly investigate the sensitivity of the QBO period to enhanced stratospheric radiative
damping in response to the doubled CO», it is worth mentioning that both a and N in Egs. (2) and (3)
change with increasing CO,. Richter et al. (2020b) showed that N2 would be decreased by ~5% in the
stratosphere when CO> is doubled (refer to their Figure 2¢). Accordingly, the Brunt-Viiséld frequency

in the following experimental run, i.e., N in Egs. (2) and (3), was decreased by ~2.5% compared with
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that in the previous control run. FIG. 3a shows the time—height section of the monthly averaged mean
zonal wind simulated over the first 20 years for the doubled CO> run. Obviously, the QBO dominates
below 28 km while the semiannual oscillation (SAO) dominates above 31 km. Like FiG. 2b and FIG. 2c,
we only show two truncated frequency—height sections with FiG. 3b highlighting the QBO and FIG. 3c
highlighting the SAO. FIG. 3b also shows that the QBO dominates over the model domain. The peak
frequency corresponds to the period of 28.6 months. FIG. 3¢ shows the SAO dominates near the model
top due to the same imposed semiannual forcing as that in the control run.

In summary, using the original HL model we found that the increased radiative damping due to the

doubling of CO2 shortens the QBO period by 4.7%.

3. Sensitivity of the QBO period to enhanced stratospheric radiative damping in the HL. model
without the semiannual forcing

HL pointed out that the imposed semiannual oscillation was not essential for their QBO theory.
Applying Z—Z = 0 as the upper boundary condition, Plumb (1977) showed a simulated QBO without

resorting to the semiannual momentum source (refer to his FiG. 8b). In the following control run, all

parameters are identical to those used in the previous control run in section 2 except that G in Eq. (1) is
. OU . .
set to zero with a—: also being set to zero at z = 35 km. Hereafter we refer to it as the Plumb model'. FIG.

4a shows the time—height section of the monthly averaged mean zonal wind simulated over the first 20
years using the Plumb model. As expected, the QBO emerges without any trace of SAO since ¢ = 0 in
Eq. (1). FIG. 4b shows that the QBO dominates over the whole model domain. The peak frequency

corresponds to the period of 37.5 months, which is comparable to that simulated by Plumb (1977) shown

! Strictly speaking, it is the HL model modified by Plumb (1977). In this paper, we don’t use his eponymous model, i.¢., the
simplest possible model of the QBO, where Boussinesq fluids with uniform mean density were employed, because the HL
model and its variant are considerably more realistic.
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in his FIG. 8b. Apparently, the QBO period from the Plumb model, i.e., 37.5 months shown in FIG. 4b,
is longer than that from the HL model, i.e., 30.0 months shown in FIG. 2b because the additional forcing
G in Eq. (1) was removed in the Plumb model.

In the following experimental run, all parameters are identical to those used in the previous
. . . . . o OU .
experimental run in section 2 except that ¢ in Eq. (1) is set to zero with a_l; also being set to zero at z =

35 km. In other words, the following experimental run using the Plumb model employed the same
parameters as the afore-mentioned control run using the Plumb model with the following two exceptions.
Namely, the increased a(z) shown as the red line in FIG. 1 was used in the following experimental run
while a(z) shown as the black line in FIG. 1 was used in the above control run. In addition, the Brunt-
Viisila frequency, i.e., N in Egs. (2) and (3), was decreased by 2.5% in the following experimental run
compared with that in the above control run. FIG. 5a shows the time—height section of the monthly
averaged mean zonal wind simulated over the first 20 years for the doubled CO; run. It is natural that
only the QBO emerges. A comparison of FIG. 4a and FIG. 5a shows that the QBO period shortens when
the infrared damping increases in response to the doubled CO2. FIG. 5b shows that the QBO dominates
over the whole model domain. The peak frequency corresponds to the period of 31.6 months.

Using the Plumb model, we found that the increased radiative damping due to the doubling of CO

shortens the QBO period by 15.7%.

4. Discussion
The semiannual forcing, G in Eq. (1), in the HL model is imposed rather than results from the wave-
flow interaction. In other words, G in Eq. (1) is independent of mean flow, and is specified as G =

0 for z < 28 km,and G = w,, Uy, for z > 28 km

10
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where U, = 2(z — 28km) m s~! km~!sin (ws,t) and wgy = — day~! ~ 4 x 107 s~1 (refer to
180

”—
aa:;“ = 0 in the HL original model. We furthermore decompose u

Egs. (2) in HL). Therefore, we have

into two components: Uypo and Us,. Combining Eq. (1), the decomposition of u as u = Uppp + Usq,

. _
the above-mentioned 242 = 0,and G = ws,Us, = JUsa for 7 > 28 km, yields
032 ot y
_ 1 y—
Paso _ 10 [l y OTang ©
ot Po 03 L ' ° 032
for z > 28 km.

Dunkerton (1997) showed that in the presence of tropical upwelling it was gravity waves rather than
large-scale Kelvin and mixed Rossby-gravity waves that contributed the bulk of QBO forcing.
Consequently, Geller et al. (2016a, 2016b) pointed out that enough gravity wave momentum flux is
required to model the QBO in a self-consistent manner in climate models and that the magnitude of the
subgrid-scale gravity wave momentum flux plays a crucial role in determining the QBO period. Since
there is no tropical upwelling in either the HL model or the Plumb model, and the semiannual forcing,

G, is dependent on neither u in Eq. (1) nor ugp, in Eq. (5), it is natural that planetary-scale Kelvin and

mixed Rossby-gravity waves largely determine the QBO periods shown in Sections 2 and 3 due to the

fact that G only exerts a weak influence on the planetary wave forcing, i.e., — piaa_z [Zil:o Fl] in Egs. (1)
0

and (5). We conducted another sensitivity test where all parameters are identical to those in the HL model
except that G in both the control and experimental runs is twice as large as that used by HL. As the
radiative damping profile changes from the black line to the red line above 24 km shown in FiG. 1
meanwhile the Brunt-Viisila frequency is decreased by 2.5% in the experimental run, our simulated

QBO period decreases from 28.4 months to 27.6 months (figures not shown). This smaller percentage

11
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decrease of 2.8% is not unexpected because the unrealistically larger G that is independent of u makes
the model atmosphere less sensitive to the changes in the radiative damping.

We further conducted two sensitivity tests where all parameters are identical to those in the HL model
except that G in the first test is half as large as that used by HL and is equal to zero in the second test.
Surprisingly, as the radiative damping profile changes from the black line to the red line above 24 km
shown in FIG. 1 while the Brunt-Viisild frequency is decreased by 2.5% in the experimental runs, our
simulated QBO periods decreases from 30.0 months to 28.6 months both for G being decreased by 50%
and for G = 0. This 4.7% decrease in the QBO period is identical to the reduction obtained from the
sensitivity test presented in section 2 when G is the same as that used by HL. The question naturally
arises: what is responsible for this unphysical behavior?

Plumb (1977) pointed out that the upper boundary in HL was undesirably low and implied that raising
the lid to an additional 50% would be adequate for the robustness in his model. Here, we carry out a
series of sensitivity tests by raising the model lid gradually from 35 km to 55 km with the one-kilometer
increment. we will demonstrate how the behavior of the HL model with G = 0 converges with that of
the Plumb model. The modified HL model, i.e., the HL model with G = 0 is identical to the Plumb
model except that the former has the no-slip upper boundary condition while the latter has the stress-free
upper boundary condition. Both models share the same governing equation (5). Note that we set the
radiative damping rate above the 35 km level to its value at the 35 km level shown in FiG. 1.

For the radiative damping profile corresponding to the reference CO-, FIG. 6 shows that the simulated
QBO period with the no-slip upper boundary condition (solid black line) is 30.0 months when the model
lid is placed at 35 or 36 km level; 30.8 months when the model lid is placed at 37, 38, or 39 km level,
31.6 months when the model lid is placed between the 40 and 45 km levels; 32.4 months when the model

lid is placed at or above the 46 km level while the simulated QBO period with the stress-free upper

12
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boundary condition (dashed black line in FIG. 6) decreases from 37.5 to 35.5 months as the model lid is
raised from the 35 to 36 km level; continues decreasing to 34.3 and 33.3 months as the model lid is raised
to 37 and 38 km level, respectively; is kept at 33.3 months when the model lid is placed between the 38
and 41 km levels; and it further decreases to 32.4 months when the model lid is placed at or above the
42 km level. No matter whether we adopt the no-slip or stress-free upper boundary condition, the
simulated QBO period is 32.4 months for the reference radiative damping profile provided that the model
top is at or above the 46 km level.

Similarly, for the radiative damping profile corresponding to the doubled CO., FIG. 6 shows that the
simulated QBO period with the no-slip upper boundary condition (solid red line) is 28.6 months when
the model lid is placed at 35 km level; 29.3 months when the model lid is placed at 36, 37, or 38 km
level; 30.0 months when the model lid is placed at or above the 39 km level while the simulated QBO
period with the stress-free upper boundary condition (dashed red line in FiG. 6) decreases from 31.6 to
30.8 months as the model lid is raised from the 35 to 36 km level; and is kept at 30.0 months when the
model lid is placed at or above to 37 km level. No matter whether we adopt the no-slip or stress-free
upper boundary condition, the simulated QBO period for the enhanced infrared cooling due to the
doubled COz is 30.0 months provided that the model top is at or above the 39 km level. It is apparent
that the required model top is lower when the radiative damped is augmented because the planetary
waves dissipate more steeply with height in presence of the enhanced infrared cooling rates.

FiG. 6 demonstrates that when the model lid is sufficiently high the response of the QBO period to
the enhanced radiative damping due to the increasing CO» will decrease from 32.4 to 30.0 months. This

7.4% decrease in the QBO period is independent of the upper boundary condition.

5. Conclusions
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Plumb (1977) envisioned that stratospheric climate change would give rise to long-term changes in
the QBO period due to changes in radiative damping and the Brunt-Viisild frequency. Using one-
dimensional (1D) models we found that the enhanced radiative damping arising from the doubling of
CO2 leads to the shortening of the QBO period by about 7.4% provided that the model top is higher than
the 46 km level. Those models include neither gravity waves nor tropical upwelling and assume that
there are no changes in wave fluxes entering the equatorial stratosphere.

From a comprehensive model perspective, Richter et al. (2020b) showed that the changes in period
of the QBO in warming climate simulations varied quite significantly among these models. Some models
projected longer mean periods and some shorter mean periods for the QBO in a future warmer climate.
They argue that uncertainty in the representation of the parameterized gravity waves is the most likely
cause of the spread among the QBOi models in the QBO's response to climate change.

In addition, CO2 increases in the NASA Goddard Institute for Space Studies Model E2.2-AP (Rind
et al. 2020) lead to a decrease of both QBO period and QBO amplitude (DallaSanta et al., in prep.). The
period decrease is associated with increases in lower stratospheric momentum fluxes (related to
parameterized convection), a finding consistent with Geller et al. (2016a, 2016b) and Richter et al.
(2020b). The amplitude decrease is associated with a strengthened residual mean circulation, also
consistent with the literature, although the vertical structure of the circulation response is nontrivial.

Our 1D models only explored how the QBO period responds to the enhancing radiative damping of
planetary waves due to the increasing CO». In order to investigate how the enhancing radiative damping
impacts on gravity waves which play an even more important role in determining the QBO period than
planetary waves, high-resolution models such as those used by Kawatani et al. (2011, 2019) are desirable
to further our understanding. Ultimately, how the QBO period changes in response to the increasing CO»

will be determined by the combined effects of the strengthening of tropical upwelling, the increasing of
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wave fluxes entering the equatorial stratosphere, and the enhancing of radiative damping, which warrants

further research.
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636  Fi1G. 6: The relationship between the simulated QBO period with the height of the model lid. Black and
637  red lines depict the results from using the reference radiative damping and the enhanced radiative

638  damping respectively while solid and dashed lines delineate the results from the HL model with G = 0
639  and the Plumb model respectively.
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