

1 Anthropogenic Secondary Organic Aerosols Contribute Substantially to Air Pollution 2 Mortality

3

4 Benjamin A. Nault^{1,2,*}, Duseong S. Jo^{1,2}, Brian C. McDonald^{2,3}, Pedro Campuzano-Jost^{1,2}, Douglas A.
5 Day^{1,2}, Weiwei Hu^{1,2,***}, Jason C. Schroder^{1,2,***}, James Allan^{4,5}, Donald R. Blake⁶, Manjula R.
6 Canagaratna⁷, Hugh Coe⁵, Matthew M. Coggon^{2,3}, Peter F. DeCarlo⁸, Glenn S. Diskin⁹, Rachel
7 Dunmore¹⁰, Frank Flocke¹¹, Alan Fried¹², Jessica B. Gilman³, Georgios Gkatzelis^{2,3,****}, Jacqui F.
8 Hamilton¹⁰, Thomas F. Hanisco¹³, Patrick L. Hayes¹⁴, Daven K. Henze¹⁵, Alma Hodzic^{11,16}, James
9 Hopkins^{10,17}, Min Hu¹⁸, L. Greggory Huey¹⁹, B. Thomas Jobson²⁰, William C. Kuster^{3,*****}, Alastair
10 Lewis^{10,17}, Meng Li³, Jin Liao^{13,21}, M. Omar Nawaz¹⁵, Ilana B. Pollack²², Jeffrey Peischl^{2,3}, Bernhard
11 Rappenglück²³, Claire E. Reeves²⁴, Dirk Richter¹², James M. Roberts³, Thomas B. Ryerson^{3,*****}, Min
12 Shao²⁵, Jacob M. Sommers^{14,26}, James Walega¹², Carsten Warneke^{2,3}, Petter Weibring¹², Glenn M.
13 Wolfe^{13,27}, Dominique E. Young^{5,*****}, Bin Yuan²⁵, Qiang Zhang²⁸, Joost A. de Gouw^{1,2}, and Jose L.
14 Jimenez^{1,2,+*}

15

16 1. Department of Chemistry, University of Colorado, Boulder, Boulder, CO, USA

17 2. Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado, USA

18 3. Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO

19 4. National Centre for Atmospheric Sciences, School of Earth and Environmental Sciences, University of Manchester, Manchester, UK

20 5. Centre of Atmospheric Science, School of Earth and Environmental Sciences, University of Manchester, Manchester, UK

21 6. Department of Chemistry, University of California, Irvine, Irvine, CA, USA

22 7. Center for Aerosol and Cloud Chemistry, Aerodyne Research Inc., Billerica, MA, USA

23 8. Department of Environmental Health Engineering, Johns Hopkins University, Baltimore, MD, USA

24 9. NASA Langley Research Center, Hampton, Virginia, USA

25 10. Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UK

26 11. Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA

27 12. Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA

28 13. Atmospheric Chemistry and Dynamic Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA

29 14. Department of Chemistry, Université de Montréal, Montréal, QC, Canada

30 15. Department of Mechanical Engineering, University of Colorado, Boulder, Boulder, CO, USA

31 16. Laboratoires d'Aréologie, Université de Toulouse, CNRS, UPS, Toulouse, France

32 17. National Centre for Atmospheric Sciences, Department of Chemistry, University of York, York, UK

33 18. State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking

34 University, Beijing, China

35 19. School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA

36 20. Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University, Pullman, WA,

37 USA

38 21. Universities Space Research Association, GESTAR, Columbia, MD, USA

39 22. Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA

40 23. Department of Earth and Atmospheric Science, University of Houston, Houston, TX, USA

41 24. Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UK

42 25. Institute for Environmental and Climate Research, Jinan University, Guangzhou, China

43 26. Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada

44 27. Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, MD, USA

45 28. Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China

46 *Now at Center for Aerosol and Cloud Chemistry, Aerodyne Research Inc., Billerica, MA, USA

47 **Now at State Key Laboratory at Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou,

48 China

49 ***Now at Colorado Department of Public Health and Environment, Denver, CO, USA

50 ****Now at Forschungszentrum Juelich GmbH, IEK-8, Juelich, Germany

51 *****Has retired and worked on this manuscript as an unaffiliated co-author.

52 *****Now at Scientific Aviation, Boulder, CO, USA

53 *****Now at Air Quality Research Center, University of California, Davis, CA, USA

54

55 +Corresponding author: Jose L. Jimenez (jose.jimenez@colorado.edu)

56

57 **Abstract**

58 Anthropogenic secondary organic aerosol (ASOA), formed from anthropogenic emissions of
59 organic compounds, constitutes a substantial fraction of the mass of submicron aerosol in
60 populated areas around the world and contributes to poor air quality and premature mortality.
61 However, the precursor sources of ASOA are poorly understood, and there are large uncertainties
62 in the health benefits that might accrue from reducing anthropogenic organic emissions. We
63 show that the production of ASOA in 11 urban areas on three continents is strongly correlated
64 with the ~~anthropogenic~~ reactivity of specific ~~anthropogenic~~ volatile organic compounds. The
65 differences in ASOA production across different cities can be explained by differences in the
66 emissions of aromatics and intermediate- and semi-volatile organic compounds, indicating the
67 importance of controlling these ASOA precursors. With an improved modeling representation of
68 ASOA driven by the observations, we attribute 340,000 PM_{2.5} premature deaths per year to
69 ASOA, which is over an order of magnitude higher than prior studies. A sensitivity case with a
70 more recently proposed model for attributing mortality to PM_{2.5} (the Global Exposure Mortality
71 Model) results ~~in up to~~ up to 900,000 deaths. A limitation of this study is the extrapolation ~~from~~
72 ~~cities with detailed studies and regions where detailed emission inventories are available to~~
73 ~~other~~~~from~~ regions ~~with detailed data to others where data is not available where~~ uncertainties in
74 emissions are larger. In addition to further development of institutional air quality management
75 ~~infrastructure, c~~omprehensive air quality campaigns in the countries in South and Central
76 America, Africa, South Asia, and the Middle East are needed for further progress in this area.

77 **1. Introduction**

78 Poor air quality is one of the leading causes of premature mortality worldwide (Cohen et
79 al., 2017; Landrigan et al., 2018). Roughly 95% of the world's population live in areas where
80 PM_{2.5} (fine particulate matter with diameter smaller than 2.5 μm) exceeds the World Health
81 Organization's 10 $\mu\text{g m}^{-3}$ annual average guideline (Shaddick et al., 2018). This is especially true
82 for urban areas, where high population density is co-located with increased emissions of PM_{2.5}
83 and its gas-phase precursors from human activities. It is estimated that PM_{2.5} leads to 3 to 4
84 million premature deaths per year, higher than the deaths associated with other air pollutants
85 (Cohen et al., 2017). More recent analysis using concentration-response relationships derived
86 from studies of populations exposure to high levels of ambient PM_{2.5} suggest the global
87 premature death burden could be up to twice this value (Burnett et al., 2018).

88 The main method to estimate premature mortality with PM_{2.5} is to use measured PM_{2.5}
89 from ground observations along with derived PM_{2.5} from satellites to fill in missing ground-based
90 observations ([van Donkelaar et al. 2015](#); [van Donkelaar et al. 2016](#)). To go from total PM_{2.5} to
91 species-dependent and even sector-dependent associated premature mortality from PM_{2.5},
92 chemical transport models (CTMs) are used to predict the fractional contribution of species
93 and/or sector (e.g., [\(van Donkelaar et al. 2015; Silva et al. 2016; Lelieveld et al. 2015; van](#)
94 [Donkelaar et al. 2016\)](#). However, though CTMs may get total PM_{2.5} or even total species, e.g.,
95 organic aerosol (OA), correct, the model may be getting the values right for the wrong reason
96 (e.g., de Gouw and Jimenez, 2009; Woody et al., 2016; Murphy et al., 2017; Baker et al., 2018;
97 Hodzic et al., 2020). This is especially important for OA in urban areas, where models have a
98 longstanding issue under predicting secondary OA (SOA) with some instances of over predicting

99 primary OA (POA) (de Gouw and Jimenez, 2009; Dzepina et al., 2009; Hodzic et al., 2010;
100 Woody et al., 2016; Zhao et al., 2016a; Janssen et al., 2017; Jathar et al., 2017). Further, this bias
101 has even been observed for highly aged aerosols in remote regions (Hodzic et al., 2020). As has
102 been found in prior studies for urban areas (e.g., Zhang et al., 2007; Kondo et al., 2008; Jimenez
103 et al., 2009; DeCarlo et al., 2010; Hayes et al., 2013; Freney et al., 2014; Hu et al., 2016; Nault et
104 al., 2018; Schroder et al., 2018) and highlighted here (Fig. 1), a substantial fraction of the
105 observed submicron PM is OA, and a substantial fraction of the OA is composed of SOA
106 (approximately a factor of 2 to 3 higher than POA). Thus, to better understand the sources and
107 apportionment of $PM_{2.5}$ that contributes to premature mortality, CTMs must improve their
108 prediction of SOA versus POA, as the sources of SOA precursors and POA can be different.

109 ~~The average measured chemical composition of submicron PM (PM_1 , which typically~~
110 ~~comprises most of $PM_{2.5}$ (Wang et al., 2015)) for various megacities, urban areas, and outflow~~
111 ~~regions around the world is shown in Fig. 1. A substantial fraction of urban PM_1 is organic~~
112 ~~aerosol (OA), which is composed of primary OA (POA, organic compounds emitted directly in~~
113 ~~the particle phase) and secondary OA (SOA, formed from chemical reactions of precursor~~
114 ~~organic gases). SOA is typically a factor of 2 to 3 higher than POA for these locations.~~

115 However, ~~U~~nderstanding the gas-phase precursors of photochemically-produced
116 anthropogenic SOA (ASOA, defined as the photochemically-produced SOA formed from ~~the~~
117 ~~photoxidation of~~ anthropogenic volatile organic compounds (AVOC) (de Gouw et al., 2005;
118 DeCarlo et al., 2010)) quantitatively is challenging (Hallquist et al., 2009). ~~Note, for the rest of~~
119 ~~the paper, unless explicitly stated otherwise, ASOA refers to SOA produced from the~~
120 ~~photoxidation of AVOCs, as there are potentially other relevant paths for the production of SOA~~

121 in urban environments (e.g., (Petit et al. 2014; Kodros et al. 2020; Kodros et al. 2018; Stavroulas
122 et al. 2019)). Though the enhancement of ASOA is largest in large cities, these precursors and
123 production of ASOA should be important in any location impacted by anthropogenic emissions
124 (e.g., Fig. 1). ASOA comprises a wide range of condensable products generated by numerous
125 chemical reactions involving AVOC precursors (Hallquist et al., 2009; Hayes et al., 2015;
126 Shrivastava et al., 2017). The number of AVOC precursors, as well as the role of
127 “non-traditional” AVOC precursors, along with the condensable products and chemical reactions,
128 compound to lead to differences in the observed versus predicted ASOA for various urban
129 environments (e.g., (de Gouw and Jimenez 2009; Dzepina et al. 2009; Hodzic et al. 2010; Woody
130 et al. 2016; Janssen et al. 2017; Jathar et al. 2017; McDonald et al. 2018)). One solution to
131 improve the prediction in CTMs is to use a simplified model, where lumped ASOA precursors
132 react, non-reversibly, at a given rate constant, to produce ASOA (Hodzic and Jimenez 2011;
133 Hayes et al. 2015; Pai et al. 2020). This simplified model has been found to reproduce the
134 observed ASOA from some urban areas (Hodzic and Jimenez 2011; Hayes et al. 2015) but issues
135 in other urban areas (Pai et al. 2020). This may stem from the simplified model being
136 parameterized to two urban areas (Hodzic and Jimenez 2011; Hayes et al. 2015). These
137 inconsistencies impact the model predicted fractional contribution of ASOA to total PM_{2.5} and
138 thus the ability to understand the source attribution to PM_{2.5} and premature deaths. These
139 condensable products include intermediate volatile organic compounds (IVOCs, less volatile
140 than traditional VOCs and often not measured or considered (Robinson et al., 2007; Hayes et al.,
141 2015)) and semi volatile organic compounds (SVOCs, less volatile than IVOC and similarly not
142 measured or considered).

143 The main categories of gas-phase precursors that dominate ASOA have been the subject
144 of intensive research. The debate on what dominates can in turn impact the understanding of
145 what precursors to regulate to reduce ASOA, to improve air quality, and to reduce premature
146 mortality associated with ASOA. Transportation-related emissions (e.g., tailpipe, evaporation,
147 refueling) were assumed to be the major precursors of ASOA, which was supported by field
148 studies (Parrish et al., 2009; Gentner et al., 2012; Warneke et al., 2012; Pollack et al., 2013). Yet,
149 budget closure of observed ASOA mass concentrations could not be achieved with
150 transportation-related VOCs (Ensberg et al., 2014). The contribution of urban-emitted biogenic
151 precursors to SOA in urban areas is typically small. ~~, and rather, the contribution of b~~ Biogenic
152 SOA (BSOA) in urban areas ~~is~~ typically results from ~~dominated by~~ regionally advected
153 advection of regional background concentrations rather than processing of locally emitted
154 biogenic VOCs~~SOA background~~ (e.g., Hodzic et al., 2009, 2010a; Hayes et al., 2013; Janssen et
155 al., 2017). BSOA is thought to dominate globally (Hallquist et al., 2009), but as shown in Fig. 1,
156 the contribution of BSOA (1% to 20%) to urban concentrations, while often substantial, is
157 typically smaller than that of ASOA (17% to 39%) (see Sect. S3.12).

158 Many of these prior studies generally investigated AVOC with high volatility, where
159 volatility here is defined as the saturation concentration, C^* , in $\mu\text{g m}^{-3}$ (de Gouw et al., 2005;
160 Volkamer et al., 2006; Dzepina et al., 2009; Freney et al., 2014; Woody et al., 2016). More recent
161 studies have identified lower volatility compounds in transportation-related emissions (e.g., Zhao
162 et al., 2014, 2016b; Lu et al., 2018). These compounds have been broadly identified as
163 intermediate-volatile organic compounds (IVOCs) and semi-volatile organic compounds
164 (SVOCs). IVOCs have a C^* generally of 10^3 to $10^6 \mu\text{g m}^{-3}$ while SVOCs have a C^* generally of

165 1 to $10^2 \mu\text{g m}^{-3}$. Due to their lower volatility and functional groups, these classes of compounds
166 generally form ASOA more efficiently than traditional, higher volatile AVOCs; however,
167 S/IVOCs have also been more difficult to measure (e.g., Zhao et al., 2014; Pagonis et al., 2017;
168 Deming et al., 2018). IVOCs generally have been the more difficult of the two classes to measure
169 and identify as these compounds cannot be collected onto filters to be sampled off-line (Lu et al.,
170 2018) and generally show up as unresolved complex mixture for in-situ measurements using
171 gas-chromatography (GC) (Zhao et al., 2014). SVOCs, on the other hand, can be more readily
172 collected onto filters and sampled off-line due to their lower volatility (Lu et al., 2018). Another
173 potential issue has been an under-estimation of the S/IVOC aerosol production, as well as an
174 under-estimation in the contribution of photochemically produced S/IVOC from photooxidized
175 “traditional” VOCs, due to partitioning of these low volatile compounds to chamber walls and
176 tubing (Krechmer et al., 2016; Ye et al., 2016; Liu et al., 2019). Accounting for this
177 under-estimation increases the predicted ASOA (Ma et al. 2017). The inclusion of these classes
178 of compounds have led to improvement in some urban SOA budget closure; however, many
179 studies still have indicated a general short-fall in ASOA budget even when including these
180 compounds from transportation-related emissions. (Dzepina et al., 2009; Tsimpidi et al., 2010;
181 Hayes et al., 2015; Cappa et al., 2016; Ma et al., 2017; McDonald et al., 2018).

182 Recent studies have indicated that emissions from volatile chemical products (VCPs),
183 defined as pesticides, coatings, inks, adhesives, personal care products, and cleaning agents
184 (McDonald et al., 2018), as well as cooking emissions (Hayes et al., 2015), asphalt emissions
185 (Khare et al., 2020), and solid fuel emissions from residential wood burning and/or cookstoves
186 (e.g., Hu et al., 2013, 2020; Schroder et al., 2018), are important. While total amounts of ASOA

187 precursors released in cities have dramatically declined (largely due to three-way catalytic
188 converters in cars (Warneke et al., 2012; Pollack et al., 2013; Zhao et al., 2017; Khare and
189 Gentner, 2018)), VCPs have not declined as quickly (Khare and Gentner, 2018; McDonald et al.,
190 2018). Besides a few cities in the US (Coggon et al., 2018; Khare and Gentner, 2018; McDonald
191 et al., 2018), extensive VCP emission quantification has not yet been published.

192 Due to the uncertainty on the **emissions of ASOA** precursors and on the amount of
193 ASOA formed from them, the number of premature deaths associated with urban organic
194 emissions is largely unknown. **Since numerous studies have shown the importance of VCPs and**
195 **other non-traditional VOC emission sources, efforts have been made to try to improve the**
196 **representation and emissions of VCPs (Seltzer et al. 2020), which can reduce the uncertainty in**
197 **ASOA precursors and the associated premature deaths estimations.** Currently, most studies have
198 not included ASOA realistically (e.g., Lelieveld et al., 2015; Silva et al., 2016; Ridley et al.,
199 2018) in source apportionment calculations of the premature deaths associated with long-term
200 exposure of PM_{2.5}. These models represented total OA as non-volatile POA and “traditional”
201 ASOA precursors (transportation-based VOCs), which largely under-predict ASOA (Ensberg et
202 al., 2014; Hayes et al., 2015; Nault et al., 2018; Schroder et al., 2018) **while over-predicting POA**
203 **(e.g., (Hodzic et al. 2010; Zhao et al. 2016; Jathar et al. 2017).** ~~given that the~~ This does not
204 **reflect the current understanding** ~~is~~ that POA is volatile and contributes to ASOA mass
205 concentration (e.g., Grieshop et al., 2009; Lu et al., 2018). **Though the models are estimating**
206 **total OA correctly (Ridley et al. 2018; Hodzic et al. 2020; Pai et al. 2020),** the attribution of
207 **premature deaths to POA instead of SOA formed from “traditional” and “non-traditional”**
208 **sources, including IVOCs from both sources, could lead to regulations that may not target the**

209 emissions that would reduce OA in urban areas. As PM_1 and SOA mass are highest in urban
210 areas (Fig. 1), also shown in Jimenez et al. (2009), it is necessary to quantify the amount and
211 identify the sources of ASOA to target future emission standards that will optimally improve air
212 quality and the associated health impacts. As these emissions are from human activities, they will
213 contribute to SOA mass outside urban regions and to potential health impacts outside urban
214 regions as well. Though there are potentially other important exposure pathways to PM that may
215 increase premature mortality, such as exposure to solid-fuel emissions indoors (e.g., Kodros et
216 al., 2018), the focus of this paper is on exposure to outdoor ASOA and its associated impacts to
217 premature mortality.

218 Here, we investigate the factors that control ASOA using 11 major urban, including
219 megacities, field studies (Fig. 1 and Table 1). The empirical relationships and numerical models
220 are then used to quantify the attribution of premature mortality to ASOA around the world, using
221 the observations to improve the modeled representation of ASOA. The results provide insight
222 into the importance of ASOA to global premature mortality due to $PM_{2.5}$ and further
223 understanding of the ~~understanding the~~ precursors and sources of ASOA in urban regions.

224

225 **2. Methods**

226 Here, we introduce the ambient observations from various campaigns used to constrain
227 ASOA production (Sect. 2.1), description of the simplified model used in CTMs to better predict
228 ASOA (Sect. 2.2), and description of how premature mortality was estimated for this study (Sect.
229 2.3). In the SI, the following can be found: description of the emissions used to calculate the
230 ASOA budget for five different locations (Sect. S1), description of how the ASOA budget was

231 calculated for the five different locations (Sect. S2), description of the CTM (GEOS-Chem) used
232 in this study (Sect. S3 - S4), and error analysis for the observations (Sect. S5).

233

234 2.1 Ambient Observations

235 For values not previously reported in the literature (Table S4), observations taken
236 between 11:00 – 16:00 local time were used to determine the slopes of SOA versus
237 formaldehyde (HCHO) (Fig. S12), peroxy acetyl nitrate (PAN) (Fig. S23), and O_x (O_x = O₃ +
238 NO₂) (Fig. S34). For CalNex, there was an approximate 48% difference between the two HCHO
239 measurements (Fig. S41). Therefore, the average between the two measurements were used in
240 this study, similar to what has been done in other studies for other gas-phase species (Bertram et
241 al., 2007). All linear fits, unless otherwise noted, use the orthogonal distance regression fitting
242 method (ODR).

243 For values in Table S4 through Table S8 not previously reported in the literature, the
244 following procedure was applied to determine the emissions ratios, similar to the methods of
245 Nault et al. (2018). An OH exposure (OH_{exp} = [OH]×Δt), which is also the photochemical age
246 (PA), was estimated by using the ratio of NO_x/NO_y (Eq. 1) or the ratio of
247 m+p-xylene/ethylbenzene (Eq. 2). For the m+p-xylene/ethylbenzene, the emission ratio
248 (Table S5) was determined by determining the average ratio during minimal photochemistry,
249 similar to prior studies (de Gouw et al., 2017). This was done for only one study, TexAQS 2000.
250 This method could be applied in that case as it was a ground campaign that operated both day
251 and night; therefore, a ratio at night could be determined when there was minimal loss of both
252 VOCs. The average emission ratio for the other VOCs was determined using Eq. 3 after the

253 OH_{exp} was calculated in Eq. 1 or Eq. 2. The rate constants used for determining OH_{exp} and
254 emission ratios are found in Table S124.

255

$$\text{OH}_{\text{exp}} = [\text{OH}] \times t = \ln \left(\left(\frac{[\text{NO}_x]}{[\text{NO}_y]} \right) \right)$$

Eq. 1

256

$$\text{OH}_{\text{exp}} = [\text{OH}] \times t = - \frac{1}{k_{m+p-\text{xylene}} - k_{\text{ethylbenzene}}} \times \ln \left(\frac{[\text{m+p-xylene}]_t}{[\text{ethylbenzene}]_t} - \frac{[\text{m+p-xylene}]_0}{[\text{ethylbenzene}]_0} \right)$$

Eq. 2

257

$$\frac{[\text{VOC(i)}]}{[\text{CO}]}(0) = - \frac{[\text{VOC(i)}]}{[\text{CO}]}(t) \times \left(1 - \frac{1}{\exp(-k_i \times [\text{OH}]_{\text{exp}} \times t)} \right) \times k_i + \frac{[\text{VOC(i)}]}{[\text{CO}]}(t) \times k_i$$

Eq. 3

259

260

261 2.2 Updates to the SIMPLE Model

262 With the combination of the new dataset, which expands across urban areas on three
263 continents, the SIMPLE parameterization for ASOA (Hodzic and Jimenez, 2011) is updated in
264 the standard GEOS-Chem model to reproduce observed ASOA in Fig. 2a. The parameterization
265 operates as represented by Eq. 4.

267 SOAP represents the lumped precursors of ASOA, k is the reaction rate coefficient with OH
268 ($1.25 \times 10^{-11} \text{ cm}^3 \text{ molecules}^{-1} \text{ s}^{-1}$), and [OH] is the OH concentration in molecules cm^{-3} . This rate
269 constant is also consistent with observed ASOA formation time scale of ~ 1 day that has been
270 observed across numerous studies (e.g., de Gouw et al., 2005; DeCarlo et al., 2010; Hayes et al.,
271 2013; Nault et al., 2018; Schroder et al., 2018).

272 SOAP emissions were calculated based on the relationship between $\Delta\text{SOA}/\Delta\text{CO}$ and
 273 $\text{R}_{\text{aromatics}}/\Delta\text{CO}$ in Fig. 2a. First, we calculated $\text{R}_{\text{aromatics}}/\Delta\text{CO}$ (Eq. 5) for each grid cell and time step
 274 as follows:

$$275 \quad \frac{\text{R}_{\text{aromatics}}}{\Delta\text{CO}} = \frac{\text{E}_B \times k_B + \text{E}_T \times k_T + \text{E}_X \times k_X}{\text{E}_{\text{CO}}} \quad \text{Eq. 5}$$

276 Where E and k stand for the emission rate and reaction rate coefficient with OH, respectively, for
 277 benzene (B), toluene (T), and xylenes (X). Ethylbenzene was not included in this calculation
 278 because its emission was not available in HTAPv2 emission inventory. However, ethylbenzene
 279 contributed a minor fraction of the mixing ratio (~ 7%, Table S5) and reactivity (~6%) of the
 280 total BTEX across the campaigns. Reaction rate constants used in this study were 1.22×10^{-12} ,
 281 5.63×10^{-12} , and $1.72 \times 10^{-11} \text{ cm}^3 \text{ molec.}^{-1} \text{ s}^{-1}$ for benzene, toluene, and xylene, respectively
 282 (Atkinson and Arey, 2003; Atkinson et al., 2006). The $\text{R}_{\text{aromatics}}/\Delta\text{CO}$ allows a dynamic
 283 calculation of the $\text{E}(\text{VOC})/\text{E}(\text{CO}) = \text{SOA}/\Delta\text{CO}$. Hodzic and Jimenez (2011) and Hayes et al.
 284 (2015) used a constant value of 0.069 g g^{-1} , which worked well for the two cities investigated,
 285 but not for the expanded dataset studied here. Thus, both the aromatic emissions and CO
 286 emissions are used in this study to better represent the variable emissions of ASOA precursors
 287 (Fig. S5).

288 Second, $\text{E}_{\text{SOAP}}/\text{E}_{\text{CO}}$ can be obtained from the result of Eq. 6, using slope and intercept in
 289 Fig. 2a, with a correction factor (F) to consider additional SOA production after 0.5 PA
 290 equivalent days, since Fig. 2a shows the comparison at 0.5 PA equivalent days.

$$291 \quad \frac{\text{E}_{\text{SOAP}}}{\text{E}_{\text{CO}}} = \left(\text{Slope} \times \frac{\text{R}_{\text{Aromatics}}}{\Delta\text{CO}} + \text{Intercept} \right) \times F \quad \text{Eq. 6}$$

292 Where slope is 24.8 and intercept is -1.7 from Fig. 2a. F (Eq. 7) can be calculated as follows:

293

$$F = \frac{ASOA_{t=\infty}}{ASOA_{t=0.5d}} = \frac{SOAP_{t=0}}{SOAP_{t=0} \times (1 - \exp(-k \times \Delta t \times [OH]))}, \Delta t = 43200 \text{ s}$$

Eq. 7

294 F was calculated as 1.8 by using $[OH] = 1.5 \times 10^6$ molecules cm^{-3} , which was used in the
 295 definition of 0.5 PA equivalent days for Fig. 2a.

296 Finally, E_{SOAP} can be computed by multiplying CO emissions (E_{CO}) for every grid point
 297 and time step in GEOS-Chem by the E_{SOAP}/E_{CO} ratio.

298

299

300 **2.2 Error Analysis of Observations**

301 The errors that will be discussed here are in reference to Fig. 5 and Fig. 6 and Table S4
 302 either come from the 1σ uncertainty in the slopes (the SOA versus O_x , HCHO, or PAN values) or
 303 propagation of uncertainty in observations. For SOA, we estimate the 1σ uncertainty of $\sim 15\%$,
 304 which is lower than the typical 1σ uncertainty of the AMS (Bahreini et al., 2009) due to the
 305 careful calibrations and excellent intercomparisons in the various campaigns (see Table 1 for
 306 references for the AMS comparisons). For ΔCO , the largest uncertainty is associated with the
 307 CO background (Hayes et al., 2013; Nault et al., 2018), and is estimated to be $\sim 10\%$ at 0.5
 308 photochemical equivalent days (Hayes et al., 2013). The uncertainty in the emission ratios is
 309 $\sim 10\%$ (Wang et al., 2014; de Gouw et al., 2017); though, it may be higher for the values
 310 calculated here (see above) due to the uncertainty in CO background, rate constants, and
 311 photochemical age. Therefore, for Fig. 5a, the uncertainty in the y values is 18% and the
 312 uncertainty in the x values is 10% . For Fig. 6, the uncertainty in the measurement is 21% .

313 Another potential source of uncertainty may stem from the fit of the data in Fig. 5a, as the
314 data point from Seoul (KORUS AQ) could be impacting the fit due to the difference in its value
315 compared to the other locations. A sensitivity analysis, where one study was removed and a new
316 fit was derived, was conducted to determine the impact of any one study on the fit reported in
317 Fig. 5a (see Table S10). We find that though removing the Seoul data point increases the slope,
318 the value is still within the uncertainty and statistically significant at the 95% confidence
319 interval. Thus, the data from Seoul does not change the results and conclusions reported in this
320 study.⁴

321

322 2.3 Emission Inventories for Various Urban Areas around the World⁴

323 All BTEX (benzene, toluene, ethylbenzene, and xylenes) and non-BTEX aromatic emissions
324 are shown in Table S5 (BTEX) or Table S8 (non-BTEX aromatics) and are described above. The
325 emission ratios are derived from ambient measurements utilizing photochemical aging
326 techniques (Nault et al., 2018).⁴

327 Details of the emission inventories for cities in the US, for Beijing, and for London/UK
328 used here to estimate the IVOC:BTEX emission ratio (Fig. 2) and thus the IVOC emissions can
329 be found in SI Sect. 1 through 3. Briefly, emissions for the US are based on McDonald et al.
330 (2018), for China on the Multi-resolution Emission Inventory for China (MEIC) (Zhang et al.,
331 2009; Zheng et al., 2014, 2018; Liu et al., 2015; Li et al., 2017, 2019), and for the UK on the
332 National Atmospheric Emissions Inventory (NAEI) (EMEP/EEA, 2016). The IVOC:BTEX
333 emission ratio from inventories are multiplied with the observed BTEX measured in urban air to
334 estimate IVOCs emitted in each region (Table S5), including North America, Europe, and Asia.

335 This ensures IVOC emissions used in our calculations properly reflect differences in mixtures of
336 emission sources (e.g., mobile sources versus VCPs) that vary by continent for each field
337 campaign. Additionally, we rely on inventories for estimating atmospheric abundances of IVOCs
338 because it has been challenging to measure the full range of IVOC precursors that are emitted
339 into urban air (Zhao et al., 2014, 2017; Lu et al., 2018). In particular, many of the IVOCs emitted
340 from VCPs are oxygenated, which are challenging to measure using traditional gas
341 chromatography mass spectrometry (GC MS) techniques. Oxygenated IVOCs may not elute
342 completely through a non polar column, and are likely underestimated (Zhao et al., 2014). The
343 bottom-up IVOC:BTEX ratios for the US, Beijing, and UK are described in greater detail in SI
344 Sect. S1 through S3. IVOC emissions are classified based on their vapor pressure (effective
345 saturation concentration: $0.3 < C^* < 3 \times 10^6 \mu\text{g m}^{-3}$), with the vapor pressure estimated by the
346 SIMPOL.1 model (Pankow and Asher, 2008). Unspeciated mass has been suggested as important
347 SOA precursors from gasoline and diesel engines, and parameterized by n-tridecane and
348 n-pentadecane, respectively (Jathar et al., 2014). For VCPs, the volatility distribution of VOCs is
349 in between that of gasoline and diesel fuel. Therefore, n-tetradecane was suggested as a
350 surrogate for unspeciated mass of VCPs by McDonald et al. (2018).

351 Similar to IVOCs, the ability to measure the full range of SVOCs emitted into urban air is
352 challenging. Therefore, we estimate SVOC emission ratios relative to POA mass concentrations
353 (Table S9), as described by Ma et al. (2017). For the hydrocarbon-like portion, we used the
354 volatility distribution from Worton et al. (2014) to estimate SVOC, as this is associated with
355 fossil fuel emissions from transportation (Zhang et al., 2005). For the other POA, we used the

356 volatility distribution from Robinson et al. (2007), as this POA is typically cooking primary
357 aerosol.¶

358 Fig. 3 shows the calculated emission ratio versus saturation concentration (c^*) for the
359 cities with emission inventories. The saturation concentration for SVOC was determined as part
360 of the estimation procedure discussed above. For IVOC, the emission ratios for the different
361 sources (gasoline, diesel, other fossil fuel sources, and VCP emissions) were split into the
362 volatility bins, as in McDonald et al. (2018). Finally, for BTEX and non-BTEX aromatics, and
363 other VOC emission ratios (see Fig. 3 for references for the other VOC emission ratios), CRC
364 (Rumble, 2019) or SIMPOL.1 (Pankow and Asher, 2008) (for estimating vapor pressures not in
365 CRC) was used to estimate the saturation concentrations.¶

366

367 2.4 ASOA Budget Analysis of Ambient Observations¶

368 To calculate the ASOA budget, we used the observed BTEX (Table S5) and non-BTEX
369 aromatic (Table S8) emission ratios, the emission inventories for IVOC (see above), and
370 estimated SVOCs from the primary OA emissions (see above). The methods to calculate ASOA
371 from emissions have been described in detail elsewhere (Hayes et al., 2015; Ma et al., 2017;
372 Schroder et al., 2018), and are briefly described here. All calculations described were conducted
373 with the KinSim v4.02 chemical kinetics simulator (Peng and Jimenez, 2019) within Igor Pro 7
374 (Lake Oswego, Oregon), and are summarized in Fig. S5. A typical average particle diameter for
375 urban environments of ~200 nm (Seinfeld and Pandis, 2006) is used to estimate the
376 condensational sink term for the partitioning of gas to particle, although condensation is always
377 fast compared to the experiment timescales. Further, we assume an average 250 g mol^{-1} molar

378 mass for OA and an average SOA density of 1.4 g cm^{-3} (Vaden et al., 2011; Kuwata et al., 2012).
379 Finally, all models are initialized with the campaign specific OA background (typically $\sim 2 \mu\text{g}$
380 sm^{-3}) and POA (Table S9) for partitioning of gases to the particle phase, and ran at the average
381 temperature for the campaign.⁴

382 For the modeled VOCs (BTEX and non-BTEX aromatics), each species undergoes
383 temperature dependent OH oxidation (Table S11), forming four SVOCs that partition between
384 gas and particle phase, using updated SOA yields that account for wall loss (Ma et al., 2017).
385 For IVOCs, the emission weighted SOA yields and rate constants from the “Zhao” option (Zhao
386 et al., 2014) of Ma et al. (2017) are used, and the products are apportioned into three SVOC bins
387 and one low volatility organic compound (LVOC) bin (Fig. S5). Finally, SVOCs undergo
388 photooxidation at a rate of $4 \times 10^{-11} \text{ cm}^3 \text{ molecules}^{-1} \text{ s}^{-1}$ (Dzepina et al., 2009; Hodzic et al.,
389 2010b; Tsimpidi et al., 2010; Hodzic and Jimenez, 2011; Hayes et al., 2015; Ma et al., 2017;
390 Schroder et al., 2018), producing one product per oxidation step, with yields from Robinson et al.
391 (2007) for cooking and other SVOCs and yields from Worton et al. (2014) for fossil fuel related
392 SVOCs, as recommended by Ma et al. (2017). The products from SVOC and IVOC oxidation are
393 allowed to further oxidize, as highlighted in Fig. S5 and described in prior studies (Hayes et al.,
394 2015; Ma et al., 2017; Schroder et al., 2018). Generally, each product reacts at a rate of 4×10^{-11}
395 $\text{cm}^3 \text{ molecules}^{-1} \text{ s}^{-1}$ to produce some product at one volatility bin lower, adding one oxygen to the
396 compound for each oxidation (Dzepina et al., 2009; Tsimpidi et al., 2010; Hodzic and Jimenez,
397 2011; Hayes et al., 2015; Ma et al., 2017; Schroder et al., 2018). An update includes
398 fragmentation for a fraction of the molecules that are oxidized, as described in Schroder et al.
399 (2018) and Koo et al. (2014). As shown in Fig. S5, fragmentation of the compound occurs as it is

400 oxidized and goes down one volatility bin. For further oxidation of SVOCs from the oxidation of
401 primary IVOCs, one oxygen is added and 0.25 carbon is removed per step, leading to an increase
402 in mass of 1.03 (instead of 1.07) per oxidation step (Koo et al., 2014; Schroder et al., 2018). For
403 further oxidation of products from primary SVOC emissions, one oxygen is added and 0.5
404 carbon is removed per step, leading to an increase in mass of 0.99 (instead of 1.07) per oxidation
405 step (Koo et al., 2014; Nault et al., 2018).
406

407 **2.5 GEOS-Chem Modeling**

408 The model used in this study, for ASOA apportionment (Fig. 1), for apportionment of
409 ASOA to total PM_{2.5} for premature mortality calculations (Worldwide Premature Deaths Due to
410 ASOA), and for sensitivity analysis for ASOA production and emissions on premature mortality
411 calculations, is the GEOS-Chem v12.0.0 global chemical transport model (Bey et al., 2001; The
412 International GEOS-Chem User Community, 2018) to calculate global concentrations of PM_{2.5}
413 and ASOA at 2°×2.5° horizontal resolution. Goddard Earth Observing System – Forward
414 Processing (GEOS FP) assimilated data from the NASA Global Modeling and Assimilation
415 Office (GMAO) were used for input meteorological fields. The model was run for 2013 to 2018
416 to take into account interannual variability of meteorological impacts onto PM_{2.5} (therefore,
417 averaging PM_{2.5} over variations in meteorology). However, the HTAPv2 emission inventory,
418 which was used for anthropogenic emissions (Janssens Maenhout et al., 2015), was kept constant
419 for the 5 years. GEOS-Chem simulates gas and aerosol chemistry with ~700 chemical reactions.
420 GEOS-Chem calculates the following PM_{2.5} species: sulfate, ammonium, nitrate (Park et al.,
421 2006), black carbon and POA (Park et al., 2005), SOA (Pye and Seinfeld, 2010; Marais et al.,

422 sea salt (accumulation mode only (Jaeglé et al., 2011)); and, dust (Duncan Fairlie et al.,
423 2007). ¶

424 ¶

425 2.5.1 Biogenic SOA ¶

426 For monoterpene and sesquiterpene SOAs, we used the default complex SOA scheme
427 (without semi volatile POA) using the two product model framework (Pye and Seinfeld, 2010).
428 This scheme calculates initial oxidation of VOCs with OH, O₃, and NO₃, and resulting products
429 are assigned to four different gas phase semi volatile species (TSOA0-3) based on volatilities
430 ($c^* = 0.1, 1, 10, 100 \mu\text{g m}^{-3}$). Aerosol and gas species fractions are calculated online using the
431 partitioning theory, and all are removed by dry and wet deposition processes. ¶

432 For isoprene SOA, we used the explicit isoprene chemistry developed by Marais et al.
433 (2016). All the isoprene derived gas phase products, including isoprene peroxy radical,
434 ISOPPOOH, IEPOX, glyoxal, and methylglyoxal, are explicitly simulated. Irreversible
435 heterogeneous uptake of precursors to aqueous aerosols are further calculated using online
436 aerosol pH and surface area. ¶

437 GEOS-Chem was used to estimate the relative fractions of the measured SOA in our
438 studies between anthropogenic and biogenic (isoprene and monoterpene) sources (Fig. 1).
439 Extensive research has been conducted to evaluate and improve the models performance in
440 predicting BSOA, as summarized in Table S3. Though these evaluations mainly occurred in the
441 southeast US, a recent study has also included more global observations to compare with
442 GEOS-Chem (Pai et al., 2020). Generally, GEOS-Chem appears to overestimate biogenically
443 derived SOA; however, the model predicted SOA is typically within the uncertainty of the AMS

444 (Table S3). The overestimation, though, would suggest that the fraction of urban SOA may be
445 under-predicted by this method, whereas the BSOA may be over-predicted. Therefore, in urban
446 regions, the amount of SOA from biogenic sources may be lower, especially after the rapid SOA
447 enhancements (within 12 to 24 equivalent photochemical hours that have been observed around
448 the world (Nault et al., 2018)). Typically the BSOA is present as a regional background and
449 subtracted for the analyses used in this work, which focus on strong urban plumes on top of that
450 background (Hayes et al., 2013, 2015). ¶

451 ¶

452 2.5.2 Default GEOS Chem Sensitivity to ASOA Simulations ¶

453 For the sensitivity calculation using the "traditional" ASOA precursors, we used the
454 two-product model framework (Pye and Seinfeld, 2010). Benzene, toluene, and xylene are
455 oxidized with OH and converted to peroxy radicals. These peroxy radicals react with HO_2 or NO ,
456 resulting in non-volatile ASOA (HO_2 pathway, ASOAN species in GEOS-Chem) or
457 semi-volatile ASOA tracers (NO pathway, ASOA1-3 in GEOS-Chem). As is the case for
458 monoterpene and sesquiterpene SOA above, GEOS-Chem calculates online partitioning and
459 dry/wet deposition processes for semi-volatile ASOA tracers. Other conditions including
460 mortality calculation are kept the same as the base simulation above. ¶

461

462 2.36 Estimation of Premature Mortality Attribution

463 Premature deaths were calculated for five disease categories: ischemic heart disease
464 (IHD), stroke, chronic obstructive pulmonary disease (COPD), acute lower respiratory illness

465 (ALRI), and lung cancer (LC). We calculated premature mortality for the population aged more
466 than 30 years, using Eq. 84.

467
$$\text{Premature Death} = \text{Pop} \times y_0 \times \frac{RR - 1}{RR}$$
 Eq. 84

468 Mortality rate, y_0 , varies according to the particular disease category and geographic region,
469 which is available from Global Burden of Disease (GBD) Study 2015 database (IHME, 2016).
470 Population (Pop) was obtained from Columbia University Center for International Earth Science
471 Information Network (CIESIN) for 2010 (CIESIN, 2017). Relative risk, RR, can be calculated as
472 shown in Eq. 95.

473
$$RR = 1 + \alpha \times \left(1 - \exp \left(\beta \times (PM_{2.5} - PM_{2.5, \text{Threshold}})^\rho \right) \right)$$
 Eq. 95

474 α , β , and ρ values depend on disease category and are calculated from Burnett et al. (2014) (see
475 Table S142 and associated file). If the $PM_{2.5}$ concentrations are below the $PM_{2.5}$ threshold value
476 (Table S142), premature deaths were computed as zero. However, there could be some health
477 impacts at concentrations below the $PM_{2.5}$ threshold values (Krewski et al., 2009); following the
478 methods of the GBD studies, these can be viewed as lower bounds on estimates of premature
479 deaths.

480 We performed an additional sensitivity analysis using the Global Exposure Mortality
481 Model (GEMM) (Burnett et al., 2018). For the GEMM analysis, we also used age stratified
482 population data from GWPv3. Premature death is calculated the same as shown in Eq. 84;
483 however, the relative risk differs. For the GEMM model, the relative risk can be calculated as
484 shown in Eq. 106.

485
$$RR = \exp(\theta \times \lambda) \text{ with } \lambda = \frac{\log\left(1 + \frac{z}{\alpha}\right)}{\left(1 + \exp\left(\frac{(\hat{\mu} - z)}{\pi}\right)\right)}$$

486 Eq. 106

487 Here $z = \max(0, \text{PM}_{2.5} - \text{PM}_{2.5, \text{Threshold}})$; θ , π , $\hat{\mu}$, α , and $\text{PM}_{2.5, \text{Threshold}}$ depends on disease category and
 488 are from Burnett et al. (2018). Similar to the Eq. 95, if the concentrations are below the threshold
 489 ($2.4 \text{ } \mu\text{g m}^{-3}$, Burnett et al. (2018)), then premature deaths are computed as zero; however, the
 490 GEMM has a lower threshold than the GBD method.

491 For GBD, we do not consider age-specific mortality rates or risks. For GEMM, we
 492 calculate age-specific health impacts with age-specific parameters in the exposure response
 493 function (Table S153). We combine the age-specific results of the exposure-response function
 494 with age distributed population data from GPW (CIESIN, 2017) and a national mortality rate
 495 across all ages to assess age-specific mortality.

496 We calculated total premature deaths using annual average total $\text{PM}_{2.5}$ concentrations
 497 derived from satellite-based estimates at the resolution of $0.1^\circ \times 0.1^\circ$ from van Donkelaar et al.
 498 (2016). Application of the remote-sensing based $\text{PM}_{2.5}$ at the $0.1^\circ \times 0.1^\circ$ resolution rather than
 499 direct use of the GEOS-Chem model concentrations at the $2^\circ \times 2.5^\circ$ resolution helps reduce
 500 uncertainties in the quantification of $\text{PM}_{2.5}$ exposure inherent in coarser estimates (Punger and
 501 West, 2013). We also calculated deaths by subtracting from this amount the total annual average
 502 ASOA concentrations derived from GEOS-Chem (Fig. S119). To reduce uncertainties related to
 503 spatial gradients and total concentration magnitudes in our GEOS-Chem simulations of $\text{PM}_{2.5}$,
 504 our modeled ASOA was calculated as the fraction of ASOA to total $\text{PM}_{2.5}$ in GEOS-Chem,
 505 multiplied by the satellite-based PM2.5 concentrations (Eq. 117).

506 $\text{ASOA}_{\text{sat}} = (\text{ASOA}_{\text{mod}}/\text{PM}_{2.5,\text{mod}}) \times \text{PM}_{2.5,\text{sat}}$

507 Eq. 117

508 Finally, this process for estimating $\text{PM}_{2.5}$ health impacts considers only $\text{PM}_{2.5}$ mass concentration
509 and does not distinguish toxicity by composition, consistent with the current US EPA position
510 expressed in Sacks et al. (2019).

511

512 3. Observations of ASOA Production across Three Continents

513 3.1 Observational Constraints of ASOA Production across Three Continents

514 Measurements during intensive field campaigns in large urban areas better constrain
515 concentrations and atmospheric formation of ASOA because the scale of ASOA enhancement is
516 large compared to SOA ~~from a regional~~^{from regional} background. Generally, ASOA increased
517 with the amount of urban precursor VOCs and with atmospheric PA (de Gouw et al., 2005; de
518 Gouw and Jimenez, 2009; DeCarlo et al., 2010; Hayes et al., 2013; Nault et al., 2018; Schroder
519 et al., 2018; Shah et al., 2018). In addition, ASOA correlates strongly with gas-phase secondary
520 photochemical species, including O_x , HCHO, and PAN (Herndon et al., 2008; Wood et al., 2010;
521 Hayes et al., 2013; Zhang et al., 2015; Nault et al., 2018; Liao et al., 2019) (Table S4; Fig. S12 to
522 Fig. S34), which are indicators of photochemical processing of emissions.

523 However, as initially discussed by Nault et al. (2018) and shown in Fig. 34, there is large
524 variability in these various metrics across the urban areas evaluated here. To the best of the
525 authors' knowledge, this variability has not been explored and its physical meaning has not been
526 interpreted. As shown in Fig. 34, though, the trends in $\Delta\text{SOA}/\Delta\text{CO}$ are similar to the trends in
527 the slopes of SOA versus O_x , PAN, or HCHO. For example, Seoul is the highest for nearly all

528 metrics, and is approximately a factor of 6 higher than the urban area, Houston, that generally
529 showed the lowest photochemical metrics. This suggests that the variability is related to a
530 physical factor, including emissions and chemistry.

531 The VOC concentration, together with how quickly the emitted VOCs react ($\Sigma k_i \times [VOC]_i$),
532 i.e., the hydroxyl radical, or OH, reactivity of VOCs), where k is the OH rate coefficient for each
533 VOC, are a determining parameter for ASOA formation over urban spatial scales (Eq. 128).
534 ASOA formation is normalized here to the excess CO mixing ratio (ΔCO) to account for the
535 effects of meteorology, dilution, and non-urban background levels, and allow for easier
536 comparison between different studies:

537

$$\frac{\Delta ASOA}{\Delta CO} \propto [OH] \times \Delta t \times \left(\sum_i k_i \times \left[\frac{VOC}{CO} \right]_i \times Y_i \right)$$

538 Eq. 128

539 where Y is the aerosol yield for each compound (mass of SOA formed per unit mass of precursor
540 reacted), and $[OH] \times \Delta t$ is the PA.

541 BTEX are one group of known ASOA precursors (Gentner et al., 2012; Hayes et al.,
542 2013), and their emission ratio (to CO) was determined for all campaigns (Table S5). BTEX can
543 thus provide insight into ASOA production. Fig. 25a shows that the variation in ASOA (at PA =
544 0.5 equivalent days) is highly correlated with the emission reactivity ratio of BTEX (R_{BTEX} ,
545 $\sum_i [VOC/CO]_i$) across all the studies. However, BTEX alone cannot account for much of the
546 ASOA formation (see budget closure discussion below), and instead, BTEX may be better
547 thought of as both partial contributors and also as indicators for the co-emission of other
548 (unmeasured) organic precursors that are also efficient at forming ASOA.

549 O_x , PAN, and HCHO are produced from the oxidation of a much wider set of VOC
550 precursors (including small alkenes, which do not appreciably produce SOA when oxidized).
551 These alkenes have similar reaction rate constants with OH as the most reactive BTEX
552 compounds (Table S124); however, their emissions and concentration can be higher than BTEX
553 (Table S7). Thus, alkenes would dominate R_{Total} , leading to O_x , HCHO, and PAN being produced
554 more rapidly than ASOA (Fig. 25b–d). When R_{BTEX} becomes more important for R_{Total} , the
555 emitted VOCs are more efficient in producing ASOA. Thus, the ratio of ASOA to gas-phase
556 photochemical products shows a strong correlation with $R_{\text{BTEX}}/R_{\text{Total}}$ (Fig. 25b–d).

557 An important aspect of this study is that most of these observations occurred during
558 spring and summer, when solid fuel emissions are expected to be lower (e.g., Chafe et al., 2015;
559 Lam et al., 2017; Hu et al., 2020). Further, the most important observations used here are during
560 the afternoon, investigating specifically the photochemically produced ASOA. These results here
561 might partially miss any ASOA produced through nighttime aqueous chemistry or oxidation by
562 nitrate radical (Kodros et al., 2020). However, two of the studies included in our analysis,
563 Chinese Outflow (CAPTAIN, 2011) and New York City (WINTER, 2015), occurred in late
564 winter/early spring, when solid fuel emissions were important (Hu et al., 2013; Schroder et al.,
565 2018). We find that these observations lie within the uncertainty in the slope between ASOA and
566 R_{BTEX} (Fig. 2a). Their photochemically produced ASOA observed under strong impact from solid
567 fuel emissions shows similar behavior as the ASOA observed during spring and summer time.
568 Thus, given the limited datasets currently available, photochemically produced ASOA is
569 expected to follow the relationship shown in Fig. 2a and is expected to also follow this
570 relationship for regions impacted by solid fuel burning. Future comprehensive studies in regions

571 strongly impacted by solid fuel burning are needed to further investigate photochemical ASOA
572 production under those conditions.

573

574 **3.2 Budget Closure of ASOA for 4 Urban Areas on 3 Continents Indicates Reasonable**
575 **Understanding of ASOA Sources**

576 To investigate the correlation between ASOA and R_{BTEX} , a box model using the emission
577 ratios from BTEX (Table S5), other aromatics (Table S8), IVOCs (Sect. S1), and SVOCs (Sect.
578 S1) was run for five urban areas: New York City, 2002, Los Angeles, Beijing, London, and New
579 York City, 2015 (see Sect. S1 and S3 for more information). The differences in the results shown
580 in Fig. 4 are due to differences in the emissions for each city. We show that BTEX alone cannot
581 explain the observed ASOA budget for urban areas around the world. Fig. 46a shows that
582 approximately $25\pm6\%$ of the observed ASOA originates from the photooxidation of BTEX.
583 ~~Therefore, other precursors must account for most of the ASOA produced.~~ BTEX only
584 explaining 25% of the observed ASOA is similar to prior studies that have done budget analysis
585 of precursor gases and observed SOA (e.g., Dzepina et al., 2009; Ensberg et al., 2014; Hayes et
586 al., 2015; Ma et al., 2017; Nault et al., 2018). Therefore, other precursors must account for most
587 of the ASOA produced.

588 Because alkanes, alkenes, and oxygenated compounds with carbon numbers less than 6
589 are not significant ASOA precursors, we focus on emissions and sources of BTEX, other
590 mono-aromatics, IVOCs, and SVOCs. These three classes of VOCs, aromatics, IVOCs, and
591 SVOCs, have been suggested to be significant ASOA precursors in urban atmospheres
592 (Robinson et al., 2007; Hayes et al., 2015; Ma et al., 2017; McDonald et al., 2018; Nault et al.,

593 2018; Schroder et al., 2018; Shah et al., 2018), originating from both fossil fuel and VCP
594 emissions.

595 Using the best available emission inventories from cities on three continents
596 (EMEP/EEA, 2016; McDonald et al., 2018; Li et al., 2019) and observations, we quantify the
597 emissions of BTEX, other mono-aromatics, IVOCs, and SVOCs for both fossil fuel (e.g.,
598 gasoline, diesel, kerosene, etc.), VCPs (e.g., coatings, inks, adhesives, personal care products,
599 and cleaning agents), and cooking sources (Fig. 52 and Fig. 3). This builds off the work of
600 McDonald et al. (2018) for urban regions on three different continents.

601 Note, the emissions investigated here ignore any oxygenated VOC emissions not
602 associated with IVOCs and SVOCs due to the challenge in estimating the emission ratios for
603 these compounds (de Gouw et al. 2018). Further, SVOC emission ratios are estimated from the
604 average POA observed by the AMS during the specific campaign and scaled by profiles in
605 literature for a given average temperature and average OA (Robinson et al., 2007; Worton et al.,
606 2014; Lu et al., 2018). As most of the campaigns had an average OA between 1 and 10 $\mu\text{g m}^{-3}$
607 and temperature of \sim 298 K, this led to the majority of the estimated emitted SVOC gases in the
608 highest SVOC bin. However, as discussed later, this does not lead to SVOCs dominating the
609 predicted ASOA due to taking into account the fragmentation and overall yield from the
610 photooxidation of SVOC to ASOA.

611 Combining these inventories and observations for the various locations provide the
612 following insights about the potential ASOA precursors not easily measured or quantified in
613 urban environments (e.g., Zhao et al., 2014; Lu et al., 2018): (1) aromatics from fossil fuel
614 accounts for 14-40% (mean 22%) of the total BTEX and IVOOC emissions for the five urban

615 areas investigated in-depth (Fig. 52), agreeing with prior studies that have shown that the
616 observed ASOA cannot be reconciled by the observations or emission inventory of aromatics
617 from fossil fuels (e.g., Ensberg et al., 2014; Hayes et al., 2015). (2) BTEX from both fossil fuels
618 and VCPs account for 25-95% (mean 43%) of BTEX and IVOC emissions (Fig. 52). China has
619 the lowest contribution of IVOCs, potentially due to differences in chemical make-up of the
620 solvents used daily (Li et al., 2019), but more research is needed to investigate the differences in
621 IVOCs:BTEX from Beijing versus US and UK emission inventories. Nonetheless, this shows the
622 importance of IVOCs for both emissions and ASOA precursors. (3) IVOCs are generally equal
623 to, if not greater than, the emissions of BTEX in 4 of the 5 urban areas investigated here
624 (Fig. 52). (4) Overall, VCPs account for a large fraction of the BTEX and IVOC emissions for all
625 five cities. (5) Finally, SVOCs account for 27-88% (mean 53%) of VOCs generally considered
626 ASOA precursors (VOCs with volatility saturation concentrations $\leq 10^7 \mu\text{g m}^{-3}$) (Fig. S62).
627 Beijing has the highest contribution of SVOCs to ASOA precursors due to the use of solid fuels
628 and cooking emissions (Hu et al., 2016). Also, this indicates the large contribution of a class of
629 VOCs difficult to measure (Robinson et al., 2007) that are an important ASOA precursor (e.g.,
630 Hayes et al., 2015), showing further emphasis should be placed in quantifying the emissions of
631 this class of compounds.

632 These results provide an ability to further investigate the mass balance of predicted and
633 observed ASOA for these urban locations (Fig. 46). The inclusion of IVOCs, other aromatics not
634 including BTEX, and SVOCs leads to the ability to explain, on average, $85\pm12\%$ of the observed
635 ASOA for these urban locations around the world (Fig. 46a). Further, VCP contribution to

636 ASOA is important for all these urban locations, accounting for ~~accounting for~~, on average,
637 37±3% of the observed ASOA (Fig. 46b).

638 This bottom-up mass budget analysis provides important insights to further explain the
639 correlation observed in Fig. 25. First, IVOCs are generally co-emitted from similar sources as
640 BTEX for the urban areas investigated in-depth (Fig. 52). The oxidation of these co-emitted
641 species leads to the ASOA production observed across the urban areas around the world. Second,
642 S/IVOCs generally have similar rate constants as toluene and xylenes ($\geq 1 \times 10^{-11} \text{ cm}^3 \text{ molec.}^{-1} \text{ s}^{-1}$)
643 (Zhao et al., 2014, 2017), the compounds that contribute the most to R_{BTEX} , explaining the rapid
644 ASOA production that has been observed in various studies (de Gouw and Jimenez, 2009;
645 DeCarlo et al., 2010; Hayes et al., 2013; Hu et al., 2013, 2016; Nault et al., 2018; Schroder et al.,
646 2018) and correlation (Fig. 25). Finally, the contribution of VCPs and fossil fuel sources to
647 ASOA is similar across the cities, expanding upon and further supporting the conclusion of
648 McDonald et al. (2018) in the importance of identifying and understanding VCP emissions in
649 order to explain ASOA.


650 This investigation shows that the bottom-up calculated ASOA agrees with observed
651 top-down ASOA within 15%. As highlighted above, this ratio is explained by the co-emissions
652 of IVOCs with BTEX from traditional sources (diesel, gasoline, and other fossil fuel emissions)
653 and VCPs (Fig. 5) along with similar rate constants for these ASOA precursors (Table S12).
654 Thus, the ASOA/ R_{BTEX} ratio obtained from Fig. 2 results in accurate predictions of ASOA for the
655 urban areas evaluated here, and this value can be used to better estimate ASOA with chemical
656 transport models (Sect. 4).

657

658 4. Improved Urban SIMPLE Model Using Multi-Cities to Constrain

659 4.1 Updates to the SIMPLE Model

660 With the combination of the new dataset, which expands across urban areas on three
661 continents, the SIMPLE parameterization for ASOA (Hodzic and Jimenez, 2011) is updated in
662 the standard GEOS-Chem model to reproduce observed ASOA in Fig. 5a. The parameterization
663 operates as represented by Eq. 9.

665 SOAP represents the lumped precursors of ASOA, k is the reaction rate coefficient with OH
666 ($1.25 \times 10^{-11} \text{ cm}^3 \text{ molecules}^{-1} \text{ s}^{-1}$), and $[\text{OH}]$ is the OH concentration in molecules cm^{-3} .

667 SOAP emissions were calculated based on the relationship between $\Delta\text{SOA}/\Delta\text{CO}$ and
668 $R_{\text{aromatics}}/\Delta\text{CO}$ in Fig. 5a. First, we calculated $R_{\text{aromatics}}/\Delta\text{CO}$ (Eq. 10) for each grid cell and time
669 step as follows:

670
$$\frac{R_{\text{aromatics}}}{\Delta\text{CO}} = \frac{E_B \times k_B + E_T \times k_T + E_X \times k_X}{E_{\text{CO}}}$$
 Eq. 10

671 Where E and k stand for the emission rate and reaction rate coefficient with OH, respectively, for
672 benzene (B), toluene (T), and xylenes (X). Ethylbenzene was not included in this calculation
673 because its emission was not available in HTAPv2 emission inventory. However, ethylbenzene
674 contributed a minor fraction of the mixing ratio (~7%, Table S5) and reactivity (~6%) of the
675 total BTEX across the campaigns. Reaction rate constants used in this study were 1.22×10^{-12} ,
676 5.63×10^{-12} , and $1.72 \times 10^{-11} \text{ cm}^3 \text{ molec.}^{-1} \text{ s}^{-1}$ for benzene, toluene, and xylene, respectively
677 (Atkinson and Arey, 2003; Atkinson et al., 2006).

678 Second, E_{SOAP}/E_{CO} can be obtained from the result of Eq. 11, using slope and intercept in
679 Fig. 5a, with a correction factor (F) to consider additional SOA production after 0.5 PA
680 equivalent days, since Fig. 5a shows the comparison at 0.5 PA equivalent days. ¶

$$681 \frac{E_{SOAP}}{E_{CO}} = \left(Slope \times \frac{R_{vocatics}}{\Delta CO} + Intercept \right) \times F \quad \text{Eq. 11} ¶$$

682 Where slope is 24.8 and intercept is 1.7 from Fig. 5a. F (Eq. 12) can be calculated as follows: ¶

$$683 F = \frac{ASOA_{t=\infty}}{ASOA_{t=0.5d}} = \frac{SOAP_{t=0}}{SOAP_{t=0} \times (1 - \exp(-k \times \Delta t \times [OH]))}, \Delta t = 43200 \text{ s} \quad \text{Eq. 12} ¶$$

684 F was calculated as 1.8 by using $[OH] = 1.5 \times 10^6 \text{ molecules cm}^{-3}$, which was used in the
685 definition of 0.5 PA equivalent days for Fig. 5a. ¶

686 Finally, E_{SOAP} can be computed by multiplying CO emissions (E_{CO}) for every grid point
687 and time step in GEOS-Chem by the E_{SOAP}/E_{CO} ratio. ¶

688 ¶

689 4.2 Results of Updated SIMPLE Model

690 The SIMPLE model was originally designed and tested against the observations collected
691 around Mexico City (Hodzic and Jimenez, 2011). It was then tested against observations
692 collected in Los Angeles (Hayes et al., 2015; Ma et al., 2017). As both data sets have nearly
693 identical $\Delta SOA/\Delta CO$ and R_{BTEX} (Fig. 24 and Fig. 35), it is not surprising that the SIMPLE model
694 did well in predicting the observed $\Delta SOA/\Delta CO$ for these two urban regions with consistent
695 parameters. Though the SIMPLE model generally performed better than more explicit models, it
696 generally had lower skill in predicting the observed ASOA in urban regions outside of Mexico
697 City and Los Angeles (Shah et al., 2019; Pai et al., 2020).

698 This may stem from the original SIMPLE model with constant parameters missing the
699 ability to change the amount and reactivity of the emissions, which are different for the various
700 urban regions, versus the ASOA precursors being emitted proportionally to only CO (Hodzic and
701 Jimenez, 2011; Hayes et al., 2015). For example, in the HTAP emissions inventory, the CO
702 emissions for Seoul, Los Angeles, and Mexico City are all similar (Fig. S8); thus, the original
703 SIMPLE model would suggest similar $\Delta\text{SOA}/\Delta\text{CO}$ for all three urban locations. However, as
704 shown in Fig. 24 and Fig. 35, the $\Delta\text{SOA}/\Delta\text{CO}$ is different by nearly a factor of 2. The inclusion
705 of the emissions and reactivity, where R_{BTEX} for Seoul is approximately a factor of 2.5 higher
706 than Los Angeles and Seoul, into the improved SIMPLE model better accounts for the variability
707 in SOA production, as shown in Fig. 25. Thus, the inclusion and use of this improved SIMPLE
708 model refines the simplified representation of ASOA in chemical transport models and/or box
709 models.

710 The “improved” SIMPLE shows higher ASOA compared to the default VBS
711 GEOS-Chem (Fig. 6a,b). In areas strongly impacted by urban emissions (e.g., Europe, East Asia,
712 India, east and west coast US, and regions impacted by Santiago, Chile, Buenos Aires,
713 Argentina, Sao Paulo, Brazil, Durban and Cape Town, South Africa, and Melbourne and Sydney,
714 Australia), the “improved” SIMPLE model predicts up to $14 \mu\text{g m}^{-3}$ more ASOA, or ~30 to 60
715 times more ASOA than the default scheme (Fig. 6c,d). As shown in Fig. 1, during intensive
716 measurements, the ASOA composed 17-39% of PM_{1} , with an average contribution of ~25%. The
717 default ASOA scheme in GEOS-Chem greatly underestimates the fractional contribution of
718 ASOA to total $\text{PM}_{2.5}$ (<2%; Fig. 6e). The “improved” SIMPLE model greatly improves the
719 predicted fractional contribution, showing that ASOA in the urban regions ranges from 15-30%,

720 with an average of ~15% for the grid cells corresponding to the urban areas investigated here
721 (Fig. 6f). Thus, the “improved” SIMPLE predicts the fractional contribution of ASOA to total
722 $PM_{2.5}$ far more realistically, compared to observations. As discussed in Sect. 2.3 and Eq. 11,
723 having the model accurately predict the fractional contribution of ASOA to the total PM is very
724 important, as the total $PM_{2.5}$ is derived from satellite-based estimates (van Donkelaar et al.,
725 2015), and the model fractions are then applied to those total $PM_{2.5}$ estimates. The ability for the
726 “improved” SIMPLE model to better represent the ASOA composition provides confidence
727 attributing the ASOA contribution to premature mortality.

728

729 **5. Preliminary Evaluation of Worldwide Premature Deaths Due to ASOA with Updated 730 SIMPLE Parameterization**

731 The improved SIMPLE parameterization is used along with GEOS-Chem to provide an
732 accurate estimation of ASOA formation in urban areas worldwide and provide an ability to
733 obtain realistic simulations of ASOA based on measurement data. We use this model to quantify
734 the attribution of $PM_{2.5}$ ASOA to premature deaths. Analysis up to this point has been for PM_1 ;
735 however, both the chemical transport model and epidemiological studies utilize $PM_{2.5}$. For
736 ASOA, this will not impact the discussion and results here because the mass of OA (typically
737 80–90%) is dominated by PM_1 (e.g., Bae et al., 2006; Seinfeld and Pandis, 2006), and ASOA is
738 formed mostly through condensation of oxidized species, which favors partitioning onto smaller
739 particles (Seinfeld and Pandis, 2006).

740 The procedure for this analysis is described in Fig. 7 and Sect. 2.35 and S32.6. Briefly,
741 we combine high-resolution satellite-based $PM_{2.5}$ estimates (for exposure) and a chemical

742 transport model (GEOS-Chem, for fractional composition) to estimate ASOA concentrations and
743 various sensitivity analysis (van Donkelaar et al., 2015). We calculated ~3.3 million premature
744 deaths (using the Integrated Exposure-Response, IER, function) are due to long-term exposure of
745 ambient PM_{2.5} (Fig. S97, Table S164), consistent with recent literature (Cohen et al., 2017).

746 The attribution of ASOA PM_{2.5} premature deaths can be calculated one of two ways: (a)
747 marginal method (Silva et al., 2016) or (b) attributable fraction method (Anenberg et al., 2019).
748 For method (a), it is assumed that a fraction of the ASOA is removed, keeping the rest of the
749 PM_{2.5} components approximately constant, and the change in deaths is calculated from the deaths
750 associated with the total concentration less the deaths calculated using the reduced total PM_{2.5}
751 concentrations. For method (b), the health impact is attributed to each PM_{2.5} component by
752 multiplying the total deaths by the fractional contribution of each component to total PM_{2.5}. For
753 method (a), the deaths attributed to ASOA are ~340,000 people per year (Fig. 8); whereas, for
754 method (b), the deaths are ~370,000 people per year. Both of these are based on the IER response
755 function (Cohen et al., 2017).

756 Additional recent work (Burnett et al., 2018) has suggested less reduction in the
757 premature deaths versus PM_{2.5} concentration relationship at higher PM_{2.5} concentrations, and
758 lower concentration limits for the threshold below which this relationship is negligible, both of
759 which lead to much higher estimates of PM_{2.5} associated premature deaths. This is generally
760 termed the Global Exposure Mortality Model (GEMM). Using the two attribution methods
761 described above (a and b), the ASOA PM_{2.5} premature deaths are estimated to be ~640,000
762 (method a) and ~900,000 (method b) (Fig. S97 and Fig. S120 and Table S175).

763 Compared to prior studies using chemical transport models to estimate premature deaths
764 associated with ASOA (e.g., Silva et al., 2016; Ridley et al., 2018), which assumed non-volatile
765 POA and “traditional” ASOA precursors, the attribution of premature mortality due to ASOA is
766 over an order of magnitude higher in this study (Fig. 9). This occurs using either the IER and
767 GEMM approach for estimating premature mortality (Fig. 9). For regions with larger populations
768 and more PM_{2.5} pollution, the attribution is between a factor of 40 to 80 higher. This stems from
769 the non-volatile POA and “traditional” ASOA precursors over-estimating POA and
770 under-estimating ASOA compared to observations (Schroder et al., 2018). These offsetting
771 errors will lead to model predicted total OA similar to observations (Ridley et al., 2018; Schroder
772 et al., 2018), yet different conclusions on whether POA versus SOA is more important for
773 reducing PM_{2.5} associated premature mortality. Using a model constrained to **day-time**
774 atmospheric observations (Fig. 25 and Fig. 46, see Sect. 4) leads to a more accurate estimation of
775 the contribution of **photochemically-produced** ASOA to PM_{2.5} associated premature mortality
776 that has not been possible in prior studies. We note that ozone concentrations change little as we
777 change the ASOA simulation (see Sect. S4 ~~in the SI~~ and Fig. S142).

778 A limitation in this study is the lack of sufficient measurements in South and Southeast
779 Asia, Eastern Europe, Africa, and South America (Fig. 1), though these areas account for 44% of
780 the predicted reduction in premature mortality for the world (Table S164). However, as
781 highlighted in Table S186, these regions likely still consume both transportation fuels and VCPs,
782 although in lower per capita amounts than more industrialized countries. This consumption is
783 expected to lead to the same types of emissions as for the cities studied here, though more field
784 measurements are needed to validate global inventories of VOCs and resulting oxidation

785 products in the developing world. Transportation emissions of VOCs are expected to be more
786 dominant in the developing world due to higher VOC emission factors associated with inefficient
787 combustion engines, such as two-stroke scooters (Platt et al., 2014) and auto-rickshaws (e.g.,
788 Goel and Guttikunda, 2015).

789 Solid fuels are used for residential heating and cooking, which impact the outdoor air
790 quality as well (Hu et al., 2013, 2016; Lacey et al., 2017; Stewart et al., 2020), and which also
791 lead to SOA (Heringa et al., 2011). As discussed in Sect. 3.1, though the majority of the studies
792 evaluated here occurred in spring to summer time, when solid fuel emissions are decreased, two
793 studies occurred during the winter/early spring time, where solid fuel emissions were important
794 (Hu et al., 2013; Schroder et al., 2018). These studies still follow the same relationship between
795 ASOA and R_{BTEX} as the studies that focused on spring/summer time photochemistry. Thus, the
796 limited datasets available indicate that photochemically produced ASOA from solid fuels follow
797 a similar relationship to that from other ASOA sources.

798 Also, solid fuel sources are included in the inventories used in our modeling. For the
799 HTaP emission inventory used here (Janssens-Maenhout et al., 2015), small-scale combustion,
800 which includes heating and cooking (e.g., solid-fuel use), is included in the residential emission
801 sector. Both CO and BTEX are included in this source, and can account for a large fraction of the
802 total emissions where solid-fuel use may be important (Fig. S15). Thus, as CO and BTEX are
803 used in the updated SIMPLE model, and campaigns that observed solid-fuel emissions fall
804 within the trend for all urban areas, the solid-fuel contribution to photochemically-produced
805 ASOA is accounted for (as accurately as allowed by current datasets) in the estimation of ASOA
806 for the attribution to premature mortality.

807 Note that recent work has observed potential nighttime aqueous chemistry and/or
808 oxidation by nitrate radical from solid fuel emissions to produce ASOA (Kodros et al., 2020).
809 Thus, missing this source of ASOA may lead to an underestimation of total ASOA versus the
810 photochemically-produced ASOA we discuss here, leading to a potential underestimation in the
811 attribution of ASOA to premature mortality. From the studies that investigated “night-time
812 aging” of solid-fuel emissions to form SOA, we predict that the total ASOA may be
813 underestimated by 1 to 3 $\mu\text{g m}^{-3}$ (Kodros et al., 2020). This potential underestimation, though, is
814 less than the current underestimation in ASOA in GEOS-Chem (default versus “Updated”
815 SIMPLE).

816 ~~Also, unlike many of the cities studied here, solid fuels are used for residential heating~~
817 ~~and cooking, which impact the outdoor air quality as well (Hu et al., 2013, 2016; Lacey et al.,~~
818 ~~2017; Stewart et al., 2020), and which also lead to SOA (Heringa et al., 2011).~~ Recently,
819 emission factors from Abidjan, Côte d’Ivoire, a developing urban area, showed the dominance of
820 emissions from transportation and solid fuel burning, with BTEX being an important fraction of
821 the total emissions, and that all the emissions were efficient in producing ASOA (Dominutti et
822 al., 2019). Further, investigation of emissions in New Delhi region of India demonstrated the
823 importance of both transportation and solid fuel emissions (Stewart et al., 2020; Wang et al.,
824 2020) while model comparisons with observations show an underestimation of OA compared to
825 observations due to a combination of emissions and OA representation (Jena et al., 2020).
826 Despite emission source differences, SOA is still an important component of $\text{PM}_{2.5}$ (e.g., Singh et
827 al., 2019) and thus will impact air quality and premature mortality in developing regions.
828 Admittedly, though, our estimates will be less accurate for these regions.

830 **6. Conclusions**

831 In summary, ASOA is an important, though inadequately constrained component of air
832 pollution in megacities and urban areas around the world. This stems from the complexity
833 associated with the numerous precursor emission sources, chemical reactions, and oxidation
834 products that lead to observed ASOA concentrations. We have shown here that the variability in
835 observed ASOA across urban areas is correlated with R_{BTEX} , a marker for the co-emissions of
836 IVOC from both transportation and VCP emissions. Global simulations indicate ASOA
837 contributes to a substantial fraction of the premature mortality associated with $PM_{2.5}$. Reductions
838 of the ASOA precursors will reduce the premature deaths associated with $PM_{2.5}$, indicating the
839 importance of identifying and reducing exposure to sources of ASOA. These sources include
840 emissions that are both traditional (transportation) as well as non-traditional emissions of
841 emerging importance (VCPs) to ambient $PM_{2.5}$ concentrations in cities around the world. Further
842 investigation of speciated IVOCs and SVOCs for urban areas around the world along with SOA
843 mass concentration and other photochemical products (e.g., O_x , PAN, and HCHO) for other
844 urban areas, especially in South Asia, throughout Africa, and throughout South America, would
845 provide further constraints to improve the SIMPLE model and our understanding of the emission
846 sources and chemistry that leads to the observed SOA and its impact on premature mortality.

847 **Acknowledgements**

848

849 This study was partially supported by grants from NASA NNX15AT96G, NNX16AQ26G, Sloan
850 Foundation 2016-7173, NSF AGS-1822664, EPA STAR 83587701-0, NERC NE/H003510/1,
851 NERC NE/H003177/1, NERC NE/H003223/1, NOAA NA17OAR4320101, NCAS
852 R8/H12/83/037, Natural Science and Engineering Research Council of Canada (NSERC,
853 RGPIN/05002-2014), and the Fonds de Recherche du Québec —Nature et technologies
854 (FRQNT, 2016-PR-192364). This manuscript has not been formally reviewed by EPA. The
855 views expressed in this document are solely those of the authors and do not necessarily reflect
856 those of the Agency. EPA does not endorse any products or commercial services mentioned in
857 this publication. We thank Katherine Travis for useful discussions. We acknowledge B J. Bandy,
858 J. Lee, G. P. Mills, d. D. Montzka, J. Stutz, A. J. Weinheimer E. J. Williams, E. C. Wood, and D.
859 R. Worsnop for use of their data.

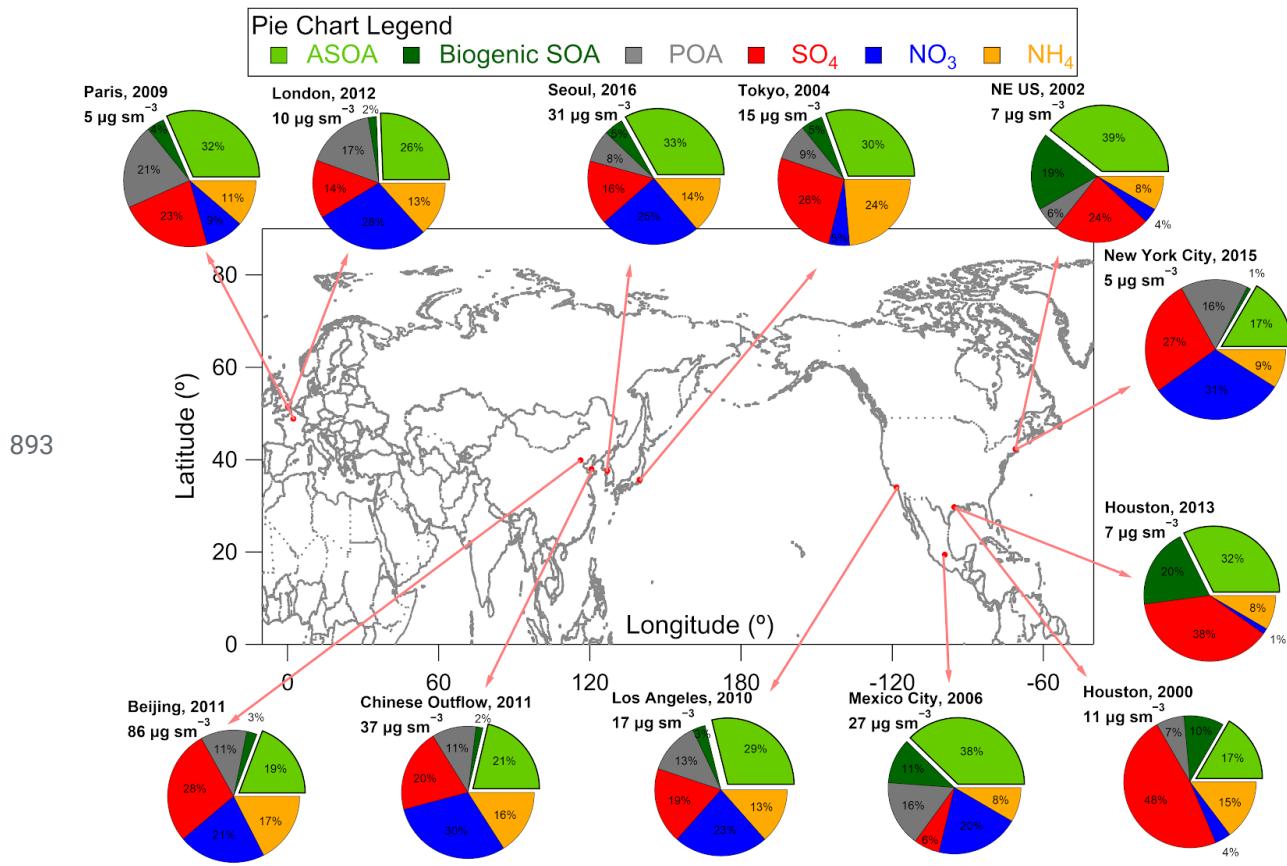
860

861 **Data Availability**

862 TexAQS measurements are available at
863 <https://esrl.noaa.gov/csl/groups/csl7/measurements/2000TexAQS/LaPorte/DataDownload/> and
864 upon request. NEAQS measurements are available at
865 <https://www.esrl.noaa.gov/csl/groups/csl7/measurements/2002NEAQS/>. MILAGRO
866 measurements are available at <http://doi.org/10.5067/Aircraft/INTEXB/Aerosol-TraceGas>.
867 CalNex measurements are available at
868 <https://esrl.noaa.gov/csl/groups/csl7/measurements/2010calnex/Ground/DataDownload/>.
869 ClearfLo measurements are available at
870 <https://catalogue.ceda.ac.uk/uuid/6a5f9e0dd68f43348692b3bace3eba45>. SEAC⁴RS measurements
871 are available at <http://doi.org/10.5067/Aircraft/SEAC4RS/Aerosol-TraceGas-Cloud>. WINTER
872 measurements are available at https://data.eol.ucar.edu/master_lists/generated/winter/.
873 KORUS-AQ measurements are available at
874 <http://doi.org/10.5067/Suborbital/KORUSAQ/DATA01>. Data from Chinese campaigns are
875 available upon request, and rest of data used were located in papers cited. GEOS-Chem data
876 available upon request. Figures will become accessible at
877 cires1.colorado.edu/jimenez/group_pubs.html.

878

879 **Competing Interests**


880 The authors declare no competing interests.

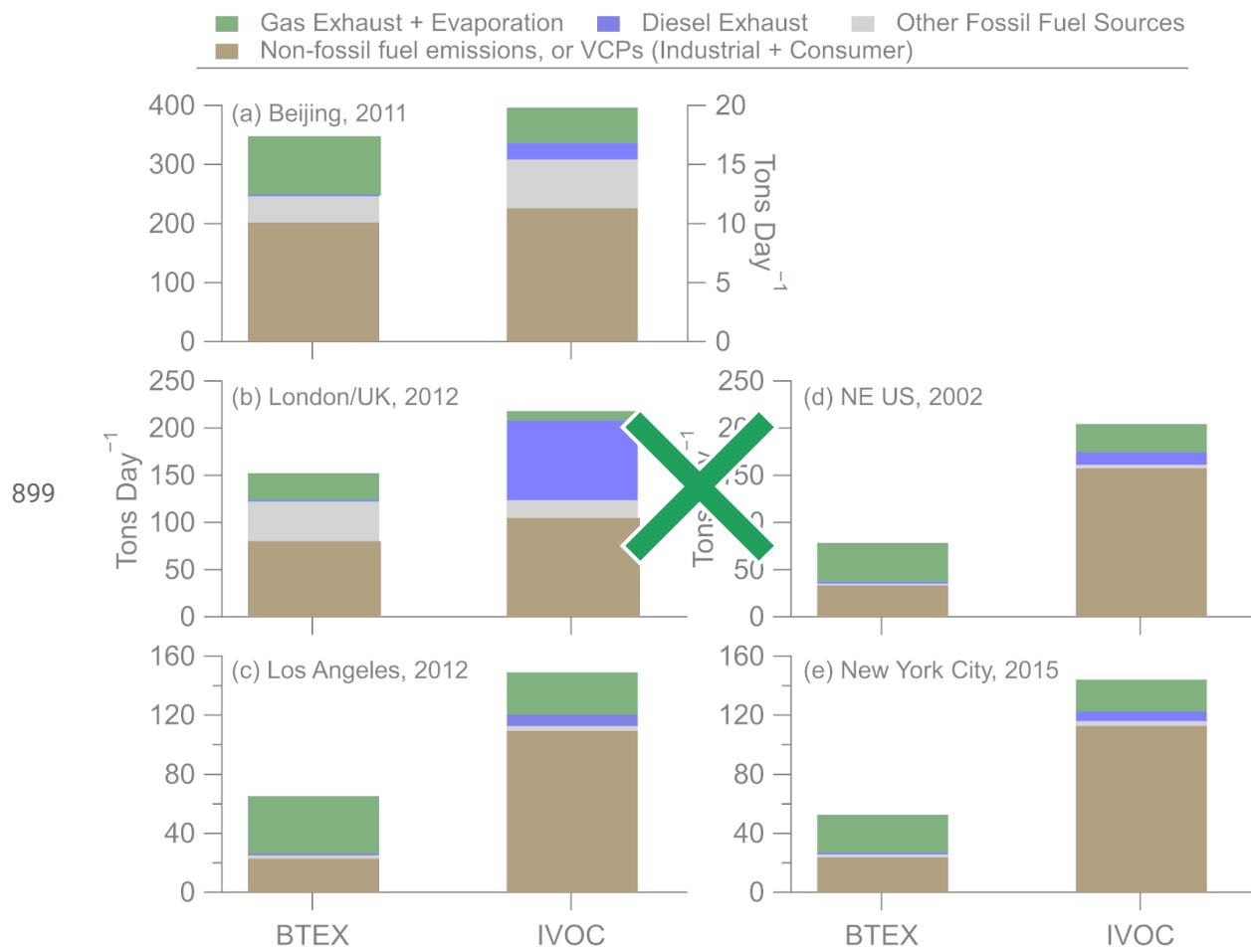
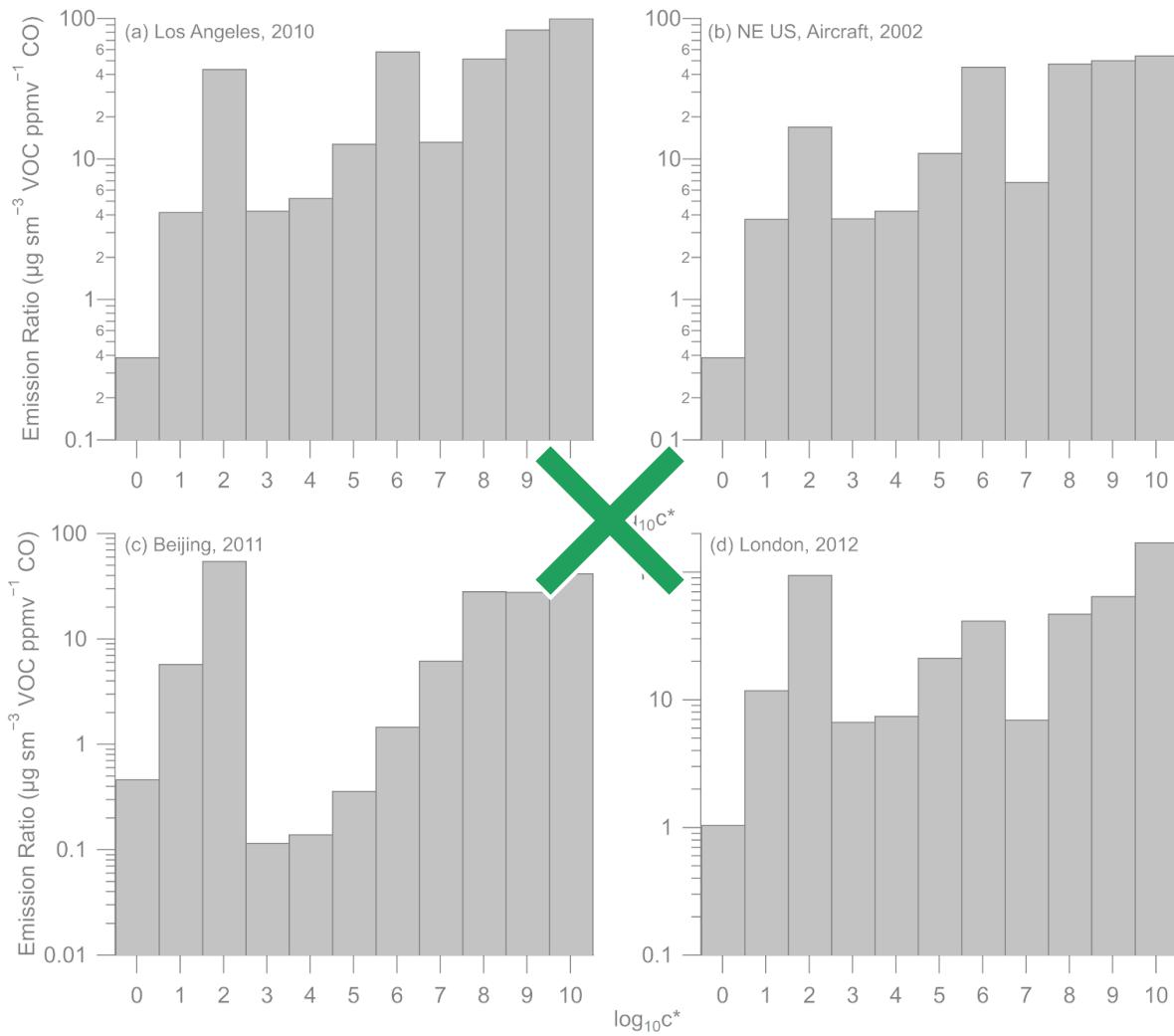
881

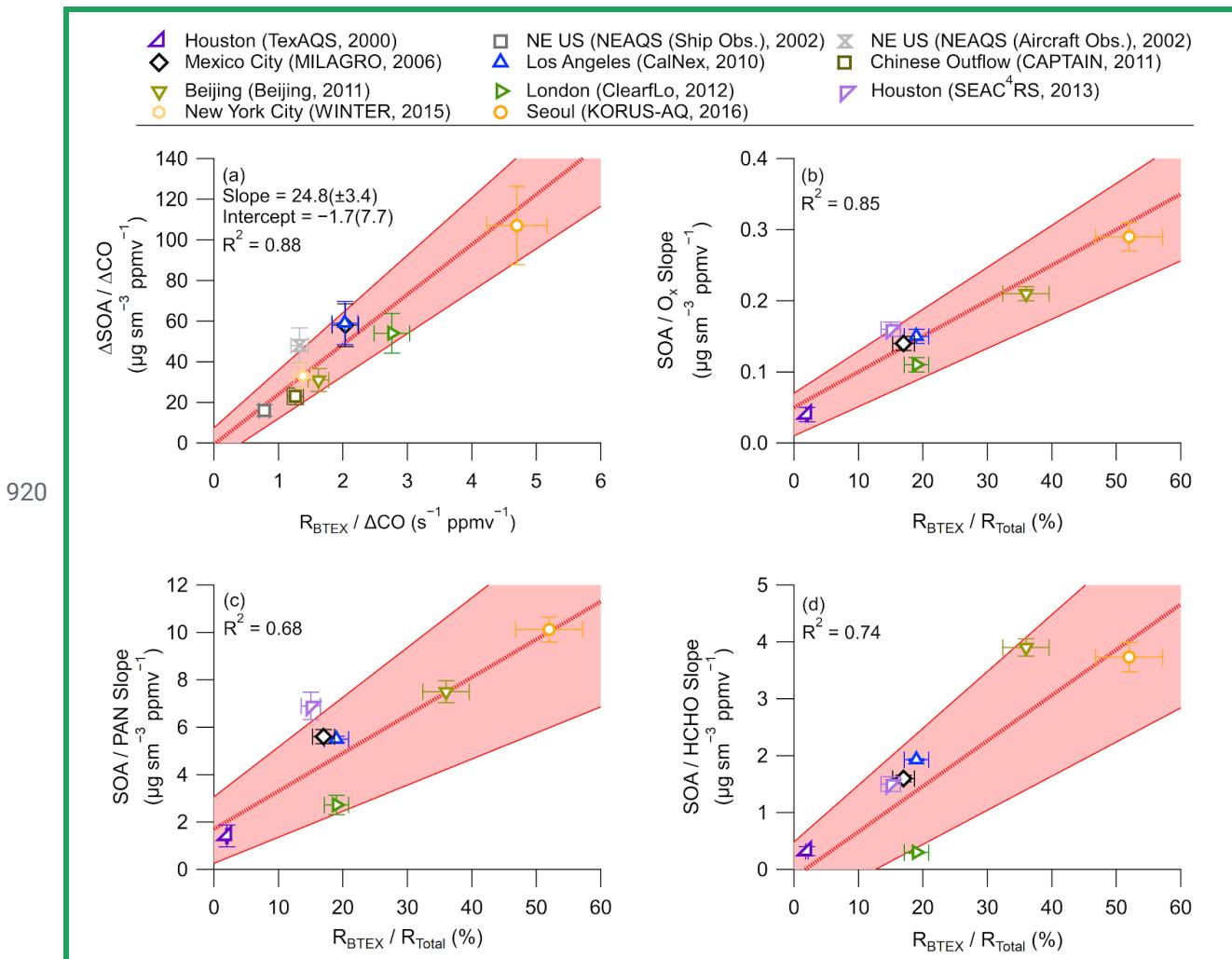
882 **Author Contribution**

883 B.A.N., D.S.J., B.C.M., J.A.dG., and J.L.J designed the experiment and wrote the paper. B.A.N.,
884 PC.-J., D.A.D., W.H., J.C.S, J.A., D.R.B., M.R.C., H.C., M.M.C., P.F.D, G.S.D., R.D., F.F, A.F.,
885 J.B.G., G.G., J.F.H., T.F.H., P.L.H., J.H., M.H., L.G.H., B.T.J., W.C.K., J.L., I.B.P., J.P., B.R.,

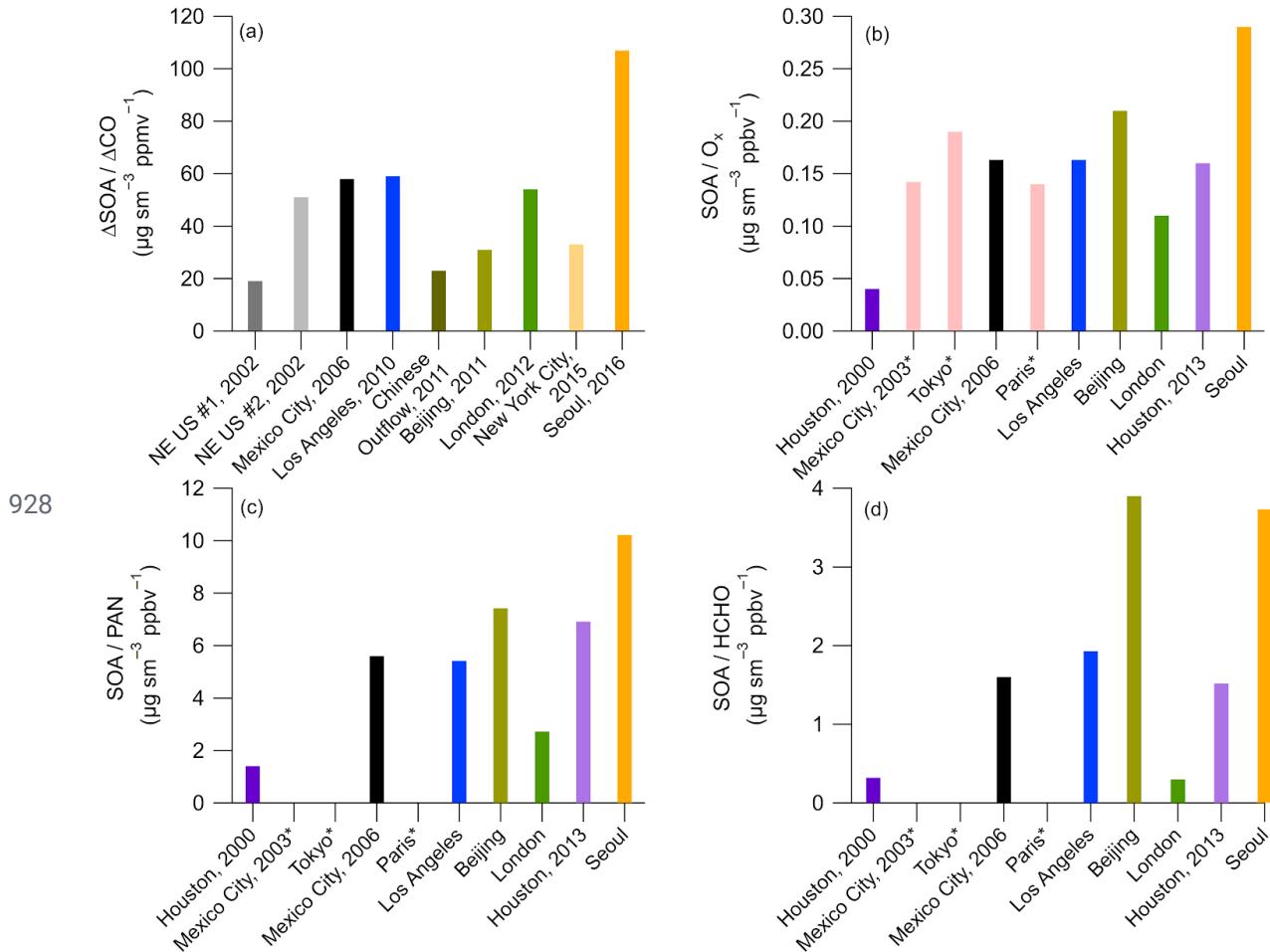
886 C.E.R., D.R., J.M.R., T.B.R, M.S., J.W., C.W., P.W., G.M.W., D.E.Y., B.Y., J.A.dG., and J.L.J.
887 collected and analyzed the data. D.S.J. and A.H. ran the GEOS-Chem model and B.A.N., D.S.J.,
888 and J.L.J. analyzed the model output. B.A.N., P.L.H., J.M.S., and J.L.J. ran and analyzed the 0-D
889 model used for ASOA budget analysis of ambient observations. B.C.M., A.L., M.L., and Q.Z.
890 analyzed and provided the emission inventories used for the 0-D box model. D.S.J., D.K.H., and
891 M.O.N. conducted the ASOA attribution to mortality calculation, and B.A.N., D.S.J., D.K.H.,
892 M.O.N., J.A.dG, and J.L.J analyzed the results. All authors reviewed the paper.

893
894 **Figure 1.** Non-refractory submicron aerosol composition measured in urban and urban outflow
895 regions from field campaigns used in this study, all in units of $\mu\text{g m}^{-3}$, at standard temperature
896 (273 K) and pressure (1013 hPa) (sm^{-3}). See Sect. S32 and (GEOS-Chem Section and Table 1)
897 for further information on measurements, studies, and apportionment of SOA into ASOA and
898 BSOA.

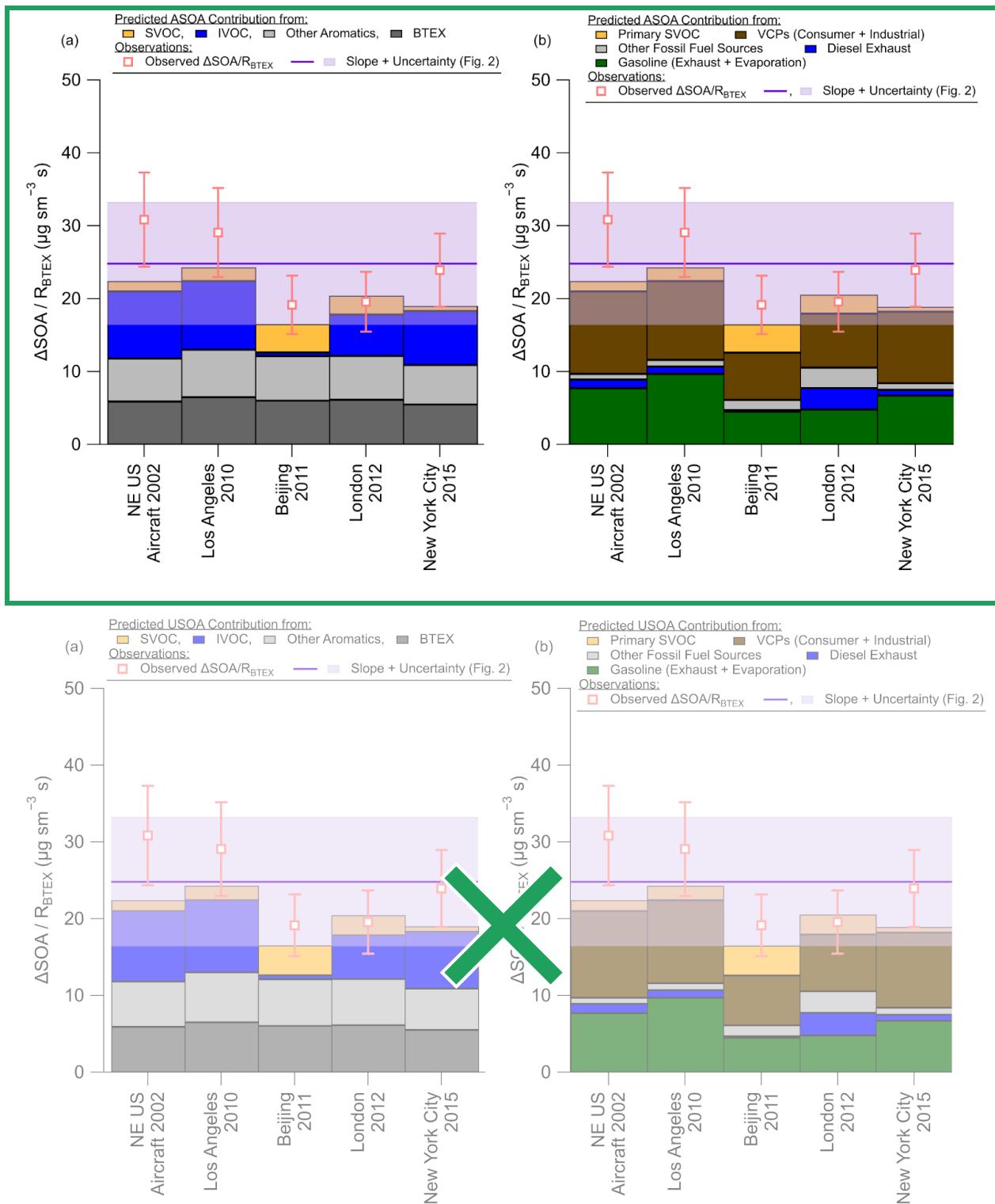

Figure 2. Comparison of BTEX and IVOC sources for (a) Beijing (see SI section about Beijing emission inventory), (b) London (see SI section about London/UK emission inventory), and (c) Los Angeles, (d) Northeast United States, and (e) New York City (see SI section about United States for (c)–(e)). For (a), BTEX is on the left axis and IVOC is on the right axis, due to the small emissions per day for IVOC.

905

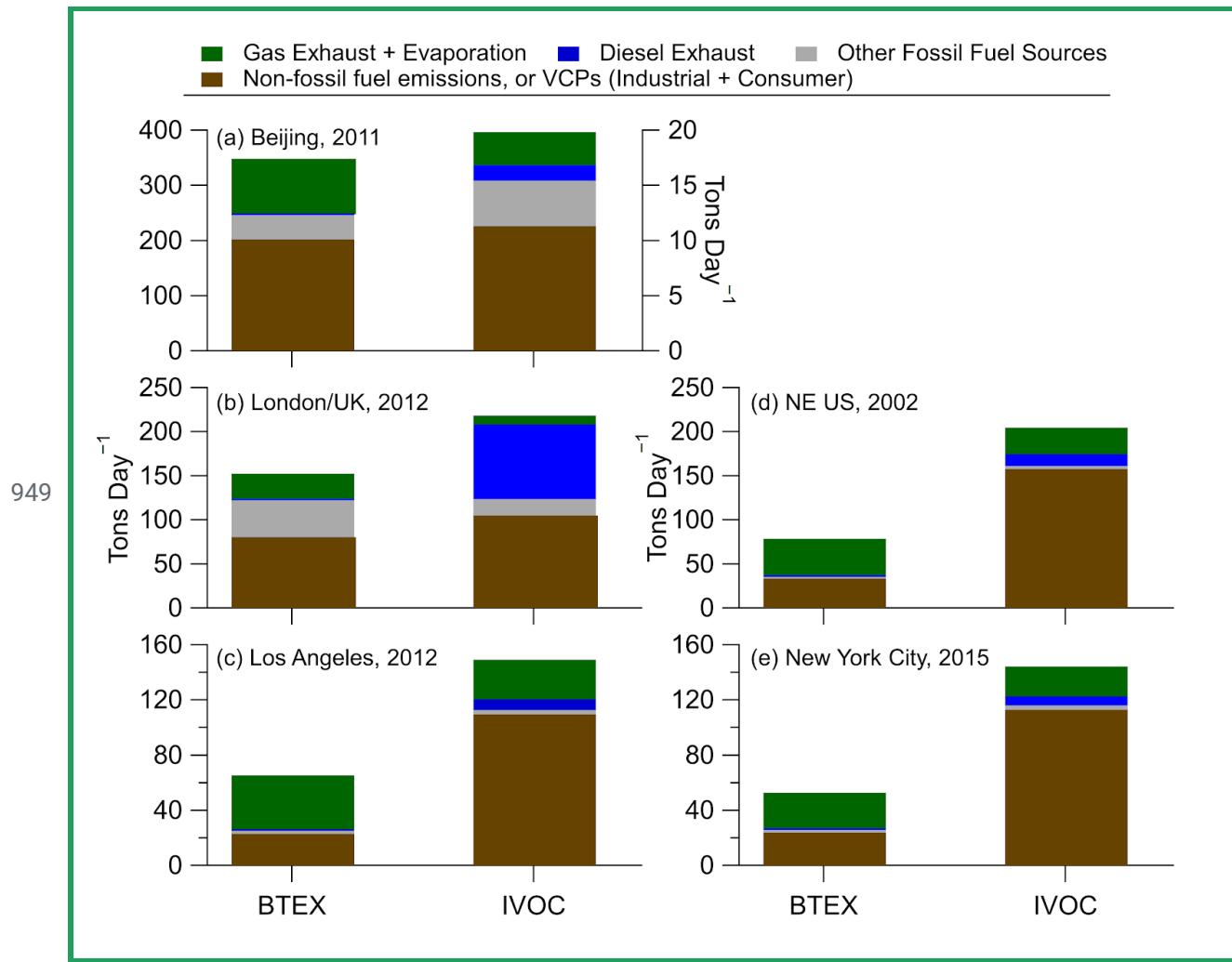


906

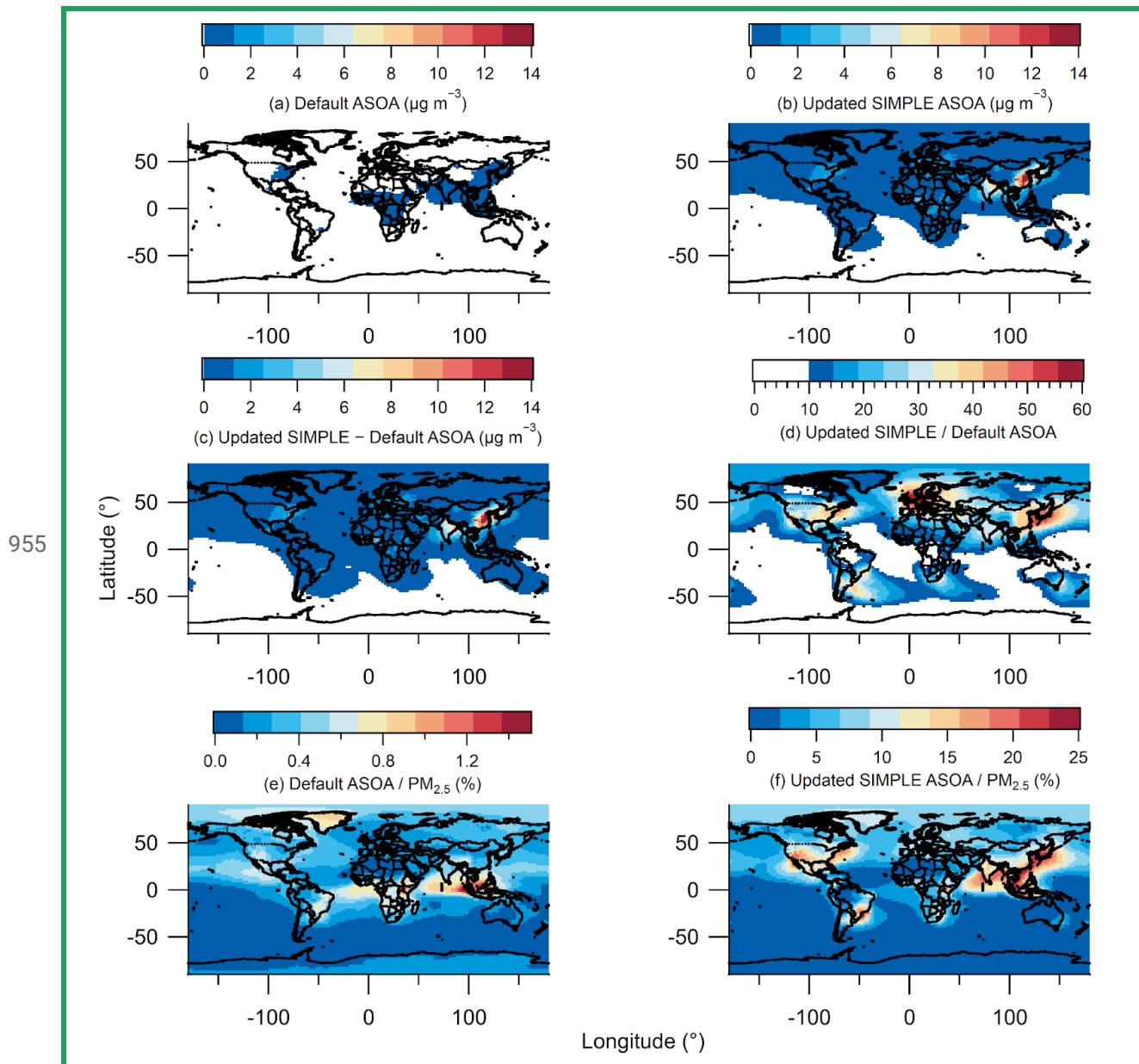

907 **Figure 3.** Emission ratio versus saturation concentration ($\log_{10}(c^*)$) for (a) Los Angeles, (b) NE
 908 US, aircraft, (c) Beijing, and (d) London. The emission ratios for VOCs ($\log_{10}(c^*) \geq 7$) were
 909 taken from de Gouw et al. (2017) and Ma et al. (2017) for Los Angeles, Warneke et al. (2007) for
 910 NE US, aircraft, and Wang et al. (2014) for Beijing while the VOC emission ratio for London is
 911 from Table S6 to Table S8. For VOCs between $\log_{10}(c^*)$ of 3 and 6 (IVOCs), the volatility
 912 distribution from McDonald et al. (2018), along with the ratio of IVOC to BTEX from Figure
 913 SI 6 and the emission ratio of BTEX (Table S6), were used to determine the emission ratio
 914 versus saturation concentration. Finally, for VOCs between $\log_{10}(c^*)$ 0 and 2 (SVOCs), the
 915 volatility distributions from Robinson et al. (2007) for non-fossil fuel POA and from Worton et
 916 al. (2014) for fossil fuel POA were used to convert the normalized POA mass concentration
 917 (Table S9) to VOC emission ratios. Note, the emission ratio versus saturation concentration for
 918 New York City, 2015, was similar to (b), as the emissions were similar (Fig. 2) and the BTEX for
 919 New York City is the same as NE US (Table S5).


921 **Figure 2.** (a) Scatter plot of background and dilution corrected ASOA concentrations
922 (ΔASOA/ΔCO at PA = 0.5 equivalent days) versus BTEX emission reactivity ratio ($R_{\text{BTEX}} =$
923 $\sum_i [\text{VOC}/\text{CO}]_i$) for multiple major field campaigns on three continents. Comparison of ASOA
924 versus (b) Ox, (c) PAN, and (d) HCHO slopes versus the ratio of the BTEX/Total emission
925 reactivity, where total is the OH reactivity for the emissions of BTEX + C₂-3 alkenes + C₂-6
926 alkanes (Table S5 through Table S7), for the campaigns studied here. For all figures, red shading
927 is the $\pm 1\sigma$ uncertainty of the slope, and the bars are $\pm 1\sigma$ uncertainty of the data (see Sect. S5).

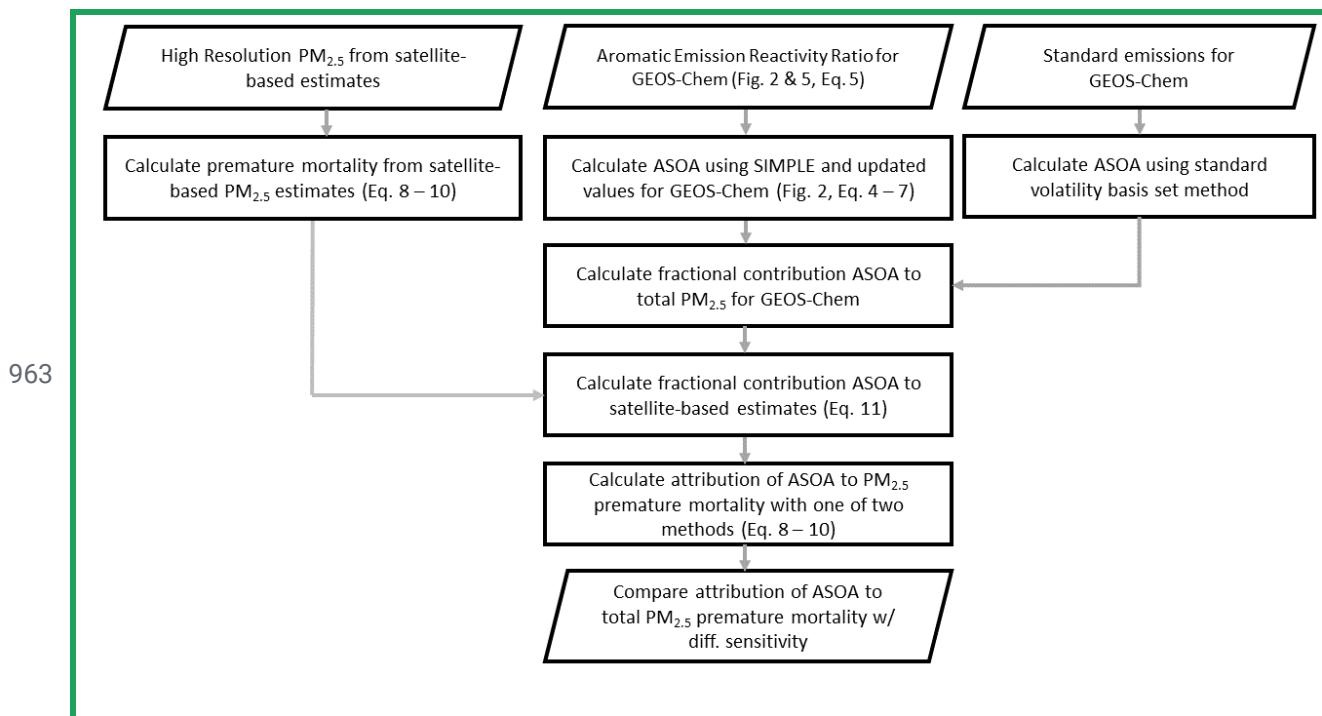
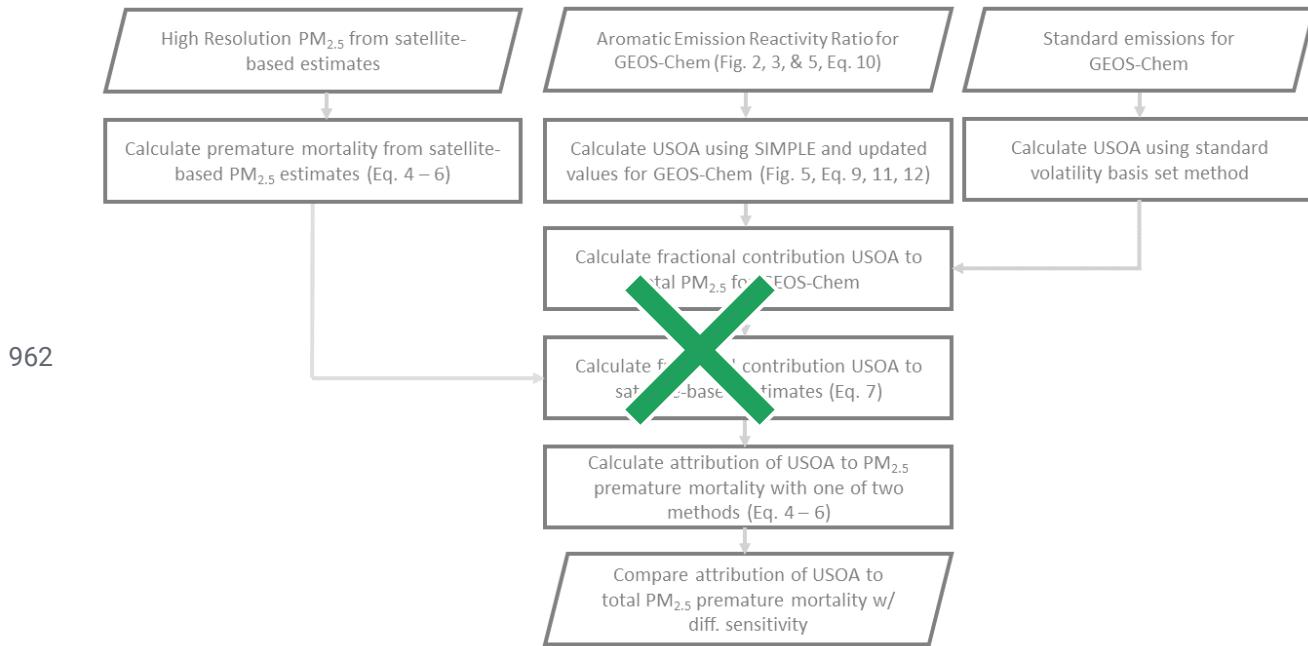
929 **Figure 324.** (a) A comparison of the $\Delta\text{SOA}/\Delta\text{CO}$ for the urban campaigns on three continents.
930 Comparison of (b) SOA/O_x , (c) SOA/HCHO , and (d) SOA/PAN slopes for the urban areas
931 (Table S4). For (b) through (d), cities marked with * have no HCHO, PAN, or hydrocarbon data.



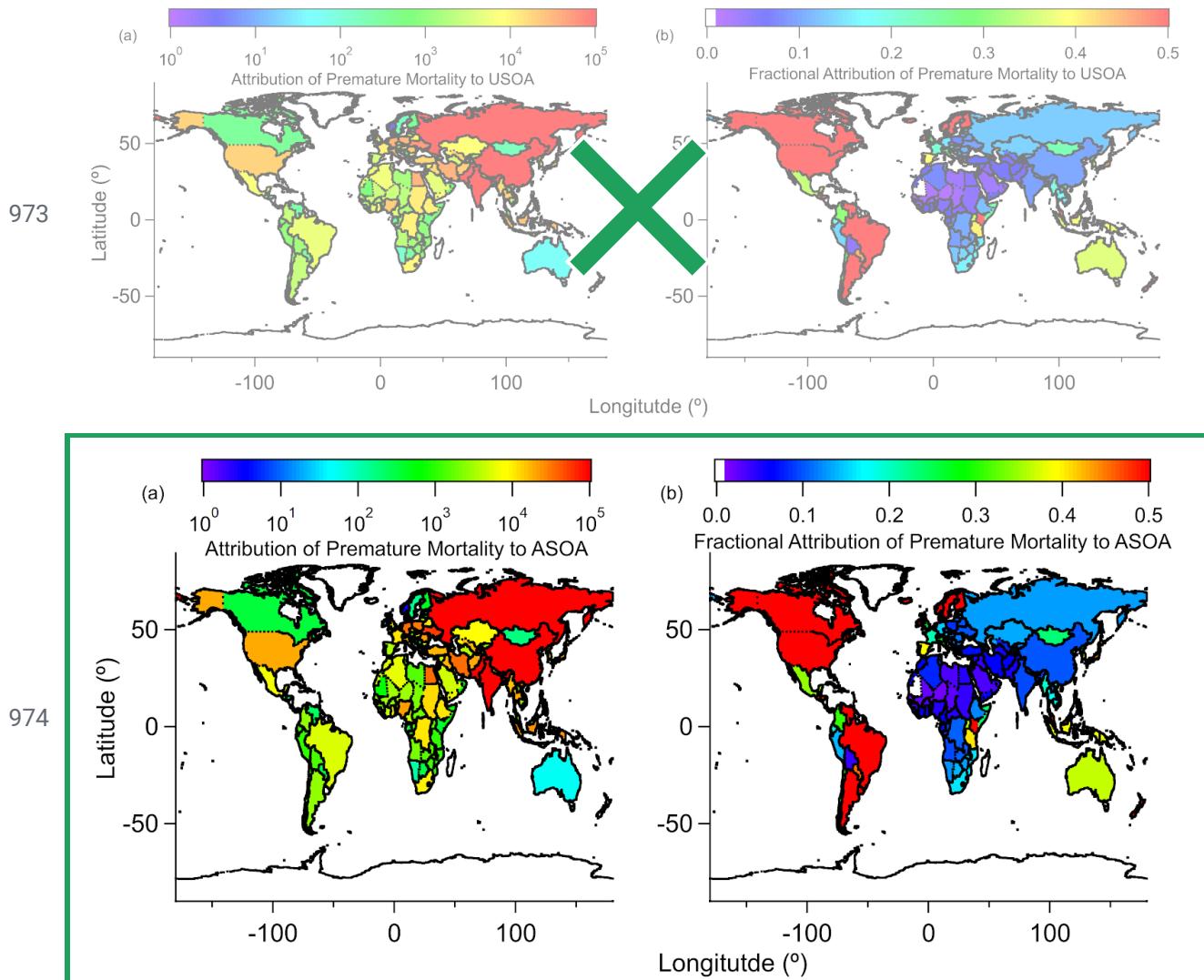
933 **Figure 35.** (a) Scatter plot of background and dilution corrected ASOA concentrations
934 ($\Delta\text{ASOA}/\Delta\text{CO}$ at $\text{PA} = 0.5$ equivalent days) versus BTEX emission reactivity ratio (R_{BTEX}
935 $\sum_i [\text{voc}/\text{co}]_i$) for multiple major field campaigns on three continents. Comparison of ASOA
936 versus (b) Ox , (c) PAN , and (d) HCHO slopes versus the ratio of the BTEX/Total emission
937 reactivity, where total is the OH reactivity for the emissions of BTEX + C₂-3 alkenes + C₂-6
938 alkanes (Table S5 through Table S7), for the campaigns studied here. For all figures, red shading
939 is the $\pm 1\sigma$ uncertainty of the slope, and the bars are $\pm 1\sigma$ uncertainty of the data (see Sect. 2.2S5).



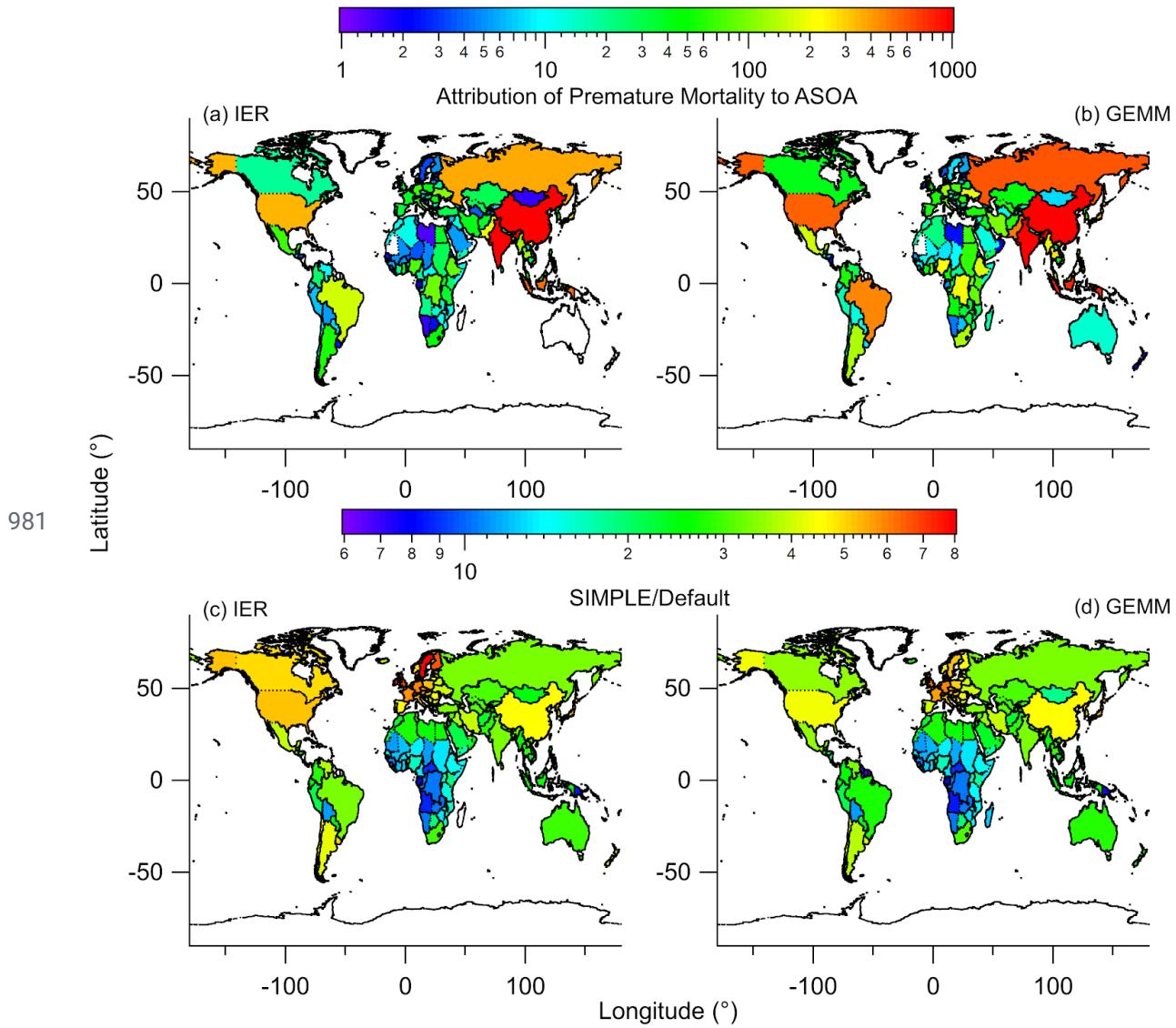
942 **Figure 46.** (a) Budget analysis for the contribution of the observed $\Delta\text{SOA}/R_{\text{BTEX}}$ (Fig. 25) for
943 cities with known emissions inventories for different volatility classes (see SI and Fig. 52 and
944 Fig. S63). (b) Same as (a), but for sources of emissions. For (a) and (b), SVOC is the



945 contribution from both vehicle and other (cooking, etc.) sources. See ~~Sect. 2~~ and SI for
946 information about the emissions, ASOA precursor contribution, error analysis, and discussion
947 about sensitivity of emission inventory IVOC/BTEX ratios for different cities and years in the
948 US.

950 **Figure 5.** Comparison of BTEX and IVOC sources for (a) Beijing (see SI section about Beijing
951 emission inventory), (b) London (see SI section about London/UK emission inventory), and (c)
952 Los Angeles, (d) Northeast United States, and (e) New York City (see SI section about United
953 States for (c) – (e)). For (a), BTEX is on the left axis and IVOC is on the right axis, due to the
954 small emissions per day for IVOC.



956 **Figure 6.** (a) Annual average modeled ASOA using the default VBS. (b) Annual average
957 modeled ASOA using the updated SIMPLE model. (c) Difference between annual average
958 modeled updated SIMPLE and default VBS. (d) Ratio between annual average modeled updated
959 SIMPLE and default VBS. (e) Percent contribution of annual average modeled ASOA using
960 default VBS to total modelled PM_{2.5}. (f) Percent contribution of annual average modeled ASOA
961 using updated SIMPLE to total modelled PM_{2.5}.



964 **Figure 7.** Flowchart describing how observed ASOA production was used to calculate ASOA in
 965 GEOS-Chem, and how the satellite-based PM_{2.5} estimates and GEOS-Chem PM_{2.5} speciation was
 966 used to estimate the premature mortality and attribution of premature mortality by ASOA. See
 967 Sect. 2 and SI for further information about the details in the figure. SIMPLE is described in
 968 Eq. 49 and by Hodzic and Jimenez (2011) and Hayes et al. (2015). The one of two methods
 969 mentioned include either the Integrated Exposure-Response (IER) (Burnett et al., 2014) with

970 Global Burden of Disease (GBD) dataset (IHME, 2016) or the new Global Exposure Mortality
971 Model (GEMM) (Burnett et al., 2018) methods. For both IER and GEMM, the marginal method
972 (Silva et al., 2016) or attributable fraction method (Anenberg et al., 2019) are used.

975 **Figure 8.** Five-year average (a) estimated reduction in $PM_{2.5}$ -associated premature deaths, by
 976 country, upon removing ASOA from total $PM_{2.5}$, and (b) fractional reduction (reduction $PM_{2.5}$
 977 premature deaths / total $PM_{2.5}$ premature deaths) in $PM_{2.5}$ -associated premature deaths, by
 978 country, upon removing ASOA from GEOS-Chem. The IER methods are used here. See Fig. S97
 979 and Fig. S120 for results using GEMM. See Fig. S108 for $10 \times 10 \text{ km}^2$ area results in comparison
 980 with country-level results.

982 **Figure 9.** Attribution of premature mortality to ASOA using (a) IER or (b) GEMM, using the
983 non-volatile primary OA and traditional SOA precursors method in prior studies (e.g., Ridley et
984 al., 2018). The increase in attribution of premature mortality to ASOA for the “SIMPLE” model
985 (Fig. 8) versus the non-volatile primary OA and traditional SOA precursor method (“Default”),
986 for (c) IER and (d) GEMM.

987 Table 1. List of campaigns used here. For values previously reported for those campaigns, they
 988 are noted. For Seasons, W = Winter, Sp = Spring, and Su = Summer.

Location	Field Campaign	Coordinates		Time Period	Season	Previous Publication/Campaign Overview
		Long. (°)	Lat. (°)			
Houston, TX, USA (2000)	TexAQS 2000	-95.4	29.8	15/Aug/2000 - 15/Sept/2000	Su	Jimenez et al. (2009) ^a , Wood et al. (2010) ^b
Northeast USA (2002)	NEAQS 2002	-78.1 - 70.5	32.8 - 43.1	26/July/2002; 29/July/2002 - 10/Aug/2002	Su	Jimenez et al. (2009) ^a , de Gouw and Jimenez (2009) ^c , Kleinman et al. (2007) ^c
Mexico City, Mexico (2003)	MCMA-2003	-99.2	19.5	31/Mar/2003 - 04/May/2003	Sp	Molina et al. (2007), Herndon et al. (2008) ^b
Tokyo, Japan (2004)		139.7	35.7	24/July/2004 - 14/Aug/2004	Su	Kondo et al. (2008) ^a , Miyakawa et al. (2008) ^a , Morino et al. (2014) ^b
Mexico City, Mexico (2006)	MILAGRO	-99.4 - 98.6	19.0 - 19.8	04/Mar/2006 - 29/Mar/2006	Sp	Molina et al. (2010), DeCarlo et al. (2008) ^a , Wood et al. (2010) ^b , DeCarlo et al. (2010) ^c
Paris, France (2009)	MEGAPOLI	48.9	2.4	13/July/2009 - 29/July/2009	Su	Freney et al. (2014) ^a , Zhang et al. (2015) ^b
Pasadena, CA, USA (2010)	CalNex	-118.1	34.1	15/May/2010 - 16/June/2010	Sp	Ryerson et al. (2013), Hayes et al. (2013) ^{a,b,c}
Changdao Island, China (2011)	CAPTAIN	120.7	38.0	21/Mar/2011 - 24/Apr/2011	Sp	Hu et al. (2013) ^{a,c}
Beijing, China (2011)	CareBeijing 2011	116.4	39.9	03/Aug/2011 - 15/Sept/2011	Su	Hu et al. (2016) ^{a,b,c}
London, UK (2012)	ClearfLo	0.1	51.5	22/July/2012 - 18/Aug/2012	Su	Bohnenstengel et al. (2015)
Houston, TX, USA (2013)	SEAC ⁴ RS	-96.0 - 94.0	29.2 - 30.3	01/Aug/2013 - 23/Sept/2013	Su	Toon et al. (2016)
New York City, NY, USA (2015)	WINTER	-74.0 - 69.0	39.5 - 42.5	07/Feb/2015	W	Schroder et al. (2018) ^{a,c}
Seoul, South Korea (2016)	KORUS-AQ	124.6 - 128.0	36.8 - 37.6	01/May/2016 - 10/June/2016	Sp	Nault et al. (2018) ^{a,b,c,d}

989 ^aReference used for PM₁ composition. ^bReference used for SOA/O_x slope. ^cReference used for
 990 ΔOA/ΔCO value. ^dReference used for SOA/HCHO and SOA/PAN slopes

991 **References**

992 Anenberg, S., Miller, J., Henze, D. and Minjares, R.: A global snapshot of the air
993 pollution-related health impacts of transportation sector emissions in 2010 and 2015, ICCT,
994 Climate & Clean Air Coalition., 2019.

995 Atkinson, R. and Arey, J.: Atmospheric Degradation of Volatile Organic Compounds, *Chem.*
996 *Rev.*, 103, 4605–4638, 2003.

997 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin,
998 M. E., Rossi, M. J., Troe, J. and IUPAC Subcommittee: Evaluated kinetic and photochemical
999 data for atmospheric chemistry: Volume II - gas phase reactions of organic species, *Atmos.*
1000 *Chem. Phys.*, 6(11), 3625–4055, 2006.

1001 Bae, M.-S., Demerjian, K. L. and Schwab, J. J.: Seasonal estimation of organic mass to organic
1002 carbon in PM2.5 at rural and urban locations in New York state, *Atmos. Environ.*, 40(39),
1003 7467–7479, 2006.

1004 Bahreini, R., Ervens, B., Middlebrook, A. M., Warneke, C., de Gouw, J. A., DeCarlo, P. F.,
1005 Jimenez, J. L., Brock, C. A., Neuman, J. A., Ryerson, T. B., Stark, H., Atlas, E., Brioude, J.,
1006 Fried, A., Holloway, J. S., Peischl, J., Richter, D., Walega, J., Weibring, P., Wollny, A. G. and
1007 Fehsenfeld, F. C.: Organic aerosol formation in urban and industrial plumes near Houston and
1008 Dallas, Texas, *J. Geophys. Res.*, 114, 1185, 2009.

1009 Bertram, T. H., Perring, A. E., Wooldridge, P. J., Crounse, J. D., Kwan, A. J., Wennberg, P. O.,
1010 Scheuer, E., Dibb, J., Avery, M., Sachse, G., Vay, S. A., Crawford, J. H., McNaughton, C. S.,
1011 Clarke, A., Pickering, K. E., Fuelberg, H., Huey, G., Blake, D. R., Singh, H. B., Hall, S. R.,
1012 Shetter, R. E., Fried, A., Heikes, B. G. and Cohen, R. C.: Direct Measurements of the Convective
1013 Recycling of the Upper Troposphere, *Science*, 315(5813), 816–820, 2007.

1014 Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y.,
1015 Mickley, L. J. and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated
1016 meteorology: Model description and evaluation, *J. Geophys. Res. D: Atmos.*, 106(D19),
1017 23073–23095, 2001.

1018 Bohnenstengel, S. I., Belcher, S. E., Aiken, A., Allan, J. D., Allen, G., Bacak, A., Bannan, T. J.,
1019 Barlow, J. F., Beddows, D. C. S., Bloss, W. J., Booth, A. M., Chemel, C., Coceal, O., Di Marco,
1020 C. F., Dubey, M. K., Faloon, K. H., Fleming, Z. L., Furger, M., Gietl, J. K., Graves, R. R., Green,
1021 D. C., Grimmond, C. S. B., Haliots, C. H., Hamilton, J. F., Harrison, R. M., Heal, M. R., Heard,
1022 D. E., Helfter, C., Herndon, S. C., Holmes, R. E., Hopkins, J. R., Jones, A. M., Kelly, F. J.,
1023 Kotthaus, S., Langford, B., Lee, J. D., Leigh, R. J., Lewis, A. C., Lidster, R. T., Lopez-Hilfiker,
1024 F. D., McQuaid, J. B., Mohr, C., Monks, P. S., Nemitz, E., Ng, N. L., Percival, C. J., Prévôt, A. S.
1025 H., Ricketts, H. M. A., Sokhi, R., Stone, D., Thornton, J. A., Tremper, A. H., Valach, A. C.,
1026 Visser, S., Whalley, L. K., Williams, L. R., Xu, L., Young, D. E., Zotter, P., Bohnenstengel, S. I.,
1027 Belcher, S. E., Aiken, A., Allan, J. D., Allen, G., Bacak, A., Bannan, T. J., Barlow, J. F.,
1028 Beddows, D. C. S., Bloss, W. J., Booth, A. M., Chemel, C., Coceal, O., Marco, C. F. D., Dubey,

1029 M. K., Faloon, K. H., Fleming, Z. L., Furger, M., Gietl, J. K., Graves, R. R., Green, D. C.,
1030 Grimmond, C. S. B., Haliots, C. H., Hamilton, J. F., Harrison, R. M., Heal, M. R., Heard, D. E.,
1031 Helfter, C., Herndon, S. C., Holmes, R. E., Hopkins, J. R., Jones, A. M., Kelly, F. J., Kotthaus,
1032 S., Langford, B., Lee, J. D., Leigh, R. J., Lewis, A. C., Lidster, R. T., Lopez-Hilfiker, F. D., et al.:
1033 Meteorology, Air Quality, and Health in London: The ClearfLo Project, *Bull. Am. Meteorol.*
1034 Soc., 96(5), 779–804, 2015.

1035 Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C. A., Apte, J. S., Brauer,
1036 M., Cohen, A., Weichenthal, S., Coggins, J., Di, Q., Brunekreef, B., Frostad, J., Lim, S. S., Kan,
1037 H., Walker, K. D., Thurston, G. D., Hayes, R. B., Lim, C. C., Turner, M. C., Jerrett, M., Krewski,
1038 D., Gapstur, S. M., Diver, W. R., Ostro, B., Goldberg, D., Crouse, D. L., Martin, R. V., Peters, P.,
1039 Pinault, L., Tjepkema, M., van Donkelaar, A., Villeneuve, P. J., Miller, A. B., Yin, P., Zhou, M.,
1040 Wang, L., Janssen, N. A. H., Marra, M., Atkinson, R. W., Tsang, H., Quoc Thach, T., Cannon, J.
1041 B., Allen, R. T., Hart, J. E., Laden, F., Cesaroni, G., Forastiere, F., Weinmayr, G., Jaensch, A.,
1042 Nagel, G., Concin, H. and Spadaro, J. V.: Global estimates of mortality associated with long-term
1043 exposure to outdoor fine particulate matter, *Proc. Natl. Acad. Sci. U. S. A.*, 115(38), 9592–9597,
1044 2018.

1045 Burnett, R. T., Pope, C. A., Ezzati, M., Olives, C., Lim, S. S., Mehta, S., Shin, H. H., Singh, G.,
1046 Hubbell, B., Brauer, M., Anderson, H. R., Smith, K. R., Balmes, J. R., Bruce, N. G., Kan, H.,
1047 Laden, F., Prüss-Ustün, A., Turner, M. C., Gapstur, S. M., Diver, W. R. and Cohen, A.: An
1048 integrated risk function for estimating the global burden of disease attributable to ambient fine
1049 particulate matter exposure, *Environ. Health Perspect.*, 122(4), 397–403, 2014.

1050 CIESIN: Gridded Population of the World (GPW), v4, SEDAC [online] Available from:
1051 <https://sedac.ciesin.columbia.edu/data/collection/gpw-v4> (Accessed 12 May 2020), 2017.

1052 Coggon, M. M., McDonald, B. C., Vlasenko, A., Veres, P. R., Bernard, F., Koss, A. R., Yuan, B.,
1053 Gilman, J. B., Peischl, J., Akin, K. C., DuRant, J., Warneke, C., Li, S.-M. and de Gouw, J. A.:
1054 Diurnal Variability and Emission Pattern of Decamethylcyclopentasiloxane (D₅) from the
1055 Application of Personal Care Products in Two North American Cities, *Environ. Sci. Technol.*,
1056 52(10), 5610–5618, 2018.

1057 Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., Balakrishnan, K.,
1058 Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A.,
1059 Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., Pope, C. A., Shin, H., Straif, K.,
1060 Shaddick, G., Thomas, M., van Dingen, R., van Donkelaar, A., Vos, T., Murray, C. J. L. and
1061 Forouzanfar, M. H.: Estimates and 25-year trends of the global burden of disease attributable to
1062 ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015,
1063 *Lancet*, 389(10082), 1907–1918, 2017.

1064 DeCarlo, P. F., Dunlea, E. J., Kimmel, J. R., Aiken, A. C., Sueper, D., Crouse, J., Wennberg, P.
1065 O., Emmons, L., Shinozuka, Y., Clarke, A., Zhou, J., Tomlinson, J., Collins, D. R., Knapp, D.,
1066 Weinheimer, A. J., Montzka, D. D., Campos, T. and Jimenez, J. L.: Fast airborne aerosol size and
1067 chemistry measurements above Mexico City and Central Mexico during the MILAGRO

1068 campaign, *Atmos. Chem. Phys.*, 8(14), 4027–4048, 2008.

1069 DeCarlo, P. F., Ulbrich, I. M., Crounse, J., de Foy, B., Dunlea, E. J., Aiken, A. C., Knapp, D.,
1070 Weinheimer, A. J., Campos, T., Wennberg, P. O. and Jimenez, J. L.: Investigation of the sources
1071 and processing of organic aerosol over the Central Mexican Plateau from aircraft measurements
1072 during MILAGRO, *Atmos. Chem. Phys.*, 10(12), 5257–5280, 2010.

1073 Dominutti, P., Keita, S., Bahino, J., Colomb, A., Liousse, C., Yoboué, V., Galy-Lacaux, C.,
1074 Morris, E., Bouvier, L., Sauvage, S. and Borbon, A.: Anthropogenic VOCs in Abidjan, southern
1075 West Africa: from source quantification to atmospheric impacts, *Atmos. Chem. Phys.*, 19(18),
1076 11721–11741, 2019.

1077 van Donkelaar, A., Martin, R. V., Brauer, M. and Boys, B. L.: Use of Satellite Observations for
1078 Long-Term Exposure Assessment of Global Concentrations of Fine Particulate Matter, *Environ.*
1079 *Health Perspect.*, 123(2), 135–143, 2015.

1080 van Donkelaar, A., Martin, R. V., Brauer, M., Hsu, N. C., Kahn, R. A., Levy, R. C., Lyapustin, A.,
1081 Sayer, A. M. and Winker, D. M.: Global Estimates of Fine Particulate Matter using a
1082 Combined Geophysical-Statistical Method with Information from Satellites, Models, and
1083 Monitors, *Environ. Sci. Technol.*, 50(7), 3762–3772, 2016.

1084 Duncan Fairlie, T., Jacob, D. J. and Park, R. J.: The impact of transpacific transport of mineral
1085 dust in the United States, *Atmos. Environ.*, 41(6), 1251–1266, 2007.

1086 Dzepina, K., Volkamer, R. M., Madronich, S., Tulet, P., Ulbrich, I. M., Zhang, Q., Cappa, C. D.,
1087 Ziemann, P. J. and Jimenez, J. L.: Evaluation of recently-proposed secondary organic aerosol
1088 models for a case study in Mexico City, *Atmos. Chem. Phys.*, 9(15), 5681–5709, 2009.

1089 EMEP/EEA: EMEP/EEA Air Pollutant Emission Inventory Guidebook 2016, EEA,
1090 Luxembourg., 2016.

1091 Ensberg, J. J., Hayes, P. L., Jimenez, J. L., Gilman, J. B., Kuster, W. C., de Gouw, J. A.,
1092 Holloway, J. S., Gordon, T. D., Jathar, S., Robinson, A. L. and Seinfeld, J. H.: Emission factor
1093 ratios, SOA mass yields, and the impact of vehicular emissions on SOA formation, *Atmos.*
1094 *Chem. Phys.*, 14(5), 2383–2397, 2014.

1095 Freney, E. J., Sellegrí, K., Canonaco, F., Colomb, A., Borbon, A., Michoud, V., Crumeyrolle, S.,
1096 Amarouche, N., Bourianne, T., Gomes, L., Prevot, A. S. H., Beekmann, M. and
1097 Schwarzenböck, A.: Characterizing the impact of urban emissions on regional aerosol particles:
1098 Airborne measurements during the MEGAPOLI experiment, *Atmos. Chem. Phys.*, 14(3),
1099 1397–1412, 2014.

1100 Gentner, D. R., Isaacman, G., Worton, D. R., Chan, A. W. H., Dallmann, T. R., Davis, L., Liu, S.,
1101 Day, D. A., Russell, L. M., Wilson, K. R., Weber, R., Guha, A., Harley, R. A. and Goldstein, A.
1102 H.: Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed
1103 characterization of organic carbon emissions, *Proc. Natl. Acad. Sci. U. S. A.*, 109(45),

1104 18318–18323, 2012.

1105 Goel, R. and Guttikunda, S. K.: Evolution of on-road vehicle exhaust emissions in Delhi, *Atmos.*
1106 *Environ.*, 105, 78–90, 2015.

1107 de Gouw, J. A. and Jimenez, J. L.: Organic Aerosols in the Earth's Atmosphere, *Environ. Sci.*
1108 *Technol.*, 43(20), 7614–7618, 2009.

1109 de Gouw, J. A., Middlebrook, A. M., Warneke, C., Goldan, P. D., Kuster, W. C., Roberts, J. M.,
1110 Fehsenfeld, F. C., Worsnop, D. R., Canagaratna, M. R., Pszenny, A. A. P., Keene, W. C.,
1111 Marchewka, M., Bertman, S. B. and Bates, T. S.: Budget of organic carbon in a polluted
1112 atmosphere: Results from the New England Air Quality Study in 2002, *J. Geophys. Res. D:*
1113 *Atmos.*, 110(16), 1–22, 2005.

1114 de Gouw, J. A., Gilman, J. B., Kim, S.-W., Lerner, B. M., Isaacman-VanWertz, G., McDonald, B.
1115 C., Warneke, C., Kuster, W. C., Lefer, B. L., Griffith, S. M., Dusanter, S., Stevens, P. S. and
1116 Stutz, J.: Chemistry of Volatile Organic Compounds in the Los Angeles basin: Nighttime
1117 Removal of Alkenes and Determination of Emission Ratios, *J. Geophys. Res.: Atmos.*, 122(21),
1118 11,843–11,861, 2017.

1119 Grieshop, A. P., Logue, J. M., Donahue, N. M. and Robinson, A. L.: Laboratory investigation of
1120 photochemical oxidation of organic aerosol from wood fires 1: measurement and simulation of
1121 organic aerosol evolution, *Atmos. Chem. Phys.*, 9(4), 1263–1277, 2009.

1122 Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J.,
1123 Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T.,
1124 Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W.,
1125 McFiggans, G., Mentel, T. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D.,
1126 Szmigielski, R. and Wildt, J.: The formation, properties and impact of secondary organic aerosol:
1127 current and emerging issues, *Atmos. Chem. Phys.*, 9(14), 5155–5236, 2009.

1128 Hayes, P. L., Ortega, A. M., Cubison, M. J., Froyd, K. D., Zhao, Y., Cliff, S. S., Hu, W. W.,
1129 Toohey, D. W., Flynn, J. H., Lefer, B. L., Grossberg, N., Alvarez, S., Rappenglück, B., Taylor, J.
1130 W., Allan, J. D., Holloway, J. S., Gilman, J. B., Kuster, W. C., de Gouw, J. A., Massoli, P.,
1131 Zhang, X., Liu, J., Weber, R. J., Corrigan, A. L., Russell, L. M., Isaacman, G., Worton, D. R.,
1132 Kreisberg, N. M., Goldstein, A. H., Thalman, R., Waxman, E. M., Volkamer, R., Lin, Y. H.,
1133 Surratt, J. D., Kleindienst, T. E., Offenberg, J. H., Dusanter, S., Griffith, S., Stevens, P. S.,
1134 Brioude, J., Angevine, W. M. and Jimenez, J. L.: Organic aerosol composition and sources in
1135 Pasadena, California, during the 2010 CalNex campaign, *J. Geophys. Res. D: Atmos.*, 118(16),
1136 9233–9257, 2013.

1137 Hayes, P. L., Carlton, A. G., Baker, K. R., Ahmadov, R., Washenfelder, R. A., Alvarez, S.,
1138 Rappenglück, B., Gilman, J. B., Kuster, W. C., de Gouw, J. A., Zotter, P., Prévôt, A. S. H.,
1139 Szidat, S., Kleindienst, T. E., Ma, P. K. and Jimenez, J. L.: Modeling the formation and aging of
1140 secondary organic aerosols in Los Angeles during CalNex 2010, *Atmos. Chem. Phys.*, 15(10),

1141 5773–5801, 2015.

1142 Heringa, M. F., DeCarlo, P. F., Chirico, R., Tritscher, T., Dommen, J., Weingartner, E., Richter,
1143 R., Wehrle, G., Prévôt, A. S. H. and Baltensperger, U.: Investigations of primary and secondary
1144 particulate matter of different wood combustion appliances with a high-resolution time-of-flight
1145 aerosol mass spectrometer, *Atmos. Chem. Phys.*, 11(12), 5945–5957, 2011.

1146 Herndon, S. C., Onasch, T. B., Wood, E. C., Kroll, J. H., Canagaratna, M. R., Jayne, J. T.,
1147 Zavala, M. A., Knighton, W. B., Mazzoleni, C., Dubey, M. K., Ulbrich, I. M., Jimenez, J. L.,
1148 Seila, R., de Gouw, J. A., de Foy, B., Fast, J., Molina, L. T., Kolb, C. E. and Worsnop, D. R.:
1149 Correlation of secondary organic aerosol with odd oxygen in Mexico City, *Geophys. Res. Lett.*,
1150 35(15), L15804, 2008.

1151 Hodzic, A. and Jimenez, J. L.: Modeling anthropogenically controlled secondary organic
1152 aerosols in a megacity: A simplified framework for global and climate models, *Geosci. Model
1153 Dev.*, 4(4), 901–917, 2011.

1154 Hodzic, A., Jimenez, J. L., Madronich, S., Aiken, A. C., Bessagnet, B., Curci, G., Fast, J.,
1155 Lamarque, J.-F., Onasch, T. B., Roux, G., Schauer, J. J., Stone, E. A. and Ulbrich, I. M.:
1156 Modeling organic aerosols during MILAGRO: importance of biogenic secondary organic
1157 aerosols, *Atmos. Chem. Phys.*, 9(18), 6949–6981, 2009.

1158 Hodzic, A., Jimenez, J. L., Prévôt, A. S. H., Szidat, S., Fast, J. D. and Madronich, S.: Can 3-D
1159 models explain the observed fractions of fossil and non-fossil carbon in and near Mexico City?,
1160 *Atmos. Chem. Phys.*, 10(22), 10997–11016, 2010a.

1161 Hodzic, A., Jimenez, J. L., Madronich, S., Canagaratna, M. R., DeCarlo, P. F., Kleinman, L. and
1162 Fast, J.: Modeling organic aerosols in a megacity: potential contribution of semi-volatile and
1163 intermediate volatility primary organic compounds to secondary organic aerosol formation,
1164 *Atmos. Chem. Phys.*, 10(12), 5491–5514, 2010b.

1165 Hu, W., Hu, M., Hu, W., Jimenez, J. L., Yuan, B., Chen, W., Wang, M., Wu, Y., Chen, C., Wang,
1166 Z., Peng, J., Zeng, L. and Shao, M.: Chemical composition, sources, and aging process of
1167 submicron aerosols in Beijing: Contrast between summer and winter, *J. Geophys. Res. D:*
1168 *Atmos.*, 121(4), 1955–1977, 2016.

1169 Hu, W. W., Hu, M., Yuan, B., Jimenez, J. L., Tang, Q., Peng, J. F., Hu, W., Shao, M., Wang, M.,
1170 Zeng, L. M., Wu, Y. S., Gong, Z. H., Huang, X. F. and He, L. Y.: Insights on organic aerosol
1171 aging and the influence of coal combustion at a regional receptor site of central eastern China,
1172 *Atmos. Chem. Phys.*, 13(19), 10095–10112, 2013.

1173 IHME: Global Burden of Disease Study 2015 (GBD 2015) Data Resources, GHDx [online]
1174 Available from: <http://ghdx.healthdata.org/gbd-2015> (Accessed 2019), 2016.

1175 Jaeglé, L., Quinn, P. K., Bates, T. S., Alexander, B. and Lin, J.-T.: Global distribution of sea salt
1176 aerosols: new constraints from in situ and remote sensing observations, *Atmos. Chem. Phys.*,

1177 11(7), 3137–3157, 2011.

1178 Janssen, R. H. H., Tsimpidi, A. P., Karydis, V. A., Pozzer, A., Lelieveld, J., Crippa, M., Prévôt, A. S. H., Ait-Helal, W., Borbon, A., Sauvage, S. and Locoge, N.: Influence of local production and vertical transport on the organic aerosol budget over Paris, *J. Geophys. Res. D: Atmos.*, 122(15), 8276–8296, 2017.

1182 Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmüller, R., Denier van der Gon, H., Kuenen, J. J. P., Klimont, Z., Frost, G., Darras, S., Koffi, B. and Li, M.: HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution, *Atmos. Chem. Phys.*, 15(19), 11411–11432, 2015.

1187 Jathar, S. H., Gordon, T. D., Hennigan, C. J., Pye, H. O. T., Pouliot, G., Adams, P. J., Donahue, N. M. and Robinson, A. L.: Unspeciated organic emissions from combustion sources and their influence on the secondary organic aerosol budget in the United States, *Proc. Natl. Acad. Sci. U. S. A.*, 111(29), 10473–10478, 2014.

1191 Jena, C., Ghude, S. D., Kulkarni, R., Debnath, S., Kumar, R., Soni, V. K., Acharja, P., Kulkarni, S. H., Khare, M., Kaginalkar, A. J., Chate, D. M., Ali, K., Nanjundiah, R. S. and Rajeevan, M. N.: Evaluating the sensitivity of fine particulate matter ($PM_{2.5}$) simulations to chemical mechanism in Delhi, *Atmos. Chem. Phys. Discuss.*, doi:10.5194/acp-2020-673, 2020.

1195 Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J., Dunlea, E. J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E., Baltensperger, U. and Worsnop, D. R.: Evolution of organic aerosols in the atmosphere, *Science*, 326(5959), 1525–1529, 2009.

1206 Khare, P. and Gentner, D. R.: Considering the future of anthropogenic gas-phase organic compound emissions and the increasing influence of non-combustion sources on urban air quality, *Atmos. Chem. Phys.*, 18(8), 5391–5413, 2018.

1209 Kleinman, L. I., Daum, P. H., Lee, Y.-N., Senum, G. I., Springston, S. R., Wang, J., Berkowitz, C., Hubbe, J., Zaveri, R. A., Brechtel, F. J., Jayne, J., Onasch, T. B. and Worsnop, D.: Aircraft observations of aerosol composition and ageing in New England and Mid-Atlantic States during the summer 2002 New England Air Quality Study field campaign, *J. Geophys. Res. D: Atmos.*, 112(D9), D09310, 2007.

1214 Kondo, Y., Morino, Y., Fukuda, M., Kanaya, Y., Miyazaki, Y., Takegawa, N., Tanimoto, H.,

1215 McKenzie, R., Johnston, P., Blake, D. R., Murayama, T. and Koike, M.: Formation and transport
1216 of oxidized reactive nitrogen, ozone, and secondary organic aerosol in Tokyo, *J. Geophys. Res.*
1217 *D: Atmos.*, 113(D21), D21310, 2008.

1218 Koo, B., Knipping, E. and Yarwood, G.: 1.5-Dimensional volatility basis set approach for
1219 modeling organic aerosol in CAMx and CMAQ, *Atmos. Environ.*, 95, 158–164, 2014.

1220 Krewski, D., Jerrett, M., Burnett, R. T., Ma, R., Hughes, E., Shi, Y., Turner, M. C., Arden, C.,
1221 Thurston, G., Calle, E. E., Thun, M. J., Beckerman, B., Deluca, P., Finkelstein, N., Ito, K.,
1222 Moore, D. K., Newbold, K. B., Ramsay, T., Ross, Z., Shin, H. and Tempalski, B.: Extended
1223 Follow-Up and Spatial Analysis of the American Cancer Society Study Linking Particulate Air
1224 Pollution and Mortality Number 140 May 2009 PRESS VERSION., 2009.

1225 Kuwata, M., Zorn, S. R. and Martin, S. T.: Using Elemental Ratios to Predict the Density of
1226 Organic Material Composed of Carbon, Hydrogen, and Oxygen, *Environ. Sci. Technol.*, 46(2),
1227 787–794, 2012.

1228 Lacey, F. G., Henze, D. K., Lee, C. J., van Donkelaar, A. and Martin, R. V.: Transient climate
1229 and ambient health impacts due to national solid fuel cookstove emissions, *Proc. Natl. Acad. Sci.*
1230 U. S. A., 114(6), 1269–1274, 2017.

1231 Landrigan, P. J., Fuller, R., Acosta, N. J. R., Adeyi, O., Arnold, R., Basu, N., Baldé, A. B.,
1232 Bertollini, R., Bose-O'Reilly, S., Boufford, J. I., Breysse, P. N., Chiles, T., Mahidol, C.,
1233 Coll-Seck, A. M., Cropper, M. L., Fobil, J., Fuster, V., Greenstone, M., Haines, A., Hanrahan, D.,
1234 Hunter, D., Khare, M., Krupnick, A., Lanphear, B., Lohani, B., Martin, K., Mathiasen, K. V.,
1235 McTeer, M. A., Murray, C. J. L., Ndhimananjara, J. D., Perera, F., Potočnik, J., Preker, A. S.,
1236 Ramesh, J., Rockström, J., Salinas, C., Samson, L. D., Sandilya, K., Sly, P. D., Smith, K. R.,
1237 Steiner, A., Stewart, R. B., Suk, W. A., van Schayck, O. C. P., Yadama, G. N., Yumkella, K. and
1238 Zhong, M.: The Lancet Commission on pollution and health, *Lancet*, 391(10119), 462–512,
1239 2018.

1240 Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D. and Pozzer, A.: The contribution of outdoor
1241 air pollution sources to premature mortality on a global scale, *Nature*, 525(7569), 367–371, 2015.

1242 Liao, J., Hanisco, T. F., Wolfe, G. M., St. Clair, J., Jimenez, J. L., Campuzano-Jost, P., Nault, B.
1243 A., Fried, A., Marais, E. A., Gonzalez Abad, G., Chance, K., Jethva, H. T., Ryerson, T. B.,
1244 Warneke, C. and Wisthaler, A.: Towards a satellite formaldehyde – in situ hybrid estimate for
1245 organic aerosol abundance, *Atmos. Chem. Phys.*, 19(5), 2765–2785, 2019.

1246 Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., Man, H.,
1247 Zhang, Q. and He, K.: Anthropogenic emission inventories in China: a review, *Natl Sci Rev*,
1248 4(6), 834–866, 2017.

1249 Li, M., Zhang, Q., Zheng, B., Tong, D., Lei, Y., Liu, F., Chaopeng, H., Kang, S., Yan, L., Zhang,
1250 Y., Bo, Y., Su, H., Cheng, Y. and He, K.: Persistent growth of anthropogenic non-methane
1251 volatile organic compound (NMVOC) emissions in China during 1990–2017: drivers, speciation

1252 and ozone formation potential, *Atmos. Chem. Phys.*, 19, 8897–8913, 2019.

1253 Liu, F., Zhang, Q., Tong, D., Zheng, B., Li, M., Huo, H. and He, K. B.: High-resolution
1254 inventory of technologies, activities, and emissions of coal-fired power plants in China from
1255 1990 to 2010, *Atmos. Chem. Phys.*, 15(23), 13299–13317, 2015.

1256 Lu, Q., Zhao, Y. and Robinson, A. L.: Comprehensive organic emission profiles for gasoline,
1257 diesel, and gas-turbine engines including intermediate and semi-volatile organic compound
1258 emissions, *Atmos. Chem. Phys.*, 18, 17637–17654, 2018.

1259 Ma, P. K., Zhao, Y., Robinson, A. L., Worton, D. R., Goldstein, A. H., Ortega, A. M., Jimenez, J.
1260 L., Zotter, P., Prévôt, A. S. H., Szidat, S. and Hayes, P. L.: Evaluating the impact of new
1261 observational constraints on P-S/IVOC emissions, multi-generation oxidation, and chamber wall
1262 losses on SOA modeling for Los Angeles, CA, *Atmos. Chem. Phys.*, 17(15), 9237–9259, 2017.

1263 Marais, E. A., Jacob, D. J., Jimenez, J. L., Campuzano-Jost, P., Day, D. A., Hu, W., Krechmer, J.,
1264 Zhu, L., Kim, P. S., Miller, C. C., Fisher, J. A., Travis, K., Yu, K., Hanisco, T. F., Wolfe, G. M.,
1265 Arkinson, H. L., Pye, H. O. T., Froyd, K. D., Liao, J. and McNeill, V. F.: Aqueous-phase
1266 mechanism for secondary organic aerosol formation from isoprene: application to the southeast
1267 United States and co-benefit of SO₂ emission controls, *Atmos. Chem. Phys.*, 16(3), 1603–1618,
1268 2016.

1269 McDonald, B. C., de Gouw, J. A., Gilman, J. B., Jathar, S. H., Akherati, A., Cappa, C. D.,
1270 Jimenez, J. L., Lee-Taylor, J., Hayes, P. L., McKeen, S. A., Cui, Y. Y., Kim, S.-W., Gentner, D.
1271 R., Isaacman-VanWertz, G., Goldstein, A. H., Harley, R. A., Frost, G. J., Roberts, J. M., Ryerson,
1272 T. B. and Trainer, M.: Volatile chemical products emerging as largest petrochemical source of
1273 urban organic emissions, *Science*, 359(6377), 760–764, 2018.

1274 Miyakawa, T., Takegawa, N. and Kondo, Y.: Photochemical evolution of submicron aerosol
1275 chemical composition in the Tokyo megacity region in summer, *J. Geophys. Res. D: Atmos.*,
1276 113(D14), D14304, 2008.

1277 Molina, L. T., Kolb, C. E., de Foy, B., Lamb, B. K., Brune, W. H., Jimenez, J. L.,
1278 Ramos-Villegas, R., Sarmiento, J., Paramo-Figueroa, V. H., Cardenas, B., Gutierrez-Avedoy, V.
1279 and Molina, M. J.: Air quality in North America's most populous city – overview of the
1280 MCMA-2003 campaign, *Atmos. Chem. Phys.*, 7(10), 2447–2473, 2007.

1281 Molina, L. T., Madronich, S., Gaffney, J. S., Apel, E., de Foy, B., Fast, J., Ferrare, R., Herndon,
1282 S., Jimenez, J. L., Lamb, B., Osornio-Vargas, A. R., Russell, P., Schauer, J. J., Stevens, P. S.,
1283 Volkamer, R. and Zavala, M.: An overview of the MILAGRO 2006 Campaign: Mexico City
1284 emissions and their transport and transformation, *Atmos. Chem. Phys.*, 10(18), 8697–8760,
1285 2010.

1286 Morino, Y., Tanabe, K., Sato, K. and Ohara, T.: Secondary organic aerosol model
1287 intercomparison based on secondary organic aerosol to odd oxygen ratio in Tokyo, *J. Geophys.
1288 Res.: Atmos.*, 119(23), 13,489–13,505, 2014.

1289 Nault, B. A., Campuzano-Jost, P., Day, D. A., Schroder, J. C., Anderson, B., Beyersdorf, A. J.,
1290 Blake, D. R., Brune, W. H., Choi, Y., Corr, C. A., de Gouw, J. A., Dibb, J., DiGangi, J. P., Diskin,
1291 G. S., Fried, A., Huey, L. G., Kim, M. J., Knote, C. J., Lamb, K. D., Lee, T., Park, T., Pusede, S.
1292 E., Scheuer, E., Thornhill, K. L., Woo, J.-H. and Jimenez, J. L.: Secondary Organic Aerosol
1293 Production from Local Emissions Dominates the Organic Aerosol Budget over Seoul, South
1294 Korea, during KORUS-AQ, *Atmos. Chem. Phys.*, 18, 17769–17800, 2018.

1295 Pai, S. J., Heald, C. L., Pierce, J. R., Farina, S. C., Marais, E. A., Jimenez, J. L.,
1296 Campuzano-Jost, P., Nault, B. A., Middlebrook, A. M., Coe, H., Shilling, J. E., Bahreini, R.,
1297 Dingle, J. H. and Vu, K.: An evaluation of global organic aerosol schemes using airborne
1298 observations, *Atmos. Chem. Phys.*, 20(5), 2637–2665, 2020.

1299 Pankow, J. F. and Asher, W. E.: SIMPOL.1: a simple group contribution method for predicting
1300 vapor pressures and enthalpies of vaporization of multifunctional organic compounds, *Atmos.*
1301 *Chem. Phys.*, 8(10), 2773–2796, 2008.

1302 Park, R. J., Jacob, D. J., Palmer, P. I., Clarke, A. D., Weber, R. J., Zondlo, M. A., Eisele, F. L.,
1303 Bandy, A. R., Thornton, D. C., Sachse, G. W. and Bond, T. C.: Export efficiency of black carbon
1304 aerosol in continental outflow: Global implications, *J. Geophys. Res. D: Atmos.*, 110(D11),
1305 D11205, 2005.

1306 Park, R. J., Jacob, D. J., Kumar, N. and Yantosca, R. M.: Regional visibility statistics in the
1307 United States: Natural and transboundary pollution influences, and implications for the Regional
1308 Haze Rule, *Atmos. Environ.*, 40(28), 5405–5423, 2006.

1309 Parrish, D. D., Kuster, W. C., Shao, M., Yokouchi, Y., Kondo, Y., Goldan, P. D., de Gouw, J. A.,
1310 Koike, M. and Shirai, T.: Comparison of air pollutant emissions among mega-cities, *Atmos.*
1311 *Environ.*, 43(40), 6435–6441, 2009.

1312 Peng, Z. and Jimenez, J. L.: KinSim: A Research-Grade, User-Friendly, Visual Kinetics
1313 Simulator for Chemical-Kinetics and Environmental-Chemistry Teaching, *J. Chem. Educ.*, 96(4),
1314 806–811, 2019.

1315 Platt, S. M., Haddad, I. E., Pieber, S. M., Huang, R.-J., Zardini, A. A., Clairotte, M.,
1316 Suarez-Bertoa, R., Barmet, P., Pfaffenberger, L., Wolf, R., Slowik, J. G., Fuller, S. J., Kalberer,
1317 M., Chirico, R., Dommen, J., Astorga, C., Zimmermann, R., Marchand, N., Hellebust, S.,
1318 Temime-Roussel, B., Baltensperger, U. and Prévôt, A. S. H.: Two-stroke scooters are a dominant
1319 source of air pollution in many cities, *Nat. Commun.*, 5(1), 3749, 2014.

1320 Pollack, I. B., Ryerson, T. B., Trainer, M., Neuman, J. A., Roberts, J. M. and Parrish, D. D.:
1321 Trends in ozone, its precursors, and related secondary oxidation products in Los Angeles,
1322 California: A synthesis of measurements from 1960 to 2010, *J. Geophys. Res. D: Atmos.*,
1323 118(11), 5893–5911, 2013.

1324 Punger, E. M. and West, J. J.: The effect of grid resolution on estimates of the burden of ozone
1325 and fine particulate matter on premature mortality in the USA, *Air Qual. Atmos. Health*, 6(3),

1326 563–573, 2013.

1327 Pye, H. O. T. and Seinfeld, J. H.: A global perspective on aerosol from low-volatility organic
1328 compounds, *Atmos. Chem. Phys.*, 10, 4377–4401, 2010.

1329 Ridley, D. A., Heald, C. L., Ridley, K. J. and Kroll, J. H.: Causes and consequences of
1330 decreasing atmospheric organic aerosol in the United States, *Proc. Natl. Acad. Sci. U. S. A.*,
1331 115(2), 290–295, 2018.

1332 Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M., Grieshop,
1333 A. P., Lane, T. E., Pierce, J. R. and Pandis, S. N.: Rethinking Organic Aerosols: Semivolatile
1334 Emissions and Photochemical Aging, *Science*, 315(5816), 1259–1262, 2007.

1335 Rumble, J. R., Ed.: CRC Handbook of Chemistry and Physics, 100th Edition, 2019 - 2020,
1336 Taylor & Francis Group., 2019.

1337 Ryerson, T. B., Andrews, A. E., Angevine, W. M., Bates, T. S., Brock, C. A., Cairns, B., Cohen,
1338 R. C., Cooper, O. R., de Gouw, J. A., Fehsenfeld, F. C., Ferrare, R. A., Fischer, M. L., Flagan, R.
1339 C., Goldstein, A. H., Hair, J. W., Hardesty, R. M., Hostetler, C. A., Jimenez, J. L., Langford, A.
1340 O., McCauley, E., McKeen, S. A., Molina, L. T., Nenes, A., Oltmans, S. J., Parrish, D. D.,
1341 Pederson, J. R., Pierce, R. B., Prather, K., Quinn, P. K., Seinfeld, J. H., Senff, C. J., Sorooshian,
1342 A., Stutz, J., Surratt, J. D., Trainer, M., Volkamer, R., Williams, E. J. and Wofsy, S. C.: The 2010
1343 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study, *J.
1344 Geophys. Res. D: Atmos.*, 118(11), 5830–5866, 2013.

1345 Sacks, J., Buckley, B., Alexis, N., Angrish, M., Beardslee, R., Benson, A., Brown, J., Buckley,
1346 B., Campen, M., Chan, E., Coffman, E., Davis, A., Dutton, S. J., Eftim, S., Gandy, J., Hemming,
1347 B. L., Hines, E., Holliday, K., Kerminen, V.-M., Kiomourtzoglou, M.-A., Kirrane, E., Kotchmar,
1348 D., Koturbash, I., Kulmala, M., Lassiter, M., Limaye, V., Ljungman, P., Long, T., Luben, T.,
1349 Malm, W., McDonald, J. F., McDow, S., Mickley, L., Mikati, I., Mulholland, J., Nichols, J.,
1350 Patel, M. M., Pinder, R., Pinto, J. P., Rappazzo, K., Richomond-Bryant, J., Rosa, M., Russell, A.,
1351 Schichtel, B., Stewart, M., Stanek, L. W., Turner, M., Van Winkle, L., Wagner, J., Weaver,
1352 Christopher, Wellenius, G., Whitsel, E., Yeckel, C., Zanobetti, A. and Zhang, M.: Integrated
1353 Science Assessment (ISA) for Particulate Matter (Final Report, Dec 2019), Environmental
1354 Protection Agency. [online] Available from:
1355 <https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=347534> (Accessed 20 October 2020),
1356 2019.

1357 Schroder, J. C., Campuzano-Jost, P., Day, D. A., Shah, V., Larson, K., Sommers, J. M., Sullivan,
1358 A. P., Campos, T., Reeves, J. M., Hills, A., Hornbrook, R. S., Blake, N. J., Scheuer, E., Guo, H.,
1359 Fibiger, D. L., McDuffie, E. E., Hayes, P. L., Weber, R. J., Dibb, J. E., Apel, E. C., Jaeglé, L.,
1360 Brown, S. S., Thornton, J. A. and Jimenez, J. L.: Sources and Secondary Production of Organic
1361 Aerosols in the Northeastern US during WINTER, *J. Geophys. Res. D: Atmos.*,
1362 doi:10.1029/2018JD028475, 2018.

1363 Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to

1364 Climate Change, Second., John Wiley & Sons, Inc., Hoboken, NJ USA., 2006.

1365 Shaddick, G., Thomas, M. L., Amini, H., Broday, D., Cohen, A., Frostad, J., Green, A., Gumy,
1366 S., Liu, Y., Martin, R. V., Pruss-Ustun, A., Simpson, D., van Donkelaar, A. and Brauer, M.: Data
1367 Integration for the Assessment of Population Exposure to Ambient Air Pollution for Global
1368 Burden of Disease Assessment, Environ. Sci. Technol., 52(16), 9069–9078, 2018.

1369 Shah, V., Jaeglé, L., Thornton, J. A., Lopez-Hilfiker, F. D., Lee, B. H., Schroder, J. C.,
1370 Campuzano-Jost, P., Jimenez, J. L., Guo, H., Sullivan, A. P., Weber, R. J., Green, J. R., Fiddler,
1371 M. N., Bililign, S., Campos, T. L., Stell, M., Weinheimer, A. J., Montzka, D. D. and Brown, S.
1372 S.: Chemical feedbacks weaken the wintertime response of particulate sulfate and nitrate to
1373 emissions reductions over the eastern United States, Proc. Natl. Acad. Sci. U. S. A., 115(32),
1374 8110–8115, 2018.

1375 Shah, V., Jaeglé, L., Jimenez, J. L., Schroder, J. C., Campuzano-Jost, P., Campos, T. L., Reeves,
1376 J. M., Stell, M., Brown, S. S., Lee, B. H., Lopez-Hilfiker, F. D. and Thornton, J. A.: Widespread
1377 Pollution from Secondary Sources of Organic Aerosols during Winter in the Northeastern United
1378 States, Geophys. Res. Lett., doi:10.1029/2018GL081530, 2019.

1379 Shrivastava, M., Cappa, C. D., Fan, J., Goldstein, A. H., Guenther, A. B., Jimenez, J. L., Kuang,
1380 C., Laskin, A., Martin, S. T., Ng, N. L., Petaja, T., Pierce, J. R., Rasch, P. J., Roldin, P., Seinfeld,
1381 J. H., Shilling, J., Smith, J. N., Thornton, J. A., Volkamer, R., Wang, J., Worsnop, D. R., Zaveri,
1382 R. A., Zelenyuk, A. and Zhang, Q.: Recent advances in understanding secondary organic aerosol:
1383 Implications for global climate forcing, Rev. Geophys., 55(2), 509–559, 2017.

1384 Silva, R. A., Adelman, Z., Fry, M. M. and West, J. J.: The Impact of Individual Anthropogenic
1385 Emissions Sectors on the Global Burden of Human Mortality due to Ambient Air Pollution,
1386 Environ. Health Perspect., 124(11), 1776–1784, 2016.

1387 Singh, A., Satish, R. V. and Rastogi, N.: Characteristics and sources of fine organic aerosol over
1388 a big semi-arid urban city of western India using HR-ToF-AMS, Atmos. Environ., 208, 103–112,
1389 2019.

1390 Stewart, G. J., Nelson, B. S., Acton, W. J. F., Vaughan, A. R., Farren, N. J., Hopkins, J. R., Ward,
1391 M. W., Swift, S. J., Arya, R., Mondal, A., Jangirh, R., Ahlawat, S., Yadav, L., Sharma, S. K.,
1392 Yunus, S. S. M., Hewitt, C. N., Nemitz, E., Mullinger, N., Gadi, R., Sahu, L. K., Tripathi, N.,
1393 Rickard, A. R., Lee, J. D., Mandal, T. K. and Hamilton, J. F.: Emissions of intermediate-volatility
1394 and semi-volatile organic compounds from domestic fuels used in Delhi, India, Atmos. Chem.
1395 Phys. Discuss., doi:10.5194/acp-2020-860, 2020.

1396 The International GEOS-Chem User Community: geoschem/geos-chem: GEOS-Chem 12.0.0
1397 release, , doi:10.5281/ZENODO.1343547, 2018.

1398 Toon, O. B., Maring, H., Dibb, J., Ferrare, R., Jacob, D. J., Jensen, E. J., Luo, Z. J., Mace, G. G.,
1399 Pan, L. L., Pfister, L., Rosenlof, K. H., Redemann, J., Reid, J. S., Singh, H. B., Thompson, A.
1400 M., Yokelson, R., Minnis, P., Chen, G., Jucks, K. W. and Pszenny, A.: Planning, implementation,

1401 and scientific goals of the Studies of Emissions and Atmospheric Composition, Clouds and
1402 Climate Coupling by Regional Surveys (SEAC⁴RS) field mission, *J. Geophys. Res. D: Atmos.*,
1403 121(9), 4967–5009, 2016.

1404 Tsimpidi, A. P., Karydis, V. A., Zavala, M., Lei, W., Molina, L., Ulbrich, I. M., Jimenez, J. L. and
1405 Pandis, S. N.: Evaluation of the volatility basis-set approach for the simulation of organic aerosol
1406 formation in the Mexico City metropolitan area, *Atmos. Chem. Phys.*, 10(2), 525–546, 2010.

1407 Vaden, T. D., Imre, D., Beránek, J., Shrivastava, M. and Zelenyuk, A.: Evaporation kinetics and
1408 phase of laboratory and ambient secondary organic aerosol, *Proc. Natl. Acad. Sci. U. S. A.*,
1409 108(6), 2190–2195, 2011.

1410 Wang, L., Slowik, J. G., Tripathi, N., Bhattu, D., Rai, P., Kumar, V., Vats, P., Sathish, R.,
1411 Baltensperger, U., Ganguly, D., Rastogi, N., Sahu, L. K., Tripathi, S. N. and Prévôt, A. S. H.:
1412 Source characterization of volatile organic compounds measured by proton-transfer-reaction
1413 time-of-flight mass spectrometers in Delhi, India, *Atmos. Chem. Phys.*, 20(16), 9753–9770,
1414 2020.

1415 Wang, M., Shao, M., Chen, W., Yuan, B., Lu, S., Zhang, Q., Zeng, L. and Wang, Q.: A
1416 temporally and spatially resolved validation of emission inventories by measurements of ambient
1417 volatile organic compounds in Beijing, China, *Atmos. Chem. Phys.*, 14(12), 5871–5891, 2014.

1418 Wang, Y. Q., Zhang, X. Y., Sun, J. Y., Zhang, X. C., Che, H. Z. and Li, Y.: Spatial and temporal
1419 variations of the concentrations of PM₁₀, PM_{2.5} and PM₁ in China, *Atmos. Chem. Phys.*, 15,
1420 13585–13598, 2015.

1421 Warneke, C., McKeen, S. A., de Gouw, J. A., Goldan, P. D., Kuster, W. C., Holloway, J. S.,
1422 Williams, E. J., Lerner, B. M., Parrish, D. D., Trainer, M., Fehsenfeld, F. C., Kato, S., Atlas, E.
1423 L., Baker, A. and Blake, D. R.: Determination of urban volatile organic compound emission
1424 ratios and comparison with an emissions database, *J. Geophys. Res. D: Atmos.*, 112(D10),
1425 doi:10.1029/2006JD007930, 2007.

1426 Warneke, C., de Gouw, J. A., Holloway, J. S., Peischl, J., Ryerson, T. B., Atlas, E., Blake, D.,
1427 Trainer, M. and Parrish, D. D.: Multiyear trends in volatile organic compounds in Los Angeles,
1428 California: Five decades of decreasing emissions, *J. Geophys. Res. D: Atmos.*, 117(D21),
1429 D00V17, 2012.

1430 Wood, E. C., Canagaratna, M. R., Herndon, S. C., Onasch, T. B., Kolb, C. E., Worsnop, D. R.,
1431 Kroll, J. H., Knighton, W. B., Seila, R., Zavala, M., Molina, L. T., Decarlo, P. F., Jimenez, J. L.,
1432 Weinheimer, A. J., Knapp, D. J., Jobson, B. T., Stutz, J., Kuster, W. C. and Williams, E. J.:
1433 Investigation of the correlation between odd oxygen and secondary organic aerosol in Mexico
1434 City and Houston, *Atmos. Chem. Phys.*, 10(18), 8947–8968, 2010.

1435 Worton, D. R., Isaacman, G., Gentner, D. R., Dallmann, T. R., Chan, A. W. H., Ruehl, C.,
1436 Kirchstetter, T. W., Wilson, K. R., Harley, R. A. and Goldstein, A. H.: Lubricating Oil Dominates
1437 Primary Organic Aerosol Emissions from Motor Vehicles, *Environ. Sci. Technol.*, 48(7),

1438 3698–3706, 2014.

1439 Zhang, Q., Alfarra, M. R., Worsnop, D. R., James, D., Coe, H., Canagaratna, M. R. and Jimenez,
1440 J. L.: Deconvolution and Quantification of Hydrocarbon-like and Oxygenated Organic Aerosols
1441 Based on Aerosol Mass Spectrometry Deconvolution and Quantification of Hydrocarbon-like
1442 and Oxygenated Organic Aerosols Based on Aerosol Mass Spectrometry, *Environ. Sci. Technol.*,
1443 39(13), 4938–4952, 2005.

1444 Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park,
1445 I. S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T. and Yao, Z. L.: Asian
1446 emissions in 2006 for the NASA INTEX-B mission, *Atmos. Chem. Phys.*, 9(14), 5131–5153,
1447 2009.

1448 Zhang, Q. J., Beekmann, M., Freney, E., Sellegri, K., Pichon, J. M., Schwarzenboeck, A.,
1449 Colomb, A., Bourrianne, T., Michoud, V. and Borbon, A.: Formation of secondary organic
1450 aerosol in the Paris pollution plume and its impact on surrounding regions, *Atmos. Chem. Phys.*,
1451 15(24), 13973–13992, 2015.

1452 Zhao, Y., Hennigan, C. J., May, A. A., Daniel, S., Gouw, J. A. D., Gilman, J. B., Kuster, W. C.
1453 and Robinson, A. L.: Intermediate-Volatility Organic Compounds: A Large Source of Secondary
1454 Organic Aerosol, *Environ. Sci. Technol.*, 48(23), 13743–13750, 2014.

1455 Zhao, Y., Saleh, R., Saliba, G., Presto, A. A., Gordon, T. D., Drozd, G. T., Goldstein, A. H.,
1456 Donahue, N. M. and Robinson, A. L.: Reducing secondary organic aerosol formation from
1457 gasoline vehicle exhaust, *Proc. Natl. Acad. Sci. U. S. A.*, 114(27), 6984–6989, 2017.

1458 Zheng, B., Huo, H., Zhang, Q., Yao, Z. L., Wang, X. T., Yang, X. F., Liu, H. and He, K. B.:
1459 High-resolution mapping of vehicle emissions in China in 2008, *Atmos. Chem. Phys.*, 14(18),
1460 9787–9805, 2014.

1461 Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L.,
1462 Zhang, Y., Zhao, H., Zheng, Y., He, K. and Zhang, Q.: Trends in China's anthropogenic
1463 emissions since 2010 as the consequence of clean air actions, *Atmos. Chem. Phys.*, 18(19),
1464 14095–14111, 2018.

1465