1 Reviewing Global Estimates of Surface Reactive Nitrogen Concentration and

2 Deposition Using Satellite Retrievals

- 3 Lei Liu ^{a, *}, Xiuying Zhang ^b, Wen Xu ^c, Xuejun Liu ^c, Xuehe Lu ^b, Jing Wei ^{d, e}, Yi Li ^f,
- 4 Yuyu Yang ^a, Zhen Wang ^b, Anthony Y. H. Wong ^g
- ^a College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000,
- 6 China
- 7 b International Institute for Earth System Science, Nanjing University, Nanjing,
- 8 210023, China
- 9 ^c College of Resources and Environmental Sciences, National Academy of
- 10 Agriculture Green Development, China Agricultural University, Beijing, 100193,
- 11 China
- d State Key Laboratory of Remote Sensing Science, College of Global Change and
- Earth System Science, Beijing Normal University, Beijing, China
- ^e Department of Atmospheric and Oceanic Science, Earth System Science
- 15 Interdisciplinary Center, University of Maryland, College Park, MD, USA
- ^f Chief Technology Officer SailBri Cooper Inc., Beaverton OR, 97008, USA
- 17 ^g Department of Earth and Environment, Boston University, Boston, MA 02215, USA
- * Correspondence to Lei Liu (liuleigeo@lzu.edu.cn).

19 Abstract

- 20 Since the industrial revolution, human activities have dramatically changed the
- 21 nitrogen (N) cycle in natural systems. Anthropogenic emissions of reactive nitrogen
- 22 (N_r) can return to the earth's surface through atmospheric N_r deposition. Increased N_r
- 23 deposition may improve ecosystem productivity. However, excessive N_r deposition
- 24 can cause a series of negative effects on ecosystem health, biodiversity, soil, and
- water. Thus, accurate estimations of N_r deposition are necessary for evaluating its

environmental impacts. The United States, Canada and Europe have successively launched a number of satellites with sensors that allow retrieval of atmospheric NO_2 and NH_3 column density, and therefore estimation of surface N_r concentration and deposition at an unprecedented spatiotemporal scale. Atmosphere NH_3 column can be retrieved from atmospheric infra-red emission, while atmospheric NO_2 column can be retrieved from reflected solar radiation. In recent years, scientists attempted to estimate surface N_r concentration and deposition using satellite retrieval of atmospheric NO_2 and NH_3 columns. In this study, we give a thorough review on recent advances of estimating surface N_r concentration and deposition using the satellite retrievals of NO_2 and NH_3 , present a framework of using satellite data to estimate surface N_r concentration and deposition based on recent works, and summarize the existing challenges for estimating surface N_r concentration and deposition using the satellite-based methods. We believe that exploiting satellite data to estimate N_r deposition has a broad and promising prospect.

Keywords

- Nitrogen deposition; Satellite retrieval; Surface concentration; Oxidized and reduced
- 42 N_r

1. Introduction

Nitrogen (N) exists in three forms in the environment including reactive nitrogen (N_r), organic nitrogen (ON) and nitrogen gas (N_2) (Canfield et al., 2010). N_2 is the main component of air, accounting for 78% of the total volume of air, but it cannot be directly used by most plants. N_r refers to the general term of N-containing substances in atmosphere, plants, soils and fertilizers that are not combined with carbon. N_r (such as NO_3^- and NH_4^+) is the main form of N that can be directly used by most plants, but the content of N_r in nature is much lower compared with ON and N_2 (Vitousek et al.,

1997; Nicolas and Galloway, 2008). The supply of N_r is essential for all life forms and contributes to the increase in agricultural production, thus providing sufficient food for the growing global population (Galloway et al., 2008; David et al., 2013; Galloway et al., 2004b; Erisman et al., 2008). Before the industrial revolution, N_r mainly came from natural sources such as biological N fixation, lightning and volcanic eruption (Galloway et al., 2004a). Since the industrial revolution, human activities (e.g. agricultural development, combustion of fossil energy) have greatly perturbed the N cycle in natural systems (Canfield et al., 2010; Kim et al., 2014; Lamarque et al., 2005). N_r (NO_x and NH₃) emitted to the atmosphere will return to the earth surface through atmospheric deposition (Liu et al., 2011). Atmospheric N_r deposition refers to the process in which N_r are removed from the atmosphere, including wet (rain and snow) and dry (gravitational settling, atmospheric turbulence, etc.) deposition (Xu et al., 2015; Zhang et al., 2012; Pan et al., 2012). The input of N_r over terrestrial natural ecosystems primarily comes from the N_r deposition (Shen et al., 2013;Sutton et al., 2001; Larssen et al., 2011). In the short term, atmospheric N_r deposition can increase the N_r input to ecosystems, which promotes plant growth and enhances ecosystem productivity (Erisman et al., 2008; Sutton et al., 2013). However, excessive atmospheric N_r deposition also causes a series of environmental problems (Liu et al., 2017d). Due to the low efficiency of agricultural N application, plenty of N_r is lost through runoff, leaching and volatilization, causing serious environmental pollution. Excessive N_r deposition may aggravate the plant's susceptibility to drought or frost, reduce the resistance of plant to pathogens or pests, and further affect the physiology and biomass distribution of vegetation (ratio of roots, stems and leaves) (Stevens et al., 2004; Nadelhoffer et al., 1999; Bobbink et al., 2010; Janssens et al., 2010). Excessive

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

76 N_r leads to eutrophication and related algal blooms over aquatic ecosystems, reducing water biodiversity (Paerl et al., 2014), while excessive N_r in drinking water also poses 77 a threat to human health (Zhao et al., 2013). Therefore, monitoring and estimation of 78 79 surface N_r concentration and deposition on the global scale are of great importance and urgency. 80 The methods of estimating atmospheric N_r deposition can be divided into three 81 82 categories: ground-based monitoring, atmospheric chemical transport modeling (ACTM) and satellite-based estimation. Ground-based monitoring is considered to be 83 84 the most accurate and quantitative method, which can effectively reflect the N_r deposition in local areas. ACTM can simulate the processes of N_r chemical reaction, 85 transport, and deposition, as well as the vertical distribution of N_r. Satellite-based 86 87 estimation establishes empirical, physical or semi-empirical models by connecting the ground-based N_r concentrations and deposition with satellite-derived N_r concentration. 88 This study focuses on reviewing the recent development of satellite-based methods to 89 90 estimate N_r deposition. We firstly give a brief introduction to the progress of ground-based monitoring, ACTM-based methods, and then present a detailed 91 92 framework of using satellite observation to estimate dry and wet N_r deposition (including both oxidized and reduced N_r). Next, we review the recent advances of the 93 94 satellite-based methods of estimating N_r deposition. Finally, we discuss the remaining 95 challenges for estimating surface N_r concentration and deposition using satellite observation. 96

2 Methods for Estimating Surface N_r Concentration and Deposition

2.1 Ground-based Monitoring

97

98

Ground-based monitoring of N_r deposition can be divided into two parts: wet and dry N_r deposition monitoring. Since the 1970s, there have been large-scale monitoring

networks focusing on the wet N_r deposition. The main large-scale regional monitoring networks include Canadian Air and Precipitation Monitoring Network (CAPMoN), Acid Deposition Monitoring Network in East Asia (EANET), European Monitoring and Evaluation Program (EMEP), United States National Atmospheric Deposition Program (NADP), World Meteorological Organization Global Atmosphere Watch Precipitation Chemistry Program, and Nationwide Nitrogen Deposition Monitoring Network in China (NNDMN) (Tan et al., 2018; Vet et al., 2014). The detailed scientific objectives of the wet N_r deposition observation networks vary, but most of the observation networks mainly concentrate on the spatiotemporal variation of wet deposition of ions including N_r compounds, the long-term trends of ions in precipitation, and the evaluation of ACTMs. Compared with wet N_r deposition monitoring, dry N_r deposition monitoring started late, due to the limitation of monitoring technology since it is more difficult to be quantified (affected greatly by surface roughness, air humidity, climate and other environmental factors) (Liu et al., 2017c). Dry N_r deposition observation networks include US ammonia monitoring network (AMoN), CAPMoN, EANET and EMEP. The monitoring methods of dry N_r deposition are mainly divided into direct monitoring (such as dynamic chambers) and indirect monitoring (such as inferential methods). The inferential model is widely applied in ground-based monitoring networks (such as EANET and NNDMN), mainly because this method is more practical and simpler. In inferential models, dry deposition is divided into two parts: surface N_r concentrations and the deposition velocity (V_d) of N_r (Nowlan et al., 2014). V_d can be estimated by meteorology, land use types of underlying surface as well as the characteristics of each N_r component itself using resistance models (Nemitz et al., 2001). Thus, dry N_r deposition monitoring networks only need to focus on the

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

quantification of surface concentration of individual N_r components. The N_r components in the atmosphere are very complex, including N₂O₅, HONO, NH₃, NO₂, HNO₃ and particulate NH₄⁺ and NO₃. Most monitoring networks include the major N_r species such as gaseous NH₃, NO₂, HNO₃ and the particles of NH₄⁺ and NO₃⁻. Effort of ground-based N_r deposition monitoring mostly concentrates on wet N_r deposition, while observations of dry N_r deposition are relatively scarce especially for surface HNO₃ and NH₄⁺ and NO₃⁻. Second, most observation networks focus on a few years or a certain period of time, leading to the lack of long-term continuously monitoring on both wet and dry N_r deposition. More importantly, the global N_r deposition monitoring network has not been established, and the sampling standards in different regions are not unified. These outline the potential room for improvement of ground-based N_r deposition monitoring.

2.2 Atmospheric Chemistry Transport Model (ACTM) Simulation

An ACTM can simulate N_r deposition at regional or global scales through explicitly representing the physical and chemical processes of atmospheric N_r components (Zhao et al., 2017;Zhang et al., 2012). Wet N_r deposition flux is parameterized as in-cloud, under-cloud and precipitation scavenging (Amos et al., 2012;Levine and Schwartz, 1982;Liu et al., 2001;Mari et al., 2000), while dry deposition flux can be obtained as the product of surface N_r concentration and V_d , which is typically parameterized as a network of resistances (Wesely and Hicks, 1977). Based on the integrated results of 11 models of HTAP (hemispheric transport of air pollution), Tan et al. found that about 76%-83% of the ACTM's simulation results were $\pm 50\%$ of the monitoring values, and the modeling results underestimated the wet deposition of NH_4^+ and NO_3^- over Europe and East Asia, and overestimated the wet deposition of NO_3^- over the eastern US (Tan et al., 2018). Though regional ACTMs can be

configured at very high horizontal resolution (e.g., $1 \times 1 \text{ km}^2$) (Kuik et al., 2016), the horizontal resolution of global ACTMs are relatively coarse (1 °×1 °-5 °×4 °) (Williams et al., 2017), which cannot indicate the local pattern of N_r deposition. On the other hand, the N_r emission inventory used to drive an ACTM is highly uncertain, with the uncertainty of the NO_x emission at about ± 30 -40%, and that of NH_3 emission at about ± 30 -80% (Zhang et al., 2009;Cao et al., 2011).

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

2.3 Satellite-based Estimation of Surface N_r Concentration and Deposition

Satellite observation has wide spatial coverages and high resolution, and is spatiotemporally continuous. Atmospheric NO₂ and NH₃ columns can be derived from satellite measurements with relatively high accuracy (Van Damme et al., 2014a; Boersma et al., 2011), providing a new perspective about atmospheric N_r abundance. Satellite instruments that can monitor NO₂ in the atmosphere include GOME (Global Ozone Monitoring Experience), SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric ChartographY), OMI (Ozone Monitoring Instrument), GOME-2 (Global Ozone Monitoring Experience-2). Some scholars applied satellite NO₂ columns to estimate the surface NO₂ concentration, and then dry NO₂ deposition by combining the surface NO₂ concentration and modeled V_d. Cheng et al. established a statistical model to estimate the surface NO₂ concentration based on the SCIAMACHY NO₂ columns, and then estimated the dry deposition of NO₂ over eastern China (Cheng et al., 2013). This method used the simple linear model and did not consider the vertical profiles of NO₂ (Cheng et al., 2013). Lu et al. established a multivariate linear regression model based on the SCIAMACHY and GOME NO2 columns, meteorological data and ground-based monitoring N_r deposition, and then

estimated the global total N_r deposition (Lu et al., 2013). Lu et al. could not

distinguish the contribution of dry and wet N_r deposition using the multivariate linear regression model (Lu et al., 2013). Jia et al. established a simple linear regression model based on OMI tropospheric NO₂ column and ground-based surface N_r concentration, and then estimated the total amounts of dry N_r deposition (Jia et al., 2016). Jia et al. used OMI tropospheric NO₂ column to estimate the dry deposition of reduced N_r deposition (NH₃ and NH₄⁺), which could also bring great errors since the OMI NO₂ column could not indicate the NH₃ emission. These studies highlight the problem of using only NO₂ columns to derive total N_r deposition, that NO₂ columns give us highly limited information about the abundance of reduced N_r (NH₃ and NH_4^+). Lamsal et al. first used the relationship between the NO₂ column and surface NO₂ concentration at the bottom layer simulated by an ACTM to convert OMI NO2 column to surface NO₂ concentration (Lamsal et al., 2008). A series of works (Lamsal et al., 2013; Nowlan et al., 2014; Kharol et al., 2018) have effectively estimated regional and global surface NO₂ concentration using satellite NO₂ column combining with ACTM-derived relationship between the NO₂ column and surface NO₂ concentration simulated. It is worth mentioning that Nowlan et al. applied OMI NO₂ column to obtain the global dry NO₂ deposition during 2005-2007 for the first time (Nowlan et al., 2014). However, using satellite NO₂ column and ACTM-derived relationship between the NO₂ column and surface NO₂ concentration may lead to an underestimation of surface NO2 concentration. Kharol et al. found that the satellite-derived surface NO₂ concentration using the above method is only half of the observed values (Kharol et al., 2015). To resolve such potential underestimation, Larkin et al. established a statistical relationship between the satellite-derived and ground measured surface NO₂ concentration, and then calibrated the satellite-derived

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

201 surface NO₂ concentration using the established relationship (Larkin et al., 2017). Some researchers also estimated other N_r components (such as particulate NO₃) 202 based on satellite NO₂ column. Based on the linear model between NO₂, NO₃, HNO₃ 203 obtained by ground-based measurements, Jia et al. calculated the surface NO₃ and 204 HNO₃ concentration using satellite-derived surface NO₂ concentration and their 205 relationship (Jia et al., 2016). Geddes et al. reconstructed the NO_x emission data by 206 207 using the satellite NO₂ column, and then estimated the global NO_x deposition by an ACTM, but the spatial resolution of global NO_x deposition remains low (2 \times 2.5 $^{\circ}$), 208 209 failing to exploit the higher resolution of satellite observation (Geddes and Martin, 2017). 210 Comparing with NO₂, the development of satellite NH₃ monitoring is relatively late. 211 Atmospheric NH₃ was first detected by the TES in Beijing and Los Angeles (Beer et 212 al., 2008). The IASI sensor also detected atmospheric NH₃ from a biomass burning 213 event in Greece (Coheur et al., 2009). Subsequently, many scholars began to develop 214 more reliable satellite NH₃ column retrievals (Whitburn et al., 2016; Van Damme et al., 215 2014a), validate the satellite-retrieved NH₃ column with the ground-based observation 216 (Van Damme et al., 2014a; Dammers et al., 2016; Li et al., 2017), and compare the 217 satellite NH₃ column with the aircraft measured NH₃ column (Van Damme et al., 218 2014b; Whitburn et al., 2016). In recent years, some scholars have carried out the 219 works of estimating surface NH₃ concentration based on satellite NH₃ column. Liu et 220 al. obtained the satellite-derived surface NH₃ concentration in China based on the 221 IASI NH₃ column coupled with an ACTM, and deepened the understanding of the 222 223 spatial pattern of surface NH₃ concentration in China (Liu et al., 2017b). Similarly, Graaf et al. carried out the relevant work in Europe based on the IASI NH₃ column 224 coupled with an ACTM, and estimated the dry NH₃ deposition in West Europe (Van 225

der Graaf et al., 2018). Jia et al. first constructed the linear model between surface NO_2 and NH_4^+ concentration based on ground monitoring data, and then calculated the NH_4^+ concentration using satellite-derived surface NO_2 concentration and their relationship (Jia et al., 2016). However, as the emission sources of NO_x (mainly from transportation and energy sectors) and NH_3 (mainly from agricultural sector) are different (Hoesly et al., 2018), the linear model between surface NO_2 and NH_4^+ concentration may lead to large uncertainties in estimating the global NH_4^+ concentration. There is still no report about the satellite-derived dry and wet reduced N_r deposition using satellite NH_3 column at a global scale. As reduced N_r plays an important role in total N_r deposition, satellite NH_3 should be better utilized to help estimate reduced N_r deposition.

2.4 Problems in Estimating Global N_r Deposition

The spatial coverage of ground monitoring sites focusing on N_r deposition is still not adequate, and the monitoring standards and specifications in different regions of the world are not consistent, presenting a barrier to integrating different regional monitoring data. Large uncertainties exist in N_r emission inventory used to drive the ACTMs, and the spatial resolution of the modeled N_r deposition by ACTMs is coarse. Using satellite monitoring data to estimate surface N_r concentration and deposition is still in its infancy, especially for reduced N_r .

Some scholars tried to use satellite NO_2 and NH_3 column to estimate the surface N_r concentration and dry N_r deposition. However, there are relatively few studies on estimating wet N_r deposition. In addition, the development of satellite monitoring for NH_3 in the atmosphere is relatively late (compared with NO_2). At present, IASI NH_3 data have been widely used, while the effective measurements of TES are less than IASI; CrIS and AIRS NH_3 column products are still under development. There are

three main concerns in high-resolution estimation of surface N_r concentration and deposition based on satellite N_r observation. (1) How to effectively couple the satellite high-resolution NO_2 and NH_3 column data with the vertical profiles simulated by an ACTM, and then estimates the surface N_r concentrations? This step is the key to simulate the dry N_r deposition. (2) How to construct a model for estimating dry N_r deposition including all major N_r species based on satellite NO_2 and NH_3 column, and then estimates the dry N_r deposition at a high spatial resolution? (3) How to combine the high-resolution satellite NO_2 and NH_3 column data and ground-based monitoring data to construct wet N_r deposition models, and then estimate the wet N_r deposition at a high spatial resolution?

3. Framework of Estimating Surface N_r Concentration and Deposition Using

Satellite Observation

We give a framework of using satellite observation to estimate surface N_r concentration and deposition as shown in **Fig. 1** based on recent advances.

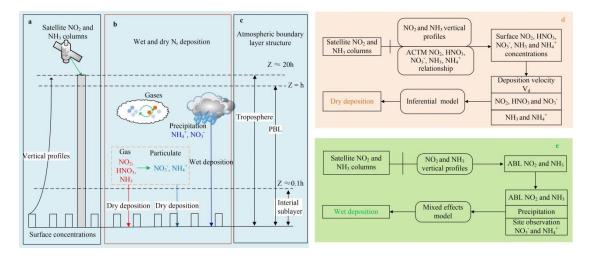


Fig. 1 Schematic diagram of dry and wet N_r deposition. (a) indicates satellite observed NO_2 and NH_3 column, and the vertical profiles by an ACTM; (b) shows dry and wet N_r deposition including the major N_r species (gaseous NO_2 , HNO_3 , NH_3 , particulate NO_3^- and NH_4^+ , as well as wet NO_3^- and NH_4^+ in precipitation); (c) illustrates atmospheric vertical structures including the troposphere (satellite observation), atmospheric boundary layer (ABL), interfacial sub-layer; (d) and (e) represent procedures of calculating the dry and wet N_r deposition.

3.1 Conversion of Satellite NO₂ and NH₃ Column to Surface N_r Concentration

274 An ACTM can simulate the vertical profiles of NO₂ and NH₃ with multiple layers

275 from the surface to the troposphere. For example, the GEOS-Chem ACTM includes

276 47 vertical layers from the earth surface to the top of the stratosphere. Most previous

studies estimated the ratio of surface N_r concentration (at the first layer) to total

columns by an ACTM, and then multiply the ratio by satellite columns to estimate

satellite-derived surface concentration (Geddes et al., 2016; Graaf et al., 2018; Nowlan

280 et al., 2014).

273

277

278

279

284

285

Another approach tries to fit general vertical profiles of NO₂ and NH₃ (Zhang et al.,

282 2017; Liu et al., 2017b; Liu et al., 2017c), and then estimate the ratio of N_r

283 concentration at any height to total N_r columns, and finally multiply the ratio by

satellite NO₂ and NH₃ columns. This approach has an advantage compared with the

previous one for that NO₂ and NH₃ concentration at all altitude included in ACTM

simulations can be estimated.

Taking the estimation of surface NO₂ concentration using the latter approach as an

example, the methods and steps are introduced in the following.

Step 1: Calculate the monthly mean NO₂ concentrations at all layers simulated by an

290 ACTM.

292

294

Step 2: Construct the vertical profile function of NO₂. Multiple Gaussian functions are

used to fit the vertical distribution of NO₂ based on the monthly NO₂ concentrations at

all layers calculated in Step 1, in which the independent variable is the height

(altitude), and the dependent variable is NO_2 concentration at a certain height.

The basic form of single Gaussian function is (Zhang et al., 2017;Liu et al., 2017b;Liu

296 et al., 2017c; Whitburn et al., 2016):

297
$$\rho = \rho_{max} e^{-(\frac{Z-Z_0}{\sigma})^2}$$
 (1)

- where Z is the height of a layer in the ACTM; ρ_{max} , Z_o and σ are the maximum NO₂ 298 concentration, the corresponding height with the maximum NO₂ concentration and the 299 300 thickness of NO₂ concentration layer (one standard error of Gaussian function). There are two basic forms of profile shapes of NO₂: (1) NO₂ concentration reaches the 301 maximum concentration when reaching a certain height $(Z_0 \neq 0)$. As the height 302 increases, the NO₂ concentration begins to decline; (2) NO₂ concentration is basically 303 304 concentrated on the earth surface (Z₀=0). These two cases are the ideal state of the vertical distribution of NO₂ concentration. In reality, single Gaussian fitting may not 305 306 capture the vertical distribution of NO₂ well. To improve the accuracy of fitting, the

307

- 309 Step 3: Calculate the ratio of NO₂ concentration at the height of h_G to total columns
- 310 $(\int_0^{h_{trop}} \rho(Z) \, dx)$, and then multiply the ratio by satellite column (S_{trop}) . The
- satellite-derived N_r concentration at the height of h_G can be calculated as:

sum of multiple Gaussian functions can be used (Liu et al., 2019):

312
$$S_{G_NO2} = S_{trop} \times \frac{\rho(h_G)}{\int_0^{h_{trop}} \rho(Z) dx}$$
 (3)

- Step 4: Convert the instantaneous satellite-derived surface NO₂ concentration (S_{G NO2})
- to daily average ($S_{G_{-}NO2}$ *) using the ratio of average surface NO_2 concentration
- (G_{ACTM}^{1-24}) to that at satellite overpass time $(G_{ACTM}^{overpass})$ by an ACTM (Liu et al., 2020):

316
$$S_{G_{-NO2}} *= \frac{G_{ACTM}^{1-24}}{G_{ACTM}^{overpass}} \times S_{G_{-NO2}}$$
 (4)

- The method for estimating the surface NH_3 concentration ($S_{G NH3} *$) is similar to that
- for estimating the surface NO_2 concentration.

3.2 Estimating Surface Concentration of Other N_r Species

320 At present, only NO₂ and NH₃ column can be retrieved reliably, and there are no

- reliable satellite retrievals of HNO₃, NH₄⁺ and NO₃. For example, the IASI HNO₃
- product is still in the stage of data development and verification (Ronsmans et al.,
- 323 2016). Previous studies firstly derive the relationship between N_r species by an
- 324 ACTM or by ground-based measurements, and then use the relationship to convert
- satellite-derived surface NO₂ and NH₃ concentration (S_{G NH3} *) to HNO₃, NH₄⁺ and
- 326 NO₃ concentrations:

$$\begin{cases} G_{S_NO3} = S_{G_NO2} * \times \frac{G_{ACTM_NO3}}{G_{ACTM_NO2}} \\ G_{S_HNO3} = S_{G_NO2} * \times \frac{G_{ACTM_HNO3}}{G_{ACTM_NO2}} (5) \\ G_{S_NH4} = S_{G_NH3} * \times \frac{G_{ACTM_NH4}}{G_{ACTM_NH3}} \end{cases}$$

- $\frac{G_{ACTM_NO3}}{G_{ACTM_NO2}}, \; \frac{G_{ACTM_HNO3}}{G_{ACTM_NO2}}, \; \frac{G_{ACTM_NH4}}{G_{ACTM_NH3}} \; is \; the \; estimated \; ratio \; of \; between \; NO_2 \; and \; NO_3^-,$
- NO_2 and HNO_3 , NH_3 and NH_4^+ .
- 330 3.3 Dry Deposition of N_r
- 331 The resistance of dry N_r deposition mainly comes from three aspects: aerodynamic
- resistance (R_a), quasi laminar sub-layer resistance (R_b) and canopy resistance (R_c).
- 333 The V_d can be expressed as

334
$$V_d = \frac{1}{R_a + R_b + R_c} + v_g$$
 (6)

- V_g is gravitational settling velocity. For gases, the V_g is negligible (V_g =0).
- Dry NO₂, NO₃, HNO₃, and NH₄ deposition can be calculated by:

$$F = G_S \times V_d \quad (7)$$

- Unlike above species, NH₃ is bi-directional, presenting both upward and downward
- fluxes. There is a so-called "canopy compensation point" (C₀) controlling dry NH₃
- deposition. Dry NH₃ deposition can be calculated by:

341
$$F = (G_{S_NH3} - C_o) \times V_d$$
 (8)

The calculation of C_o is very complex including the leaf stomatal and soil emission

potentials related to the meteorological factors, the plant growth stage and the canopy type. The satellite-based methods usually neglected this complex process and set C_o as zero (Graaf et al., 2018;Kharol et al., 2018) or set fixed values in each land use type based on ground-based measurements (Jia et al., 2016).

3.4 Wet Deposition of N_r

347

The satellite-based estimation of wet N_r deposition can be simplified as the product of 348 349 the concentration of N_r (C), precipitation (P) and scavenging coefficient (w) (Pan et al., 2012). Satellite NO₂ and NH₃ can be used to indicate the oxidized N_r and reduced 350 351 N_r; precipitation (P) can be obtained from ground monitoring data or reanalysis data (such as NCEP). However, the scavenging coefficient (w) is usually highly uncertain. 352 To improve the accuracy of estimation, a mixed-effects model (Liu et al., 353 2017a; Zhang et al., 2018) is proposed to build the relationship between satellite NO₂ 354 and NH₃, precipitation and ground monitoring wet N_r deposition: 355

356 WetN_{ij} =
$$\alpha_j + \beta_i \times P_{ij} \times (S_{ABL})_{ij} + \epsilon_{ij}$$
 (9)

357
$$S_{ABL} = S_{trop} \times \frac{\int_0^{ABL} \rho(Z) dx}{\int_0^{h_{trop}} \rho(Z) dx}$$
 (10)

WetN_{ij} is wet NO_3 -N or NH_4 ⁺-N deposition at month i and site j; $(S_{ABL})_{ij}$ is the 358 atmospheric boundary layer (ABL) NO₂ or NH₃ columns at month i and site j; P_{ii} is 359 precipitation at month i and site j; β_i and α_j are the slope and intercept of random 360 effects, representing seasonal variability and spatial effects; $\,\epsilon_{ij}\,$ represents the random 361 error at month i and site j. 362 The scavenging process of wet N_r deposition usually starts from the height of rainfall 363 rather than the top of the troposphere, so it is more reasonable to use NO2 and NH3 364 column below the height of rainfall to build the wet N_r deposition model. The NO₂ 365 and NH₃ column within ABL is used to build the wet deposition model since 366

precipitation height is close to the height of the ABL (generally less than 2-3 km).

4. Satellite-derived Surface N_r Concentration and Deposition

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

4.1 Surface NO₂ Concentration and Oxidized N_r Deposition

The spatial resolutions of global ACTMs and therefore modeled surface N_r concentration are very coarse (for example, the spatial resolution of the global version of GEOS-Chem is $2^{\circ} \times 2.5^{\circ}$). Thus it can be hard to estimate surface N_r concentration and deposition at a fine resolution at a global scale by ACTMs alone. Instead, the satellite N_r retrievals have a high spatial resolution and can reveal more spatial details than ACTM simulations. Cheng et al. and Jia et al. established a linear model between the surface NO₂ concentration and NO₂ column by assuming the ratio of the surface NO₂ concentration to the tropospheric NO₂ column to be fixed, and then used the linear model to convert satellite NO₂ columns to surface NO₂ concentration, and finally estimated dry NO₂ deposition using the inferential method (Cheng et al., 2013; Jia et al., 2016). However, these statistical methods are highly dependent on the ground-based measurements, and the established linear models may be not effective over regions with few monitoring sites. A comprehensive study (Nowlan et al., 2014) estimated global surface NO₂ concentration during 2005-2007 by multiplying OMI tropospheric NO₂ columns by the ACTM-modeled ratio between surface NO₂ concentration and tropospheric column (Fig. 2). Nowlan et al. also estimated dry NO2 deposition using the OMI-derived surface NO₂ concentration combining the modeled V_d during 2005-2007 (Nowlan et al., 2014). This approach followed an earlier study (Lamsal et al., 2008), that focus on North America. As reported by Lamsal et al., the satellite-derived surface NO₂ concentration was generally lower than ground-based NO₂ observations, ranging from -17% to -36% in North America (Lamsal et al., 2008). Kharol et al. used a similar method and found the satellite-derived surface NO₂ concentration was only half of the ground-measured values in North America (Kharol et al., 2015).

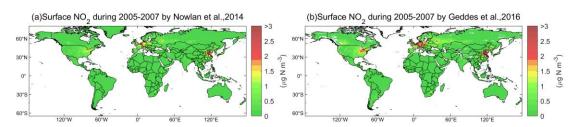


Fig. 2 Satellite-derived surface NO_2 concentration during 2005-2007 by Nowlan et al. (Nowlan et al., 2014) (a) and by Geddes et al. (Geddes et al., 2016) (b). We gained the surface NO_2 concentration by Nowlan et al. (Nowlan et al., 2014) and by Geddes et al. (Geddes et al., 2016) at the web: http://fizz.phys.dal.ca/~atmos/martin/?page_id=232.

Geddes et al. followed previous studies, and used NO₂ column from the GOME, SCIAMACHY, and GOME-2 to estimate surface NO₂ concentration (Geddes et al., 2016). Although Geddes et al. did not evaluate their results with ground-based observation (Geddes et al., 2016), it is obvious that their surface NO₂ estimates were higher than Nowlan's estimates based on OMI (Nowlan et al., 2014) (**Fig. 2**). This may be because the OMI-derived NO₂ column is much lower than that derived by GOME, SCIAMACHY, and GOME-2, especially over polluted regions. For example, in China, the OMI NO₂ column is about 30% lower than that of SCIAMACHY and GOME-2 consistently (**Fig. 3**).

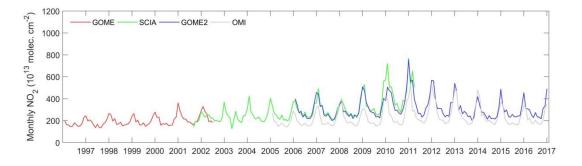


Fig. 3 An example of the time series of monthly NO₂ column retrieved by GOME, SCIAMACHY, GOME2 and OMI in China. We obtained the GOME, SCIAMACHY, GOME2 and OMI data from http://www.temis.nl/airpollution/no2.html.

Larkin et al. established a land-use regression model to estimate global surface NO₂

concentration by combining satellite-derived surface NO2 concentration by Geddes et 416 al. and ground-based annual NO₂ measurements (Geddes et al., 2016;Larkin et al., 417 2017). The study by Larkin et al. can be considered as using the ground-based annual 418 measurements to adjust the satellite-derived surface NO2 concentration by Geddes et 419 al. (Geddes et al., 2016; Larkin et al., 2017), which helped reduce the discrepancy 420 between satellite-derived and ground-measured NO₂ concentration. The regression 421 model captured 54% of global NO₂ variation, with an absolute error of 2.32 μg N m⁻³. 422 Zhang et al. followed the framework in **Sect. 3** to estimate the OMI-derived surface 423 424 NO₂ concentration (at ~50 m) in China, and found good agreement with ground-based surface NO₂ concentration from the NNDMN at yearly scale (slope=1.00, R²=0.89) 425 (Zhang et al., 2017). The methods by Zhang et al. can also generate OMI-derived NO₂ 426 427 concentration at any height by the constructed NO₂ vertical profile (Zhang et al., 2017). Zhang et al. also estimated dry NO₂ deposition using the OMI-derived surface 428 NO₂ concentration combining the modeled V_d during 2005-2016 (Zhang et al., 2017). 429 430 Based on Zhang's estimates, the Gaussian function can well simulate the vertical distribution of NO₂ from an ACTM (MOZART) (Emmons et al., 2010) with 99.64% 431 of the grids having R² values higher than 0.99. This suggests that the 432 ACTM-simulated vertical distribution of NO₂ has a general pattern, which can be 433 434 emulated by Gaussian functions. Once a vertical profile was constructed, it can be 435 easily used to estimate NO₂ concentration at any height. In this study, we used the framework in **Sect. 3** to estimate the OMI-derived surface 436 NO₂ concentration globally. To validate the OMI-derived surface NO₂ concentrations, 437 ground-measured surface NO2 concentration in China, the US and Europe in 2014 438 was collected (Fig. 4). The total number of NO₂ observations in China, the US and 439 Europe are 43, 373 and 88 respectively. The OMI-derived annual average for all sites 440

was 3.74 μ g N m⁻³, which was close to the measured average (3.06 μ g N m⁻³). The R² between OMI-derived surface NO₂ concentrations and ground-based NO₂ measurements was 0.75 and the RMSE was 1.23 μ g N m⁻³ (**Fig. 5**), which is better than the modeling results by the GEOS-Chem ACTM (R²=0.43, RMSE=1.93 μ g N m⁻³). Satellite-based methods have the advantages of spatiotemporally continuous monitoring N_r at a higher resolution, which helps alleviate the problem of the coarse resolution of ACTMs in estimating N_r concentration and deposition.

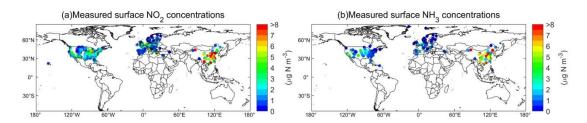


Fig. 4 Spatial distribution of measured surface NO₂ and NH₃ concentrations in 2014. For NO₂ (a), the measured data in China, the US and Europe were obtained from the NNDMN, US-EPA and EMEP, respectively; for NH₃ (b), the measured data in China, the US and Europe were obtained from the NNDMN, US-AMON and EMEP, respectively

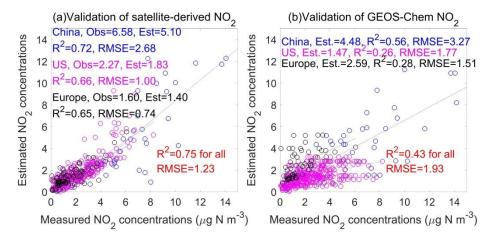


Fig. 5 Comparison between annual mean satellite-derived and ground-measured surface NO_2 concentrations (a), and comparison between annual mean modeled (by an ACTM as GEOS-Chem) and ground-measured surface NO_2 concentrations (b). The ground-based monitoring sites are shown in **Fig. 4**.

For NO₃ and HNO₃, previous studies firstly constructed the relationship between NO₂, NO₃ and HNO₃, and found a relatively high linear relationship between NO₂, NO₃, and HNO₃ at a monthly or yearly scale. For example, Jia et al. found a linear

relationship between NO₂ and NO₃⁻, HNO₃ concentration at annual scale (R²=0.70) (Jia et al., 2016). Similarly, based on the ground-based measurements in the NNDMN, a high correlation was found between surface NO₂ and NO₃⁻ concentration at monthly or annual timescales (**Fig. 6**) (Liu et al., 2017c). Using these linear relationships and satellite-derived surface NO₂ concentration, the annual mean surface NO₃⁻ and HNO₃ can be estimated. Alternatively, the relationship of NO₂, NO₃⁻ and HNO₃ can also be modeled by an ACTM. For example, a strong relationship of tropospheric NO₂, NO₃⁻ and HNO₃ column was simulated over all months by an ACTM, with the correlation ranging from 0.69 to 0.91 (Liu et al., 2017a). But, over shorter timescales, the relationship between NO₂, NO₃⁻ and HNO₃ may be nonlinear, which we should be cautious about when estimating surface NO₃⁻ and HNO₃ concentration from NO₂ concentration.

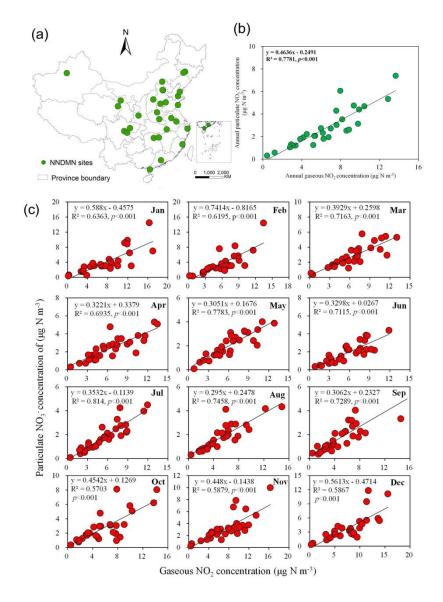


Fig. 6 Correlation between surface NO_2 and particulate NO_3^- concentration in the NNDMN at annual and monthly scales, which were adopted from our previous study (Liu et al., 2017c). (a) indicates the spatial locations of monitoring sites in the NNDMN; (b) and (c) represent yearly and monthly relationship between surface NO_2 and particulate NO_3^- concentration, respectively.

For the wet N_r deposition, Liu et al. followed the framework in **Sect. 3** to estimate wet nitrate deposition using ABL NO_2 columns derived from OMI NO_2 column and NO_2 vertical profile from an ACTM (MOZART), and precipitation by a mixed-effects model showing the proposed model can achieve high predictive power for monthly wet nitrate deposition over China (R=0.83, RMSE=0.72) (Liu et al., 2017a).

4.2 Surface NH₃ Concentration and Reduced N_r Deposition

With the development of atmospheric remote sensing of NH₃, some scholars have

estimated surface NH₃ concentration and dry NH₃ deposition based on the satellite NH₃ column data. Assuming the ratio between the surface NH₃ concentration to the NH₃ column was fixed, Yu et al. applied a linear model to convert satellite NH₃ columns to surface NH₃ concentration and estimated dry NH₃ deposition in China using the inferential method (Yu et al., 2019). But Yu et al. did not consider the spatial variability of the vertical profiles of NH₃ (Yu et al., 2019), which may cause a large uncertainty in estimating surface NH₃ concentration. In Western Europe, Graaf et al. used the ratio of the surface NH₃ concentration (in the bottom layer) to total NH₃ column from an ACTM to convert the IASI NH₃ column to surface NH₃ concentration, and then estimated dry NH₃ deposition combining the modeled deposition velocity and IASI-derived surface NH₃ concentration (Graaf et al., 2018). Similarly, in North America, Kharol et al. estimated the dry NH₃ deposition by the CrIS-derived surface NH₃ concentration and deposition velocity of NH₃ (Kharol et al., 2018). They found a relatively high correlation (R=0.76) between the CrIS-derived surface NH₃ concentration and AMoN measurements during warm seasons (from April to September) in 2013 (Fig. 7). Over China, Liu et al. found a higher correlation (R=0.81) between IASI-derived surface NH₃ concentrations and the measured surface NH₃ concentrations than those from an ACTM (R=0.57, Fig. 8) (Liu et al., 2017b).

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

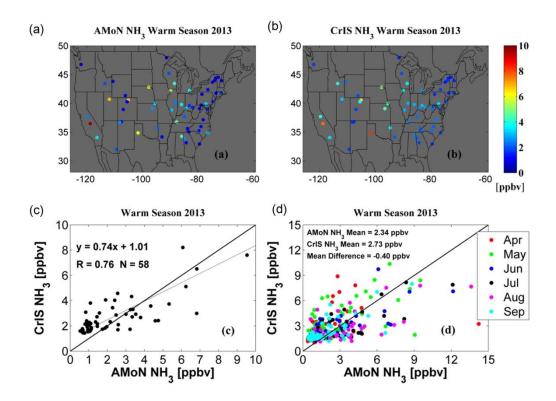


Fig. 7 Comparisons of the measured surface NH₃ concentration by the AMoN and CrIS-derived surface NH₃ concentration in the US during warm season (April-September) in 2013 (Kharol et al., 2018). (a) and (b) indicate measured and CrIS-derived surface NH₃ concentration at the AMoN sites, respectively; (c) represents the comparison of averaged surface NH₃ concentration during warm months between CrIS-derived estimates and measurements, while (d) indicates the comparison of monthly surface NH₃ concentration between CrIS-derived estimates and measurements.

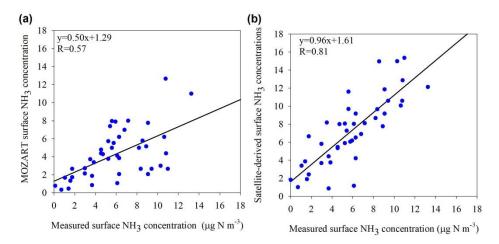


Fig. 8 Comparisons of the measured surface NH₃ concentration with IASI-derived surface NH₃ concentration at the NNDMN sites over China (Liu et al., 2017b). (a) indicates the comparison of measured and modeled surface NH₃ concentration from an ACTM (MOZART), and (b) represents the comparison of the measured and IASI-derived surface NH₃ concentration.

Liu et al. followed the framework in **Sect. 3** to estimate the IASI-derived surface NH₃ concentration (at the middle height of the first layer by an ACTM) (**Fig. 9**), and found

a good agreement with ground-based surface NH₃ concentration (Liu et al., 2019). The correlation between the measured and satellite-derived annual mean surface NH₃ concentrations over all sites was 0.87 as shown in **Fig. 10**, while the average satellite-derived and ground-measured surface NH₃ concentration was 2.52 and 2.51 μg N m⁻³ in 2014 at the monitoring sites, respectively. The satellite-derived estimates achieved a better accuracy (R²=0.76, RMSE = 1.50 μg N m⁻³) than an ACTM (GEOS-Chem, R²=0.54, RMSE = 2.14 μg N m⁻³). The satellite NH₃ retrievals were affected by the detection limits of the satellite instruments and thermal contrast. Higher correlation over China than other regions for the satellite estimates was linked to the detection limits by the instruments and thermal contrast (Liu et al., 2019). Higher accuracy could be gained with higher thermal contrast and NH₃ abundance. Instead, the uncertainties of NH₃ retrievals would be higher with lower thermal contrast and NH₃ abundance.

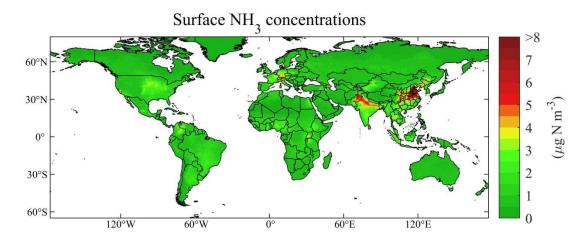
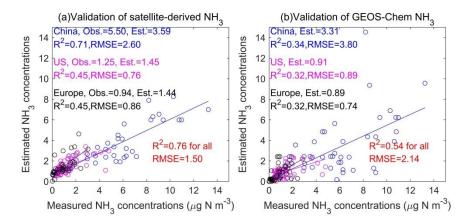


Fig. 9 Spatially satellite-based surface NH₃ estimates in 2014 (Liu et al., 2019). The global surface NH₃ concentration datasets have been released on the website: https://zenodo.org/record/3546517#.Xj6I4GgzY2w.



542

543

544

545 546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

Fig. 10 Comparison between yearly satellite-based and measured surface NH_3 concentrations (a), and comparison between yearly modeling (by an ACTM as GEOS-Chem) and measured surface NH_3 concentrations (b) (Liu et al., 2019). The ground-based monitoring sites are shown in **Fig. 4**.

The proposed methods (Liu et al., 2019) can also estimate NH₃ concentration at any height using the constructed vertical profile function of NH₃. The Gaussian function can well emulate the vertical distribution of NH₃ from an ACTM outputs with 99% of the grids having R² values higher than 0.90 (Fig. 11). This means, for regional and global estimation, the vertical distribution of NH₃ concentration has a general pattern, which can be mostly emulated by the Gaussian function. Once a global NH₃ vertical profile was simulated, it can be easily used to estimate satellite-derived NH₃ concentration at any height. We can also estimate dry NH₃ deposition using the IASI-derived surface NH₃ concentration combining the modeled V_d. For the dry deposition, the uncertainty mainly came from the satellite-derived estimates using the modeled vertical profiles. The uncertainty of vertical profiles modeled by the ACTM mainly resulted from the chemical and transport mechanisms. We recommend using the Gaussian function to determine the height of surface NO2 and NH3 concentrations that best matched with the ground-based measurements. There may exist systematic biases by simply using the relationship of NO₂ columns and surface concentration to estimate satellite surface NO2 concentrations. To date, there are still no studies

developing satellite-based methods to estimate the wet reduced $N_{\rm r}$ deposition on a regional scale.

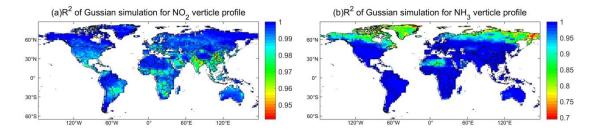


Fig. 11 Spatial distributions of R² for Gaussian function by simulating NH₃ and NO₂ vertical profiles. This is an example of Gaussian fitting using 47 layers' NH₃ and NO₂ concentration from an ACTM (GEOS-Chem).

5. Trends of Surface N_r Concentration and Deposition by Satellite-based

The N_r concentration and deposition modeled by ACTMs are highly dependent on the

Methods

accuracy of input N_r emissions. The methods commonly used to estimate anthropogenic N_r emissions are based on the data of human activities and emission factors, which can be highly uncertain. The ACTM methods driven by N_r emission inventory have relatively poor timeliness, and have limitations in monitoring the recent trends of N_r deposition.

Satellite-based methods provide a simple, fast and relatively objective way to monitoring N_r deposition at a high resolution, and less susceptible to the errors in the assumptions that emission inventories are compiled based on, particularly the lack of reliable data over developing countries (Crippa et al., 2018). With such advantages, researchers developed the satellite-based methods to estimate surface N_r concentration, deposition and even emissions. Satellite-based methods have advantages in monitoring the recent trends of N_r deposition. Geddes et al. used NO_2 column from the GOME, SCIAMACHY, and GOME-2 to estimate satellite-derived NO_x emissions, and then used the calibrated NO_x emission inventory to drive an ACTM to simulate the long-term oxidized N_r deposition globally (Geddes and Martin, 2017). They found

oxidized N_r deposition from 1996 to 2014 decreased by 60% in Eastern US, doubled in East China, and declined by 20% in Western Europe (**Fig. 12**). We use the datasets by Geddes et al. to calculate the trends of total oxidized N_r deposition during 1996-2014 (Geddes and Martin, 2017). It is obvious that two completely opposite trends exist: (1) in East China with a steep increase of higher than 0.5 kg N ha⁻¹ y⁻¹ and (2) East US with a steep decrease of lower than -0.5 kg N ha⁻¹ y⁻¹. Although it is not a direct way to use satellite N_r observation to estimate N_r deposition, the method of estimating trends of N_r deposition by Geddes et al. can be considered effective since it took account of the changes of both NO_x emission and climate by an ACTM (Geddes and Martin, 2017).

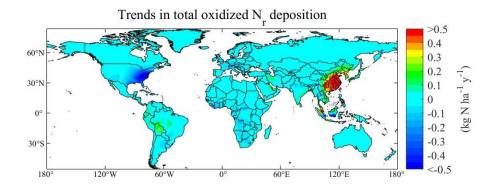


Fig. 12 Gridded annual changes of total oxidized N_r deposition simulated by GEOS-Chem constrained with GOME, SCIAMACHY, and GOME-2 NO_2 retrievals during 1996-2014 (Geddes and Martin, 2017). We gained the generated datasets (http://fizz.phys.dal.ca/~atmos/martin/?page_id=1520) by Geddes et al., and calculated the trends using the linear methods.

Some researchers developed a more direct way to infer the trends of surface N_r concentration and deposition. Geddes et al. presented a comprehensive long-term global surface NO_2 concentration estimate (at $0.1\,^{\circ}$ resolution using an oversampling approach) between 1996 and 2012 by using NO_2 column from the GOME, SCIAMACHY, and GOME-2 (Geddes et al., 2016). The surface NO_2 concentration in North America (the US and Canada) decreased steeply, followed by Western Europe, Japan and South Korea, while approximately tripled in China and North Korea

(Geddes et al., 2016). Jia et al. established a simple linear regression model based on OMI NO₂ column and ground-based surface N_r concentration, and then estimated the trends of dry N_r deposition globally between 2005 and 2014 (Jia et al., 2016). They found that dry N_r deposition in Eastern China increased rapidly, while in the Eastern US, Western Europe, and Japan dry N_r deposition has decreased in recent decades. We split the time span of 2005-2016 into two periods: 2005-2011 and 2011-2016, as surface NO₂ concentration shows opposite trend in China in these two periods. The magnitudes of both growth and decline in surface NO₂ concentration in China are most pronounced worldwide in the two periods (Fig. 13). During 2005-2011, apart from Eastern China with the largest increase in surface NO₂ concentration, there are also several areas with increasing trends such as Northwest and East India (New Delhi and Orissa), Western Russia, Eastern Europe (Northern Italy), Western US (Colorado and Utah), Northwestern US (Seattle and Portland), Southwestern Canada (Vancouver, Edmonton, Calgary), Northeast Pakistan and Northwest Xinjiang (Urumqi). Notably, the biggest decreases in surface NO₂ concentration during 2005-2011 occurred in Eastern US and Western EU (North France, South England, and West German). During 2011-2016, due to the strict control of NO_x emissions, Eastern China had the largest decrease in surface NO₂ concentration than elsewhere worldwide, followed by Western Xinjiang, Western Europe and some areas in Western Russia.

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634 635

636

637

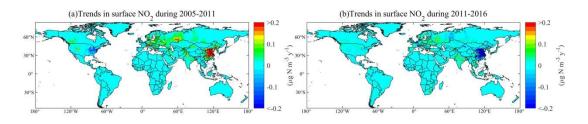


Fig. 13 Gridded annual changes in surface NO₂ concentrations gained by OMI retrievals during 2005-2011 (a) and during 2011-2016 (b) in this study. We have released the global surface NO₂ concentrations during 2005-2016 available at the website: https://zenodo.org/record/3546517#.Xj6I4GgzY2w.

Liu et al. estimated surface NH₃ concentration globally during 2008-2016 using

satellite NH_3 retrievals by IASI (Liu et al., 2019). A large increase of surface NH_3 concentrations was found in Eastern China, followed by Northern Xinjiang province in China during 2008-2016 (**Fig. 14**). Satellite-based methods have been proven as an effective and unique way to monitoring the trends of global N_r concentration and deposition. To date, there are still few studies reporting the satellite-derived trends of reduced N_r deposition on a global scale.

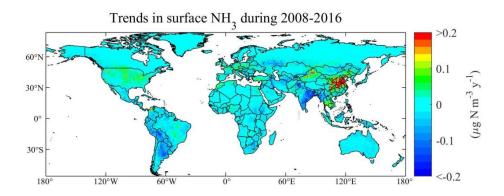


Fig. 14 Gridded annual changes in surface NH₃ concentrations gained by IASI retrievals during 2008-2016 (Liu et al., 2019). We have released the global surface NH₃ concentrations during 2008-2016 at the website: https://zenodo.org/record/3546517#.Xj6I4GgzY2w.

6. Remaining Challenges for Estimating $N_{\rm r}$ Deposition Using Satellite Observation

First, the reduced N_r deposition plays an important contribution to total N_r deposition. NH $_3$ exhibits bi-directional air-surface exchanges. The NH $_3$ compensation point (Farquhar et al., 1980) is also an important and highly variable factor controlling dry NH $_3$ deposition (Schrader et al., 2016; Zhang et al., 2010). However, the current existing satellite-based methods did not consider this bi-directional air-surface exchange. It is important to better parameterize the NH $_3$ compensation point, and assess the effects of bi-directional air-surface exchanges on estimating the dry NH $_3$ deposition.

Second, the existing satellite-based methods to estimate N_r deposition used the ratio of the surface N_r concentration to the N_r column by an ACTM to convert satellite N_r

column to surface N_r concentration. However, the calculated ratio (by an ACTM) and the satellite N_r column have different spatial resolutions, and previous studies usually applied the modeled ratio directly or interpolate the ratio into the resolution of satellite N_r column. This method assumes the relationship at coarse resolution by an ACTM can also be effective in fine resolution as satellite indicated. When regional studies are conducted, regional ACTMs coupled with another meteorological model (e.g. WRF-Chem, WRF-CMAQ) (Grell et al., 2005; Wong et al., 2012) can be configured to match the spatial resolution of satellite observation, but this is not as viable for global ACTMs (e.g. MOZART, GEOS-Chem) due to differences in model structures and computational cost. The modeled ratio of surface N_r concentration to the N_r column may have variability at spatial scales finer than the horizontal resolution of global ACTMs. The impact of such scale effect (at different spatial scales) on estimated surface N_r concentration should be further studied. Third, the satellite observation can only obtain reliable NO₂ and NH₃ column presently, and there are no available high-resolution and reliable direct HNO₃, NO₃, NH₄⁺ retrievals. For HNO₃, NO₃⁻, NH₄⁺ concentrations, the satellite-based methods often applied the satellite-derived NO2 and NH3 concentration and the relationship between N_r species from an ACTM (or ground-based measurements) to estimate surface HNO₃, NO₃, NH₄ concentration. With the development of satellite technology, more and more N_r species can be detected, such as HNO₃. However, at present, satellite HNO₃ products are not mature, and the spatial resolution is low. Direct, high-resolution and reliable satellite monitoring of more N_r species is critical to further developing the use of using atmospheric remote sensing to estimate N_r deposition at global and regional scales.

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

Fourth, estimating wet N_r deposition using satellite NO₂ and NH₃ column remains

relatively uncommon. Further studies should focus on how to combine the high-resolution satellite NO_2 and NH_3 column and the ground-based monitoring data to build wet N_r deposition models to estimate wet N_r deposition at higher spatiotemporal resolution. The proposed scheme to estimate the wet N_r deposition in **Sect. 3** is statistical. On the other hand, the wet N_r deposition includes the scavenging processes of in-cloud, under-cloud and precipitation. Processed-level knowledge and models can benefit the estimation of wet N_r deposition using satellite NO_2 and NH_3 column.

7. Conclusion

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

The recent advances of satellite-based methods for estimating surface N_r concentration and deposition have been reviewed. Previous studies have focused on using satellite NO₂ column to estimate surface NO₂ concentrations and dry NO₂ deposition both regionally and globally. The research on calculating surface NH₃ concentration and reduced N_r deposition by satellite NH₃ data is just beginning, and some scholars have carried out estimating surface NH₃ concentration and dry NH₃ deposition on different spatial and temporal scales, but the research degree is still relatively low. We present a framework of using satellite NO₂ and NH₃ column to estimate N_r deposition based on recent advances. The proposed framework of using Gaussian function to model vertical NO₂ and NH₃ profiles can be used to convert the satellite NO₂ and NH₃ column to surface NO₂ and NH₃ concentration at any height simply and quickly. The proposed framework of using satellite NO2 and NH3 column to estimate wet N_r deposition is a statistical way, and further studies should be done from a mechanism perspective. Finally, we summarized current challenges of using satellite NO2 and NH3 column to estimate surface Nr concentration and deposition including a lack of considering NH₃ bidirectional air-surface exchanges and the 711 problem of different spatial scales between an ACTM and satellite observation.

Acknowledgments

712

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

- 713 This study is supported by the National Natural Science Foundation of China (No.
- 714 41471343, 41425007 and 41101315) and the Chinese National Programs on Heavy
- Air Pollution Mechanisms and Enhanced Prevention Measures (Project No. 8 in the
- 716 2nd Special Program).
- 717 **Author contributions**. LL designed this study. LL, YYY and WX conducted the data
- analysis. All co-authors contributed to the revision of the paper.
 - Data availability. **OMI** NO_2 datasets are available at http://www.temis.nl/airpollution/no2.html. IASI NH₃ datasets are available at https://cds-espri.ipsl.upmc.fr/etherTypo/index.php?id=1700&L=1. Surface NO_2 concentration during 2005-2007 obtained by Nowlan et al. (Nowlan et al., 2014) and longterm estimates (1996-2012) by Geddes et al. (Geddes et al., 2016) are available at $http://fizz.phys.dal.ca/~atmos/martin/?page_id=232. \ \ \, Total \ \ \, oxidized \ \ \, N_r \ \ \, deposition$ simulated by GEOS-Chem constrained with GOME, SCIAMACHY, and GOME-2 NO₂ retrievals during 1996-2014 (Geddes and Martin, 2017) is available at http://fizz.phys.dal.ca/~atmos/martin/?page_id=1520. A database of atmospheric N_r concentration and deposition from the nationwide monitoring network in China is available at https://www.nature.com/articles/s41597-019-0061-2. Measured N_r concentration and deposition datasets in the United States are available on the website: https://www.epa.gov/outdoor-air-quality-data. Measured surface NO₂ and NH₃ concentration datasets in Europe available are at https://www.nilu.no/projects/ccc/emepdata.html. Global surface NO₂ and NH₃ concentration data used to calculate the longterm trends in Fig. 13 and Fig. 14 have been released on the website: https://zenodo.org/record/3546517#.Xj6I4GgzY2w.

- 736 **Competing interests.** The authors declare no competing financial interests.
- 737 **Reference**
- Amos, H. M., Jacob, D. J., Holmes, C. D., Fisher, J. A., Wang, Q., Yantosca, R. M.,
- Corbitt, E. S., Galarneau, E., Rutter, A. P., and Gustin, M. S.: Gas-particle partitioning
- of atmospheric Hg(II) and its effect on global mercury deposition, Atmos. Chem.
- 741 Phys., 11, 29441-29477, 2012.
- Beer, R., Shephard, M. W., Kulawik, S. S., Clough, S. A., Eldering, A., Bowman, K.
- W., Sander, S. P., Fisher, B. M., Payne, V. H., Luo, M., Osterman, G. B., and Worden,
- J. R.: First satellite observations of lower tropospheric ammonia and methanol,
- 745 Geophys. Res Lett., 35, 1-5, 10.1029/2008GL033642, 2008.
- Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M.,
- Bustamante, M., Cinderby, S., Davidson, E., Dentener, F., Emmett, B., Erisman, J.-W.,
- Fenn, M., Gilliam, F., Nordin, A., Pardo, L., and De Vries, W.: Global assessment of
- 749 nitrogen deposition effects on terrestrial plant diversity: a synthesis, Ecological
- 750 Applications, 20, 30-59, doi:10.1890/08-1140.1, 2010.
- Boersma, K. F., Eskes, H. J., Dirksen, R. J., van der A, R. J., Veefkind, J. P., Stammes,
- P., Huijnen, V., Kleipool, Q. L., Sneep, M., Claas, J., Leit ão, J., Richter, A., Zhou, Y.,
- and Brunner, D.: An improved tropospheric NO₂ column retrieval algorithm for the
- Ozone Monitoring Instrument, Atmospheric Measurement Techniques, 4, 1905-1928,
- 755 10.5194/amt-4-1905-2011, 2011.
- Canfield, D. E., Glazer, A. N., and Falkowski, P. G.: The evolution and future of
- 757 Earth's nitrogen cycle, Science, 330, 192-196, 2010.

- 758 Cao, G. L., Zhang, X. Y., and Gong, S. L.: Emission inventories of primary particles
- and pollutant gases for China, Science Bulletin, 56, 781-788, 2011.
- 760 Cheng, M., Jiang, H., Guo, Z., Zhang, X., and Lu, X.: Estimating NO₂ dry deposition
- using satellite data in eastern China, Int. J. Remote Sens., 34, 2548-2565, 2013.
- 762 Coheur, P.-F., Clarisse, L., Turquety, S., Hurtmans, D., and Clerbaux, C.: IASI
- measurements of reactive trace species in biomass burning plumes, Atmos. Chem.
- 764 Phys., 9, 5655-5667, 2009.
- 765 Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., van Aardenne, J. A.,
- Monni, S., Doering, U., Olivier, J. G. J., Pagliari, V., and Janssens-Maenhout, G.:
- Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2,
- 768 Earth Syst. Sci. Data, 10, 1987-2013, 10.5194/essd-10-1987-2018, 2018.
- Dammers, E., Palm, M., Van Damme, M., Vigouroux, C., Smale, D., Conway, S.,
- Toon, G. C., Jones, N., Nussbaumer, E., Warneke, T., Petri, C., Clarisse, L., Clerbaux,
- 771 C., Hermans, C., Lutsch, E., Strong, K., Hannigan, J. W., Nakajima, H., Morino, I.,
- Herrera, B., Stremme, W., Grutter, M., Schaap, M., Wichink Kruit, R. J., Notholt, J.,
- 773 Coheur, P. F., and Erisman, J. W.: An evaluation of IASI-NH₃ with ground-based
- Fourier transform infrared spectroscopy measurements, Atmos. Chem. Phys., 16,
- 775 10351-10368, 10.5194/acp-16-10351-2016, 2016.
- 776 David, F., M, C., U, S., MA, S., JN, C., S, R., LJ, S., A, J., B, G., and JN, G.: The
- 777 global nitrogen cycle in the twenty-first century, Philosophical Transactions of the
- 778 Royal Society of London, 368, 20130164, 2013.
- Emmons, L., Walters, S., Hess, P., Lamarque, J.-F., Pfister, G., Fillmore, D., Granier,

- 780 C., Guenther, A., Kinnison, D., and Laepple, T.: Description and evaluation of the
- 781 Model for Ozone and Related chemical Tracers, version 4 (MOZART-4),
- Geoscientific Model Development, 3, 43-67, 2010.
- 783 Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z., and Winiwarter, W.: How a
- century of ammonia synthesis changed the world, Nat. Geosci., 1, 636-639, 2008.
- Farquhar, G. D., Firth, P. M., Wetselaar, R., and Weir, B.: On the Gaseous Exchange
- of Ammonia between Leaves and the Environment: Determination of the Ammonia
- 787 Compensation Point, Plant Physiology, 66, 710-714, 10.1104/pp.66.4.710, 1980.
- 788 Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W.,
- Seitzinger, S. P., Asner, G. P., Cleveland, C., Green, P., and Holland, E.: Nitrogen
- cycles: past, present, and future, Biogeochemistry, 70, 153-226, 2004a.
- 791 Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W.,
- Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A., Karl, D.
- M., Michaels, A. F., Porter, J. H., Townsend, A. R., and Vössmarty, C. J.: Nitrogen
- 794 Cycles: Past, Present, and Future, Biogeochemistry, 70, 153-226,
- 795 10.1007/s10533-004-0370-0, 2004b.
- Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R.,
- Martinelli, L. A., Seitzinger, S. P., and Sutton, M. A.: Transformation of the nitrogen
- cycle: recent trends, questions, and potential solutions, Science, 320, 889-892, 2008.
- Geddes, J. A., Martin, R. V., Boys, B. L., and van Donkelaar, A.: Long-term trends
- 800 worldwide in ambient NO₂ concentrations inferred from satellite observations,
- 801 Environmental Health Perspectives, 124, 281, 2016.

- 802 Geddes, J. A., and Martin, R. V.: Global deposition of total reactive nitrogen oxides
- from 1996 to 2014 constrained with satellite observations of NO₂ columns, Atmos.
- 804 Chem. Phys., 17, 10071-10091, 2017.
- Graaf, S. C. v. d., Dammers, E., Schaap, M., and Erisman, J. W.: How are NH₃ dry
- 806 deposition estimates affected by combining the LOTOS-EUROS model with
- 807 IASI-NH3 satellite observations?, Atmos. Chem. Phys., 18, 13173-13196,
- 808 https://doi.org/10.5194/acp-2018-133, 2018.
- Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W.
- 810 C., and Eder, B.: Fully coupled "online" chemistry within the WRF model, Atmos.
- 811 Environ., 39, 6957-6975, 2005.
- Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen,
- T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L.,
- 814 Kholod, N., Kurokawa, J. I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R.,
- and Zhang, Q.: Historical (1750–2014) anthropogenic emissions of reactive gases and
- aerosols from the Community Emissions Data System (CEDS), Geosci. Model Dev.,
- 817 11, 369-408, 10.5194/gmd-11-369-2018, 2018.
- Janssens, I. A., Dieleman, W., Luyssaert, S., Subke, J. A., Reichstein, M., Ceulemans,
- 819 R., Ciais, P., Dolman, A. J., Grace, J., Matteucci, G., Papale, D., Piao, S. L., Schulze,
- 820 E. D., Tang, J., and Law, B. E.: Reduction of forest soil respiration in response to
- nitrogen deposition, Nat. Geosci., 3, 315, 10.1038/ngeo844
- https://www.nature.com/articles/ngeo844#supplementary-information, 2010.
- Jia, Y., Yu, G., Gao, Y., He, N., Wang, Q., Jiao, C., and Zuo, Y.: Global inorganic

- 824 nitrogen dry deposition inferred from ground-and space-based measurements,
- 825 Scientific reports, 6, 1-11, 2016.
- 826 Kharol, S. K., Martin, R. V., Philip, S., Boys, B., Lamsal, L. N., Jerrett, M., Brauer,
- M., Crouse, D. L., Mclinden, C., and Burnett, R. T.: Assessment of the magnitude and
- recent trends in satellite-derived ground-level nitrogen dioxide over North America,
- 829 Atmos. Environ., 118, 236-245, 2015.
- Kharol, S. K., Shephard, M. W., McLinden, C. A., Zhang, L., Sioris, C. E., O'Brien, J.
- 831 M., Vet, R., Cady-Pereira, K. E., Hare, E., Siemons, J., and Krotkov, N. A.: Dry
- 832 Deposition of Reactive Nitrogen From Satellite Observations of Ammonia and
- Nitrogen Dioxide Over North America, Geophys. Res Lett., 45, 1157-1166,
- 834 10.1002/2017GL075832, 2018.
- Kim, T. W., Lee, K., Duce, R., and Liss, P.: Impact of atmospheric nitrogen deposition
- on phytoplankton productivity in the South China Sea, Geophys. Res Lett., 41, 3156–
- 837 3162, 2014.
- Kuik, F., Lauer, A., Churkina, G., Denier van der Gon, H. A. C., Fenner, D., Mar, K.
- A., and Butler, T. M.: Air quality modelling in the Berlin-Brandenburg region using
- WRF-Chem v3.7.1: sensitivity to resolution of model grid and input data,
- Geoscientific Model Development Discussions, 9, 4339-4363, 2016.
- Lamarque, J. F., Kiehl, J., Brasseur, G., Butler, T., Cameron Smith, P., Collins, W.,
- 843 Collins, W., Granier, C., Hauglustaine, D., and Hess, P.: Assessing future nitrogen
- deposition and carbon cycle feedback using a multimodel approach: Analysis of
- nitrogen deposition, Journal of Geophysical Research: Atmospheres (1984–2012), 110,

- 846 2005.
- Lamsal, L. N., Martin, R. V., van Donkelaar, A., Steinbacher, M., Celarier, E. A.,
- 848 Bucsela, E., Dunlea, E. J., and Pinto, J. P.: Ground-level nitrogen dioxide
- concentrations inferred from the satellite-borne Ozone Monitoring Instrument, J.
- 850 Geophys. Res-Atmos., 113, 1-15, 10.1029/2007JD009235, 2008.
- Lamsal, L. N., Martin, R. V., Parrish, D. D., and Krotkov, N. A.: Scaling relationship
- for NO₂ pollution and urban population size: a satellite perspective, Environ. Sci.
- 853 Technol., 47, 7855-7861, 2013.
- Larkin, A., Geddes, J. A., Martin, R. V., Xiao, Q., Liu, Y., Marshall, J. D., Brauer, M.,
- and Hystad, P.: Global Land Use Regression Model for Nitrogen Dioxide Air
- 856 Pollution, Environ. Sci. Technol., 51, 6957-6964, 2017.
- Larssen, T., Duan, L., and Mulder, J.: Deposition and leaching of sulfur, nitrogen and
- calcium in four forested catchments in China: implications for acidification, Environ.
- 859 Sci. Technol., 45, 1192-1198, 2011.
- Levine, S. Z., and Schwartz, S. E.: In-cloud and below-cloud scavenging of Nitric
- 861 acid vapor, Atmospheric Environment (1967), 16, 1725-1734,
- https://doi.org/10.1016/0004-6981(82)90266-9, 1982.
- Li, Y., Thompson, T. M., Damme, M. V., Chen, X., Benedict, K. B., Shao, Y., Day, D.,
- Boris, A., Sullivan, A. P., and Ham, J.: Temporal and Spatial Variability of Ammonia
- in Urban and Agricultural Regions of Northern Colorado, United States, Atmos. Chem.
- 866 Phys., 17, 1-50, 2017.
- Liu, H., Jacob, D. J., Bey, I., and Yantosca, R. M.: Constraints from 210Pb and 7Be on

- wet deposition and transport in a global three-dimensional chemical tracer model
- 869 driven by assimilated meteorological fields, J. Geophys. Res-Atmos., 106,
- 870 12109-12128, 10.1029/2000JD900839, 2001.
- Liu, L., Zhang, X., Xu, W., Liu, X., Lu, X., Chen, D., Zhang, X., Wang, S., and Zhang,
- W.: Estimation of monthly bulk nitrate deposition in China based on satellite NO₂
- measurement by the Ozone Monitoring Instrument, Remote Sens. Environ., 199,
- 874 93-106, 2017a.
- 875 Liu, L., Zhang, X., Xu, W., Liu, X., Lu, X., Wang, S., Zhang, W., and Zhao, L.:
- 876 Ground Ammonia Concentrations over China Derived from Satellite and Atmospheric
- Transport Modeling, Remote Sens., 9, 467, 2017b.
- 878 Liu, L., Zhang, X., Zhang, Y., Xu, W., Liu, X., Zhang, X., Feng, J., Chen, X., Zhang,
- Y., Lu, X., Wang, S., Zhang, W., and Zhao, L.: Dry Particulate Nitrate Deposition in
- 880 China, Environ. Sci. Technol., 51, 5572-5581, 10.1021/acs.est.7b00898, 2017c.
- 881 Liu, L., Zhang, X., Wong, A. Y. H., Xu, W., Liu, X., Li, Y., Mi, H., Lu, X., Zhao, L.,
- Wang, Z., and Wu, X.: Estimating global surface ammonia concentrations inferred
- 883 from satellite retrievals, Atmos. Chem. Phys., 19, 12051-12066,
- 884 10.5194/acp-2019-184, 2019.
- Liu, L., Zhang, X., Xu, W., Liu, X., Wei, J., Wang, Z., and Yang, Y.: Global estimates
- of dry ammonia deposition inferred from space-measurements, Sci. Total Environ.,
- 730, 139189, https://doi.org/10.1016/j.scitotenv.2020.139189, 2020.
- 888 Liu, X., Duan, L., Mo, J., Du, E., Shen, J., Lu, X., Zhang, Y., Zhou, X., He, C., and
- Zhang, F.: Nitrogen deposition and its ecological impact in China: An overview,

- 890 Environ. Pollut., 159, 2251-2264, http://dx.doi.org/10.1016/j.envpol.2010.08.002,
- 891 2011.
- 892 Liu, X., Xu, W., Duan, L., Du, E., Pan, Y., Lu, X., Zhang, L., Wu, Z., Wang, X.,
- Zhang, Y., Shen, J., Song, L., Feng, Z., Liu, X., Song, W., Tang, A., Zhang, Y., Zhang,
- X., and Collett, J. L.: Atmospheric Nitrogen Emission, Deposition, and Air Quality
- 895 Impacts in China: an Overview, Curr. Pollut. Rep., 3, 65-77,
- 896 10.1007/s40726-017-0053-9, 2017d.
- 897 Lu, X., Jiang, H., Zhang, X., Liu, J., Zhang, Z., Jin, J., Wang, Y., Xu, J., and Cheng,
- 898 M.: Estimated global nitrogen deposition using NO₂ column density, Int. J. Remote
- 899 Sens., 34, 8893-8906, 2013.
- Mari, C., Jacob, D. J., and Bechtold, P.: Transport and scavenging of soluble gases in
- a deep convective cloud, J. Geophys. Res-Atmos., 105, 22255-22268, 2000.
- Nadelhoffer, K. J., Emmett, B. A., Gundersen, P., Kjønaas, O. J., Koopmans, C. J.,
- 903 Schleppi, P., Tietema, A., and Wright, R. F.: Nitrogen deposition makes a minor
- 904 contribution to carbon sequestration in temperate forests, Nature, 398, 145,
- 905 10.1038/18205, 1999.
- Nemitz, E., Flynn, M., Williams, P. I., Milford, C., Theobald, M. R., Blatter, A.,
- Gallagher, M. W., and Sutton, M. A.: A Relaxed Eddy Accumulation System for the
- 908 Automated Measurement of Atmospheric Ammonia Fluxes, Water, Air and Soil
- 909 Pollution: Focus, 1, 189-202, 10.1023/A:1013103122226, 2001.
- Nicolas, G., and Galloway, J. N.: An Earth-system perspective of the global nitrogen
- 911 cycle, Nature, 451, 293-296, 2008.

- Nowlan, C., Martin, R., Philip, S., Lamsal, L., Krotkov, N., Marais, E., Wang, S., and
- 213 Zhang, Q.: Global dry deposition of nitrogen dioxide and sulfur dioxide inferred from
- space-based measurements, Global Biogeochem. Cy., 28, 1025-1043, 2014.
- Paerl, H. W., Gardner, W. S., Mccarthy, M. J., Peierls, B. L., and Wilhelm, S. W.:
- Algal blooms: noteworthy nitrogen, Science, 346, 175, 2014.
- Pan, Y., Wang, Y., Tang, G., and Wu, D.: Wet and dry deposition of atmospheric
- nitrogen at ten sites in Northern China, Atmos. Chem. Phys., 12, 6515-6535, 2012.
- Page 1919 Ronsmans, G., Langerock, B., Wespes, C., Hannigan, J. W., Hase, F., Kerzenmacher,
- T., Mahieu, E., Schneider, M., Smale, D., Hurtmans, D., De Mazière, M., Clerbaux, C.,
- and Coheur, P. F.: First characterization and validation of FORLI-HNO3 vertical
- 922 profiles retrieved from IASI/Metop, Atmos. Meas. Tech., 9, 4783-4801,
- 923 10.5194/amt-9-4783-2016, 2016.
- Schrader, F., Brümmer, C., Flechard, C. R., Wichink Kruit, R. J., van Zanten, M. C.,
- 25 Zöll, U., Hensen, A., and Erisman, J. W.: Non-stomatal exchange in ammonia dry
- deposition models: comparison of two state-of-the-art approaches, Atmos. Chem.
- 927 Phys., 16, 13417-13430, 10.5194/acp-16-13417-2016, 2016.
- Shen, J., Li, Y., Liu, X., Luo, X., Tang, H., Zhang, Y., and Wu, J.: Atmospheric dry
- and wet nitrogen deposition on three contrasting land use types of an agricultural
- 930 catchment in subtropical central China, Atmos. Environ., 67, 415-424,
- 931 http://dx.doi.org/10.1016/j.atmosenv.2012.10.068, 2013.
- Stevens, C. J., Dise, N. B., Mountford, J. O., and Gowing, D. J.: Impact of Nitrogen
- Deposition on the Species Richness of Grasslands, Science, 303, 1876-1879,

- 934 10.1126/science.1094678, 2004.
- 935 Sutton, M. A., Tang, Y. S., Miners, B., and Fowler, D.: A New Diffusion Denuder
- 936 System for Long-Term, Regional Monitoring of Atmospheric Ammonia and
- 937 Ammonium, Water Air & Soil Pollution Focus, 1, 145-156, 2001.
- 938 Sutton, M. A., Bleeker, A., Howard, C. M., Bekunda, M., Grizzetti, B., Vries, W. D.,
- Grinsven, H. J. M. V., Abrol, Y. P., Adhya, T. K., and Billen, G.: Our Nutrient World:
- the challenge to produce more food and energy with less pollution, 2013.
- Tan, J., Fu, J. S., Dentener, F., Sun, J., Emmons, L., Tilmes, S., Sudo, K., Flemming,
- J., Jonson, J. E., and Gravel, S.: Multi-model study of HTAP II on sulfur and nitrogen
- 943 deposition, Atmos. Chem. Phys., 18, 1-36, 2018.
- Van Damme, M., Clarisse, L., Dammers, E., Liu, X., Nowak, J., Clerbaux, C.,
- 945 Flechard, C., Galy-Lacaux, C., Xu, W., and Neuman, J.: Towards validation of
- ammonia (NH₃) measurements from the IASI satellite, Atmospheric Measurement
- 947 Techniques, 7, 12125-12172, 2014a.
- Van Damme, M., Wichink Kruit, R., Schaap, M., Clarisse, L., Clerbaux, C., Coheur, P.
- 949 F., Dammers, E., Dolman, A., and Erisman, J.: Evaluating 4 years of atmospheric
- ammonia (NH₃) over Europe using IASI satellite observations and LOTOS-EUROS
- 951 model results, J. Geophys. Res-Atmos., 119, 9549-9566, 2014b.
- Van der Graaf, S. C., Dammers, E., Schaap, M., and Erisman, J. W.: Technical note:
- How are NH₃ dry deposition estimates affected by combining the LOTOS-EUROS
- model with IASI-NH₃ satellite observations?, Atmos. Chem. Phys., 18, 13173-13196,
- 955 10.5194/acp-18-13173-2018, 2018.

- 956 Vet, R., Artz, R. S., Carou, S., Shaw, M., Ro, C.-U., Aas, W., Baker, A., Bowersox, V.
- 957 C., Dentener, F., Galy-Lacaux, C., Hou, A., Pienaar, J. J., Gillett, R., Forti, M. C.,
- 958 Gromov, S., Hara, H., Khodzher, T., Mahowald, N. M., Nickovic, S., Rao, P. S. P., and
- 959 Reid, N. W.: A global assessment of precipitation chemistry and deposition of sulfur,
- nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus, Atmos.
- 961 Environ., 93, 3-100, http://dx.doi.org/10.1016/j.atmosenv.2013.10.060, 2014.
- Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler,
- D. W., Schlesinger, W. H., and Tilman, D. G.: Human alteration of the global nitrogen
- cycle: sources and consequences, Ecol. Appl., 7, 737-750, 1997.
- Wesely, M., and Hicks, B.: Some factors that affect the deposition rates of sulfur
- 966 dioxide and similar gases on vegetation, Journal of the Air Pollution Control
- 967 Association, 27, 1110-1116, 1977.
- Whitburn, S., Van Damme, M., Clarisse, L., Bauduin, S., Heald, C. L., Hadji-Lazaro,
- J., Hurtmans, D., Zondlo, M. A., Clerbaux, C., and Coheur, P. F.: A flexible and robust
- 970 neural network IASI-NH₃ retrieval algorithm, J. Geophys. Res-Atmos., 121,
- 971 6581-6599, 10.1002/2016JD024828, 2016.
- 972 Williams, J. E., Boersma, K. F., Le Sager, P., and Verstraeten, W. W.: The
- 973 high-resolution version of TM5-MP for optimized satellite retrievals: description and
- validation, Geosci. Model Dev., 10, 721-750, 10.5194/gmd-10-721-2017, 2017.
- Wong, D. C., Pleim, J., Mathur, R., Binkowski, F., Otte, T., Gilliam, R., Pouliot, G.,
- 976 Xiu, A., Young, J. O., and Kang, D.: WRF-CMAQ two-way coupled system with
- aerosol feedback: software development and preliminary results, Geosci. Model Dev.,

- 978 5, 299-312, 10.5194/gmd-5-299-2012, 2012.
- 979 Xu, W., Luo, X. S., Pan, Y. P., Zhang, L., Tang, A. H., Shen, J. L., Zhang, Y., Li, K. H.,
- 980 Wu, Q. H., Yang, D. W., Zhang, Y. Y., Xue, J., Li, W. Q., Li, Q. Q., Tang, L., Lv, S. H.,
- 981 Liang, T., Tong, Y. A., Liu, P., Zhang, Q., Xiong, Z. Q., Shi, X. J., Wu, L. H., Shi, W.
- 982 Q., Tian, K., Zhong, X. H., Shi, K., Tang, Q. Y., Zhang, L. J., Huang, J. L., He, C. E.,
- 983 Kuang, F. H., Zhu, B., Liu, H., Jin, X., Xin, Y. J., SHi, X. K., Du, E. Z., Dore, A. J.,
- Tang, S., Collett Jr, J. L., Goulding, K., Sun, Y. X., Ren, J., Zhang, F. S., and Liu, X. J.:
- 985 Quantifying atmospheric nitrogen deposition through a nationwide monitoring
- 986 network across China, Atmos. Chem. Phys., 15, 12345-12360, 2015.
- 987 Yu, G., Jia, Y., He, N., Zhu, J., Chen, Z., Wang, Q., Piao, S., Liu, X., He, H., Guo, X.,
- 988 Wen, Z., Li, P., Ding, G., and Goulding, K.: Stabilization of atmospheric nitrogen
- 989 deposition in China over the past decade, Nat. Geosci., 12, 424-429,
- 990 10.1038/s41561-019-0352-4, 2019.
- 291 Zhang, L., Wright, L. P., and Asman, W. A. H.: Bi-directional air-surface exchange of
- 992 atmospheric ammonia: A review of measurements and a development of a big-leaf
- model for applications in regional-scale air-quality models, J. Geophys. Res-Atmos.,
- 994 115, 898-907, 2010.
- 295 Zhang, L., Jacob, D. J., Knipping, E. M., Kumar, N., Munger, J. W., Carouge, C., Van
- Donkelaar, A., Wang, Y., and Chen, D.: Nitrogen deposition to the United States:
- distribution, sources, and processes, Atmos. Chem. Phys., 12 4539-4554, 2012.
- 298 Zhang, Q., Streets, D. G., Carmichael, G. R., He, K., Huo, H., Kannari, A., Klimont,
- 2006 for the NASA INTEX-B

- 1000 mission, Atmos. Chem. Phys., 9, 5131-5153, 2009.
- 1001 Zhang, X. Y., Lu, X. H., Liu, L., Chen, D. M., Zhang, X. M., Liu, X. J., and Zhang, Y.:
- Dry deposition of NO₂ over China inferred from OMI columnar NO₂ and atmospheric
- chemistry transport model, Atmos. Environ., 169, 2017.
- Zhang, X. Y., Chuai, X. W., Liu, L., Zhang, W. T., Lu, X. H., Zhao, L. M., and Chen,
- D. M.: Decadal Trends in Wet Sulfur Deposition in China Estimated From OMI SO₂
- 1006 Columns, J. Geophys. Res-Atmos., 123, 10796-10811, 10.1029/2018JD028770, 2018.
- 2007 Zhao, X., Chen, L., and Zhang, H.: Nitrate and ammonia contaminations in drinking
- water and the affecting factors in Hailun, northeast China, Journal of Environmental
- 1009 Health, 75, 28, 2013.

- 1010 Zhao, Y., Zhang, L., Chen, Y., Liu, X., Xu, W., Pan, Y., and Duan, L.: Atmospheric
- nitrogen deposition to China: A model analysis on nitrogen budget and critical load
- 1012 exceedance, Atmos. Environ., 153, 32-40,
- 1013 <u>http://dx.doi.org/10.1016/j.atmosenv.2017.01.018</u>, 2017.