

1 **Reviewing Global Estimates of Surface Reactive Nitrogen Concentration and**
2 **Deposition Using Satellite Retrievals**

3 Lei Liu ^{a,*}, Xiuying Zhang ^b, Wen Xu ^c, Xuejun Liu ^c, Xuehe Lu ^b, Jing Wei ^{d,e}, Yi Li ^f,
4 Yuyu Yang ^a, Zhen Wang ^b, Anthony Y. H. Wong ^g

5 ^aCollege of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000,
6 China

7 ^b International Institute for Earth System Science, Nanjing University, Nanjing,
8 210023, China

9 ^c College of Resources and Environmental Sciences, National Academy of
10 Agriculture Green Development, China Agricultural University, Beijing, 100193,
11 China

12 ^d State Key Laboratory of Remote Sensing Science, College of Global Change and
13 Earth System Science, Beijing Normal University, Beijing, China

14 ^e Department of Atmospheric and Oceanic Science, Earth System Science
15 Interdisciplinary Center, University of Maryland, College Park, MD, USA

16 ^fChief Technology Officer SailBri Cooper Inc., Beaverton OR, 97008, USA

17 ^g Department of Earth and Environment, Boston University, Boston, MA 02215, USA

18 * Correspondence to Lei Liu (liuleigeo@lzu.edu.cn).

19 **Abstract**

20 Since the industrial revolution, human activities have dramatically changed the
21 nitrogen (N) cycle in natural systems. Anthropogenic emissions of reactive nitrogen
22 (N_r) can return to the earth's surface through atmospheric N_r deposition. Increased N_r
23 deposition may improve ecosystem productivity. However, excessive N_r deposition
24 can cause a series of negative effects on ecosystem health, biodiversity, soil, and
25 water. Thus, accurate estimations of N_r deposition are necessary for evaluating its

26 environmental impacts. The United States, Canada and Europe have successively
27 launched a number of satellites with sensors that allow retrieval of atmospheric NO₂
28 and NH₃ column density, and therefore estimation of surface N_r concentration and
29 deposition at an unprecedented spatiotemporal scale. Atmosphere NH₃ column can be
30 retrieved from atmospheric infra-red emission, while atmospheric NO₂ column can be
31 retrieved from reflected solar radiation. In recent years, scientists attempted to
32 estimate surface N_r concentration and deposition using satellite retrieval of
33 atmospheric NO₂ and NH₃ columns. In this study, we give a thorough review on
34 recent advances of estimating surface N_r concentration and deposition using the
35 satellite retrievals of NO₂ and NH₃, present a framework of using satellite data to
36 estimate surface N_r concentration and deposition based on recent works, and
37 summarize the existing challenges for estimating surface N_r concentration and
38 deposition using the satellite-based methods. We believe that exploiting satellite data
39 to estimate N_r deposition has a broad and promising prospect.

40 **Keywords**

41 Nitrogen deposition; Satellite retrieval; Surface concentration; Oxidized and reduced
42 N_r

43 **1. Introduction**

44 Nitrogen (N) exists in three forms in the environment including reactive nitrogen (N_r),
45 organic nitrogen (ON) and nitrogen gas (N₂) (Canfield et al., 2010). N₂ is the main
46 component of air, accounting for 78% of the total volume of air, but it cannot be
47 directly used by most plants. N_r refers to the general term of N-containing substances
48 in atmosphere, plants, soils and fertilizers that are not combined with carbon. N_r (such
49 as NO₃⁻ and NH₄⁺) is the main form of N that can be directly used by most plants, but
50 the content of N_r in nature is much lower compared with ON and N₂ (Vitousek et al.,

51 1997;Nicolas and Galloway, 2008). The supply of N_r is essential for all life forms and
52 contributes to the increase in agricultural production, thus providing sufficient food
53 for the growing global population (Galloway et al., 2008;David et al., 2013;Galloway
54 et al., 2004b;Erisman et al., 2008). Before the industrial revolution, N_r mainly came
55 from natural sources such as biological N fixation, lightning and volcanic eruption
56 (Galloway et al., 2004a). Since the industrial revolution, human activities (e.g.
57 agricultural development, combustion of fossil energy) have greatly perturbed the N
58 cycle in natural systems (Canfield et al., 2010;Kim et al., 2014;Lamarque et al.,
59 2005).

60 N_r (NO_x and NH_3) emitted to the atmosphere will return to the earth surface through
61 atmospheric deposition (Liu et al., 2011). Atmospheric N_r deposition refers to the
62 process in which N_r are removed from the atmosphere, including wet (rain and snow)
63 and dry (gravitational settling, atmospheric turbulence, etc.) deposition (Xu et al.,
64 2015;Zhang et al., 2012;Pan et al., 2012). The input of N_r over terrestrial natural
65 ecosystems primarily comes from the N_r deposition (Shen et al., 2013;Sutton et al.,
66 2001;Larssen et al., 2011). In the short term, atmospheric N_r deposition can increase
67 the N_r input to ecosystems, which promotes plant growth and enhances ecosystem
68 productivity (Erisman et al., 2008;Sutton et al., 2013). However, excessive
69 atmospheric N_r deposition also causes a series of environmental problems (Liu et al.,
70 2017d). Due to the low efficiency of agricultural N application, plenty of N_r is lost
71 through runoff, leaching and volatilization, causing serious environmental pollution.
72 Excessive N_r deposition may aggravate the plant's susceptibility to drought or frost,
73 reduce the resistance of plant to pathogens or pests, and further affect the physiology
74 and biomass distribution of vegetation (ratio of roots, stems and leaves) (Stevens et al.,
75 2004;Nadelhoffer et al., 1999;Bobbink et al., 2010;Janssens et al., 2010). Excessive

76 N_r leads to eutrophication and related algal blooms over aquatic ecosystems, reducing
77 water biodiversity (Paerl et al., 2014), while excessive N_r in drinking water also poses
78 a threat to human health (Zhao et al., 2013;Wei et al., 2019). Therefore, monitoring
79 and estimation of surface N_r concentration and deposition on the global scale are of
80 great importance and urgency.

81 The methods of estimating atmospheric N_r deposition can be divided into three
82 categories: ground-based monitoring, atmospheric chemical transport modeling
83 (ACTM) and satellite-based estimation. Ground-based monitoring is considered to be
84 the most accurate and quantitative method, which can effectively reflect the N_r
85 deposition in local areas. ACTM can simulate the processes of N_r chemical reaction,
86 transport, and deposition, as well as the vertical distribution of N_r . Satellite-based
87 estimation establishes empirical, physical or semi-empirical models by connecting the
88 ground-based N_r concentrations and deposition with satellite-derived N_r concentration.
89 This study focuses on reviewing the recent development of satellite-based methods to
90 estimate N_r deposition. Since the estimation of N_r concentrations is just a part of the
91 estimation of dry N_r depositions, we here mainly reviewed the progress of dry N_r
92 depositions using the satellite observation. We firstly give a brief introduction to the
93 progress of ground-based monitoring, ACTM-based methods, and then present a
94 detailed framework of using satellite observation to estimate dry and wet N_r
95 deposition (including both oxidized and reduced N_r). Next, we review the recent
96 advances of the satellite-based methods of estimating N_r deposition. Finally, we
97 discuss the remaining challenges for estimating surface N_r concentration and
98 deposition using satellite observation.

99 **2 Methods for Estimating Surface N_r Concentration and Deposition**

100 **2.1 Ground-based Monitoring**

101 Ground-based monitoring of N_r deposition can be divided into two parts: wet and dry
102 N_r deposition monitoring. Since the 1970s, there have been large-scale monitoring
103 networks focusing on the wet N_r deposition. The main large-scale regional monitoring
104 networks include Canadian Air and Precipitation Monitoring Network (CAPMoN),
105 Acid Deposition Monitoring Network in East Asia (EANET), European Monitoring
106 and Evaluation Program (EMEP), United States National Atmospheric Deposition
107 Program (NADP), World Meteorological Organization Global Atmosphere Watch
108 Precipitation Chemistry Program, and Nationwide Nitrogen Deposition Monitoring
109 Network in China (NNDMN) (Tan et al., 2018;Vet et al., 2014). The detailed
110 scientific objectives of the wet N_r deposition observation networks vary, but most of
111 the observation networks mainly concentrate on the spatiotemporal variation of wet
112 deposition of ions including N_r compounds, the long-term trends of ions in
113 precipitation, and the evaluation of ACTMs.

114 Compared with wet N_r deposition monitoring, dry N_r deposition monitoring started
115 late, due to the limitation of monitoring technology since it is more difficult to be
116 quantified (affected greatly by surface roughness, air humidity, climate and other
117 environmental factors) (Liu et al., 2017c). Dry N_r deposition observation networks
118 include US ammonia monitoring network (AMoN), CAPMoN, EANET and EMEP.
119 The monitoring methods of dry N_r deposition are mainly divided into direct
120 monitoring (such as dynamic chambers) and indirect monitoring (such as inferential
121 methods). The inferential model is widely applied in ground-based monitoring
122 networks (such as EANET and NNDMN), mainly because this method is more
123 practical and simpler. In inferential models, dry deposition is divided into two parts:

124 surface N_r concentrations and the deposition velocity (V_d) of N_r (Nowlan et al., 2014).
125 V_d can be estimated by meteorology, land use types of underlying surface as well as
126 the characteristics of each N_r component itself using resistance models (Nemitz et al.,
127 2001). Thus, dry N_r deposition monitoring networks only need to focus on the
128 quantification of surface concentration of individual N_r components. The N_r
129 components in the atmosphere are very complex, including N_2O_5 , HONO, NH_3 , NO_2 ,
130 HNO_3 and particulate NH_4^+ and NO_3^- . Most monitoring networks include the major
131 N_r species such as gaseous NH_3 , NO_2 , HNO_3 and the particles of NH_4^+ and NO_3^- .
132 Effort of ground-based N_r deposition monitoring mostly concentrates on wet N_r
133 deposition, while observations of dry N_r deposition are relatively scarce especially for
134 surface HNO_3 and NH_4^+ and NO_3^- . Second, most observation networks focus on a few
135 years or a certain period of time, leading to the lack of long-term continuously
136 monitoring on both wet and dry N_r deposition. More importantly, the global N_r
137 deposition monitoring network has not been established, and the sampling standards
138 in different regions are not unified. These outline the potential room for improvement
139 of ground-based N_r deposition monitoring.

140 **2.2 Atmospheric Chemistry Transport Model (ACTM) Simulation**

141 An ACTM can simulate N_r deposition at regional or global scales through explicitly
142 representing the physical and chemical processes of atmospheric N_r components
143 (Zhao et al., 2017; Zhang et al., 2012). Wet N_r deposition flux is parameterized as
144 in-cloud, under-cloud and precipitation scavenging (Amos et al., 2012; Levine and
145 Schwartz, 1982; Liu et al., 2001; Mari et al., 2000), while dry deposition flux can be
146 obtained as the product of surface N_r concentration and V_d , which is typically
147 parameterized as a network of resistances (Wesely and Hicks, 1977). Based on the
148 integrated results of 11 models of HTAP (hemispheric transport of air pollution), Tan

149 et al. found that about 76%-83% of the ACTM's simulation results were $\pm 50\%$ of the
150 monitoring values, and the modeling results underestimated the wet deposition of
151 NH_4^+ and NO_3^- over Europe and East Asia, and overestimated the wet deposition of
152 NO_3^- over the eastern US (Tan et al., 2018). Though regional ACTMs can be
153 configured at very high horizontal resolution (e.g., $1 \times 1 \text{ km}^2$) (Kuik et al., 2016), the
154 horizontal resolution of global ACTMs are relatively coarse ($1^\circ \times 1^\circ$ - $5^\circ \times 4^\circ$) (Williams
155 et al., 2017), which cannot indicate the local pattern of N_r deposition. On the other
156 hand, the N_r emission inventory used to drive an ACTM is highly uncertain, with the
157 uncertainty of the NO_x emission at about $\pm 30\text{-}40\%$, and that of NH_3 emission at about
158 $\pm 30\text{-}80\%$ (Zhang et al., 2009; Cao et al., 2011).

159 **2.3 Satellite-based Estimation of Surface N_r Concentration and Deposition**

160 Satellite observation has wide spatial coverages and high resolution, and is
161 spatiotemporally continuous. Atmospheric NO_2 and NH_3 columns can be derived
162 from satellite measurements with relatively high accuracy (Van Damme et al.,
163 2014a; Boersma et al., 2011), providing a new perspective about atmospheric N_r
164 abundance.

165 Satellite instruments that can monitor NO_2 in the atmosphere include GOME (Global
166 Ozone Monitoring Experience), SCIAMACHY (SCanning Imaging Absorption
167 SpectroMeter for Atmospheric ChartographY), OMI (Ozone Monitoring Instrument),
168 GOME-2 (Global Ozone Monitoring Experience-2). Some scholars applied satellite
169 NO_2 columns to estimate the surface NO_2 concentration, and then dry NO_2 deposition
170 by combining the surface NO_2 concentration and modeled V_d . Cheng et al. established
171 a statistical model to estimate the surface NO_2 concentration based on the
172 SCIAMACHY NO_2 columns, and then estimated the dry deposition of NO_2 over
173 eastern China (Cheng et al., 2013). This method used the simple linear model and did

174 not consider the vertical profiles of NO₂ (Cheng et al., 2013). Lu et al. established a
175 multivariate linear regression model based on the SCIAMACHY and GOME NO₂
176 columns, meteorological data and ground-based monitoring N_r deposition, and then
177 estimated the global total N_r deposition (Lu et al., 2013). Lu et al. could not
178 distinguish the contribution of dry and wet N_r deposition using the multivariate linear
179 regression model (Lu et al., 2013). Jia et al. established a simple linear regression
180 model based on OMI tropospheric NO₂ column and ground-based surface N_r
181 concentration, and then estimated the total amounts of dry N_r deposition (Jia et al.,
182 2016). Jia et al. used OMI tropospheric NO₂ column to estimate the dry deposition of
183 reduced N_r deposition (NH₃ and NH₄⁺), which could also bring great errors since the
184 OMI NO₂ column could not indicate the NH₃ emission. These studies highlight the
185 problem of using only NO₂ columns to derive total N_r deposition, that NO₂ columns
186 give us highly limited information about the abundance of reduced N_r (NH₃ and
187 NH₄⁺).

188 Lamsal et al. first used the relationship between the NO₂ column and surface NO₂
189 concentration at the bottom layer simulated by an ACTM to convert OMI NO₂
190 column to surface NO₂ concentration (Lamsal et al., 2008). A series of works (Lamsal
191 et al., 2013;Nowlan et al., 2014;Kharol et al., 2018) have effectively estimated
192 regional and global surface NO₂ concentration using satellite NO₂ column combining
193 with ACTM-derived relationship between the NO₂ column and surface NO₂
194 concentration simulated. It is worth mentioning that Nowlan et al. applied OMI NO₂
195 column to obtain the global dry NO₂ deposition during 2005-2007 for the first time
196 (Nowlan et al., 2014). However, using satellite NO₂ column and ACTM-derived
197 relationship between the NO₂ column and surface NO₂ concentration may lead to an
198 underestimation of surface NO₂ concentration. Kharol et al. found that the

199 satellite-derived surface NO_2 concentration using the above method is only half of the
200 observed values (Kharol et al., 2015). To resolve such potential underestimation,
201 Larkin et al. established a statistical relationship between the satellite-derived and
202 ground measured surface NO_2 concentration, and then calibrated the satellite-derived
203 surface NO_2 concentration using the established relationship (Larkin et al., 2017).

204 Some researchers also estimated other N_r components (such as particulate NO_3^-)
205 based on satellite NO_2 column. Based on the linear model between NO_2 , NO_3^- , HNO_3
206 obtained by ground-based measurements, Jia et al. calculated the surface NO_3^- and
207 HNO_3 concentration using satellite-derived surface NO_2 concentration and their
208 relationship (Jia et al., 2016). Geddes et al. reconstructed the NO_x emission data by
209 using the satellite NO_2 column, and then estimated the global NO_x deposition by an
210 ACTM, but the spatial resolution of global NO_x deposition remains low ($2^\circ \times 2.5^\circ$),
211 failing to exploit the higher resolution of satellite observation (Geddes and Martin,
212 2017).

213 Comparing with NO_2 , the development of satellite NH_3 monitoring is relatively late.
214 Atmospheric NH_3 was first detected by the TES in Beijing and Los Angeles (Beer et
215 al., 2008). The IASI sensor also detected atmospheric NH_3 from a biomass burning
216 event in Greece (Coheur et al., 2009). Subsequently, many scholars began to develop
217 more reliable satellite NH_3 column retrievals (Whitburn et al., 2016; Van Damme et al.,
218 2014a), validate the satellite-retrieved NH_3 column with the ground-based observation
219 (Van Damme et al., 2014a; Dammers et al., 2016; Li et al., 2017), and compare the
220 satellite NH_3 column with the aircraft measured NH_3 column (Van Damme et al.,
221 2014b; Whitburn et al., 2016). In recent years, some scholars have carried out the
222 works of estimating surface NH_3 concentration based on satellite NH_3 column. Liu et
223 al. obtained the satellite-derived surface NH_3 concentration in China based on the

IASI NH₃ column coupled with an ACTM, and deepened the understanding of the spatial pattern of surface NH₃ concentration in China (Liu et al., 2017b). Similarly, Graaf et al. carried out the relevant work in Europe based on the IASI NH₃ column coupled with an ACTM, and estimated the dry NH₃ deposition in West Europe (Van der Graaf et al., 2018). Jia et al. first constructed the linear model between surface NO₂ and NH₄⁺ concentration based on ground monitoring data, and then calculated the NH₄⁺ concentration using satellite-derived surface NO₂ concentration and their relationship (Jia et al., 2016). However, as the emission sources of NO_x (mainly from transportation and energy sectors) and NH₃ (mainly from agricultural sector) are different (Hoesly et al., 2018), the linear model between surface NO₂ and NH₄⁺ concentration may lead to large uncertainties in estimating the global NH₄⁺ concentration. There is still no report about the satellite-derived dry and wet reduced N_r deposition using satellite NH₃ column at a global scale. As reduced N_r plays an important role in total N_r deposition, satellite NH₃ should be better utilized to help estimate reduced N_r deposition.

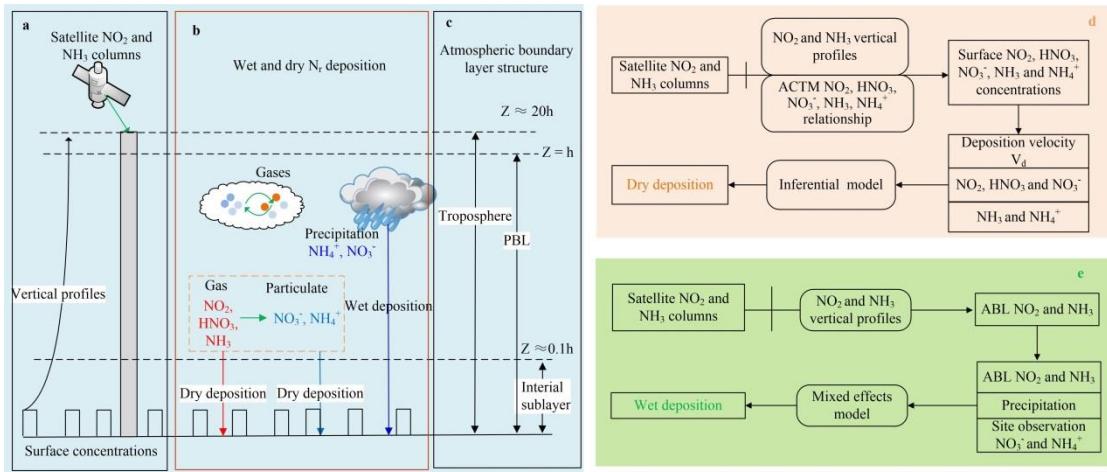
2.4 Problems in Estimating Global N_r Deposition

The spatial coverage of ground monitoring sites focusing on N_r deposition is still not adequate, and the monitoring standards and specifications in different regions of the world are not consistent, presenting a barrier to integrating different regional monitoring data. Large uncertainties exist in N_r emission inventory used to drive the ACTMs, and the spatial resolution of the modeled N_r deposition by ACTMs is coarse. Using satellite monitoring data to estimate surface N_r concentration and deposition is still in its infancy, especially for reduced N_r. Some scholars tried to use satellite NO₂ and NH₃ column to estimate the surface N_r concentration and dry N_r deposition. However, there are relatively few studies on

249 estimating wet N_r deposition. In addition, the development of satellite monitoring for
250 NH_3 in the atmosphere is relatively late (compared with NO_2). At present, IASI NH_3
251 data have been widely used, while the effective measurements of TES are less than
252 IASI; CrIS and AIRS NH_3 column products are still under development. There are
253 three main concerns in high-resolution estimation of surface N_r concentration and
254 deposition based on satellite N_r observation. (1) How to effectively couple the satellite
255 high-resolution NO_2 and NH_3 column data with the vertical profiles simulated by an
256 ACTM, and then estimates the surface N_r concentrations? This step is the key to
257 simulate the dry N_r deposition. (2) How to construct a model for estimating dry N_r
258 deposition including all major N_r species based on satellite NO_2 and NH_3 column, and
259 then estimates the dry N_r deposition at a high spatial resolution? (3) How to combine
260 the high-resolution satellite NO_2 and NH_3 column data and ground-based monitoring
261 data to construct wet N_r deposition models, and then estimate the wet N_r deposition at
262 a high spatial resolution?

263 **3. Framework of Estimating Surface N_r Concentration and Deposition Using
264 Satellite Observation**

265 Previous studies using satellite observation to estimate surface N_r concentration and
266 deposition only focused on one or several N_r components, but not including all N_r
267 components, which were decentralized, unsystematic and incomplete. Here we give a
268 framework of using satellite observation to estimate surface N_r concentration and
269 deposition as shown in **Fig. 1** based on recent advances.



270

271 **Fig. 1 Schematic diagram of dry and wet N_r deposition.** (a) indicates satellite observed NO₂
 272 and NH₃ column, and the vertical profiles by an ACTM; (b) shows dry and wet N_r deposition
 273 including the major N_r species (gaseous NO₂, HNO₃, NH₃, particulate NO₃⁻ and NH₄⁺, as well as
 274 wet NO₃⁻ and NH₄⁺ in precipitation); (c) illustrates atmospheric vertical structures including the
 275 troposphere (satellite observation), atmospheric boundary layer (ABL), interfacial sub-layer;
 276 (d) and (e) represent procedures of calculating the dry and wet N_r deposition.

277

278 3.1 Conversion of Satellite NO₂ and NH₃ Column to Surface N_r Concentration

279 An ACTM can simulate the vertical profiles of NO₂ and NH₃ with multiple layers
 280 from the surface to the troposphere. For example, the GEOS-Chem ACTM includes
 281 47 vertical layers from the earth surface to the top of the stratosphere. Most previous
 282 studies estimated the ratio of surface N_r concentration (at the first layer) to total
 283 columns by an ACTM, and then multiply the ratio by satellite columns to estimate
 284 satellite-derived surface concentration (Geddes et al., 2016; Graaf et al., 2018; Nowlan
 285 et al., 2014).

286 Another approach tries to fit general vertical profiles of NO₂ and NH₃ (Zhang et al.,
 287 2017; Liu et al., 2017b; Liu et al., 2017c), and then estimate the ratio of N_r
 288 concentration at any height to total N_r columns, and finally multiply the ratio by
 289 satellite NO₂ and NH₃ columns. This approach has an advantage compared with the
 290 previous one for that NO₂ and NH₃ concentration at all altitude included in ACTM
 291 simulations can be estimated. Satellite NO₂ and NH₃ column data had no vertical
 292 profiles. Surface NO₂ and NH₃ concentration was estimated by modeled NO₂ and

293 NH₃ vertical profiles from the CTM. The Gaussian model was constructed to fit the
294 multiple layers' NO₂ and NH₃ concentrations with the altitude. The constructed
295 Gaussian model has general rules, appropriate for converting satellite columns to
296 surface concentration simply.

297 Taking the estimation of surface NO₂ concentration using the latter approach as an
298 example, the methods and steps are introduced in the following.

299 Step 1: Calculate the monthly mean NO₂ concentrations at all layers simulated by an
300 ACTM.

301 Step 2: Construct the vertical profile function of NO₂. Multiple Gaussian functions are
302 used to fit the vertical distribution of NO₂ based on the monthly NO₂ concentrations at
303 all layers calculated in Step 1, in which the independent variable is the height
304 (altitude), and the dependent variable is NO₂ concentration at a certain height.

305 The basic form of single Gaussian function is (Zhang et al., 2017; Liu et al., 2017b; Liu
306 et al., 2017c; Whitburn et al., 2016):

$$307 \rho = \rho_{\max} e^{-\left(\frac{Z-Z_0}{\sigma}\right)^2} \quad (1)$$

308 where Z is the height of a layer in the ACTM; ρ_{\max} , Z_0 and σ are the maximum NO₂
309 concentration, the corresponding height with the maximum NO₂ concentration and the
310 thickness of NO₂ concentration layer (one standard error of Gaussian function).

311 There are two basic forms of profile shapes of NO₂: (1) NO₂ concentration reaches the
312 maximum concentration when reaching a certain height ($Z_0 \neq 0$). As the height
313 increases, the NO₂ concentration begins to decline; (2) NO₂ concentration is basically
314 concentrated on the earth surface ($Z_0 = 0$). These two cases are the ideal state of the
315 vertical distribution of NO₂ concentration. In reality, single Gaussian fitting may not
316 capture the vertical distribution of NO₂ well. To improve the accuracy of fitting, the
317 sum of multiple Gaussian functions can be used (Liu et al., 2019):

318 $\rho(Z) = \sum_{i=1}^n \rho_{\max,i} e^{-(\frac{Z-Z_{0,i}}{\sigma_i})^2}$ (2)

319 Step 3: Calculate the ratio of NO_2 concentration at the height of h_G to total columns

320 $(\int_0^{h_{\text{trop}}} \rho(Z) dx)$, and then multiply the ratio by satellite column (S_{trop}). The
321 satellite-derived N_r concentration at the height of h_G can be calculated as:

322 $S_{G_{\text{NO}_2}} = S_{\text{trop}} \times \frac{\rho(h_G)}{\int_0^{h_{\text{trop}}} \rho(Z) dx}$ (3)

323 Step 4: Convert the instantaneous satellite-derived surface NO_2 concentration ($S_{G_{\text{NO}_2}}$)
324 to daily average ($S_{G_{\text{NO}_2}}^*$) using the ratio of average surface NO_2 concentration
325 (G_{ACTM}^{1-24}) to that at satellite overpass time ($G_{\text{ACTM}}^{\text{overpass}}$) by an ACTM (Liu et al., 2020):

326 $S_{G_{\text{NO}_2}}^* = \frac{G_{\text{ACTM}}^{1-24}}{G_{\text{ACTM}}^{\text{overpass}}} \times S_{G_{\text{NO}_2}}$ (4)

327 The method for estimating the surface NH_3 concentration ($S_{G_{\text{NH}_3}}^*$) is similar to that
328 for estimating the surface NO_2 concentration.

329 **3.2 Estimating Surface Concentration of Other N_r Species**

330 At present, only NO_2 and NH_3 column can be retrieved reliably, and there are no
331 reliable satellite retrievals of HNO_3 , NH_4^+ and NO_3^- . For example, the IASI HNO_3
332 product is still in the stage of data development and verification (Ronmans et al.,
333 2016). Previous studies firstly derive the relationship between N_r species by an
334 ACTM or by ground-based measurements, and then use the relationship to convert
335 satellite-derived surface NO_2 and NH_3 concentration ($S_{G_{\text{NH}_3}}^*$) to HNO_3 , NH_4^+ and
336 NO_3^- concentrations:

337
$$\begin{cases} G_{S_{\text{NO}_3}} = S_{G_{\text{NO}_2}}^* \times \frac{G_{\text{ACTM_NO}_3}}{G_{\text{ACTM_NO}_2}} \\ G_{S_{\text{HNO}_3}} = S_{G_{\text{NO}_2}}^* \times \frac{G_{\text{ACTM_HNO}_3}}{G_{\text{ACTM_NO}_2}} \\ G_{S_{\text{NH}_4}} = S_{G_{\text{NH}_3}}^* \times \frac{G_{\text{ACTM_NH}_4}}{G_{\text{ACTM_NH}_3}} \end{cases}$$
 (5)

338 $\frac{G_{\text{ACTM_NO}_3}}{G_{\text{ACTM_NO}_2}}$, $\frac{G_{\text{ACTM_HNO}_3}}{G_{\text{ACTM_NO}_2}}$, $\frac{G_{\text{ACTM_NH}_4}}{G_{\text{ACTM_NH}_3}}$ is the estimated ratio of between NO_2 and NO_3^- ,

339 NO_2 and HNO_3 , NH_3 and NH_4^+ .

340 **3.3 Dry Deposition of N_r**

341 The resistance of dry N_r deposition mainly comes from three aspects: aerodynamic
342 resistance (R_a), quasi laminar sub-layer resistance (R_b) and canopy resistance (R_c).

343 The V_d can be expressed as

344
$$V_d = \frac{1}{R_a + R_b + R_c} + v_g \quad (6)$$

345 V_g is gravitational settling velocity. For gases, the V_g is negligible ($V_g=0$).

346 Dry NO_2 , NO_3^- , HNO_3 , and NH_4^+ deposition can be calculated by:

347
$$F = G_s \times V_d \quad (7)$$

348 Unlike above species, NH_3 is bi-directional, presenting both upward and downward
349 fluxes. There is a so-called “canopy compensation point” (C_o) controlling dry NH_3
350 deposition. Dry NH_3 deposition can be calculated by:

351
$$F = (G_{s,\text{NH}_3} - C_o) \times V_d \quad (8)$$

352 The calculation of C_o is very complex including the leaf stomatal and soil emission
353 potentials related to the meteorological factors, the plant growth stage and the canopy
354 type. The satellite-based methods usually neglected this complex process and set C_o
355 as zero (Graaf et al., 2018; Kharol et al., 2018) or set fixed values in each land use
356 type based on ground-based measurements (Jia et al., 2016).

357 **3.4 Wet Deposition of N_r**

358 The satellite-based estimation of wet N_r deposition can be simplified as the product of
359 the concentration of N_r (C), precipitation (P) and scavenging coefficient (w) (Pan et
360 al., 2012). Satellite NO_2 and NH_3 can be used to indicate the oxidized N_r and reduced
361 N_r ; precipitation (P) can be obtained from ground monitoring data or reanalysis data
362 (such as NCEP). However, the scavenging coefficient (w) is usually highly uncertain.
363 To improve the accuracy of estimation, a mixed-effects model (Liu et al.,

364 2017a; Zhang et al., 2018) is proposed to build the relationship between satellite NO₂
365 and NH₃, precipitation and ground monitoring wet N_r deposition:

366
$$\text{WetN}_{ij} = \alpha_j + \beta_i \times P_{ij} \times (S_{ABL})_{ij} + \varepsilon_{ij} \quad (9)$$

367
$$S_{ABL} = S_{trop} \times \frac{\int_0^{ABL} \rho(Z)dx}{\int_0^{h_{trop}} \rho(Z)dx} \quad (10)$$

368 WetN_{ij} is wet NO₃⁻N or NH₄⁺-N deposition at month i and site j; (S_{ABL})_{ij} is the
369 atmospheric boundary layer (ABL) NO₂ or NH₃ columns at month i and site j; P_{ij} is
370 precipitation at month i and site j; β_i and α_j are the slope and intercept of random
371 effects, representing seasonal variability and spatial effects; ε_{ij} represents the random
372 error at month i and site j. The mixed effects models were appropriate for estimating
373 both wet NO₃⁻ and NH₄⁺ deposition using the satellite observations.

374 The scavenging process of wet N_r deposition usually starts from the height of rainfall
375 rather than the top of the troposphere, so it is more reasonable to use NO₂ and NH₃
376 column below the height of rainfall to build the wet N_r deposition model. The NO₂
377 and NH₃ column within ABL is used to build the wet deposition model since
378 precipitation height is close to the height of the ABL (generally less than 2-3 km).

379 **4. Satellite-derived Surface N_r Concentration and Deposition**

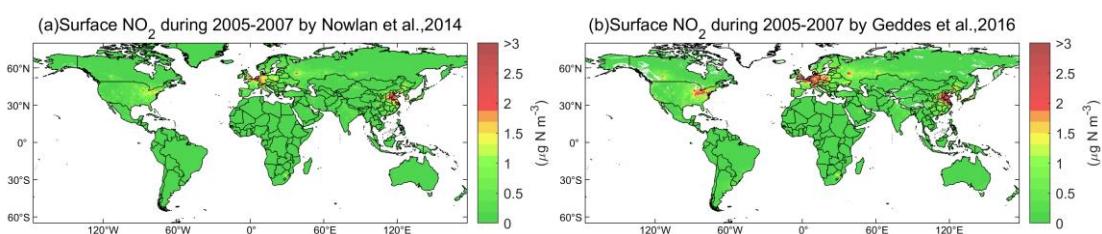
380 **4.1 Surface NO₂ Concentration and Oxidized N_r Deposition**

381 The spatial resolutions of global ACTMs and therefore modeled surface N_r
382 concentration are very coarse (for example, the spatial resolution of the global version
383 of GEOS-Chem is 2°×2.5°). Thus it can be hard to estimate surface N_r concentration
384 and deposition at a fine resolution at a global scale by ACTMs alone. Instead, the
385 satellite N_r retrievals have a high spatial resolution and can reveal more spatial details
386 than ACTM simulations.

387 Cheng et al. and Jia et al. established a linear model between the surface NO₂

388 concentration and NO_2 column by assuming the ratio of the surface NO_2
389 concentration to the tropospheric NO_2 column to be fixed, and then used the linear
390 model to convert satellite NO_2 columns to surface NO_2 concentration, and finally
391 estimated dry NO_2 deposition using the inferential method (Cheng et al., 2013; Jia et
392 al., 2016). However, these statistical methods are highly dependent on the
393 ground-based measurements, and the established linear models may be not effective
394 over regions with few monitoring sites.

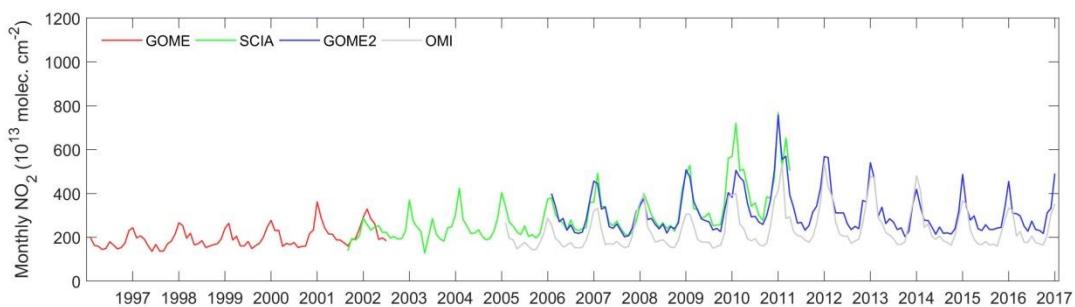
395 A comprehensive study (Nowlan et al., 2014) estimated global surface NO_2
396 concentration during 2005-2007 by multiplying OMI tropospheric NO_2 columns by
397 the ACTM-modeled ratio between surface NO_2 concentration and tropospheric
398 column (**Fig. 2**). Nowlan et al. also estimated dry NO_2 deposition using the
399 OMI-derived surface NO_2 concentration combining the modeled V_d during 2005-2007
400 (Nowlan et al., 2014). This approach followed an earlier study (Lamsal et al., 2008),
401 that focus on North America. As reported by Lamsal et al., the satellite-derived
402 surface NO_2 concentration was generally lower than ground-based NO_2 observations,
403 ranging from -17% to -36% in North America (Lamsal et al., 2008). Kharol et al. used
404 a similar method and found the satellite-derived surface NO_2 concentration was only
405 half of the ground-measured values in North America (Kharol et al., 2015).



407 **Fig. 2** Satellite-derived surface NO_2 concentration during 2005-2007 by Nowlan et al. (Nowlan et
408 al., 2014) (a) and by Geddes et al. (Geddes et al., 2016) (b). We gained the surface NO_2
409 concentration by Nowlan et al. (Nowlan et al., 2014) and by Geddes et al. (Geddes et al., 2016) at
410 the web: http://fizz.phys.dal.ca/~atmos/martin/?page_id=232.

411 Geddes et al. followed previous studies, and used NO_2 column from the GOME,
412 SCIAMACHY, and GOME-2 to estimate surface NO_2 concentration (Geddes et al.,
413

414 2016). Although Geddes et al. did not evaluate their results with ground-based
 415 observation (Geddes et al., 2016), it is obvious that their surface NO₂ estimates were
 416 higher than Nowlan's estimates based on OMI (Nowlan et al., 2014) (**Fig. 2**). This
 417 may be because the OMI-derived NO₂ column is much lower than that derived by
 418 GOME, SCIAMACHY, and GOME-2, especially over polluted regions. For example,
 419 in China, the OMI NO₂ column is about 30% lower than that of SCIAMACHY and
 420 GOME-2 consistently (**Fig. 3**).



421

422 **Fig. 3** An example of the time series of monthly NO₂ column retrieved by GOME, SCIAMACHY,
 423 GOME2 and OMI in China. We obtained the GOME, SCIAMACHY, GOME2 and OMI data from
 424 <http://www.temis.nl/airpollution/no2.html>.

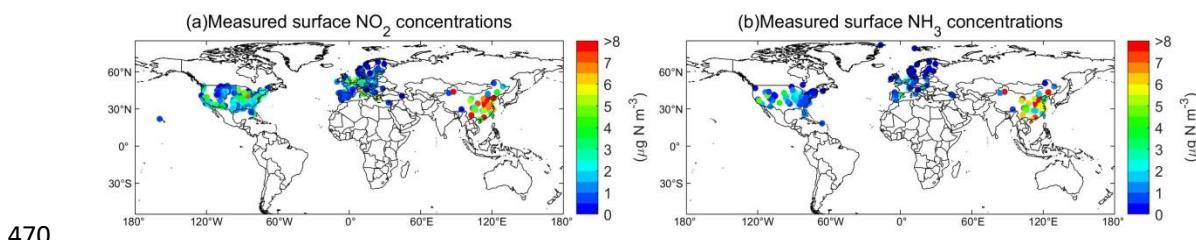
425

426 Larkin et al. established a land-use regression model to estimate global surface NO₂
 427 concentration by combining satellite-derived surface NO₂ concentration by Geddes et
 428 al. and ground-based annual NO₂ measurements (Geddes et al., 2016; Larkin et al.,
 429 2017). The study by Larkin et al. can be considered as using the ground-based annual
 430 measurements to adjust the satellite-derived surface NO₂ concentration by Geddes et
 431 al. (Geddes et al., 2016; Larkin et al., 2017), which helped reduce the discrepancy
 432 between satellite-derived and ground-measured NO₂ concentration. The regression
 433 model captured 54% of global NO₂ variation, with an absolute error of 2.32 $\mu\text{g N m}^{-3}$.
 434 Zhang et al. followed the framework in **Sect. 3** to estimate the OMI-derived surface
 435 NO₂ concentration (at ~50 m) in China, and found good agreement with ground-based
 436 surface NO₂ concentration from the NNDMN at yearly scale (slope=1.00, $R^2=0.89$)
 437 (Zhang et al., 2017). The methods by Zhang et al. can also generate OMI-derived NO₂

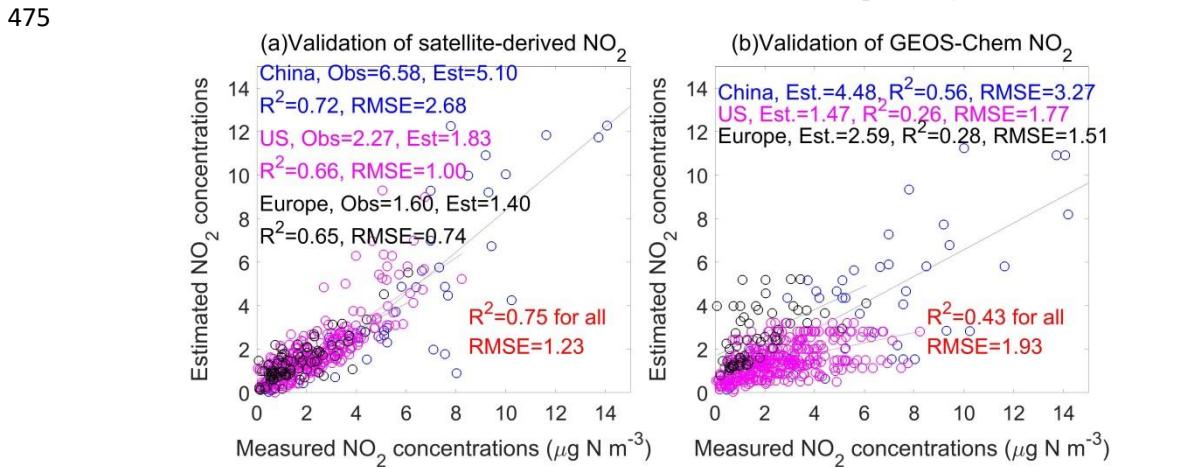
438 concentration at any height by the constructed NO_2 vertical profile (Zhang et al.,
439 2017). Zhang et al. also estimated dry NO_2 deposition using the OMI-derived surface
440 NO_2 concentration combining the modeled V_d during 2005-2016 (Zhang et al., 2017).
441 Based on Zhang's estimates, the Gaussian function can well simulate the vertical
442 distribution of NO_2 from an ACTM (MOZART) (Emmons et al., 2010) with 99.64%
443 of the grids having R^2 values higher than 0.99. This suggests that the
444 ACTM-simulated vertical distribution of NO_2 has a general pattern, which can be
445 emulated by Gaussian functions. Once a vertical profile was constructed, it can be
446 easily used to estimate NO_2 concentration at any height.

447 In this study, we used the framework in **Sect. 3** to estimate the OMI-derived surface
448 NO_2 concentration globally. To validate the OMI-derived surface NO_2 concentrations,
449 ground-measured surface NO_2 concentration in China, the US and Europe in 2014
450 was collected (**Fig. 4**). The total number of NO_2 observations in China, the US and
451 Europe are 43, 373 and 88 respectively. The OMI-derived annual average for all sites
452 was $3.74 \mu\text{g N m}^{-3}$, which was close to the measured average ($3.06 \mu\text{g N m}^{-3}$). The R^2
453 between OMI-derived surface NO_2 concentrations and ground-based NO_2
454 measurements was 0.75 and the RMSE was $1.23 \mu\text{g N m}^{-3}$ (**Fig. 5**), which is better
455 than the modeling results by the GEOS-Chem ACTM ($R^2=0.43$, RMSE= $1.93 \mu\text{g N}$
456 m^{-3}). We did not simply use the relationship between the NO_2 column and surface
457 NO_2 concentration from the CTM. As presented in the methods, we can estimate
458 surface NO_2 concentration at any height by using the Gaussian function. We used the
459 surface NO_2 concentration at a certain height (~60 m) which best matched with the
460 ground-based measurements. Satellite-based methods have the advantages of
461 spatiotemporally continuous monitoring N_r at a higher resolution, which helps
462 alleviate the problem of the coarse resolution of ACTMs in estimating N_r

463 concentration and deposition. The readers can use any satellite data (GOME,
 464 SCIAMACHY, GOME2 or OMI) combining the Gaussian function to estimate
 465 surface NO₂ concentrations. They can use surface NO₂ concentrations at a certain
 466 height which best matched with the ground-based measurements. The key is not
 467 selecting which satellite data we should use, but determining which height of surface
 468 NO₂ concentrations that better matched with the ground-based measurements by
 469 Gaussian function.



471 **Fig. 4** Spatial distribution of measured surface NO₂ and NH₃ concentrations in 2014. For NO₂ (a),
 472 the measured data in China, the US and Europe were obtained from the NNDMN, US-EPA and
 473 EMEP, respectively; for NH₃ (b), the measured data in China, the US and Europe were obtained
 474 from the NNDMN, US-AMoN and EMEP, respectively

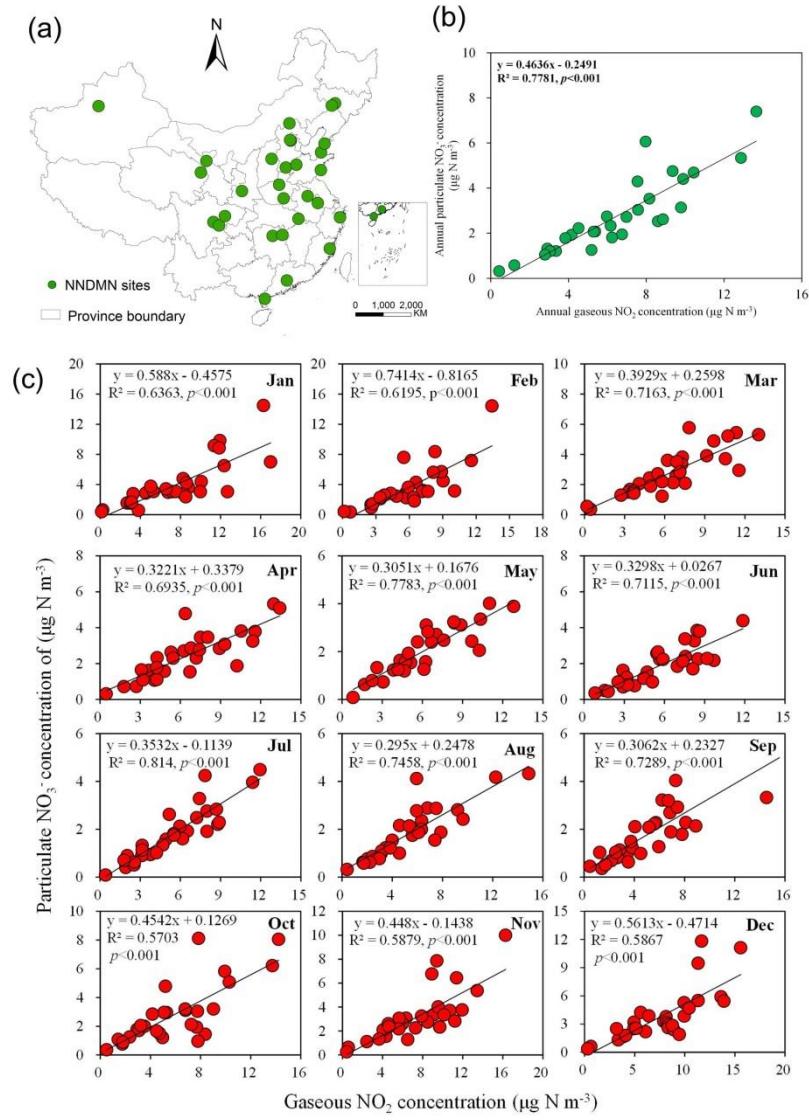


476 **Fig. 5** Comparison between annual mean satellite-derived and ground-measured surface NO₂
 477 concentrations (a), and comparison between annual mean modeled (by an ACTM as GEOS-Chem)
 478 and ground-measured surface NO₂ concentrations (b). The ground-based monitoring sites are
 479 shown in **Fig. 4**.

480

482 For NO₃⁻ and HNO₃, previous studies firstly constructed the relationship between NO₂,
 483 NO₃⁻ and HNO₃, and found a relatively high linear relationship between NO₂, NO₃⁻,
 484 and HNO₃ at a monthly or yearly scale. For example, Jia et al. found a linear

485 relationship between NO_2 and NO_3^- , HNO_3 concentration at annual scale ($R^2=0.70$)
486 (Jia et al., 2016). Similarly, based on the ground-based measurements in the NNDMN,
487 a high correlation was found between surface NO_2 and NO_3^- concentration at monthly
488 or annual timescales (**Fig. 6**) (Liu et al., 2017c). Using these linear relationships and
489 satellite-derived surface NO_2 concentration, the annual mean surface NO_3^- and HNO_3
490 can be estimated. Alternatively, the relationship of NO_2 , NO_3^- and HNO_3 can also be
491 modeled by an ACTM. For example, a strong relationship of tropospheric NO_2 , NO_3^-
492 and HNO_3 column was simulated over all months by an ACTM, with the correlation
493 ranging from 0.69 to 0.91 (Liu et al., 2017a). But, over shorter timescales, the
494 relationship between NO_2 , NO_3^- and HNO_3 may be nonlinear, which we should be
495 cautious about when estimating surface NO_3^- and HNO_3 concentration from NO_2
496 concentration.



497

498 **Fig. 6** Correlation between surface NO_2 and particulate NO_3^- concentration in the NNDMN at
499 annual and monthly scales, which were adopted from our previous study (Liu et al., 2017c). (a)
500 indicates the spatial locations of monitoring sites in the NNDMN; (b) and (c) represent yearly and
501 monthly relationship between surface NO_2 and particulate NO_3^- concentration, respectively.

502

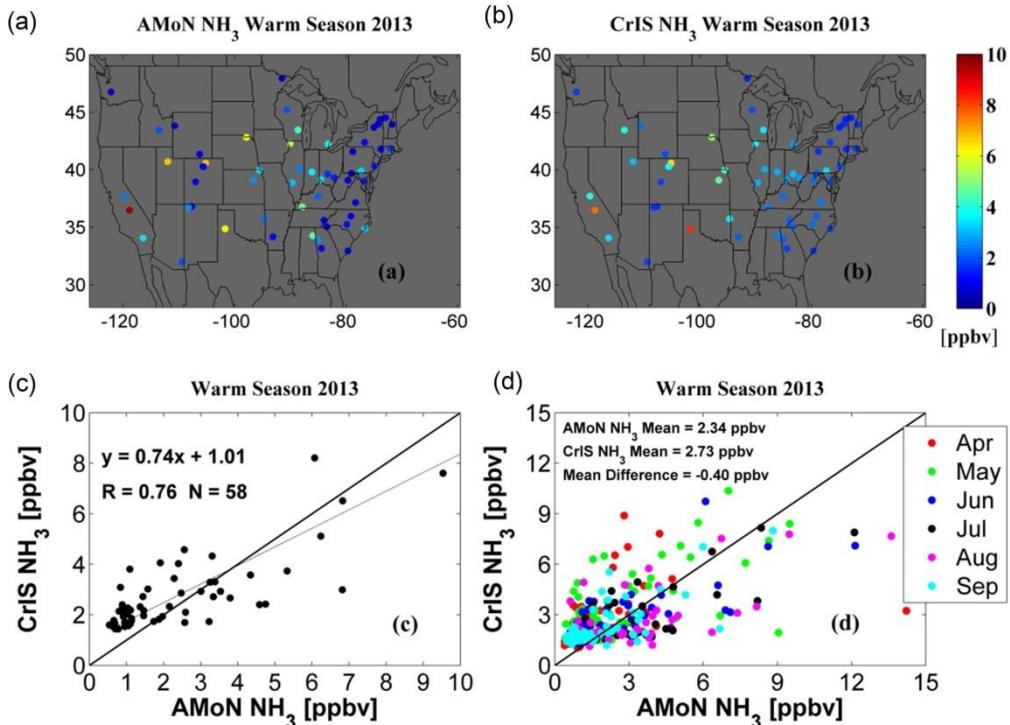
503 For the wet N_r deposition, Liu et al. followed the framework in **Sect. 3** to estimate wet
504 nitrate deposition using ABL NO_2 columns derived from OMI NO_2 column and NO_2
505 vertical profile from an ACTM (MOZART), and precipitation by a mixed-effects
506 model showing the proposed model can achieve high predictive power for monthly
507 wet nitrate deposition over China ($R=0.83$, $\text{RMSE}=0.72$) (Liu et al., 2017a).

508 **4.2 Surface NH_3 Concentration and Reduced N_r Deposition**

509 With the development of atmospheric remote sensing of NH_3 , some scholars have

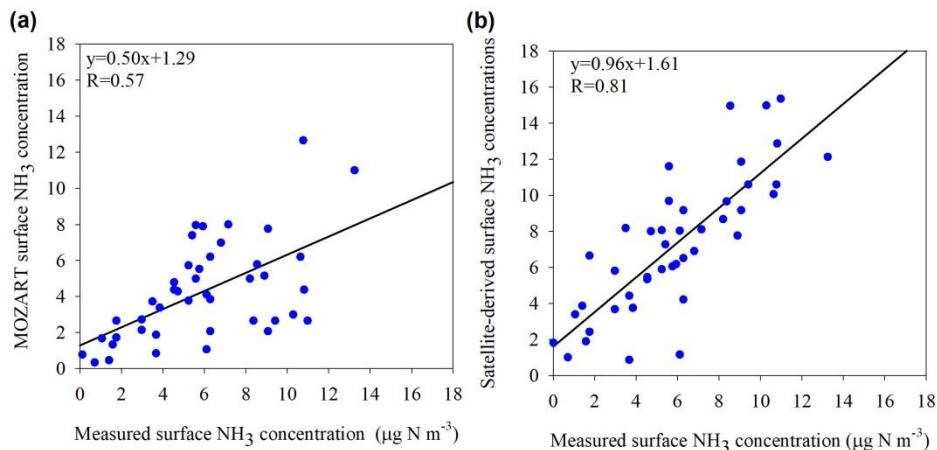
510 estimated surface NH_3 concentration and dry NH_3 deposition based on the satellite
511 NH_3 column data. Assuming the ratio between the surface NH_3 concentration to the
512 NH_3 column was fixed, Yu et al. applied a linear model to convert satellite NH_3
513 columns to surface NH_3 concentration and estimated dry NH_3 deposition in China
514 using the inferential method (Yu et al., 2019). But Yu et al. did not consider the spatial
515 variability of the vertical profiles of NH_3 (Yu et al., 2019), which may cause a large
516 uncertainty in estimating surface NH_3 concentration.

517 In Western Europe, Graaf et al. used the ratio of the surface NH_3 concentration (in the
518 bottom layer) to total NH_3 column from an ACTM to convert the IASI NH_3 column to
519 surface NH_3 concentration, and then estimated dry NH_3 deposition combining the
520 modeled deposition velocity and IASI-derived surface NH_3 concentration (Graaf et al.,
521 2018). Similarly, in North America, Kharol et al. estimated the dry NH_3 deposition by
522 the CrIS-derived surface NH_3 concentration and deposition velocity of NH_3 (Kharol et
523 al., 2018). They found a relatively high correlation ($R=0.76$) between the
524 CrIS-derived surface NH_3 concentration and AMoN measurements during warm
525 seasons (from April to September) in 2013 (**Fig. 7**). Over China, Liu et al. found a
526 higher correlation ($R=0.81$) between IASI-derived surface NH_3 concentrations and the
527 measured surface NH_3 concentrations than those from an ACTM ($R=0.57$, **Fig. 8**)
528 (Liu et al., 2017b).



529

530 **Fig. 7** Comparisons of the measured surface NH_3 concentration by the AMoN and CrIS-derived
 531 surface NH_3 concentration in the US during warm season (April-September) in 2013 (Kharol et al.,
 532 2018). (a) and (b) indicate measured and CrIS-derived surface NH_3 concentration at the AMoN
 533 sites, respectively; (c) represents the comparison of averaged surface NH_3 concentration during
 534 warm months between CrIS-derived estimates and measurements, while (d) indicates the
 535 comparison of monthly surface NH_3 concentration between CrIS-derived estimates and
 536 measurements.
 537

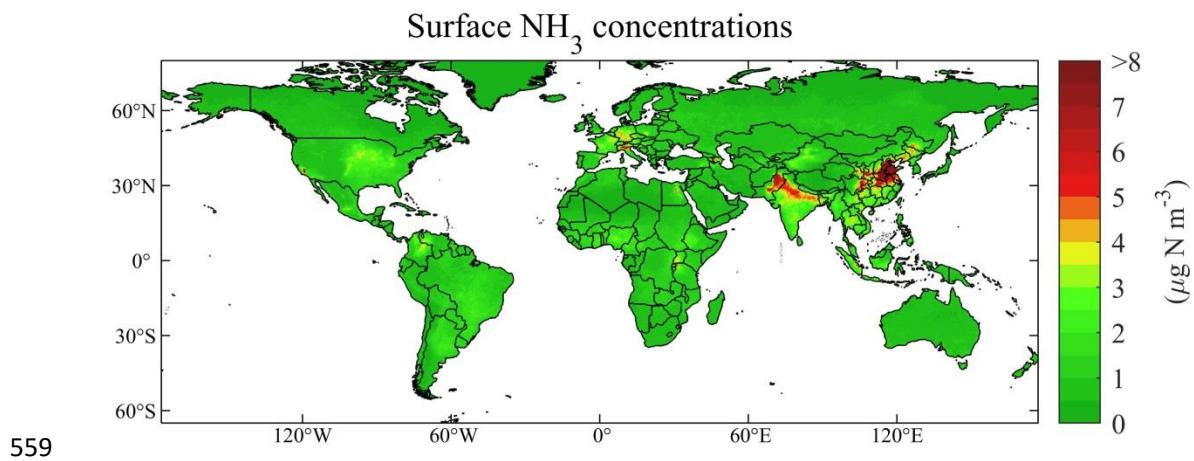


538

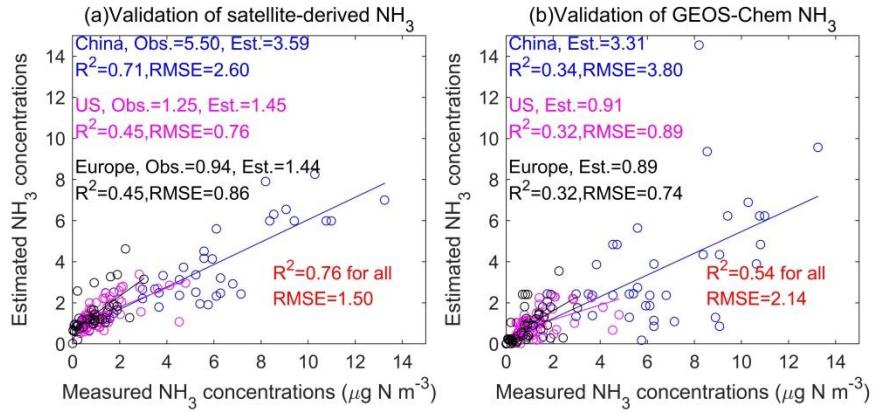
539 **Fig. 8** Comparisons of the measured surface NH_3 concentration with IASI-derived surface NH_3
 540 concentration at the NNDMN sites over China (Liu et al., 2017b). (a) indicates the comparison of
 541 measured and modeled surface NH_3 concentration from an ACTM (MOZART), and (b) represents
 542 the comparison of the measured and IASI-derived surface NH_3 concentration.
 543

544 Liu et al. followed the framework in **Sect. 3** to estimate the IASI-derived surface NH_3
 545 concentration (at the middle height of the first layer by an ACTM) (**Fig. 9**), and found

546 a good agreement with ground-based surface NH_3 concentration (Liu et al., 2019).
547 The correlation between the measured and satellite-derived annual mean surface NH_3
548 concentrations over all sites was 0.87 as shown in **Fig. 10**, while the average
549 satellite-derived and ground-measured surface NH_3 concentration was 2.52 and 2.51
550 $\mu\text{g N m}^{-3}$ in 2014 at the monitoring sites, respectively. The satellite-derived estimates
551 achieved a better accuracy ($R^2=0.76$, $\text{RMSE} = 1.50 \mu\text{g N m}^{-3}$) than an ACTM
552 (GEOS-Chem, $R^2=0.54$, $\text{RMSE} = 2.14 \mu\text{g N m}^{-3}$). The satellite NH_3 retrievals were
553 affected by the detection limits of the satellite instruments and thermal contrast.
554 Higher correlation over China than other regions for the satellite estimates was linked
555 to the detection limits by the instruments and thermal contrast (Liu et al., 2019).
556 Higher accuracy could be gained with higher thermal contrast and NH_3 abundance.
557 Instead, the uncertainties of NH_3 retrievals would be higher with lower thermal
558 contrast and NH_3 abundance.



560 **Fig. 9** Spatially satellite-based surface NH_3 estimates in 2014 (Liu et al., 2019). The global surface
561 NH_3 concentration datasets have been released on the website:
562 <https://zenodo.org/record/3546517#.Xj6I4GgzY2w>.
563

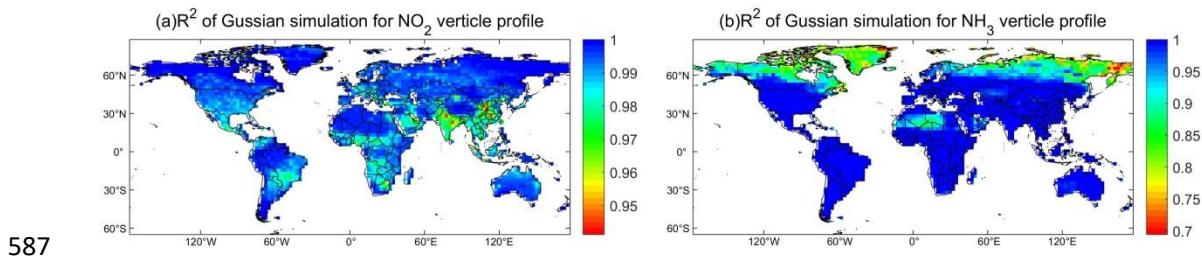


564

565 **Fig. 10** Comparison between yearly satellite-based and measured surface NH_3 concentrations (a),
 566 and comparison between yearly modeling (by an ACTM as GEOS-Chem) and measured surface
 567 NH_3 concentrations (b) (Liu et al., 2019). The ground-based monitoring sites are shown in **Fig. 4**.
 568

569 The proposed methods (Liu et al., 2019) can also estimate NH_3 concentration at any
 570 height using the constructed vertical profile function of NH_3 . The Gaussian function
 571 can well emulate the vertical distribution of NH_3 from an ACTM outputs with 99% of
 572 the grids having R^2 values higher than 0.90 (**Fig. 11**). This means, for regional and
 573 global estimation, the vertical distribution of NH_3 concentration has a general pattern,
 574 which can be mostly emulated by the Gaussian function. Once a global NH_3 vertical
 575 profile was simulated, it can be easily used to estimate satellite-derived NH_3
 576 concentration at any height. We can also estimate dry NH_3 deposition using the
 577 IASI-derived surface NH_3 concentration combining the modeled V_d . For the dry
 578 deposition, the uncertainty mainly came from the satellite-derived estimates using the
 579 modeled vertical profiles. The uncertainty of vertical profiles modeled by the ACTM
 580 mainly resulted from the chemical and transport mechanisms. We recommend using
 581 the Gaussian function to determine the height of surface NO_2 and NH_3 concentrations
 582 that best matched with the ground-based measurements. There may exist systematic
 583 biases by simply using the relationship of NO_2 columns and surface concentration to
 584 estimate satellite surface NO_2 concentrations. To date, there are still no studies

585 developing satellite-based methods to estimate the wet reduced N_r deposition on a
586 regional scale.



588 **Fig. 11** Spatial distributions of R^2 for Gaussian function by simulating NH_3 and NO_2 vertical
589 profiles. This is an example of Gaussian fitting using 47 layers' NH_3 and NO_2 concentration from
590 an ACTM (GEOS-Chem).

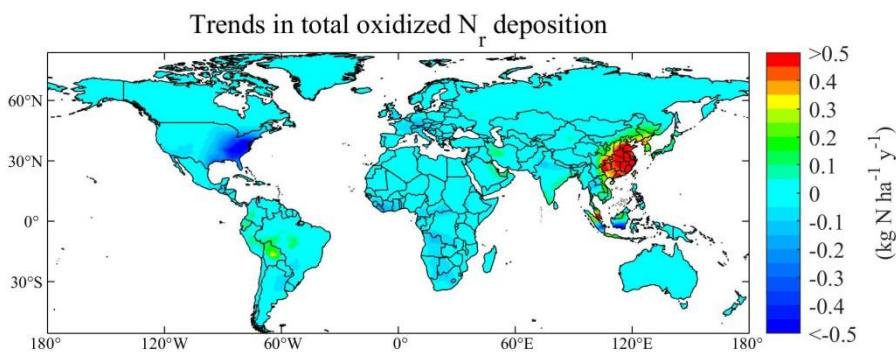
591

592 **5. Trends of Surface N_r Concentration and Deposition by Satellite-based 593 Methods**

594 The N_r concentration and deposition modeled by ACTMs are highly dependent on the
595 accuracy of input N_r emissions. The methods commonly used to estimate
596 anthropogenic N_r emissions are based on the data of human activities and emission
597 factors, which can be highly uncertain. The ACTM methods driven by N_r emission
598 inventory have relatively poor timeliness, and have limitations in monitoring the
599 recent trends of N_r deposition.

600 Satellite-based methods provide a simple, fast and relatively objective way to
601 monitoring N_r deposition at a high resolution, and less susceptible to the errors in the
602 assumptions that emission inventories are compiled based on, particularly the lack of
603 reliable data over developing countries (Crippa et al., 2018). With such advantages,
604 researchers developed the satellite-based methods to estimate surface N_r concentration,
605 deposition and even emissions. Satellite-based methods have advantages in
606 monitoring the recent trends of N_r deposition. Geddes et al. used NO_2 column from
607 the GOME, SCIAMACHY, and GOME-2 to estimate satellite-derived NO_x emissions,
608 and then used the calibrated NO_x emission inventory to drive an ACTM to simulate
609 the long-term oxidized N_r deposition globally (Geddes and Martin, 2017). They found

610 oxidized N_r deposition from 1996 to 2014 decreased by 60% in Eastern US, doubled
 611 in East China, and declined by 20% in Western Europe (**Fig. 12**). We use the datasets
 612 by Geddes et al. to calculate the trends of total oxidized N_r deposition during
 613 1996-2014 (Geddes and Martin, 2017). It is obvious that two completely opposite
 614 trends exist: (1) in East China with a steep increase of higher than 0.5 kg N ha⁻¹ y⁻¹
 615 and (2) East US with a steep decrease of lower than -0.5 kg N ha⁻¹ y⁻¹. Although it is
 616 not a direct way to use satellite N_r observation to estimate N_r deposition, the method
 617 of estimating trends of N_r deposition by Geddes et al. can be considered effective
 618 since it took account of the changes of both NO_x emission and climate by an ACTM
 619 (Geddes and Martin, 2017).

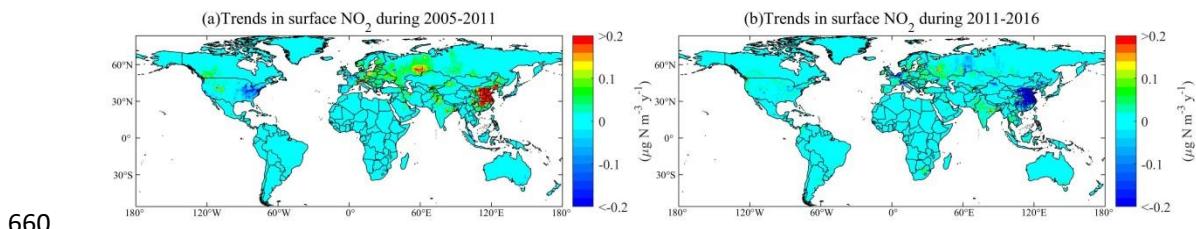


620
 621 **Fig. 12** Gridded annual changes of total oxidized N_r deposition simulated by GEOS-Chem
 622 constrained with GOME, SCIAMACHY, and GOME-2 NO₂ retrievals during 1996-2014 (Geddes
 623 and Martin, 2017). We gained the generated datasets
 624 (http://fizz.phys.dal.ca/~atmos/martin/?page_id=1520) by Geddes et al., and calculated the trends
 625 using the linear methods.
 626

627 Some researchers developed a more direct way to infer the trends of surface N_r
 628 concentration and deposition. Geddes et al. presented a comprehensive long-term
 629 global surface NO₂ concentration estimate (at 0.1 ° resolution using an oversampling
 630 approach) between 1996 and 2012 by using NO₂ column from the GOME,
 631 SCIAMACHY, and GOME-2 (Geddes et al., 2016). The surface NO₂ concentration in
 632 North America (the US and Canada) decreased steeply, followed by Western Europe,
 633 Japan and South Korea, while approximately tripled in China and North Korea

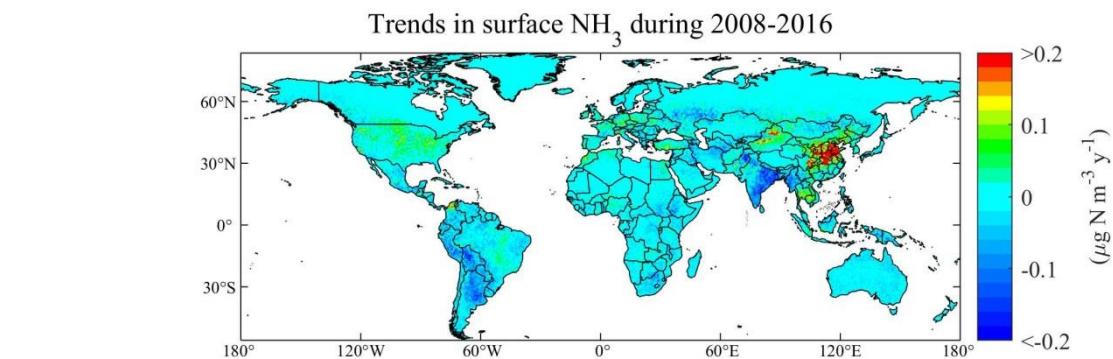
634 (Geddes et al., 2016). Jia et al. established a simple linear regression model based on
635 OMI NO₂ column and ground-based surface N_r concentration, and then estimated the
636 trends of dry N_r deposition globally between 2005 and 2014 (Jia et al., 2016). They
637 found that dry N_r deposition in Eastern China increased rapidly, while in the Eastern
638 US, Western Europe, and Japan dry N_r deposition has decreased in recent decades.
639 We used the proposed framework to estimate the long-term surface NO₂
640 concentrations by OMI during 2005-2016. Note that the simulated profile function has
641 a general rule, which can be well simulated by Gaussian function for any year (for our
642 case during 2005-2016). The emission inventories should not affect the vertical
643 profiles shapes using Gaussian function, but the transport and chemical mechanism in
644 the CTM may affect the accuracy of the vertical profile distribution. The
645 satellite-based methods did not need to rely on the accuracy of the statistical emission
646 data. We split the time span of 2005-2016 into two periods: 2005-2011 and 2011-2016,
647 as surface NO₂ concentration shows opposite trend in China in these two periods. The
648 magnitudes of both growth and decline in surface NO₂ concentration in China are
649 most pronounced worldwide in the two periods (**Fig. 13**). During 2005-2011, apart
650 from Eastern China with the largest increase in surface NO₂ concentration, there are
651 also several areas with increasing trends such as Northwest and East India (New Delhi
652 and Orissa), Western Russia, Eastern Europe (Northern Italy), Western US (Colorado
653 and Utah), Northwestern US (Seattle and Portland), Southwestern Canada (Vancouver,
654 Edmonton, Calgary), Northeast Pakistan and Northwest Xinjiang (Urumqi). Notably,
655 the biggest decreases in surface NO₂ concentration during 2005-2011 occurred in
656 Eastern US and Western EU (North France, South England, and West German).
657 During 2011-2016, due to the strict control of NO_x emissions, Eastern China had the
658 largest decrease in surface NO₂ concentration than elsewhere worldwide, followed by

659 Western Xinjiang, Western Europe and some areas in Western Russia.



661 **Fig. 13** Gridded annual changes in surface NO₂ concentrations gained by OMI retrievals during
662 2005-2011 (a) and during 2011-2016 (b) in this study. We have released the global surface NO₂
663 concentrations during 2005-2016 available at the website:
664 <https://zenodo.org/record/3546517#.Xj6l4GgzY2w>.

665
666 Liu et al. estimated surface NH₃ concentration globally during 2008-2016 using
667 satellite NH₃ retrievals by IASI (Liu et al., 2019). A large increase of surface NH₃
668 concentrations was found in Eastern China, followed by Northern Xinjiang province
669 in China during 2008-2016 (**Fig. 14**). Satellite-based methods have been proven as an
670 effective and unique way to monitoring the trends of global N_r concentration and
671 deposition. To date, there are still few studies reporting the satellite-derived trends of
672 reduced N_r deposition on a global scale.



673
674 **Fig. 14** Gridded annual changes in surface NH₃ concentrations gained by IASI retrievals during
675 2008-2016 (Liu et al., 2019). We have released the global surface NH₃ concentrations during
676 2008-2016 at the website: <https://zenodo.org/record/3546517#.Xj6l4GgzY2w>.

677 678 **6. Remaining Challenges for Estimating N_r Deposition Using Satellite 679 Observation**

680 First, the reduced N_r deposition plays an important contribution to total N_r deposition.
681 NH₃ exhibits bi-directional air-surface exchanges. The NH₃ compensation point

682 (Farquhar et al., 1980) is also an important and highly variable factor controlling dry
683 NH₃ deposition (Schrader et al., 2016; Zhang et al., 2010). However, the current
684 existing satellite-based methods did not consider this bi-directional air-surface
685 exchange. It is important to better parameterize the NH₃ compensation point, and
686 assess the effects of bi-directional air-surface exchanges on estimating the dry NH₃
687 deposition.

688 Second, the existing satellite-based methods to estimate N_r deposition used the ratio
689 of the surface N_r concentration to the N_r column by an ACTM to convert satellite N_r
690 column to surface N_r concentration. However, the calculated ratio (by an ACTM) and
691 the satellite N_r column have different spatial resolutions, and previous studies usually
692 applied the modeled ratio directly or interpolate the ratio into the resolution of
693 satellite N_r column. This method assumes the relationship at coarse resolution by an
694 ACTM can also be effective in fine resolution as satellite indicated. When regional
695 studies are conducted, regional ACTMs coupled with another meteorological model
696 (e.g. WRF-Chem, WRF-CMAQ) (Grell et al., 2005; Wong et al., 2012) can be
697 configured to match the spatial resolution of satellite observation, but this is not as
698 viable for global ACTMs (e.g. MOZART, GEOS-Chem) due to differences in model
699 structures and computational cost. The modeled ratio of surface N_r concentration to
700 the N_r column may have variability at spatial scales finer than the horizontal
701 resolution of global ACTMs. The impact of such scale effect (at different spatial
702 scales) on estimated surface N_r concentration should be further studied.

703 Third, the satellite observation can only obtain reliable NO₂ and NH₃ column
704 presently, and there are no available high-resolution and reliable direct HNO₃, NO₃⁻,
705 NH₄⁺ retrievals. For HNO₃, NO₃⁻, NH₄⁺ concentrations, the satellite-based methods
706 often applied the satellite-derived NO₂ and NH₃ concentration and the relationship

707 between N_r species from an ACTM (or ground-based measurements) to estimate
708 surface HNO_3 , NO_3^- , NH_4^+ concentration. With the development of satellite
709 technology, more and more N_r species can be detected, such as HNO_3 . However, at
710 present, satellite HNO_3 products are not mature, and the spatial resolution is low.
711 Direct, high-resolution and reliable satellite monitoring of more N_r species is critical
712 to further developing the use of using atmospheric remote sensing to estimate N_r
713 deposition at global and regional scales.

714 Fourth, estimating wet N_r deposition using satellite NO_2 and NH_3 column remains
715 relatively uncommon. Further studies should focus on how to combine the
716 high-resolution satellite NO_2 and NH_3 column and the ground-based monitoring data
717 to build wet N_r deposition models to estimate wet N_r deposition at higher
718 spatiotemporal resolution. The proposed scheme to estimate the wet N_r deposition in
719 **Sect. 3** is statistical. As far as we know, previous studies using satellite NO_2 and NH_3
720 column to estimate wet N_r deposition were through a statistical way, and no studies
721 were done from a mechanism perspective. The wet N_r deposition includes the
722 scavenging processes of in-cloud, under-cloud and precipitation. Processed-level
723 knowledge and models can benefit the estimation of wet N_r deposition using satellite
724 NO_2 and NH_3 column.

725 **7. Conclusion**

726 The recent advances of satellite-based methods for estimating surface N_r
727 concentration and deposition have been reviewed. Previous studies have focused on
728 using satellite NO_2 column to estimate surface NO_2 concentrations and dry NO_2
729 deposition both regionally and globally. The research on calculating surface NH_3
730 concentration and reduced N_r deposition by satellite NH_3 data is just beginning, and
731 some scholars have carried out estimating surface NH_3 concentration and dry NH_3

732 deposition on different spatial and temporal scales, but the research degree is still
733 relatively low. We present a framework of using satellite NO_2 and NH_3 column to
734 estimate N_r deposition based on recent advances. The proposed framework of using
735 Gaussian function to model vertical NO_2 and NH_3 profiles can be used to convert the
736 satellite NO_2 and NH_3 column to surface NO_2 and NH_3 concentration at any height
737 simply and quickly. The proposed framework of using satellite NO_2 and NH_3 column
738 to estimate wet N_r deposition is a statistical way, and further studies should be done
739 from a mechanism perspective. Finally, we summarized current challenges of using
740 satellite NO_2 and NH_3 column to estimate surface N_r concentration and deposition
741 including a lack of considering NH_3 bidirectional air-surface exchanges and the
742 problem of different spatial scales between an ACTM and satellite observation.

743 **Acknowledgments**

744 This study is supported by the National Natural Science Foundation of China (No.
745 41471343, 41425007 and 41101315) and the Chinese National Programs on Heavy
746 Air Pollution Mechanisms and Enhanced Prevention Measures (Project No. 8 in the
747 2nd Special Program).

748 **Author contributions.** LL designed this study. LL, YYY and WX conducted the data
749 analysis. All co-authors contributed to the revision of the paper.

750 **Data availability.** OMI NO_2 datasets are available at
751 <http://www.temis.nl/airpollution/no2.html>. IASI NH_3 datasets are available at
752 <https://cds-espri.ipsl.upmc.fr/etherTypo/index.php?id=1700&L=1>. Surface NO_2
753 concentration during 2005-2007 obtained by Nowlan et al. (Nowlan et al., 2014) and
754 longterm estimates (1996-2012) by Geddes et al. (Geddes et al., 2016) are available at
755 http://fizz.phys.dal.ca/~atmos/martin/?page_id=232. Total oxidized N_r deposition
756 simulated by GEOS-Chem constrained with GOME, SCIAMACHY, and GOME-2

757 NO_2 retrievals during 1996-2014 (Geddes and Martin, 2017) is available at
758 http://fizz.phys.dal.ca/~atmos/martin/?page_id=1520. A database of atmospheric N_r
759 concentration and deposition from the nationwide monitoring network in China is
760 available at <https://www.nature.com/articles/s41597-019-0061-2>. Measured N_r
761 concentration and deposition datasets in the United States are available on the website:
762 <https://www.epa.gov/outdoor-air-quality-data>. Measured surface NO_2 and NH_3
763 concentration datasets in Europe are available at
764 <https://www.nilu.no/projects/ccc/emepdata.html>. Global surface NO_2 and NH_3
765 concentration data used to calculate the longterm trends in **Fig. 13** and **Fig. 14** have
766 been released on the website: <https://zenodo.org/record/3546517#.Xj6I4GgzY2w>.

767 **Competing interests.** The authors declare no competing financial interests.

768 **Reference**

769 Amos, H. M., Jacob, D. J., Holmes, C. D., Fisher, J. A., Wang, Q., Yantosca, R. M.,
770 Corbitt, E. S., Galarneau, E., Rutter, A. P., and Gustin, M. S.: Gas-particle partitioning
771 of atmospheric Hg(II) and its effect on global mercury deposition, *Atmos. Chem.*
772 *Phys.*, 11, 29441-29477, 2012.

773 Beer, R., Shephard, M. W., Kulawik, S. S., Clough, S. A., Eldering, A., Bowman, K.
774 W., Sander, S. P., Fisher, B. M., Payne, V. H., Luo, M., Osterman, G. B., and Worden,
775 J. R.: First satellite observations of lower tropospheric ammonia and methanol,
776 *Geophys. Res Lett.*, 35, 1-5, 10.1029/2008GL033642, 2008.

777 Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M.,
778 Bustamante, M., Cinderby, S., Davidson, E., Dentener, F., Emmett, B., Erisman, J.-W.,
779 Fenn, M., Gilliam, F., Nordin, A., Pardo, L., and De Vries, W.: Global assessment of
780 nitrogen deposition effects on terrestrial plant diversity: a synthesis, *Ecological*

781 Applications, 20, 30-59, doi:10.1890/08-1140.1, 2010.

782 Boersma, K. F., Eskes, H. J., Dirksen, R. J., van der A, R. J., Veefkind, J. P., Stammes,
783 P., Huijnen, V., Kleipool, Q. L., Sneep, M., Claas, J., Leitão, J., Richter, A., Zhou, Y.,
784 and Brunner, D.: An improved tropospheric NO₂ column retrieval algorithm for the
785 Ozone Monitoring Instrument, Atmospheric Measurement Techniques, 4, 1905-1928,
786 10.5194/amt-4-1905-2011, 2011.

787 Canfield, D. E., Glazer, A. N., and Falkowski, P. G.: The evolution and future of
788 Earth's nitrogen cycle, Science, 330, 192-196, 2010.

789 Cao, G. L., Zhang, X. Y., and Gong, S. L.: Emission inventories of primary particles
790 and pollutant gases for China, Science Bulletin, 56, 781-788, 2011.

791 Cheng, M., Jiang, H., Guo, Z., Zhang, X., and Lu, X.: Estimating NO₂ dry deposition
792 using satellite data in eastern China, Int. J. Remote Sens., 34, 2548-2565, 2013.

793 Coheur, P.-F., Clarisse, L., Turquety, S., Hurtmans, D., and Clerbaux, C.: IASI
794 measurements of reactive trace species in biomass burning plumes, Atmos. Chem.
795 Phys., 9, 5655-5667, 2009.

796 Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., van Aardenne, J. A.,
797 Monni, S., Doering, U., Olivier, J. G. J., Pagliari, V., and Janssens-Maenhout, G.:
798 Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2,
799 Earth Syst. Sci. Data, 10, 1987-2013, 10.5194/essd-10-1987-2018, 2018.

800 Dammers, E., Palm, M., Van Damme, M., Vigouroux, C., Smale, D., Conway, S.,
801 Toon, G. C., Jones, N., Nussbaumer, E., Warneke, T., Petri, C., Clarisse, L., Clerbaux,
802 C., Hermans, C., Lutsch, E., Strong, K., Hannigan, J. W., Nakajima, H., Morino, I.,

803 Herrera, B., Stremme, W., Grutter, M., Schaap, M., Wichink Kruit, R. J., Notholt, J.,

804 Coheur, P. F., and Erisman, J. W.: An evaluation of IASI-NH₃ with ground-based

805 Fourier transform infrared spectroscopy measurements, *Atmos. Chem. Phys.*, 16,

806 10351-10368, 10.5194/acp-16-10351-2016, 2016.

807 David, F., M, C., U, S., MA, S., JN, C., S, R., LJ, S., A, J., B, G., and JN, G.: The

808 global nitrogen cycle in the twenty-first century, *Philosophical Transactions of the*

809 *Royal Society of London*, 368, 20130164, 2013.

810 Emmons, L., Walters, S., Hess, P., Lamarque, J.-F., Pfister, G., Fillmore, D., Granier,

811 C., Guenther, A., Kinnison, D., and Laepple, T.: Description and evaluation of the

812 Model for Ozone and Related chemical Tracers, version 4 (MOZART-4),

813 *Geoscientific Model Development*, 3, 43-67, 2010.

814 Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z., and Winiwarter, W.: How a

815 century of ammonia synthesis changed the world, *Nat. Geosci.*, 1, 636-639, 2008.

816 Farquhar, G. D., Firth, P. M., Wetselaar, R., and Weir, B.: On the Gaseous Exchange

817 of Ammonia between Leaves and the Environment: Determination of the Ammonia

818 Compensation Point, *Plant Physiology*, 66, 710-714, 10.1104/pp.66.4.710, 1980.

819 Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W.,

820 Seitzinger, S. P., Asner, G. P., Cleveland, C., Green, P., and Holland, E.: Nitrogen

821 cycles: past, present, and future, *Biogeochemistry*, 70, 153-226, 2004a.

822 Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W.,

823 Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A., Karl, D.

824 M., Michaels, A. F., Porter, J. H., Townsend, A. R., and Vöösmarty, C. J.: Nitrogen

825 Cycles: Past, Present, and Future, *Biogeochemistry*, 70, 153-226,
826 10.1007/s10533-004-0370-0, 2004b.

827 Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R.,
828 Martinelli, L. A., Seitzinger, S. P., and Sutton, M. A.: Transformation of the nitrogen
829 cycle: recent trends, questions, and potential solutions, *Science*, 320, 889-892, 2008.

830 Geddes, J. A., Martin, R. V., Boys, B. L., and van Donkelaar, A.: Long-term trends
831 worldwide in ambient NO₂ concentrations inferred from satellite observations,
832 *Environmental Health Perspectives*, 124, 281, 2016.

833 Geddes, J. A., and Martin, R. V.: Global deposition of total reactive nitrogen oxides
834 from 1996 to 2014 constrained with satellite observations of NO₂ columns, *Atmos.*
835 *Chem. Phys.*, 17, 10071-10091, 2017.

836 Graaf, S. C. v. d., Dammers, E., Schaap, M., and Erisman, J. W.: How are NH₃ dry
837 deposition estimates affected by combining the LOTOS-EUROS model with
838 IASI-NH3 satellite observations?, *Atmos. Chem. Phys.*, 18, 13173-13196,
839 <https://doi.org/10.5194/acp-2018-133>, 2018.

840 Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W.
841 C., and Eder, B.: Fully coupled “online” chemistry within the WRF model, *Atmos.*
842 *Environ.*, 39, 6957-6975, 2005.

843 Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen,
844 T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L.,
845 Kholod, N., Kurokawa, J. I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R.,
846 and Zhang, Q.: Historical (1750–2014) anthropogenic emissions of reactive gases and

847 aerosols from the Community Emissions Data System (CEDS), Geosci. Model Dev.,
848 11, 369-408, 10.5194/gmd-11-369-2018, 2018.

849 Janssens, I. A., Dieleman, W., Luyssaert, S., Subke, J. A., Reichstein, M., Ceulemans,
850 R., Ciais, P., Dolman, A. J., Grace, J., Matteucci, G., Papale, D., Piao, S. L., Schulze,
851 E. D., Tang, J., and Law, B. E.: Reduction of forest soil respiration in response to
852 nitrogen deposition, Nat. Geosci., 3, 315, 10.1038/ngeo844
853 <https://www.nature.com/articles/ngeo844#supplementary-information>, 2010.

854 Jia, Y., Yu, G., Gao, Y., He, N., Wang, Q., Jiao, C., and Zuo, Y.: Global inorganic
855 nitrogen dry deposition inferred from ground-and space-based measurements,
856 Scientific reports, 6, 1-11, 2016.

857 Kharol, S. K., Martin, R. V., Philip, S., Boys, B., Lamsal, L. N., Jerrett, M., Brauer,
858 M., Crouse, D. L., McLinden, C., and Burnett, R. T.: Assessment of the magnitude and
859 recent trends in satellite-derived ground-level nitrogen dioxide over North America,
860 Atmos. Environ., 118, 236-245, 2015.

861 Kharol, S. K., Shephard, M. W., McLinden, C. A., Zhang, L., Sioris, C. E., O'Brien, J.
862 M., Vet, R., Cady-Pereira, K. E., Hare, E., Siemons, J., and Krotkov, N. A.: Dry
863 Deposition of Reactive Nitrogen From Satellite Observations of Ammonia and
864 Nitrogen Dioxide Over North America, Geophys. Res. Lett., 45, 1157-1166,
865 10.1002/2017GL075832, 2018.

866 Kim, T. W., Lee, K., Duce, R., and Liss, P.: Impact of atmospheric nitrogen deposition
867 on phytoplankton productivity in the South China Sea, Geophys. Res. Lett., 41, 3156–
868 3162, 2014.

869 Kuik, F., Lauer, A., Churkina, G., Denier van der Gon, H. A. C., Fenner, D., Mar, K.
870 A., and Butler, T. M.: Air quality modelling in the Berlin-Brandenburg region using
871 WRF-Chem v3.7.1: sensitivity to resolution of model grid and input data,
872 Geoscientific Model Development Discussions, 9, 4339-4363, 2016.

873 Lamarque, J. F., Kiehl, J., Brasseur, G., Butler, T., Cameron - Smith, P., Collins, W.,
874 Collins, W., Granier, C., Hauglustaine, D., and Hess, P.: Assessing future nitrogen
875 deposition and carbon cycle feedback using a multimodel approach: Analysis of
876 nitrogen deposition, Journal of Geophysical Research: Atmospheres (1984–2012), 110,
877 2005.

878 Lamsal, L. N., Martin, R. V., van Donkelaar, A., Steinbacher, M., Celarier, E. A.,
879 Bucsela, E., Dunlea, E. J., and Pinto, J. P.: Ground-level nitrogen dioxide
880 concentrations inferred from the satellite-borne Ozone Monitoring Instrument, J.
881 Geophys. Res-Atmos., 113, 1-15, 10.1029/2007JD009235, 2008.

882 Lamsal, L. N., Martin, R. V., Parrish, D. D., and Krotkov, N. A.: Scaling relationship
883 for NO₂ pollution and urban population size: a satellite perspective, Environ. Sci.
884 Technol., 47, 7855-7861, 2013.

885 Larkin, A., Geddes, J. A., Martin, R. V., Xiao, Q., Liu, Y., Marshall, J. D., Brauer, M.,
886 and Hystad, P.: Global Land Use Regression Model for Nitrogen Dioxide Air
887 Pollution, Environ. Sci. Technol., 51, 6957-6964, 2017.

888 Larssen, T., Duan, L., and Mulder, J.: Deposition and leaching of sulfur, nitrogen and
889 calcium in four forested catchments in China: implications for acidification, Environ.
890 Sci. Technol., 45, 1192-1198, 2011.

891 Levine, S. Z., and Schwartz, S. E.: In-cloud and below-cloud scavenging of Nitric
892 acid vapor, *Atmospheric Environment* (1967), 16, 1725-1734,
893 [https://doi.org/10.1016/0004-6981\(82\)90266-9](https://doi.org/10.1016/0004-6981(82)90266-9), 1982.

894 Li, Y., Thompson, T. M., Damme, M. V., Chen, X., Benedict, K. B., Shao, Y., Day, D.,
895 Boris, A., Sullivan, A. P., and Ham, J.: Temporal and Spatial Variability of Ammonia
896 in Urban and Agricultural Regions of Northern Colorado, United States, *Atmos. Chem.*
897 *Phys.*, 17, 1-50, 2017.

898 Liu, H., Jacob, D. J., Bey, I., and Yantosca, R. M.: Constraints from ^{210}Pb and ^{7}Be on
899 wet deposition and transport in a global three-dimensional chemical tracer model
900 driven by assimilated meteorological fields, *J. Geophys. Res-Atmos.*, 106,
901 12109-12128, 10.1029/2000JD900839, 2001.

902 Liu, L., Zhang, X., Xu, W., Liu, X., Lu, X., Chen, D., Zhang, X., Wang, S., and Zhang,
903 W.: Estimation of monthly bulk nitrate deposition in China based on satellite NO_2
904 measurement by the Ozone Monitoring Instrument, *Remote Sens. Environ.*, 199,
905 93-106, 2017a.

906 Liu, L., Zhang, X., Xu, W., Liu, X., Lu, X., Wang, S., Zhang, W., and Zhao, L.:
907 Ground Ammonia Concentrations over China Derived from Satellite and Atmospheric
908 Transport Modeling, *Remote Sens.*, 9, 467, 2017b.

909 Liu, L., Zhang, X., Zhang, Y., Xu, W., Liu, X., Zhang, X., Feng, J., Chen, X., Zhang,
910 Y., Lu, X., Wang, S., Zhang, W., and Zhao, L.: Dry Particulate Nitrate Deposition in
911 China, *Environ. Sci. Technol.*, 51, 5572-5581, 10.1021/acs.est.7b00898, 2017c.

912 Liu, L., Zhang, X., Wong, A. Y. H., Xu, W., Liu, X., Li, Y., Mi, H., Lu, X., Zhao, L.,

913 Wang, Z., and Wu, X.: Estimating global surface ammonia concentrations inferred
914 from satellite retrievals, *Atmos. Chem. Phys.*, 19, 12051-12066,
915 10.5194/acp-2019-184, 2019.

916 Liu, L., Zhang, X., Xu, W., Liu, X., Wei, J., Wang, Z., and Yang, Y.: Global estimates
917 of dry ammonia deposition inferred from space-measurements, *Sci.Total Environ.*,
918 730, 139189, <https://doi.org/10.1016/j.scitotenv.2020.139189>, 2020.

919 Liu, X., Duan, L., Mo, J., Du, E., Shen, J., Lu, X., Zhang, Y., Zhou, X., He, C., and
920 Zhang, F.: Nitrogen deposition and its ecological impact in China: An overview,
921 *Environ. Pollut.*, 159, 2251-2264, <http://dx.doi.org/10.1016/j.envpol.2010.08.002>,
922 2011.

923 Liu, X., Xu, W., Duan, L., Du, E., Pan, Y., Lu, X., Zhang, L., Wu, Z., Wang, X.,
924 Zhang, Y., Shen, J., Song, L., Feng, Z., Liu, X., Song, W., Tang, A., Zhang, Y., Zhang,
925 X., and Collett, J. L.: Atmospheric Nitrogen Emission, Deposition, and Air Quality
926 Impacts in China: an Overview, *Curr. Pollut. Rep.*, 3, 65-77,
927 10.1007/s40726-017-0053-9, 2017d.

928 Lu, X., Jiang, H., Zhang, X., Liu, J., Zhang, Z., Jin, J., Wang, Y., Xu, J., and Cheng,
929 M.: Estimated global nitrogen deposition using NO₂ column density, *Int. J. Remote
930 Sens.*, 34, 8893-8906, 2013.

931 Mari, C., Jacob, D. J., and Bechtold, P.: Transport and scavenging of soluble gases in
932 a deep convective cloud, *J. Geophys. Res-Atmos.*, 105, 22255-22268, 2000.

933 Nadelhoffer, K. J., Emmett, B. A., Gundersen, P., Kjønaas, O. J., Koopmans, C. J.,
934 Schleppi, P., Tietema, A., and Wright, R. F.: Nitrogen deposition makes a minor

935 contribution to carbon sequestration in temperate forests, *Nature*, 398, 145,
936 10.1038/18205, 1999.

937 Nemitz, E., Flynn, M., Williams, P. I., Milford, C., Theobald, M. R., Blatter, A.,
938 Gallagher, M. W., and Sutton, M. A.: A Relaxed Eddy Accumulation System for the
939 Automated Measurement of Atmospheric Ammonia Fluxes, *Water, Air and Soil
940 Pollution: Focus*, 1, 189-202, 10.1023/A:1013103122226, 2001.

941 Nicolas, G., and Galloway, J. N.: An Earth-system perspective of the global nitrogen
942 cycle, *Nature*, 451, 293-296, 2008.

943 Nowlan, C., Martin, R., Philip, S., Lamsal, L., Krotkov, N., Marais, E., Wang, S., and
944 Zhang, Q.: Global dry deposition of nitrogen dioxide and sulfur dioxide inferred from
945 space-based measurements, *Global Biogeochem. Cy.*, 28, 1025-1043, 2014.

946 Paerl, H. W., Gardner, W. S., McCarthy, M. J., Peierls, B. L., and Wilhelm, S. W.:
947 Algal blooms: noteworthy nitrogen, *Science*, 346, 175, 2014.

948 Pan, Y., Wang, Y., Tang, G., and Wu, D.: Wet and dry deposition of atmospheric
949 nitrogen at ten sites in Northern China, *Atmos. Chem. Phys.*, 12, 6515-6535, 2012.

950 Ronsmans, G., Langerock, B., Wespes, C., Hannigan, J. W., Hase, F., Kerzenmacher,
951 T., Mahieu, E., Schneider, M., Smale, D., Hurtmans, D., De Mazi ère, M., Clerbaux, C.,
952 and Coheur, P. F.: First characterization and validation of FORLI-HNO₃ vertical
953 profiles retrieved from IASI/Metop, *Atmos. Meas. Tech.*, 9, 4783-4801,
954 10.5194/amt-9-4783-2016, 2016.

955 Schrader, F., Br ümmer, C., Flechard, C. R., Wichink Kruit, R. J., van Zanten, M. C.,
956 Z öll, U., Hensen, A., and Erisman, J. W.: Non-stomatal exchange in ammonia dry

957 deposition models: comparison of two state-of-the-art approaches, *Atmos. Chem.*
958 *Phys.*, 16, 13417-13430, 10.5194/acp-16-13417-2016, 2016.

959 Shen, J., Li, Y., Liu, X., Luo, X., Tang, H., Zhang, Y., and Wu, J.: Atmospheric dry
960 and wet nitrogen deposition on three contrasting land use types of an agricultural
961 catchment in subtropical central China, *Atmos. Environ.*, 67, 415-424,
962 <http://dx.doi.org/10.1016/j.atmosenv.2012.10.068>, 2013.

963 Stevens, C. J., Dise, N. B., Mountford, J. O., and Gowing, D. J.: Impact of Nitrogen
964 Deposition on the Species Richness of Grasslands, *Science*, 303, 1876-1879,
965 10.1126/science.1094678, 2004.

966 Sutton, M. A., Tang, Y. S., Miners, B., and Fowler, D.: A New Diffusion Denuder
967 System for Long-Term, Regional Monitoring of Atmospheric Ammonia and
968 Ammonium, *Water Air & Soil Pollution Focus*, 1, 145-156, 2001.

969 Sutton, M. A., Bleeker, A., Howard, C. M., Bekunda, M., Grizzetti, B., Vries, W. D.,
970 Grinsven, H. J. M. V., Abrol, Y. P., Adhya, T. K., and Billen, G.: Our Nutrient World:
971 the challenge to produce more food and energy with less pollution, 2013.

972 Tan, J., Fu, J. S., Dentener, F., Sun, J., Emmons, L., Tilmes, S., Sudo, K., Flemming,
973 J., Jonson, J. E., and Gravel, S.: Multi-model study of HTAP II on sulfur and nitrogen
974 deposition, *Atmos. Chem. Phys.*, 18, 1-36, 2018.

975 Van Damme, M., Clarisse, L., Dammers, E., Liu, X., Nowak, J., Clerbaux, C.,
976 Flechard, C., Galy-Lacaux, C., Xu, W., and Neuman, J.: Towards validation of
977 ammonia (NH_3) measurements from the IASI satellite, *Atmospheric Measurement
978 Techniques*, 7, 12125-12172, 2014a.

979 Van Damme, M., Wichink Kruit, R., Schaap, M., Clarisse, L., Clerbaux, C., Coheur, P.
980 F., Dammers, E., Dolman, A., and Erisman, J.: Evaluating 4 years of atmospheric
981 ammonia (NH₃) over Europe using IASI satellite observations and LOTOS-EUROS
982 model results, *J. Geophys. Res-Atmos.*, 119, 9549-9566, 2014b.

983 Van der Graaf, S. C., Dammers, E., Schaap, M., and Erisman, J. W.: Technical note:
984 How are NH₃ dry deposition estimates affected by combining the LOTOS-EUROS
985 model with IASI-NH₃ satellite observations?, *Atmos. Chem. Phys.*, 18, 13173-13196,
986 10.5194/acp-18-13173-2018, 2018.

987 Vet, R., Artz, R. S., Carou, S., Shaw, M., Ro, C.-U., Aas, W., Baker, A., Bowersox, V.
988 C., Dentener, F., Galy-Lacaux, C., Hou, A., Pienaar, J. J., Gillett, R., Forti, M. C.,
989 Gromov, S., Hara, H., Khodzher, T., Mahowald, N. M., Nickovic, S., Rao, P. S. P., and
990 Reid, N. W.: A global assessment of precipitation chemistry and deposition of sulfur,
991 nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus, *Atmos.*
992 *Environ.*, 93, 3-100, <http://dx.doi.org/10.1016/j.atmosenv.2013.10.060>, 2014.

993 Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler,
994 D. W., Schlesinger, W. H., and Tilman, D. G.: Human alteration of the global nitrogen
995 cycle: sources and consequences, *Ecol. Appl.*, 7, 737-750, 1997.

996 Wei, J., Huang, W., Li, Z., Xue, W., Peng, Y., Sun, L., and Cribb, M.: Estimating
997 1-km-resolution PM2.5 concentrations across China using the space-time random
998 forest approach, *Remote Sens. Environ.*, 231, 111221,
999 <https://doi.org/10.1016/j.rse.2019.111221>, 2019.

1000 Wesely, M., and Hicks, B.: Some factors that affect the deposition rates of sulfur

1001 dioxide and similar gases on vegetation, Journal of the Air Pollution Control
1002 Association, 27, 1110-1116, 1977.

1003 Whitburn, S., Van Damme, M., Clarisse, L., Bauduin, S., Heald, C. L., Hadji-Lazaro,
1004 J., Hurtmans, D., Zondlo, M. A., Clerbaux, C., and Coheur, P. F.: A flexible and robust
1005 neural network IASI-NH₃ retrieval algorithm, J. Geophys. Res-Atmos., 121,
1006 6581-6599, 10.1002/2016JD024828, 2016.

1007 Williams, J. E., Boersma, K. F., Le Sager, P., and Verstraeten, W. W.: The
1008 high-resolution version of TM5-MP for optimized satellite retrievals: description and
1009 validation, Geosci. Model Dev., 10, 721-750, 10.5194/gmd-10-721-2017, 2017.

1010 Wong, D. C., Pleim, J., Mathur, R., Binkowski, F., Otte, T., Gilliam, R., Pouliot, G.,
1011 Xiu, A., Young, J. O., and Kang, D.: WRF-CMAQ two-way coupled system with
1012 aerosol feedback: software development and preliminary results, Geosci. Model Dev.,
1013 5, 299-312, 10.5194/gmd-5-299-2012, 2012.

1014 Xu, W., Luo, X. S., Pan, Y. P., Zhang, L., Tang, A. H., Shen, J. L., Zhang, Y., Li, K. H.,
1015 Wu, Q. H., Yang, D. W., Zhang, Y. Y., Xue, J., Li, W. Q., Li, Q. Q., Tang, L., Lv, S. H.,
1016 Liang, T., Tong, Y. A., Liu, P., Zhang, Q., Xiong, Z. Q., Shi, X. J., Wu, L. H., Shi, W.
1017 Q., Tian, K., Zhong, X. H., Shi, K., Tang, Q. Y., Zhang, L. J., Huang, J. L., He, C. E.,
1018 Kuang, F. H., Zhu, B., Liu, H., Jin, X., Xin, Y. J., SHi, X. K., Du, E. Z., Dore, A. J.,
1019 Tang, S., Collett Jr, J. L., Goulding, K., Sun, Y. X., Ren, J., Zhang, F. S., and Liu, X. J.:
1020 Quantifying atmospheric nitrogen deposition through a nationwide monitoring
1021 network across China, Atmos. Chem. Phys., 15, 12345-12360, 2015.

1022 Yu, G., Jia, Y., He, N., Zhu, J., Chen, Z., Wang, Q., Piao, S., Liu, X., He, H., Guo, X.,

1023 Wen, Z., Li, P., Ding, G., and Goulding, K.: Stabilization of atmospheric nitrogen
1024 deposition in China over the past decade, *Nat. Geosci.*, 12, 424-429,
1025 10.1038/s41561-019-0352-4, 2019.

1026 Zhang, L., Wright, L. P., and Asman, W. A. H.: Bi-directional air-surface exchange of
1027 atmospheric ammonia: A review of measurements and a development of a big-leaf
1028 model for applications in regional-scale air-quality models, *J. Geophys. Res-Atmos.*,
1029 115, 898-907, 2010.

1030 Zhang, L., Jacob, D. J., Knipping, E. M., Kumar, N., Munger, J. W., Carouge, C., Van
1031 Donkelaar, A., Wang, Y., and Chen, D.: Nitrogen deposition to the United States:
1032 distribution, sources, and processes, *Atmos. Chem. Phys.*, 12 4539-4554, 2012.

1033 Zhang, Q., Streets, D. G., Carmichael, G. R., He, K., Huo, H., Kannari, A., Klimont,
1034 Z., Park, I., Reddy, S., and Fu, J.: Asian emissions in 2006 for the NASA INTEX-B
1035 mission, *Atmos. Chem. Phys.*, 9, 5131-5153, 2009.

1036 Zhang, X. Y., Lu, X. H., Liu, L., Chen, D. M., Zhang, X. M., Liu, X. J., and Zhang, Y.:
1037 Dry deposition of NO₂ over China inferred from OMI columnar NO₂ and atmospheric
1038 chemistry transport model, *Atmos. Environ.*, 169, 2017.

1039 Zhang, X. Y., Chuai, X. W., Liu, L., Zhang, W. T., Lu, X. H., Zhao, L. M., and Chen,
1040 D. M.: Decadal Trends in Wet Sulfur Deposition in China Estimated From OMI SO₂
1041 Columns, *J. Geophys. Res-Atmos.*, 123, 10796-10811, 10.1029/2018JD028770, 2018.

1042 Zhao, X., Chen, L., and Zhang, H.: Nitrate and ammonia contaminations in drinking
1043 water and the affecting factors in Hailun, northeast China, *Journal of Environmental
1044 Health*, 75, 28, 2013.

1045 Zhao, Y., Zhang, L., Chen, Y., Liu, X., Xu, W., Pan, Y., and Duan, L.: Atmospheric
1046 nitrogen deposition to China: A model analysis on nitrogen budget and critical load
1047 exceedance, *Atmos. Environ.*, 153, 32-40,
1048 <http://dx.doi.org/10.1016/j.atmosenv.2017.01.018>, 2017.
1049