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Abstract

Anthropogenic secondary organic aerosol (ASOA), formed from anthropogenic emissions of
organic compounds, constitutes a substantial fraction of the mass of submicron aerosol in
populated areas around the world and contributes to poor air quality and premature mortality.
However, the precursor sources of ASOA are poorly understood, and there are large uncertainties
in the health benefits that might accrue from reducing anthropogenic organic emissions. We
show that the production of ASOA in 11 urban areas on three continents is strongly correlated
with the-anthrepegenie reactivity of specific anthropogenic volatile organic compounds. The
differences in ASOA production across different cities can be explained by differences in the
emissions of aromatics and intermediate- and semi-volatile organic compounds, indicating the
importance of controlling these ASOA precursors. With an improved modeling representation of
ASOA driven by the observations, we attribute 340,000 PM, ; premature deaths per year to
ASOA, which is over an order of magnitude higher than prior studies. A sensitivity case with a
more recently proposed model for attributing mortality to PM, ; (the Global Exposure Mortality
Model) results in upup to 900,000 deaths. A limitation of this study is the extrapolation from
cities with detailed studies and regions where detailed emission inventories are available to
otherfrem regions-with-detailed-data-te-others-where-data-is-net-avatlable where uncertainties in
emissions are larger. In addition to further development of institutional air quality management
infrastructure, c€omprehensive air quality campaigns in the countries in South and Central

America, Africa, South Asia, and the Middle East are needed for further progress in this area.
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1. Introduction

Poor air quality is one of the leading causes of premature mortality worldwide (Cohen et
al., 2017; Landrigan et al., 2018). Roughly 95% of the world’s population live in areas where
PM,; (fine particulate matter with diameter smaller than 2.5 pm) exceeds the World Health
Organization’s 10 pg m~ annual average guideline (Shaddick et al., 2018). This is especially true
for urban areas, where high population density is co-located with increased emissions of PM,
and its gas-phase precursors from human activities. It is estimated that PM, ; leads to 3 to 4
million premature deaths per year, higher than the deaths associated with other air pollutants
(Cohen et al., 2017). More recent analysis using concentration-response relationships derived
from studies of populations exposure to high levels of ambient PM,, suggest the global
premature death burden could be up to twice this value (Burnett et al., 2018).

The main method to estimate premature mortality with PM, ; is to use measured PM, ,
from ground observations along with derived PM,  from satellites to fill in missing ground-based

observations (van Donkelaar et al. 2015; van Donkelaar et al. 2016). To go from total PM, . to

species-dependent and even sector-dependent associated premature mortality from PM,,
chemical transport models (CTMs) are used to predict the fractional contribution of species

and/or sector (e.g., (van Donkelaar et al. 2015; Silva et al. 2016; Lelieveld et al. 2015; van

Donkelaar et al. 2016). However, though CTMs may get total PM, ; or even total species, e.g.,

organic aerosol (OA), correct, the model may be getting the values right for the wrong reason
(e.g., de Gouw and Jimenez, 2009; Woody et al., 2016; Murphy et al., 2017; Baker et al., 2018;
Hodzic et al., 2020). This is especially important for OA in urban areas, where models have a

longstanding issue under predicting secondary OA (SOA) with some instances of over predicting


https://paperpile.com/c/RJnuP3/zVLPE+U65tL
https://paperpile.com/c/RJnuP3/zVLPE+U65tL
https://paperpile.com/c/RJnuP3/wJWzc
https://paperpile.com/c/RJnuP3/U65tL
https://paperpile.com/c/RJnuP3/rTGMg
https://paperpile.com/c/i4ku73/Jadp+Uyui
https://paperpile.com/c/i4ku73/Jadp+EE5g+smNz+Uyui
https://paperpile.com/c/i4ku73/Jadp+EE5g+smNz+Uyui
https://paperpile.com/c/Cgcg0F/Xr9Y+hewa+I98V+T95L+7B6l
https://paperpile.com/c/Cgcg0F/Xr9Y+hewa+I98V+T95L+7B6l

99 primary OA (POA) (de Gouw and Jimenez, 2009; Dzepina et al., 2009; Hodzic et al., 2010;
100 Woody et al., 2016; Zhao et al., 2016a; Janssen et al., 2017; Jathar et al., 2017). Further, this bias
101 has even been observed for highly aged aerosols in remote regions (Hodzic et al., 2020). As has
102 been found in prior studies for urban areas (e.g., Zhang et al., 2007; Kondo et al., 2008; Jimenez
103 et al., 2009; DeCarlo et al., 2010; Hayes et al., 2013; Freney et al., 2014; Hu et al., 2016; Nault et
104 al., 2018; Schroder et al., 2018) and highlighted here (Fig. 1), a substantial fraction of the
105 observed submicron PM is OA, and a substantial fraction of the OA is composed of SOA
106 (approximately a factor of 2 to 3 higher than POA). Thus, to better understand the sources and
107 apportionment of PM, . that contributes to premature mortality, CTMs must improve their

108 prediction of SOA versus POA, as the sources of SOA precursors and POA can be different.

109

115 However, Hunderstanding the gas-phase precursors of photochemically-produced

116 anthropogenic SOA (ASOA, defined as the photochemically-produced SOA formed from the
117 photoxidation of anthropogenic volatile organic compounds (AVOC) (de Gouw et al., 2005;
118 DeCarlo et al., 2010)) quantitatively is challenging (Hallquist et al., 2009). Note, for the rest of
119 the paper, unless explicitly stated otherwise, ASOA refers to SOA produced from the

120 photoxidation of AVOC:s, as there are potentially other relevant paths for the production of SOA
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in urban environments (e.g., (Petit et al. 2014; Kodros et al. 2020; Kodros et al. 2018; Stavroulas

et al. 2019)). Though the enhancement of ASOA is largest in large cities, these precursors and
production of ASOA should be important in any location impacted by anthropogenic emissions
(e.g., Fig. 1). ASOA comprises a wide range of condensable products generated by numerous
chemical reactions involving AVOC precursors (Hallquist et al., 2009; Hayes et al., 2015;
Shrivastava et al., 2017). The number of AVOC precursors, as well as the role of
“non-traditional” AVOC precursors, along with the condensable products and chemical reactions,
compound to lead to differences in the observed versus predicted ASOA for various urban

environments (e.g., (de Gouw and Jimenez 2009: Dzepina et al. 2009: Hodzic et al. 2010: Woody

et al. 2016: Janssen et al. 2017: Jathar et al. 2017: McDonald et al. 2018)). One solution to

improve the prediction in CTMs is to use a simplified model, where lumped ASOA precursors

react, non-reversibly, at a given rate constant, to produce ASOA (Hodzic and Jimenez 2011;

Hayes et al. 2015; Pai et al. 2020). This simplified model has been found to reproduce the

observed ASOA from some urban areas (Hodzic and Jimenez 2011; Haves et al. 2015) but issues

in other urban areas (Pai et al. 2020). This may stem from the simplified model being

parameterized to two urban areas (Hodzic and Jimenez 2011; Hayes et al. 2015). These

inconsistencies impact the model predicted fractional contribution of ASOA to total PM, ; and

thus the ability to understand the source attribution to PM, . and premature deaths.—Fhese-

139 condensable products inc
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The main categories of gas-phase precursors that dominate ASOA have been the subject
of intensive research. The debate on what dominates can in turn impact the understanding of
what precursors to regulate to reduce ASOA, to improve air quality, and to reduce premature
mortality associated with ASOA. Transportation-related emissions (e.g., tailpipe, evaporation,
refueling) were assumed to be the major precursors of ASOA, which was supported by field
studies (Parrish et al., 2009; Gentner et al., 2012; Warneke et al., 2012; Pollack et al., 2013). Yet,
budget closure of observed ASOA mass concentrations could not be achieved with
transportation-related VOCs (Ensberg et al., 2014). The contribution of urban-emitted biogenic
precursors to SOA in urban areas is typically small. ;-and-rather-the-eentribution-ef-bBiogenic
SOA (BSOA) in urban areas is—typically results from deminated—by—regionally—adveeted-
advection of regional background concentrations rather than processing of locally emitted
biogenic VOCsSOA-baekground (e.g., Hodzic et al., 2009, 2010a; Hayes et al., 2013; Janssen et
al., 2017). BSOA is thought to dominate globally (Hallquist et al., 2009), but as shown in Fig. 1,
the contribution of BSOA (1% to 20%) to urban concentrations, while often substantial, is
typically smaller than that of ASOA (17% to 39%) (see Sect. S3.12).

Many of these prior studies generally investigated AVOC with high volatility, where
volatility here is defined as the saturation concentration, C*, in pg m> (de Gouw et al., 2005;
Volkamer et al., 2006; Dzepina et al., 2009; Freney et al., 2014; Woody et al., 2016). More recent
studies have identified lower volatility compounds in transportation-related emissions (e.g., Zhao
et al., 2014, 2016b; Lu et al.,, 2018). These compounds have been broadly identified as
intermediate-volatile organic compounds (IVOCs) and semi-volatile organic compounds

(SVOCs). IVOCs have a C* generally of 10° to 10° ug m™ while SVOCs have a C* generally of
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1 to 10? pg m>. Due to their lower volatility and functional groups, these classes of compounds
generally form ASOA more efficiently than traditional, higher volatile AVOCs; however,
S/IVOCs have also been more difficult to measure (e.g., Zhao et al., 2014; Pagonis et al., 2017;
Deming et al., 2018). IVOCs generally have been the more difficult of the two classes to measure
and identify as these compounds cannot be collected onto filters to be sampled off-line (Lu et al.,
2018) and generally show up as unresolved complex mixture for in-situ measurements using
gas-chromatography (GC) (Zhao et al., 2014). SVOCs, on the other hand, can be more readily
collected onto filters and sampled off-line due to their lower volatility (Lu et al., 2018). Another
potential issue has been an under-estimation of the S/IVOC aerosol production, as well as an
under-estimation in the contribution of photochemically produced S/IVOC from photooxidized
“traditional” VOCs, due to partitioning of these low volatile compounds to chamber walls and
tubing (Krechmer et al., 2016; Ye et al., 2016; Liu et al., 2019). Accounting for this

under-estimation increases the predicted ASOA (Ma et al. 2017). The inclusion of these classes

of compounds have led to improvement in some urban SOA budget closure; however, many
studies still have indicated a general short-fall in ASOA budget even when including these
compounds from transportation-related emissions. (Dzepina et al., 2009; Tsimpidi et al., 2010;
Hayes et al., 2015; Cappa et al., 2016; Ma et al., 2017; McDonald et al., 2018).

Recent studies have indicated that emissions from volatile chemical products (VCPs),
defined as pesticides, coatings, inks, adhesives, personal care products, and cleaning agents
(McDonald et al., 2018), as well as cooking emissions (Hayes et al., 2015), asphalt emissions
(Khare et al., 2020), and solid fuel emissions from residential wood burning and/or cookstoves

(e.g., Hu et al., 2013, 2020; Schroder et al., 2018), are important. While total amounts of ASOA
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precursors released in cities have dramatically declined (largely due to three-way catalytic
converters in cars (Warneke et al., 2012; Pollack et al., 2013; Zhao et al., 2017; Khare and
Gentner, 2018)), VCPs have not declined as quickly (Khare and Gentner, 2018; McDonald et al.,
2018). Besides a few cities in the US (Coggon et al., 2018; Khare and Gentner, 2018; McDonald
et al., 2018), extensive VCP emission quantification has not yet been published.

Due to the uncertainty on the emissions of ASOA precursors and on the amount of
ASOA formed from them, the number of premature deaths associated with urban organic
emissions is largely unknown. Since numerous studies have shown the importance of VCPs and
other non-traditional VOC emission sources, efforts have been made to try to improve the

representation and emissions of VCPs (Seltzer et al. 2020), which can reduce the uncertainty in

ASOA precursors and the associated premature deaths estimations. Currently, most studies have
not included ASOA realistically (e.g., Lelieveld et al., 2015; Silva et al., 2016; Ridley et al.,
2018) in source apportionment calculations of the premature deaths associated with long-term
exposure of PM, . These models represented total OA as non-volatile POA and “traditional”
ASOA precursors (transportation-based VOCs), which largely under-predict ASOA (Ensberg et
al., 2014; Hayes et al., 2015; Nault et al., 2018; Schroder et al., 2018) while over-redicting POA
(e.g., (Hodzic et al. 2010; Zhao et al. 2016: Jathar et al. 2017). gtven—that-the=This does not
reflect the current understanding=is that POA is volatile and contributes to ASOA mass
concentration (e.g., Grieshop et al., 2009; Lu et al., 2018). Though the models are estimating

total OA correctly (Ridley et al. 2018; Hodzic et al. 2020; Pai et al. 2020), the attribution of

premature deaths to POA instead of SOA formed from “traditional” and “non-traditional”

sources, including IVOCs from both sources, could lead to regulations that may not target the
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emissions that would reduce OA in urban areas. As PM, and SOA mass are highest in urban
areas (Fig. 1), also shown in Jimenez et al. (2009), it is necessary to quantify the amount and
identify the sources of ASOA to target future emission standards that will optimally improve air
quality and the associated health impacts. As these emissions are from human activities, they will
contribute to SOA mass outside urban regions and to potential health impacts outside urban
regions as well. Though there are potentially other important exposure pathways to PM that may
increase premature mortality, such as exposure to solid-fuel emissions indoors (e.g., Kodros et
al., 2018), the focus of this paper is on exposure to outdoor ASOA and its associated impacts to
premature mortality.

Here, we investigate the factors that control ASOA using 11 major urban, including
megacities, field studies (Fig. 1 and Table 1). The empirical relationships and numerical models
are then used to quantify the attribution of premature mortality to ASOA around the world, using
the observations to improve the modeled representation of ASOA. The results provide insight
into the importance of ASOA to global premature mortality due to PM,; and further

understanding of thewnderstandine-the precursors and sources of ASOA in urban regions.

2. Methods

Here, we introduce the ambient observations from various campaigns used to constrain
ASOA production (Sect. 2.1), description of the simplified model used in CTMs to better predict
ASOA (Sect. 2.2), and description of how premature mortality was estimated for this study (Sect.
2.3). In the SI, the following can be found: description of the emissions used to calculate the

ASOA budget for five different locations (Sect. S1), description of how the ASOA budget was
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calculated for the five different locations (Sect. S2), description of the CTM (GEOS-Chem) used

in this study (Sect. S3 - S4), and error analysis for the observations (Sect. S5).

2.1 Ambient Observations

For values not previously reported in the literature (Table S4), observations taken
between 11:00 — 16:00 local time were used to determine the slopes of SOA versus
formaldehyde (HCHO) (Fig. S12), peroxy acetyl nitrate (PAN) (Fig. S23), and O, (O, = O, +
NO,) (Fig. S34). For CalNex, there was an approximate 48% difference between the two HCHO
measurements (Fig. S44). Therefore, the average between the two measurements were used in
this study, similar to what has been done in other studies for other gas-phase species (Bertram et
al., 2007). All linear fits, unless otherwise noted, use the orthogonal distance regression fitting
method (ODR).

For values in Table S4 through Table S8 not previously reported in the literature, the
following procedure was applied to determine the emissions ratios, similar to the methods of
Nault et al. (2018). An OH exposure (OH,,, = [OH]xAt), which is also the photochemical age
(PA), was estimated by using the ratio of NO/NO, (Eq.1) or the ratio of
m+p-xylene/ethylbenzene (Eq.2). For the m+p-xylene/ethylbenzene, the emission ratio
(Table S5) was determined by determining the average ratio during minimal photochemistry,
similar to prior studies (de Gouw et al., 2017). This was done for only one study, TexAQS 2000.
This method could be applied in that case as it was a ground campaign that operated both day
and night; therefore, a ratio at night could be determined when there was minimal loss of both

VOCs. The average emission ratio for the other VOCs was determined using Eq. 3 after the
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OH,,, was calculated in Eq. 1 or Eq.2. The rate constants used for determining OH, and

P

emission ratios are found in Table S124.

ZNOX]]

NO ]
OH, =[OH]X1=In|-= i
OH+N02 Eq 1
1 [m+p— xylene]t [m+p— xylene]0
OHex =[OH]Xt=— — XIn ol - P
r m+p —xylene ethylbenzene [et Y enzene]t [€I Y €I’lZ€I’l€]O
Eq.2
VOC(i VOC(i 1 VOC(i

ﬁ(O):—ﬁ(I)X(l— )xk.’.ﬁ(t)xk
[CO] [CO] exp( —k,x [OH], x1) " [Co] ’

Eq. 3

2.2 Updates to the SIMPLE Model

With the combination of the new dataset, which expands across urban areas on three
continents, the SIMPLE parameterization for ASOA (Hodzic and Jimenez, 2011) is updated in
the standard GEOS-Chem model to reproduce observed ASOA in Fig. 2a. The parameterization

operates as represented by Eq. 4.

.. k X[OH]
missions > SOAP ———> ASOA Eq. 4

SOAP represents the lumped precursors of ASOA, k is the reaction rate coefficient with OH
(1.25x10™" cm® molecules™! s™'), and [OH] is the OH concentration in molecules cm™. This rate
constant is also consistent with observed ASOA formation time scale of ~1 day that has been
observed across numerous studies (e.g., de Gouw et al., 2005; DeCarlo et al., 2010; Hayes et al.,

2013; Nault et al., 2018; Schroder et al., 2018).
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SOAP emissions were calculated based on the relationship between ASOA/ACO and

R, omaic/ ACO 1n Fig. 2a. First, we calculated R, ..../ACO (Eq. 5) for each grid cell and time step
as follows:
) E_ Xk +E Xk +E_Xk
aromatics _ B B T T X X
ACO E., Eq.5

Where E and k stand for the emission rate and reaction rate coefficient with OH, respectively, for
benzene (B), toluene (T), and xylenes (X). Ethylbenzene was not included in this calculation
because its emission was not available in HTAPv2 emission inventory. However, ethylbenzene
contributed a minor fraction of the mixing ratio (~ 7%, Table S5) and reactivity (~6%) of the
total BTEX across the campaigns. Reaction rate constants used in this study were 1.22x107'%,
5.63x107"% and 1.72x10"" c¢m® molec.” s for benzene, toluene, and xylene, respectively

(Atkinson and Arey, 2003; Atkinson et al., 2006). The R /ACO allows a dynamic

aromatics’
calculation of the E(VOC)/E(CO) = SOA/ACO. Hodzic and Jimenez (2011) and Hayes et al.
(2015) used a constant value of 0.069 g g, which worked well for the two cities investigated,
but not for the expanded dataset studied here. Thus, both the aromatic emissions and CO
emissions are used in this study to better represent the variable emissions of ASOA precursors
(Fig. S5).

Second, Eg,,,/Ec, can be obtained from the result of Eq. 6, using slope and intercept in

Fig. 2a, with a correction factor (F) to consider additional SOA production after 0.5 PA

equivalent days, since Fig. 2a shows the comparison at 0.5 PA equivalent days.

E
SOAP

E
co

Aromatics

=|Slope X ——— + Intercept | X F'
( P¢" Ao P

Eq. 6

Where slope is 24.8 and intercept is —1.7 from Fig. 2a. F (Eq. 7) can be calculated as follows:
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ASOA SOAP
t =00 =0

F = = ’A
ASOA _. SOAPFOX(I —exp(—k X At X[OH]))

203 t=43200 s

Eq. 7

294 F was calculated as 1.8 by using [OH] = 1.5 x 10° molecules ¢cm™, which was used in the
295 definition of 0.5 PA equivalent days for Fig. 2a.

206 Finally, E¢,,, can be computed by multiplying CO emissions (E.,) for every grid point
297 and time step in GEOS-Chem by the E,,/E ratio.
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462 2.36 Estimation of Premature Mortality Attribution

463 Premature deaths were calculated for five disease categories: ischemic heart disease

464 (IHD), stroke, chronic obstructive pulmonary disease (COPD), acute lower respiratory illness
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(ALRI), and lung cancer (LC). We calculated premature mortality for the population aged more

than 30 years, using Eq. 84.

RR—1
RR Eq. 84

Premature Death = Pop Xyo X

Mortality rate, y,, varies according to the particular disease category and geographic region,
which is available from Global Burden of Disease (GBD) Study 2015 database (IHME, 2016).
Population (Pop) was obtained from Columbia University Center for International Earth Science
Information Network (CIESIN) for 2010 (CIESIN, 2017). Relative risk, RR, can be calculated as

shown in Eq. 95.

RR = 1+aX (1 —exp (/3 x (PMz.s a PMZ.S,Threshold)Q)) Fa. 95

a, B, and p values depend on disease category and are calculated from Burnett et al. (2014) (see
Table S142 and associated file). If the PM, ; concentrations are below the PM, ; threshold value
(Table S142), premature deaths were computed as zero. However, there could be some health
impacts at concentrations below the PM, ; threshold values (Krewski et al., 2009); following the
methods of the GBD studies, these can be viewed as lower bounds on estimates of premature
deaths.

We performed an additional sensitivity analysis using the Global Exposure Mortality
Model (GEMM) (Burnett et al., 2018). For the GEMM analysis, we also used age stratified
population data from GWPv3. Premature death is calculated the same as shown in Eq. 84;
however, the relative risk differs. For the GEMM model, the relative risk can be calculated as

shown in Eq. 106.
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RR = exp(0X2) with A=

Eq. 106

Here z = max(0,PM, -PM, 5 1y o0) 0, 7, @, 0, and PM,; 1,00 depends on disease category and
are from Burnett et al. (2018). Similar to the Eq. 95, if the concentrations are below the threshold
(2.4 ug m>, Burnett et al. (2018)), then premature deaths are computed as zero; however, the
GEMM has a lower threshold than the GBD method.

For GBD, we do not consider age-specific mortality rates or risks. For GEMM, we
calculate age-specific health impacts with age-specific parameters in the exposure response
function (Table S153). We combine the age-specific results of the exposure-response function
with age distributed population data from GPW (CIESIN, 2017) and a national mortality rate
across all ages to assess age-specific mortality.

We calculated total premature deaths using annual average total PM, concentrations
derived from satellite-based estimates at the resolution of 0.1°x0.1° from van Donkelaar et al.
(2016) . Application of the remote-sensing based PM, ; at the 0.1°x0.1° resolution rather than
direct use of the GEOS-Chem model concentrations at the 2°%2.5° resolution helps reduce
uncertainties in the quantification of PM, ; exposure inherent in coarser estimates (Punger and
West, 2013). We also calculated deaths by subtracting from this amount the total annual average
ASOA concentrations derived from GEOS-Chem (Fig. S119). To reduce uncertainties related to
spatial gradients and total concentration magnitudes in our GEOS-Chem simulations of PM, i,
our modeled ASOA was calculated as the fraction of ASOA to total PM, in GEOS-Chem,

multiplied by the satellite-based PM2.5 concentrations (Eq. 11%).
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ASOAsat = (ASOA /PMZ.S,mod) X PM2.5,sat

mod
Eq. 117
Finally, this process for estimating PM, ; health impacts considers only PM, ; mass concentration

and does not distinguish toxicity by composition, consistent with the current US EPA position

expressed in Sacks et al. (2019).

3. Observations of ASOA Production across Three Continents
3.1 Observational Constraints of ASOA Production across Three Continents

Measurements during intensive field campaigns in large urban areas better constrain
concentrations and atmospheric formation of ASOA because the scale of ASOA enhancement is
large compared to SOA from a regionalfrem-restenal background. Generally, ASOA increased
with the amount of urban precursor VOCs and with atmospheric PA (de Gouw et al., 2005; de
Gouw and Jimenez, 2009; DeCarlo et al., 2010; Hayes et al., 2013; Nault et al., 2018; Schroder
et al., 2018; Shah et al., 2018). In addition, ASOA correlates strongly with gas-phase secondary
photochemical species, including O,, HCHO, and PAN (Herndon et al., 2008; Wood et al., 2010;
Hayes et al., 2013; Zhang et al., 2015; Nault et al., 2018; Liao et al., 2019) (Table S4; Fig. S12 to
Fig. S34), which are indicators of photochemical processing of emissions.

However, as initially discussed by Nault et al. (2018) and shown in Fig. 34 there is large
variability in these various metrics across the urban areas evaluated here. To the best of the
authors’ knowledge, this variability has not been explored and its physical meaning has not been
interpreted. As shown in Fig. 34, though, the trends in ASOA/ACO are similar to the trends in

the slopes of SOA versus O,, PAN, or HCHO. For example, Seoul is the highest for nearly all
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metrics, and is approximately a factor of 6 higher than the urban area, Houston, that generally
showed the lowest photochemical metrics. This suggests that the variability is related to a
physical factor, including emissions and chemistry.

The VOC concentration, together with how quickly the emitted VOCs react (Zk,x[VOC],,
i.e., the hydroxyl radical, or OH, reactivity of VOCs), where k is the OH rate coefficient for each
VOC, are a determining parameter for ASOA formation over urban spatial scales (Eq. 128).
ASOA formation is normalized here to the excess CO mixing ratio (ACO) to account for the
effects of meteorology, dilution, and non-urban background levels, and allow for easier

comparison between different studies:

AASOA
ACO

«[OH] X Atx(zikix[\gz)c] inJ

Eq. 128
where Y is the aerosol yield for each compound (mass of SOA formed per unit mass of precursor
reacted), and [OH]xAt is the PA.

BTEX are one group of known ASOA precursors (Gentner et al., 2012; Hayes et al.,
2013), and their emission ratio (to CO) was determined for all campaigns (Table S5). BTEX can
thus provide insight into ASOA production. Fig. 25a shows that the variation in ASOA (at PA =
0.5 equivalent days) is highly correlated with the emission reactivity ratio of BTEX (Ryiex,

Zi[voc /co]

i) across all the studies. However, BTEX alone cannot account for much of the
ASOA formation (see budget closure discussion below), and instead, BTEX may be better
thought of as both partial contributors and also as indicators for the co-emission of other

(unmeasured) organic precursors that are also efficient at forming ASOA.
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O,, PAN, and HCHO are produced from the oxidation of a much wider set of VOC
precursors (including small alkenes, which do not appreciably produce SOA when oxidized).
These alkenes have similar reaction rate constants with OH as the most reactive BTEX

compounds (Table S12+); however, their emissions and concentration can be higher than BTEX

(Table S7). Thus, alkenes would dominate R

Total®

leading to O,, HCHO, and PAN being produced

more rapidly than ASOA (Fig. 25b—d). When R, becomes more important for Ry, the

otal?
emitted VOCs are more efficient in producing ASOA. Thus, the ratio of ASOA to gas-phase
photochemical products shows a strong correlation with Ry /Ry . (Fig. 25b—d).

An important aspect of this study is that most of these observations occurred during
spring and summer, when solid fuel emissions are expected to be lower (e.g., Chafe et al., 2015;
Lam et al., 2017; Hu et al., 2020). Further, the most important observations used here are during
the afternoon, investigating specifically the photochemically produced ASOA. These results here
might partially miss any ASOA produced through nighttime aqueous chemistry or oxidation by
nitrate radical (Kodros et al., 2020). However, two of the studies included in our analysis,
Chinese Outflow (CAPTAIN, 2011) and New York City (WINTER, 2015), occurred in late
winter/early spring, when solid fuel emissions were important (Hu et al., 2013; Schroder et al.,
2018). We find that these observations lie within the uncertainty in the slope between ASOA and
Ryrex (Fig. 2a). Their photochemically produced ASOA observed under strong impact from solid
fuel emissions shows similar behavior as the ASOA observed during spring and summer time.
Thus, given the limited datasets currently available, photochemically produced ASOA is

expected to follow the relationship shown in Fig. 2a and is expected to also follow this

relationship for regions impacted by solid fuel burning. Future comprehensive studies in regions
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strongly impacted by solid fuel burning are needed to further investigate photochemical ASOA

production under those conditions.

3.2 Budget Closure of ASOA for 4 Urban Areas on 3 Continents Indicates Reasonable
Understanding of ASOA Sources

To investigate the correlation between ASOA and Ry, @ box model using the emission
ratios from BTEX (Table S5), other aromatics (Table S8), IVOCs (Sect. S1), and SVOCs (Sect.
S1) was run for five urban areas: New York City, 2002, Los Angeles, Beijing, London, and New
York City, 2015 (see Sect. S1 and S3 for more information). The differences in the results shown
in Fig. 4 are due to differences in the emissions for each city. We show that BTEX alone cannot
explain the observed ASOA budget for urban areas around the world. Fig. 46a shows that

approximately 25+6% of the observed ASOA originates from the photooxidation of BTEX.

explaining 25% of the observed ASOA is similar to prior studies that have done budget analysis

of precursor gases and observed SOA (e.g., Dzepina et al., 2009; Ensberg et al., 2014; Hayes et
al., 2015; Ma et al., 2017; Nault et al., 2018). Therefore, other precursors must account for most
of the ASOA produced.

Because alkanes, alkenes, and oxygenated compounds with carbon numbers less than 6
are not significant ASOA precursors, we focus on emissions and sources of BTEX, other
mono-aromatics, IVOCs, and SVOCs. These three classes of VOCs, aromatics, IVOCs, and
SVOCs, have been suggested to be significant ASOA precursors in urban atmospheres

(Robinson et al., 2007; Hayes et al., 2015; Ma et al., 2017; McDonald et al., 2018; Nault et al.,
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2018; Schroder et al., 2018; Shah et al., 2018), originating from both fossil fuel and VCP
emissions.

Using the best available emission inventories from cities on three continents
(EMEP/EEA, 2016; McDonald et al., 2018; Li et al., 2019) and observations, we quantify the
emissions of BTEX, other mono-aromatics, IVOCs, and SVOCs for both fossil fuel (e.g.,
gasoline, diesel, kerosene, etc.), VCPs (e.g., coatings, inks, adhesives, personal care products,
and cleaning agents), and cooking sources (Fig. 52-and=Fig=3). This builds off the work of
McDonald et al. (2018) for urban regions on three different continents.

Note, the emissions investigated here ignore any oxygenated VOC emissions not
associated with IVOCs and SVOCs due to the challenge in estimating the emission ratios for

these compounds (de Gouw et al. 2018). Further, SVOC emission ratios are estimated from the

average POA observed by the AMS during the specific campaign and scaled by profiles in
literature for a given average temperature and average OA (Robinson et al., 2007; Worton et al.,
2014; Lu et al., 2018). As most of the campaigns had an average OA between 1 and 10 ug m™
and temperature of ~298 K, this led to the majority of the estimated emitted SVOC gases in the
highest SVOC bin. However, as discussed later, this does not lead to SVOCs dominating the
predicted ASOA due to taking into account the fragmentation and overall yield from the
photooxidation of SVOC to ASOA.

Combining these inventories and observations for the various locations provide the
following insights about the potential ASOA precursors not easily measured or quantified in
urban environments (e.g., Zhao et al., 2014; Lu et al., 2018): (1) aromatics from fossil fuel

accounts for 14-40% (mean 22%) of the total BTEX and IVOC emissions for the five urban
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areas investigated in-depth (Fig. 52), agreeing with prior studies that have shown that the
observed ASOA cannot be reconciled by the observations or emission inventory of aromatics
from fossil fuels (e.g., Ensberg et al., 2014; Hayes et al., 2015). (2) BTEX from both fossil fuels
and VCPs account for 25-95% (mean 43%) of BTEX and IVOC emissions (Fig. 52). China has
the lowest contribution of IVOCs, potentially due to differences in chemical make-up of the
solvents used daily (Li et al., 2019), but more research is needed to investigate the differences in
IVOCs:BTEX from Beijing versus US and UK emission inventories. Nonetheless, this shows the
importance of IVOCs for both emissions and ASOA precursors. (3) IVOCs are generally equal
to, if not greater than, the emissions of BTEX in 4 of the 5 urban areas investigated here
(Fig. 52). (4) Overall, VCPs account for a large fraction of the BTEX and IVOC emissions for all
five cities. (5) Finally, SVOCs account for 27-88% (mean 53%) of VOCs generally considered
ASOA precursors (VOCs with volatility saturation concentrations < 107 pg m™) (Fig. S63).
Beijing has the highest contribution of SVOCs to ASOA precursors due to the use of solid fuels
and cooking emissions (Hu et al., 2016). Also, this indicates the large contribution of a class of
VOCs difficult to measure (Robinson et al., 2007) that are an important ASOA precursor (e.g.,
Hayes et al., 2015), showing further emphasis should be placed in quantifying the emissions of
this class of compounds.

These results provide an ability to further investigate the mass balance of predicted and
observed ASOA for these urban locations (Fig. 46). The inclusion of IVOCs, other aromatics not
including BTEX, and SVOC:s leads to the ability to explain, on average, 85+12% of the observed

ASOA for these urban locations around the world (Fig. 46a). Further, VCP contribution to
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ASOA is important for all these urban locations, accounting foreeeewnting—e#, on average,
37+£3% of the observed ASOA (Fig. 46b).

This bottom-up mass budget analysis provides important insights to further explain the
correlation observed in Fig. 25. First, IVOCs are generally co-emitted from similar sources as
BTEX for the urban areas investigated in-depth (Fig. 52). The oxidation of these co-emitted
species leads to the ASOA production observed across the urban areas around the world. Second,
S/IVOCs generally have similar rate constants as toluene and xylenes (>1x10"" ¢cm® molec.” s™)
(Zhao et al., 2014, 2017), the compounds that contribute the most to Ry, explaining the rapid
ASOA production that has been observed in various studies (de Gouw and Jimenez, 2009;
DeCarlo et al., 2010; Hayes et al., 2013; Hu et al., 2013, 2016; Nault et al., 2018; Schroder et al.,
2018) and correlation (Fig. 25). Finally, the contribution of VCPs and fossil fuel sources to
ASOA is similar across the cities, expanding upon and further supporting the conclusion of
McDonald et al. (2018) in the importance of identifying and understanding VCP emissions in
order to explain ASOA.

This investigation shows that the bottom-up calculated ASOA agrees with observed
top-down ASOA within 15%. As highlighted above, this ratio is explained by the co-emissions
of IVOCs with BTEX from traditional sources (diesel, gasoline, and other fossil fuel emissions)
and VCPs (Fig. 5) along with similar rate constants for these ASOA precursors (Table S12).
Thus, the ASOA/Rg ¢y ratio obtained from Fig. 2 results in accurate predictions of ASOA for the
urban areas evaluated here, and this value can be used to better estimate ASOA with chemical

transport models (Sect. 4).
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689 4.2 Results of Updated SIMPLE Model

690 The SIMPLE model was originally designed and tested against the observations collected
691 around Mexico City (Hodzic and Jimenez, 2011). It was then tested against observations
692 collected in Los Angeles (Hayes et al., 2015; Ma et al., 2017). As both data sets have nearly
693 1dentical ASOA/ACO and Ry (Fig. 24 and Fig. 39), it is not surprising that the SIMPLE model
694 did well in predicting the observed ASOA/ACO for these two urban regions with consistent
695 parameters. Though the SIMPLE model generally performed better than more explicit models, it
696 generally had lower skill in predicting the observed ASOA in urban regions outside of Mexico

697 City and Los Angeles (Shah et al., 2019; Pai et al., 2020).
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This may stem from the original SIMPLE model with constant parameters missing the
ability to change the amount and reactivity of the emissions, which are different for the various
urban regions, versus the ASOA precursors being emitted proportionally to only CO (Hodzic and
Jimenez, 2011; Hayes et al., 2015). For example, in the HTAP emissions inventory, the CO
emissions for Seoul, Los Angeles, and Mexico City are all similar (Fig. S8); thus, the original
SIMPLE model would suggest similar ASOA/ACO for all three urban locations. However, as
shown in Fig. 24 and Fig. 35, the ASOA/ACO is different by nearly a factor of 2. The inclusion
of the emissions and reactivity, where Ry for Seoul is approximately a factor of 2.5 higher
than Los Angeles and Seoul, into the improved SIMPLE model better accounts for the variability
in SOA production, as shown in Fig. 25. Thus, the inclusion and use of this improved SIMPLE
model refines the simplified representation of ASOA in chemical transport models and/or box
models.

The “improved” SIMPLE shows higher ASOA compared to the default VBS
GEOS-Chem (Fig. 6a,b). In areas strongly impacted by urban emissions (e.g., Europe, East Asia,
India, east and west coast US, and regions impacted by Santiago, Chile, Buenos Aires,
Argentina, Sao Paulo, Brazil, Durban and Cape Town, South Africa, and Melbourne and Sydney,
Australia), the “improved” SIMPLE model predicts up to 14 ug m= more ASOA, or ~30 to 60
times more ASOA than the default scheme (Fig. 6¢,d). As shown in Fig. 1, during intensive
measurements, the ASOA composed 17-39% of PM,, with an average contribution of ~25%. The
default ASOA scheme in GEOS-Chem greatly underestimates the fractional contribution of
ASOA to total PM, (<2%; Fig. 6¢). The “improved” SIMPLE model greatly improves the

predicted fractional contribution, showing that ASOA in the urban regions ranges from 15-30%,
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with an average of ~15% for the grid cells corresponding to the urban areas investigated here
(Fig. 6f). Thus, the “improved” SIMPLE predicts the fractional contribution of ASOA to total
PM, ; far more realistically, compared to observations. As discussed in Sect. 2.3 and Eq. 11,
having the model accurately predict the fractional contribution of ASOA to the total PM is very
important, as the total PM,  is derived from satellite-based estimates (van Donkelaar et al.,
2015), and the model fractions are then applied to those total PM, . estimates. The ability for the
“improved” SIMPLE model to better represent the ASOA composition provides confidence

attributing the ASOA contribution to premature mortality.

5. Preliminary Evaluation of Worldwide Premature Deaths Due to ASOA with Updated
SIMPLE Parameterization

The improved SIMPLE parameterization is used along with GEOS-Chem to provide an
accurate estimation of ASOA formation in urban areas worldwide and provide an ability to
obtain realistic simulations of ASOA based on measurement data. We use this model to quantify
the attribution of PM, ; ASOA to premature deaths. Analysis up to this point has been for PM,;
however, both the chemical transport model and epidemiological studies utilize PM, . For
ASOA, this will not impact the discussion and results here because the mass of OA (typically
80-90%) is dominated by PM, (e.g., Bae et al., 2006; Seinfeld and Pandis, 2006), and ASOA is
formed mostly through condensation of oxidized species, which favors partitioning onto smaller
particles (Seinfeld and Pandis, 2006).

The procedure for this analysis is described in Fig. 7 and Sect. 2.35 and S32:6. Briefly,

we combine high-resolution satellite-based PM,; estimates (for exposure) and a chemical
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transport model (GEOS-Chem, for fractional composition) to estimate ASOA concentrations and
various sensitivity analysis (van Donkelaar et al., 2015). We calculated ~3.3 million premature
deaths (using the Integrated Exposure-Response, IER, function) are due to long-term exposure of
ambient PM, ; (Fig. S9%, Table S164), consistent with recent literature (Cohen et al., 2017).

The attribution of ASOA PM, ; premature deaths can be calculated one of two ways: (a)
marginal method (Silva et al., 2016) or (b) attributable fraction method (Anenberg et al., 2019).
For method (a), it is assumed that a fraction of the ASOA is removed, keeping the rest of the
PM, ; components approximately constant, and the change in deaths is calculated from the deaths
associated with the total concentration less the deaths calculated using the reduced total PM, .
concentrations. For method (b), the health impact is attributed to each PM,; component by
multiplying the total deaths by the fractional contribution of each component to total PM, ;. For
method (a), the deaths attributed to ASOA are ~340,000 people per year (Fig. 8); whereas, for
method (b), the deaths are ~370,000 people per year. Both of these are based on the IER response
function (Cohen et al., 2017).

Additional recent work (Burnett et al., 2018) has suggested less reduction in the
premature deaths versus PM, ; concentration relationship at higher PM, s concentrations, and
lower concentration limits for the threshold below which this relationship is negligible, both of
which lead to much higher estimates of PM, associated premature deaths. This is generally
termed the Global Exposure Mortality Model (GEMM). Using the two attribution methods
described above (a and b), the ASOA PM,; premature deaths are estimated to be ~640,000

(method a) and ~900,000 (method b) (Fig. S9% and Fig. S120 and Table S175).
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Compared to prior studies using chemical transport models to estimate premature deaths
associated with ASOA (e.g., Silva et al., 2016; Ridley et al., 2018), which assumed non-volatile
POA and “traditional” ASOA precursors, the attribution of premature mortality due to ASOA is
over an order of magnitude higher in this study (Fig. 9). This occurs using either the [ER and
GEMM approach for estimating premature mortality (Fig. 9). For regions with larger populations
and more PM, ; pollution, the attribution is between a factor of 40 to 80 higher. This stems from
the non-volatile POA and “traditional” ASOA precursors over-estimating POA and
under-estimating ASOA compared to observations (Schroder et al., 2018). These offsetting
errors will lead to model predicted total OA similar to observations (Ridley et al., 2018; Schroder
et al., 2018), yet different conclusions on whether POA versus SOA is more important for
reducing PM,, associated premature mortality. Using a model constrained to day-time
atmospheric observations (Fig. 25 and Fig. 46, see Sect. 4) leads to a more accurate estimation of
the contribution of photochemically-produced ASOA to PM, s associated premature mortality
that has not been possible in prior studies. We note that ozone concentrations change little as we
change the ASOA simulation (see Sect. S4-in-the-SI and Fig. S142).

A limitation in this study is the lack of sufficient measurements in South and Southeast
Asia, Eastern Europe, Africa, and South America (Fig. 1), though these areas account for 44% of
the predicted reduction in premature mortality for the world (Table S164). However, as
highlighted in Table S186, these regions likely still consume both transportation fuels and VCPs,
although in lower per capita amounts than more industrialized countries. This consumption is
expected to lead to the same types of emissions as for the cities studied here, though more field

measurements are needed to validate global inventories of VOCs and resulting oxidation
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products in the developing world. Transportation emissions of VOCs are expected to be more
dominant in the developing world due to higher VOC emission factors associated with inefficient
combustion engines, such as two-stroke scooters (Platt et al., 2014) and auto-rickshaws (e.g.,
Goel and Guttikunda, 2015).

Solid fuels are used for residential heating and cooking, which impact the outdoor air
quality as well (Hu et al., 2013, 2016; Lacey et al., 2017; Stewart et al., 2020), and which also
lead to SOA (Heringa et al., 2011). As discussed in Sect. 3.1, though the majority of the studies
evaluated here occurred in spring to summer time, when solid fuel emissions are decreased, two
studies occurred during the winter/early spring time, where solid fuel emissions were important
(Hu et al., 2013; Schroder et al., 2018). These studies still follow the same relationship between
ASOA and Ry as the studies that focused on spring/summer time photochemistry. Thus, the
limited datasets available indicate that photochemically produced ASOA from solid fuels follow
a similar relationship to that from other ASOA sources.

Also, solid fuel sources are included in the inventories used in our modeling. For the
HTaP emission inventory used here (Janssens-Maenhout et al., 2015), small-scale combustion,
which includes heating and cooking (e.g., solid-fuel use), is included in the residential emission
sector. Both CO and BTEX are included in this source, and can account for a large fraction of the
total emissions where solid-fuel use may be important (Fig. S15). Thus, as CO and BTEX are
used in the updated SIMPLE model, and campaigns that observed solid-fuel emissions fall
within the trend for all urban areas, the solid-fuel contribution to photochemically-produced
ASOA is accounted for (as accurately as allowed by current datasets) in the estimation of ASOA

for the attribution to premature mortality.
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Note that recent work has observed potential nighttime aqueous chemistry and/or
oxidation by nitrate radical from solid fuel emissions to produce ASOA (Kodros et al., 2020).
Thus, missing this source of ASOA may lead to an underestimation of total ASOA versus the
photochemically-produced ASOA we discuss here, leading to a potential underestimation in the
attribution of ASOA to premature mortality. From the studies that investigated “night-time
aging” of solid-fuel emissions to form SOA, we predict that the total ASOA may be
underestimated by 1 to 3 pg m™ (Kodros et al., 2020). This potential underestimation, though, is
less than the current underestimation in ASOA in GEOS-Chem (default versus “Updated”

SIMPLE).
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emission factors from Abidjan, Cote d’Ivoire, a developing urban area, showed the dominance of

emissions from transportation and solid fuel burning, with BTEX being an important fraction of
the total emissions, and that all the emissions were efficient in producing ASOA (Dominutti et
al., 2019). Further, investigation of emissions in New Delhi region of India demonstrated the
importance of both transportation and solid fuel emissions (Stewart et al., 2020; Wang et al.,
2020) while model comparisons with observations show an underestimation of OA compared to
observations due to a combination of emissions and OA representation (Jena et al., 2020).
Despite emission source differences, SOA is still an important component of PM, . (e.g., Singh et
al., 2019) and thus will impact air quality and premature mortality in developing regions.

Admittedly, though, our estimates will be less accurate for these regions.
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6. Conclusions

In summary, ASOA is an important, though inadequately constrained component of air
pollution in megacities and urban areas around the world. This stems from the complexity
associated with the numerous precursor emission sources, chemical reactions, and oxidation
products that lead to observed ASOA concentrations. We have shown here that the variability in
observed ASOA across urban areas is correlated with Ry.ry, @ marker for the co-emissions of
IVOC from both transportation and VCP emissions. Global simulations indicate ASOA
contributes to a substantial fraction of the premature mortality associated with PM, .. Reductions
of the ASOA precursors will reduce the premature deaths associated with PM, ,, indicating the
importance of identifying and reducing exposure to sources of ASOA. These sources include
emissions that are both traditional (transportation) as well as non-traditional emissions of
emerging importance (VCPs) to ambient PM, ; concentrations in cities around the world. Further
investigation of speciated IVOCs and SVOCs for urban areas around the world along with SOA
mass concentration and other photochemical products (e.g., O,, PAN, and HCHO) for other
urban areas, especially in South Asia, throughout Africa, and throughout South America, would
provide further constraints to improve the SIMPLE model and our understanding of the emission

sources and chemistry that leads to the observed SOA and its impact on premature mortality.
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Pie Chart Legend
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894 Figure 1. Non-refractory submicron aerosol composition measured in urban and urban outflow
895 regions from field campaigns used in this study, all in units of ug m=, at standard temperature
896 (273 K) and pressure (1013 hPa) (sm™). See Sect. S32 and (GEOS-Chem-Seetion-and-Table 1)
897 for further information on measurements, studies, and apportionment of SOA into ASOA and
898 BSOA.
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Figure 2. (a) Scatter plot of background and dilution corrected ASOA concentrations
(AASOA/ACO at PA = 0.5 equivalent days) versus BTEX emission reactivity ratio (Rgpy™=

Zi[voc/ CO],- for multiple major field campaigns on three continents. Comparison of ASOA

versus (b) Ox, (c) PAN, and (d) HCHO slopes versus the ratio of the BTEX/Total emission
reactivity, where total is the OH reactivity for the emissions of BTEX + C—2-3 alkenes + C2-6
alkanes (Table S5 through Table S7), for the campaigns studied here. For all figures, red shading
is the £1c uncertainty of the slope, and the bars are +1c uncertainty of the data (see Sect. S5).
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928

929 Figure 324. (a) A comparison of the ASOA/ACO for the urban campaigns on three continents.

930 Comparison of (b) SOA/Ox, (¢) SOA/HCHO, and (d) SOA/PAN slopes for the urban areas

931 (Table S4). For (b) through (d), cities marked with * have no HCHO, PAN, or hydrocarbon data.
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942 Figure 46. (a) Budget analysis for the contribution of the observed ASOA/Ry -y (Fig. 25) for
943 cities with known emissions inventories for different volatility classes (see SI and Fig. 52 and
944 Fig. S63). (b) Same as (a), but for sources of emissions. For (a) and (b), SVOC is the
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945 contribution from both vehicle and other (cooking, etc.) sources. See—Seet—2—and SI for
946 information about the emissions, ASOA precursor contribution, error analysis, and discussion
947 about sensitivity of emission inventory IVOC/BTEX ratios for different cities and years in the
948 US.

49



M Gas Exhaust + Evaporation m Diesel Exhaust =1 Other Fossil Fuel Sources
m Non-fossil fuel emissions, or VCPs (Industrial + Consumer)
400 — (a) Beijing, 2011 - — 20
| 7
200 — —10g
o]
<
100 — —5 4
0- —0
250 7 (b) London/UK, 2012 250 (d) NE US, 2002
~ 200 — -
949 [m)
2 100 —
¢
= 50 ]
O —1
160 "] (c) Los Angeles, 2012 160 ] (e) New York City, 2015
120 B
80 — 80 —
«- 0|
0— 0 -
BTEX IVOC BTEX IVOC

950 Figure 5. Comparison of BTEX and IVOC sources for (a) Beijing (see SI section about Beijing
951 emission inventory), (b) London (see SI section about London/UK emission inventory), and (c)
952 Los Angeles, (d) Northeast United States, and (e¢) New York City (see SI section about United
953 States for (c) — (e)). For (a), BTEX is on the left axis and IVOC is on the right axis, due to the
954 small emissions per day for IVOC.

50



955

956
957
958
959
960
961

.

0o 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
(b) Updated SIMPLE ASOA (ug m )

-100 0 100
— m
I LB T I LU I LI
10 12 0 10 20 30 40 50 60
(c) Updated SIMPLE — Default ASOA (ug m'3) (d) Updated SIMPLE / Default ASOA

50

Latitude (°)

|
(&)

0.0 0.4 0.8 1.2 10 15 20
(e) Default ASOA / PM, 5 (%) (f) Updated SIMPLE ASOA / PM, 5 (%)
50 50
0 0
-50 -50
-100 0 100 -100 0 100

Longitude (°)

Figure 6. (a) Annual average modeled ASOA using the default VBS. (b) Annual average
modeled ASOA using the updated SIMPLE model. (c) Difference between annual average
modeled updated SIMPLE and default VBS. (d) Ratio between annual average modeled updated
SIMPLE and default VBS. (e) Percent contribution of annual average modeled ASOA using
default VBS to total modelled PM, .. (f) Percent contribution of annual average modeled ASOA
using updated SIMPLE to total modelled PM, ..
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High Resolution PM, s from satellite- Aromatic Emission Reactivity Ratio for Standard emissions for
based estimates GEOS-Chem (Fig. 2, 3,& 5, Eq. 10) GEOS-Chem

Calculate premature mortality from satellite- Calculate USOA using SIMPLE and updated Calculate USOA using standard
based PM, 5 estimates (Eq. 4 —6) values for GEOS-Chem (Fig. 5, Eq. 9, 11, 12) volatility basis set method

Calculate fractional contribution USOA to
\fal PM, 5 foFOS-Chem

Calculate attribution of USOA to PM, 5
premature mortality with one of two
methods (Eq. 4—6)

Compare attribution of USOA to
total PM, 5 premature mortality w/
diff. sensitivity

High Resolution PM, 5 from satellite- Aromatic Emission Reactivity Ratiofor Standard emissions for
based estimates GEOS-Chem (Fig. 2 & 5, Eq.5) GEOS-Chem
Calculate premature mortality from satellite- Calculate ASOA using SIMPLE and updated Calculate ASOA using standard
based PM, 5 estimates (Eq. 8 —10) values for GEOS-Chem (Fig. 2, Eq. 4 —7) volatility basis set method
Il

Calculate fractional contribution ASOA to
total PM, 5 for GEQS-Chem

T

Calculate fractional contribution ASOA to
satellite-based estimates (Eq. 11)

|

Calculate attribution of ASOA to PM, 5
premature mortality with one of two
methods (Eq. 8 — 10)
Compare attribution of ASOA to
total PM, 5 premature mortality w/
diff. sensitivity

Figure 7. Flowchart describing how observed ASOA production was used to calculate ASOA in
GEOS-Chem, and how the satellite-based PM,  estimates and GEOS-Chem PM, ; speciation was
used to estimate the premature mortality and attribution of premature mortality by ASOA. See
Sect. 2 and SI for further information about the details in the figure. SIMPLE is described in
Eq. 49 and by Hodzic and Jimenez (2011) and Hayes et al. (2015). The one of two methods
mentioned include either the Integrated Exposure-Response (IER) (Burnett et al., 2014) with
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970 Global Burden of Disease (GBD) dataset (IHME, 2016) or the new Global Exposure Mortality
971 Model (GEMM) (Burnett et al., 2018) methods. For both IER and GEMM, the marginal method
972 (Silva et al., 2016) or attributable fraction method (Anenberg et al., 2019) are used.
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975 Figure 8. Five-year average (a) estimated reduction in PM, .-associated premature deaths, by
976 country, upon removing ASOA from total PM,, and (b) fractional reduction (reduction PM, ,
977 premature deaths / total PM, premature deaths) in PM, -associated premature deaths, by
978 country, upon removing ASOA from GEOS-Chem. The IER methods are used here. See Fig. SO7
979 and Fig. S126 for results using GEMM. See Fig. S108 for 10x10 km?” area results in comparison
980 with country-level results.
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982 Figure 9. Attribution of premature mortality to ASOA using (a) IER or (b) GEMM, using the
983 non-volatile primary OA and traditional SOA precursors method in prior studies (e.g., Ridley et
984 al., 2018). The increase in attribution of premature mortality to ASOA for the “SIMPLE” model
985 (Fig. 8) versus the non-volatile primary OA and traditional SOA precursor method (“Default”),
986 for (c) IER and (d) GEMM.
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987 Table 1. List of campaigns used here. For values previously reported for those campaigns, they
988 are noted. For Seasons, W = Winter, Sp = Spring, and Su = Summer.

Field Coordinates Previous
Location Campaien Time Period Season Publication/Campaig
paig Long. (°) Lat. (°) n Overview
Houston, TX, TexAQS 954 2938 15/Aug/2000 - Su Jimenez et al. (2009)?,
USA (2000) 2000 ' ’ 15/Sept/2000 Wood et al. (2010)°
. Jimenez et al. (2009)",
Northeast USA NEAQS —78.1 - 26/July/2002; de Gouw and Jimenez
32.8-43.1  29/July/2002 - Su . X
(2002) 2002 -70.5 10/Aug/2002 (2009)°, Kleinman et
& al. (2007)°
Mexico City, MCMA-200 ~992 195 31/Mar/2003 - S Molina et al. (2007),
Mexico (2003) 3 ’ ' 04/May/2003 P Herndon et al. (2008)°
Kondo et al. (2008)%,
Tokyo, Japan 24/July/2004 - Miyakawa et al.
(2004) 139.7 357 14/Aug/2004 Su (2008)*, Morino et al.
(2014)°
Molina et al. (2010),
Mexico City, —99.4 - . 04/Mar/2006 - DeCarlo et al. (2008)?,
Mexico (2006) MILAGRO —98.6 19.0-19.8 29/Mar/2006 Sp Wood et al. (2010)°,
DecCarlo et al. (2010)°
Paris, France 13/July/2009 - Freney et al. (2014)%,
(2009) MEGAPOLI 48.9 24 29/July/2009 Su Zhang et al. (2015)°
Pasadena, CA, _ 15/May/2010 - Ryerson et al. (2013),
USA (2010) CalNex 8.1 341 16/June/2010 S Hayes etal. (2013)"
Changdao
Island, China CAPTAIN 120.7 38.0 gwarr//zzgllf - Sp Huetal. (2013)*
2011) P
Beijing, China CareBeijing 03/Aug/2011 - b
2011) 2011 116.4 39.9 15/Sept/2011 Su Hu et al. (2016)
London, UK 22/July/2012 - Bohnenstengel et al.
(2012) ClearfLo 0.1 313 18/Aug/2012 Su 015
Houston, TX, 4 —96.0 - ) 01/Aug/2013 -
USA (2013) SEAC'RS 940 29.2-30.3 23/Sept/2013 Su Toon et al. (2016)
New York City, _ )
NY, USA WINTER 740 39.5-42.5  07/Feb/2015 w o Schroderetal
—69.0 (2018)™
(2015)
Seoul, South ) 124.6 - ) 01/May/2016 - abod
Korea (2016) KORUS-AQ 128.0 36.8-37.6 10/Tune/2016 Sp Nault et al. (2018)

989 “Reference used for PM, composition. "Reference used for SOA/O, slope.

990 AOA/ACO value. ‘Reference used for SOA/HCHO and SOA/PAN slopes

‘Reference used for
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https://paperpile.com/c/RJnuP3/n5RMO/?noauthor=1
https://paperpile.com/c/RJnuP3/oOJkC/?noauthor=1
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