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Abstract. Aerosols play a crucial role in the fog life cycle, as they determine the droplet number concentration, and hence

droplet size, which in turn controls both the fog’s optical thickness and life span. Detailed aerosol-microphysics schemes

which accurately represent droplet formation and growth are unsuitable for weather forecasting and climate models, as the

computational power required to calculate droplet formation would dominate the treatment of the rest of the physics in the

model. A simple method to account for droplet formation is the use of an aerosol activation scheme, which parameterises the5

droplet number concentration based on a change in supersaturation at a given time. Traditionally, aerosol activation parame-

terisation schemes were designed for convective clouds and assume that supersaturation is reached through adiabatic lifting,

with many imposing a minimum vertical velocity (e.g. 0.1 m s−1) to account for
::
the

:
unresolved sub-grid ascent. In radiation

fog, the measured updrafts during initial formation are often insignificant, with radiative cooling being the dominant process

leading to saturation. As a result, there is a risk that many aerosol activation schemes will overpredict the initial fog droplet10

number concentration, which in turn may result in the fog transitioning to an optically thick layer too rapidly.

This paper presents a more physically-based aerosol activation scheme that can account for a change in saturation due to

non-adiabatic processes. Using an offline model, our results show that the equivalent cooling rate associated with the minimum

updraft velocity threshold assumption can overpredict the droplet number by up to 70% in comparison to a typical cooling

rate found in fog formation. The new scheme has been implemented in the Met Office Natural Environment Research Council15

(NERC) Cloud (MONC) LES model , and tested using observations of a radiation fog case study based in Cardington, UK.

The results in this work show that using a more physically-based method of aerosol activation leads to the calculation of a more

appropriate cloud droplet number. As a result, there is a slower transition to an optically thick (well-mixed) fog that is more

in-line
:
in

::::
line with observations.

The results shown in this paper demonstrate the importance of aerosol activation representation in fog modelling , and the20

impact that the cloud droplet number has on processes linked to the formation and development of radiation fog. Unlike the

previous parameterisation for aerosol activation, the revised scheme is suitable to simulate aerosol activation in both fog and

convective cloud regimes.
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1 Introduction

Fog can be defined as a cloud at ground level with a surface visibility of less than 1 km (WMO, 1966). It can cause major25

disruption to road, aviation and marine transport, with associated economic losses that are comparable to those resulting

from winter storms and hurricanes (Gultepe et al., 2007). Fog can have negative impacts on human health and the safety of

certain activities. For example, thick fog on 5th September 2013 resulted in the Sheppey crossing crash in southeast England,

consequently injuring 60 people (BBC, 2013). Understanding the physics behind fog is crucial in improving fog forecasting

and mitigating the impact of such events.30

An uncertainty within fog forecasting is caused by aerosol-fog interaction representation (Pruppacher and Klett, 2010).

Aerosols are important for both clouds and fog, as they act as the substrate on which water condenses and droplets form. The

growth rate of these droplets is dependent on the initial aerosol size and solubility. The aerosols are considered to be ‘activated’

once these droplets reach a certain size, where they can grow more easily within a saturated environment (known as cloud con-

densation nuclei (CCN)). The aerosol population is split by size categories. These size categories (hereafter known as modes)35

are technically defined as: the Aitken mode, where the diameter, d, of an aerosol particle is < 0.1 µm; the accumulation mode,

where 0.1≤ d≤ 1.0 µm; and the coarse mode, where d > 1.0 µm (Whitby, 1978). Due to their size, Aitken mode aerosols

have an increased tendency to coagulate with other particles and not activate in their own right. In contrast, accumulation and

coarse mode aerosols can activate into fog droplets, therefore indirectly impacting the cloud’s microphysical structure and its

life span (e.g. Twomey, 1974; Albrecht, 1989). These impacts have been studied in great depth over the last few decades, both40

in the context of climate (e.g. IPCC, 2001) and meteorology (e.g. Seifert and Heus, 2013; Miltenberger et al., 2018). While

research into radiation fog spans the last 100 years (e.g. Taylor, 1917; Roach et al., 1976), studies investigating aerosol impacts

on fog are more recent. For example, Bott (1991) shows that aerosols fundamentally control radiation fog’s optical thickness,

and additional studies (e.g. Stolaki et al., 2015; Maalick et al., 2016) have verified why it’s critical to correctly represent

different aerosol indirect effects when simulating fog.45

Accurate droplet nucleation representation, i.e. aerosol activation, is essential to represent the aerosol indirect effects on

clouds. However, when investigating aerosol-cloud interactions in models such as general circulation models (GCMs) and

numerical weather prediction (NWP) models, many detailed droplet growth schemes are unsuitable, as the computational

power required would dominate the treatment of the rest of the physics in the model (Ghan et al., 1993). Original development

of an aerosol activation parameterisation began by Squires (1958), with work by Twomey (1959) expanding on the modelling50

of aerosol activation. Twomey (1959) discussed the link between an aerosol spectrum, supersaturation and droplet number

concentration. Using Köhler Theory, Twomey (1959) formulated a parameterisation based on the change in supersaturation for

a given time, such that:

ds

dt
= α−βs

s∫
0

ν(σ)

 t∫
τ(σ)

sdt


1
2

dσ, (1)
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where α is the supersaturation source due to atmospheric coolingand ,
::::
with

:
the second term of Eq. (1) representing water55

vapour condensation onto the activated aerosol population. The constant, β, is dependent on the aerosol spectrum, with ν(σ)δσ

being the number of nuclei in a unit volume with critical supersaturation between σ and σ+ δσ. As condensation results in a

decrease in supersaturation, the maximum number of activated aerosols is capped and will occur once the peak supersaturation

is reached (i.e. when the condensation term starts to dominate the cooling terms), resulting in no more aerosols activating. At

this point,
ds

dt
= 0, and Eq. (1) becomes:60

α= βs

s∫
0

ν(σ)

 t∫
τ(σ)

s dt


1
2

dσ. (2)

Different authors have addressed solving the right hand
::::::::
right-hand

:
side of Eq. (2). Twomey (1959) formulated an upper and

lower bound to the inner integral in Eq. (2) and assumed an aerosol spectrum, which was later developed further by Cohard

et al. (1998), Shipway and Abel (2010) and Shipway (2015). Ghan et al. (1993) developed a scheme that accounted for a more

realistic aerosol size distribution, which was naturally bounded by the total aerosol number. They showed that accounting for a65

more realistic single mode
::::::::::
single-mode aerosol-size distribution (lognormal) improved the parameterised number of droplets

activated. However, because droplet growth was neglected upon activation in their scheme, the introduction of multi-mode

aerosol resulted in big discrepancies between the explicit and parameterised number of activated droplets. Work by Abdul-

Razzak et al. (1998) (and later Abdul-Razzak and Ghan, 2000) combined the benefits of the parameterisations developed by

both Twomey (1959) and Ghan et al. (1993). The scheme was not only bound by the total aerosol number , but also assumed70

that growth continued from the point of activation. The result of these assumptions led to the parameterised number of activated

aerosols agreeing better with the explicit calculation for activation, even in regimes of high updraft velocities (Abdul-Razzak

and Ghan, 2000). There has also been work to move away from using aerosol activation schemes in fog simulations using

large eddy simulations. Recent work by Schwenkel and Maronga (2019) has shown that the choice in condensation calculation

can be critical when investigating aerosol-fog interactions using large eddy simulations. More specifically, the same authors75

followed this study by demonstrating that using a bulk microphysics scheme in comparison to a lagrangian
:::::::::
Lagrangian cloud

model (LCM) can overestimate liquid water and inaccurately represent the fog droplet distribution (Schwenkel and Maronga,

2020). However, using methods such as LCMs is unsuitable for weather and climate models due to their massive computational

expense.

So far, the activation schemes discussed that are suitable for weather and climate models (i.e. Cohard et al., 1998; Abdul-80

Razzak et al., 1998; Abdul-Razzak and Ghan, 2000; Shipway, 2015) have been tested assuming that saturation is driven by

adiabatic ascent. In addition, a number of the listed schemes impose a fixed minimum updraft velocity threshold, wmin, of 0.1

m s−1, corresponding to a cooling rate of 3.51 K hr−1 assuming a dry adiabatic lapse rate (e.g. Ghan et al., 1997; Abdul-Razzak

and Ghan, 2000; Morrison and Gettelman, 2008; West et al., 2014). A wmin is suitable for these schemes, as they are designed

to consider updrafts found in stratocumulus and convective clouds (Abdul-Razzak and Ghan, 2000; Meskhidze et al., 2005)85

:::::::::::::::::::::::::::::::::::::::::::::
(Abdul-Razzak and Ghan, 2000; Meskhidze et al., 2005). Furthermore, some models (such as GCMs) will use the subgrid ve-
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locity (derived from the subgrid turbulence) to calculate the number of droplets. However, the turbulence driven by cloud-top

radiative cooling can be poorly resolved above the planetary boundary layer (PBL) unless the model’s vertical resolution was

< 100 m (Ghan et al., 1997). Since such resolutions are not feasible in operational NWP or climate models, a wmin of 0.1

m s−1 is imposed to account for this unresolved turbulence (Ghan et al., 1997). In radiation fog, the main mechanism for the90

initial formation of droplets is radiative cooling; a non-adiabatic process, with measured cooling rates of 1 - 4 K hr−1 at the

surface (calculated using data from Price, 2011) and updraft velocities close to 0 m s−1. Consequently, both the assumption

of saturation being driven by adiabatic ascent, and the use of a minimum vertical velocity threshold do not accurately account

for aerosol activation in fog (as discussed in Boutle et al., 2018). Finally, although there are studies that focus on investigat-

ing using a non-adiabatic framework in aerosol activation schemes when simulating fog (e.g. Zhang et al., 2014; Schwenkel95

and Maronga, 2019), there are no studies to the authors
:
’ knowledge that test these assumptions for fog formation in clean

aerosol regimes. Therefore, this may mean that using their schemes to simulate rural fog cases may lead to an overestimation

in condensation (Shipway, 2015).

This paper will focus on addressing the assumptions using in activation scheme schemes to simulate fog with the modified

Shipway (2015). It was chosen to use Shipway over Abdul-Razzak and Ghan (2000) (hereafter referred to as ARG), as it has100

been shown that ARG overestimates condensation in low aerosol regimes, making it activate too few aerosols (Shipway, 2015).

The work presented in this paper has been split into two sections: firstly comparing the original Shipway scheme (henceforth

Shipway) with the modified Shipway scheme developed here (SMOD) using an offline box model, and secondly comparing

both of these schemes using large eddy simulations (LES) of an idealised fog case study (as described in Poku et al., 2019).

During both comparisons, the following questions will be addressed:105

1. What are the potential differences in aerosol activation between the Shipway and SMOD scheme?

2. How do the differences in aerosol activation representation impact on the fog evolution in a large eddy simulation?

3. What potential discrepancies are not account
::::::::
accounted

:
for when simulating aerosol-fog interactions?

Section 2 will present how the Shipway and SMOD scheme differ
:::::
differs from each other mathematically. Section 3 will

outline the Shipway box model setup and how the SMOD was implemented into it. Section 4 addresses research question 1.110

Section 5 describes the LES model used and addresses research question 2. A discussion and conclusion will then follow.
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2 SMOD - Modifying the Shipway activation scheme to include non-adiabatic cooling

2.1 Shipway activation scheme

The Shipway (2015) aerosol activation scheme is designed as an improvement to the original lower bound approximation

by Twomey (1959), and utilises a lookup table method that solves the maximum supersaturation at a reduced computational115

expense. Shipway assumes the differential activity spectrum, φ(s), to be lognormal, which can be expressed as:

φ(s) =

I∑
i=1

Ni√
2πln(σs,i)s

exp

(
− ln2(s/s0,i)

ln2σs,i

)
, (3)

where Ni is the number concentration of dry aerosol, σs,i is the standard deviation of the distribution of φ(s), and s0,i is the

mean geometric supersaturation for each given aerosol mode. Shipway (2015) formulated a new expression for the maximum

supersaturation using the original Twomey (1959) lower bound approximation, such that:120

√
2α

3
2

γ
= smax

smax∫
0

φ(σ)

[
1

2

(
1−

(
σ

smax

)µ)λ]−1 (
s2max−σ2

) 1
2 dσ, (4)

where µ and λ are chosen empirically by Shipway (2015) such that µ= 3 and λ= 0.6. α relates to the increase in relative

humidity and hence saturation, due to an air parcel undergoing atmospheric cooling. To date, the Shipway activation scheme

assumes that α is driven by an updraft velocity, i.e.

α= ψ(T,p)
dz

dt
, (5)125

where ψ(T ) is the thermodynamical function associated with a change in supersaturation and pressure due to adiabatic

ascent, with:

ψ =
cp
RaT

− L

RvT 2
, (6)

L being the specific latent heat of vaporisation, and γ being a temperature pressure variable related to the change in temper-

ature due to latent heat release, such that:130

γ =
p

εes
+

L2

RvcpT 2
. (7)

Using a precalculated lookup table to solve the right-hand side of Eq. (4) and again smax, Shipway (2015) calculates the total

number of activated aerosols, Nact:

Nact =
Ni

2

[
1 + erf

(
ln(smax/s0,i)√

2lnσs,i

)]
, (8)
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with erf(x) being the error function (Abramowitz and Stegun, 1965). For the SMOD scheme (see Appendix A for further135

details), the term, α, in Eq. (4) has been modified to account for non-adiabatic cooling, such that:

α= ψ1
dT

dt

∣∣∣∣
ad

+ψ2
dT

dt

∣∣∣∣
non_ad

, (9)

where:

ψ1 =
cp
RaT

− L

RvT 2
,

ψ2 =− L

RvT 2
.

(10)

The SMOD scheme differs from Shipway when calculating Nact, in that it uses Eq. (9) to solve smax (see Table A1 in140

Shipway, 2015, for a summary of terms described in this section and Appendix A for a full derivation of ψ1,2). This term has

also been used in previous studies such as Schwenkel and Maronga (2019) when investigating nocturnal radiation fog using

LES.

3 The Shipway box model - offline setup

To understand the flexibility of the SMOD scheme and how the thermodynamical function associated with the non-adiabatic145

contribution may impact Nact, both the Shipway and extended SMOD activation schemes will be directly compared using the

Shipway box model (Shipway, 2015). The Shipway box model is designed as a non-interactive offline suite to calculate the

initial number of activated aerosols in a range of different environmental settings. As the model is non-interactive, it permits

analysis of parameter space, in the absence of atmospheric feedbacks. Inputs of the model are potential temperature, vertical

velocity and aerosol population properties (number concentration, size, mode and distribution size parameters). Shipway (2015)150

used the box model to test the Shipway (2015) and Twomey (1959) activation schemes in different aerosol regimes, in addition

to schemes developed by Abdul-Razzak and Ghan (2000) and Nenes and Seinfeld (2003).

For this work, the Shipway activation scheme was modified to account for a temperature change due to both adiabatic and

non-adiabatic processes, using Eq. (9). Aerosol loadings from Whitby (1978) were used to test both activation schemes. These

properties considered different environments, ranging from clean to polluted (Table 1). The temperature was set as a fixed155

value of 274 K, based on surface temperatures observed during fog formation (Price, 2011; Haeffelin et al., 2013). All tests

were driven by cooling rates found in fog formation (1 - 4 K hr−1 calculated using data from Price, 2011), and also accounted

for a temperature change due to a nocturnal clear sky cooling (0 - 1 K hr−1; Kiehl and Trenberth, 1997).

Table’s 2 and 3 displays the case setups used in the offline box model, including the list of tests conducted in each case.

Table 2 lists all the tests that directly compared the Shipway and SMOD scheme, based on Eq.’s (4) and (9). Each scheme160

is tested with all combinations of the three diffent
:::::::
different environments (marine, clean continental and urban) and the three
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Table 1. Aerosol properties used to test the Shipway and SMOD schemes in the Shipway box model (Whitby, 1978).

Environmental setting Distribution parameters Aitken mode Accumulation mode Coarse mode

Marine N (cm −3) 340 60 3.1

σ 1.6 2.0 2.7

r (µm) 0.005 0.035 0.31

Clean continental N (cm −3) 1000 800 0.72

σ 1.6 2.1 2.2

r (µm) 0.008 0.034 0.46

Urban N (cm −3) 10600 32000 5.4

σ 1.8 2.16 2.21

r (µm) 0.007 0.027 0.43

different aerosol modes (Aitken, accumulation, coarse). To check that the SMOD scheme was correctly coded into the box

model, meaning that supersaturation can be driven by a cooling rate rather than an updraft velocity, the non-adiabatic term

in SMOD and wmin was set to zero. Conducting this case would also test the aerosol activation’s sensitivity to the choice in

aerosol mode.165

Further cases (details in Table 3) were run in order to identify the impact of wmin in the Shipway scheme, and the impact of

the non-adiabatic term in SMOD. For this case, three representations were used:

1. SMOD, which accounted for both adiabatic and non-adiabatic cooling. For these tests, wmin = 0 m s−1 and the adiabatic

cooling component was switched off;

2. Default Shipway scheme. Cooling is assumed to be adiabatic, with wmin = 0.1 m s−1;170

3. Shipway scheme, with cooling assumed to be adiabatic and wmin = 0 m s−1 (i.e. assuming no additional sub-grid

cooling). This might be more appropriate for use in an LES where vertical motion is well resolved.

Firstly, a comparison between Shipway with no wmin and Shipway in its default setting (with an applied wmin = 0.1 m s−1)

tested the suitability of a wmin in fog modelling. This comparison was motivated by Boutle et al. (2018), who discussed how

aerosol activation in fog can be overestimated by the use of an a wmin value designed for convective clouds. The results of175

this test will quantify this overestimation, and hence provide guidance on
::::
guide

:
how wmin may require modification for fog

modelling. Next, a comparison between SMOD and Shipway with wmin = 0 m s−1 tested the suitability of assuming adiabatic

cooling in a non-adiabatic environment.
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Table 2. The tests conducted in the offline box model that directly compared Shipway and SMOD adiabatic mode based on Eq.’s (4) and (9).

Case Tests in case Scheme used Aerosol mode Environment

C_ship_ad_mar T_ship_mar_ait Shipway Aitken Marine

T_ship_mar_acc Accumulation

T_ship_mar_coa Coarse

C_ship_ad_con T_ship_con_ait Shipway Aitken Clean Continental

T_ship_con_acc Accumulation

T_ship_con_coa Coarse

C_ship_ad_urb T_ship_urb_ait Shipway Aitken Urban

T_ship_urb_acc Accumulation

T_ship_urb_coa Coarse

C_SMOD_ad_mar T_SMOD_mar_ait SMOD Aitken Marine

T_SMOD_mar_acc Accumulation

T_SMOD_mar_coa Coarse

C_SMOD_ad_con T_SMOD_con_ait SMOD Aitken Clean Continental

T_SMOD_con_acc Accumulation

T_SMOD_con_coa Coarse

C_SMOD_ad_urb T_SMOD_urb_ait SMOD Aitken Urban

T_SMOD_urb_acc Accumulation

T_SMOD_urb_coa Coarse

4 Testing Shipway and SMOD using an offline box model

4.1 Behaviours of the Shipway and SMOD scheme in low updraft velocity regimes180

This section’s objective is to understand the relative importance of different aerosol modes concerning aerosol activation in fog

and to check that the adiabatic pathway in the SMOD scheme was coded correctly. Although the implementation for SMOD

is different in that it applies a cooling rate rather than an updraft velocity, these tests comparing Shipway to SMOD should

produce identical results for a given equivalent cooling rate.

When comparing the code that would control the adiabatic pathways in the Shipway and SMOD scheme, the differences185

in numerical calculations are negligible across all tests, which is shown by the overlapping dashed line over the solid line for

all tests in Fig. 1. Figure 1a shows a monotonic increase in the maximum supersaturation, smax, across all environments with

respect to updraft velocity. For a fair comparison, an equivalent cooling rate was calculated for the SMOD scheme using the

dry adiabatic lapse rate assumption (see Eq. A6 in Appendix A). The smax is 0.26% for the marine environment; corresponding

8



Table 3. The tests conducted in the offline box model used to test activation scheme representation and appropriate use of wmin.

Case Tests in case Scheme used Cooling source wmin applied Aerosol mode Environment

C_accumulation_mar T_ship_mar_acc Shipway Adiabatic Accumulation Marine

T_ship_mar_acc_wmin Shipway Adiabatic x

T_SMOD_mar_acc SMOD Non-adiabatic

C_accumulation_con T_ship_con_acc Shipway Adiabatic Accumulation Clean continental

T_ship_con_acc_wmin Shipway Adiabatic x

T_SMOD_con_acc SMOD Non-adiabatic

C_accumulation_urb T_ship_urb_acc Shipway Adiabatic Accumulation Urban

T_ship_urb_acc_wmin Shipway Adiabatic x

T_SMOD_urb_acc SMOD Non-adiabatic

Figure 1. (a) Maximum supersaturation, smax (%), against the total cooling rate. (b) - (d) A plot of activated aerosol concentration, Nact

(cm−3) against the total cooling rate for Aitken, accumulation and coarse mode aerosols respectively. Red - marine; Blue - clean continental;

Purple - urban. Solid line - T_ship_ad; Dashed line - T_SMOD_ad (solid line overlaying the dashed line).
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to a cooling rate of 4 K hr−1, and decreases as the aerosol concentration increases (0.11 and 0.04% for the clean continental190

and urban environment respectively). The decrease in smax with increases in aerosol concentration relates to an increased

competition of water vapour
:::::::
increased

:::::
water

::::::
vapour

::::::::::
competition

:
and hence condensation rate, resulting in a reduced likelihood

of newly activated droplets.

Figures 1b-d show an increase in activated aerosols in relation to cooling rate. Of the three modes, the proportion of activated

aerosols is greatest in the accumulation mode in all tested environments. This is even though in some environments (e.g.195

marine), the proportion of aerosol in the Aitken mode is greater than the accumulation mode (see Table 1). The relatively

small radii of Aitken mode aerosol compared to the rest of the aerosol spectrum makes the required maximum supersaturation

for activation significantly higher, as displayed in Fig. 1b. The reality is that supersaturation levels in fog have been shown

to only reach several tenths of 1% (Gerber, 1991), and hence would not be great enough to activate Aitken mode aerosol.

Given the result of this test, it could indicate that nocturnal fog simulations that account for aerosol activation can neglect the200

Aitken mode. This will be discussed further in Section 5. Although there is an increase in Nact with respect to updraft velocity

for Aitken mode aerosol (Fig. 1b), the aerosol activation fraction is so small that it leads to a visible stepwise function (this

being strongest in the urban environment). The stepwise behaviour for the Aitken mode is a result of poor resolution in the

look-up table for the Shipway scheme at low updraft velocities, where this behaviour has been highlighted due to wmin not

being present. The resolution could be improved by using a more robust integration method. However, changing the integration205

method does not impact the general conclusions relating to the new scheme and hence this will be explored in later work.

4.2 Associated percentage difference for methods of aerosol activation

To understand howNact may be impacted by the choice in aerosol activation representation, accumulation mode tests displayed

in Table 3 were rerun using the SMOD activation scheme and the Shipway (2015) scheme with an applied wmin. Although

these same tests were run for Aitken and coarse mode aerosol (see Table 1), there was little to no change in Nact when210

the aerosol activation representation was changed (not shown). In case C_accumulation_mar, T_SMOD_mar_acc produces a

higher Nact than T_ship_mar_acc for all cooling rates (Fig. 2a - marine), with a similar pattern being applicable to the clean

continental and urban environments (Figs. 2b and c). As the SMOD scheme for these tests assumes non-adiabatic cooling

exclusively, the increase in Nact is due to the associated thermodynamical function being independent of adiabatic lifting and

hence a change in pressure (see Appendix A for further details). Therefore, this demonstrates the dependency on the total215

number of activated aerosols on the way in which the
:::
how

:::
the cooling is applied. To understand the impact of a wmin threshold

on Nact, all tests using the Shipway activation scheme were rerun, with the wmin threshold of 0.1 m s−1 being applied (Tests

T_ship_mar_acc_wmin, T_ship_con_acc_wmin and T_ship_urb_acc_wmin). Applying this threshold resulted in a fixed Nact

for a cooling rate below 3.51 K hr−1. Consequently, should there be a cooling rate lower than this threshold, Nact will be

overestimated and this may impact properties of the fog evolution such as the fog’s optical depth.220

Figures 2d, e and f show the percentage difference between the SMOD and Shipway (with an applied wmin) activation

schemes increases as the prescribed cooling rate decreases. When comparing the three environments, the rate of increase in

the percentage difference grows, as the tested environment becomes more polluted. For example, a cooling rate of 1.5 K hr−1

10



Figure 2. (a) Total activated aerosols, Nact, against the cooling rate for marine environment accumulation mode aerosols. Solid line -

T_ship_mar_acc; dashed line - T_SMOD_mar_acc; black dashed line - T_ship_mar_acc_wmin. (d) Percentage differences, ∆ %, between:

dashed line - T_ship_mar_acc against T_ship_mar_acc_wmin; solid line - T_ship_mar_acc against T_SMOD_mar_acc. Red diamond -

wmin = 0.1m s−1 (b), (e): clean continental; (c), (f): urban.

results in a percentage difference of 40, 50 and 70% for the three environments respectively. Given the associated percentage

difference, this indicates aerosol activation in fog simulations is overestimating Nact by an appreciable amount. However,225

reducing the minimum threshold, wmin, to give an equivalent cooling rate close to those observed in fog would reduce but not

remove the problem associated with the percentage difference. Between the SMOD and Shipway schemes for aerosols in the

accumulation mode, the associated percentage change ranges between -10 and -20% for all three environments, and the rate

of change in the percentage difference is not appreciably different for any given environment (Figs. 2d, e and f). This implies

that even if the minimum threshold of wmin were to be reduced such that it is representative for updraft velocities found in230

radiation fog, just using the Shipway scheme could potentially underestimate aerosol activation.

5 Testing Shipway and SMOD using MONC

The offline box model results demonstrate that assumptions widely used in aerosol activation (e.g. Abdul-Razzak and Ghan,

2000) may be significantly overestimating aerosol activation in fog. This section will investigate the impact that aerosol acti-

vation representation will have on fog evolution, using the Met Office Natural Environment Research Council Cloud (MONC)235
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Table 4. The input parameters and model setup for IOP1 in MONC.

IOP1 input parameters Values

Horizontal domain 132 x 132 m

Vertical domain 705 m

∆x, ∆y 2 m

∆z Variable - 1 m first 100 m, streched up to 6 m afterwards

Simulation duration 12 hr

Timestep 0.1 s

Surface geostrophic winds ug = 1.3 m s−1, vg = 2.1 m s−1

Cloud microphysics Cloud AeroSol Interactive Microphysics (CASIM)

Radiative transfer scheme Suite of Community RAdiative Transfer codes (SOCRATES) (Edwards and Slingo, 1996)

model (Brown et al., 2015, 2018). MONC is a large-eddy simulation model designed to research and develop parameterisations

used in the forecast model. MONC and has the same equation set as the older Met Office Large Eddy Model (LEM; Gray et al.,

2001) and unlike the LEM, MONC has been designed to couple with other modules, including the Cloud AeroSol Interactive

Microphysics scheme (CASIM; Grosvenor et al., 2017; Miltenberger et al., 2018) and the Suite of Community Radiative

Transfer codes (SOCRATES; Edwards and Slingo, 1996). MONC is widely used in the UK atmospheric science community,240

and has been used to study atmospheric processes in low level clouds in West Africa (Dearden et al., 2018), fog (Poku et al.,

2019) and idealised convection simulations (Böing et al., 2019).

5.1 MONC model - online setup

As part of this work, MONC is used to perform a suite of sensitivity tests based on intensive observation period 1 (IOP1) from

the recent Local And Non-local Fog EXperiment (LANFEX) field campaign (Price et al., 2018). A full description of IOP1245

and the observed vertical profiles the model was initialised with, can be found in Poku et al. (2019). The model setup for IOP1

is presented in Table 4. A domain size of 132 × 132 m2 was chosen, as there is minimal impact on the fog’s turbulent kinetic

energy (TKE) and liquid water when compared to simulations that were tested on a larger domain (not shown). Although

previous studies such as Maalick et al. (2016) and Maronga and Bosveld (2017) have run LES fog simulations at higher

horizontal resolutions, we found that running our cases at 2 m allowed for us to address our objectives, whilst compromising250

on both data storage and computational expense (not shown). The model’s surface boundary conditions were prescribed with a

varying surface temperature (described in Poku et al., 2019) and a surface vapour mixing ratio of 0.004 kg kg−1, which were

both based on observations. Radiation was calculated using SOCRATES based on the work of Edwards and Slingo (1996).

SOCRATES was called by the MONC model every 30 secs, allowing for the longwave radiative fluxes at the top of the fog

layer to be captured in the model.255
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All simulations use the CASIM scheme; a multi-moment bulk microphysics scheme designed to simulate aerosol-cloud inter-

actions (Grosvenor et al., 2017; Dearden et al., 2018; Miltenberger et al., 2018)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Grosvenor et al., 2017; Dearden et al., 2018; Miltenberger et al., 2018)

. For this work, CASIM has been set to 2 moments and is being used to represent a non-precipitating, warm boundary layer

cloud (i.e. ice processes and autoconversion to rain are turned off). In CASIM, the cloud-drop size distribution,N(D), assumes

a gamma distribution, which has the form (Shipway and Hill, 2012):260

N(D) =N0D
µde−λdD, (11)

where N0 is the distribution intercept parameter, µd is the shape parameter (the default value of µd is set to 0), λd is the

slope parameter and D is the droplet diameter. For this work, µd has been set to equal 3.0, based on observations of the liquid

water path (LWP) and cloud-drop size distribution during IOP1, resulting in a more sensible modelled sedimentation rate (see

Appendix B for details). With regards to aerosol sizes, only accumulation mode aerosol where 0.1 µm < CCN size diameter265

< 1 µm) are accounted for.

During IOP1, there were no direct aerosol or CCN measurements. Therefore, a CCN value of
::
we

:::::::
initially

:::::::
planned

::
to
::::

use

:
a
::::::::::
multi-mode

:::::::::
lognormal

::::::
aerosol

::::::::::
distribution

:::
of

::::
1000

::::::
cm−3

:::::::::::
Aitken-mode

:::::::
aerosols

::::::
(mean

::::::::
diameter

::::
0.05

::::
µm),

:
100 cm−3 in

the accumulation mode was set, with a total soluble mass of 2.7ng throughout the initialised vertical profile and an assumed

lognormal size distribution with a
::

−3
:::::::::::::::::
accumulation-mode

:::::::
aerosols

:::::
(mean

:::::::
diameter

::::
0.15

::::
µm)

::::
and

:
2
:::::
cm−3

:::::::::::
coarse-mode

:::::::
aerosols270

:::::
(mean

:::::::
diameter

::
1
::::
µm),

:::::
each

::::::::
following

:
a
:
standard deviation of 2.0, based on typical measurements for a clean rural site similar

to Cardington, UK (Boutle et al., 2018; Poku et al., 2019). Our
::
as

::::::::
proposed

:::
and

::::
used

::
in

::::::::::::::::
Boutle et al. (2018)

:
.
:::::
Using

::::
these

::::::
values

:::::
would

::::::::
therefore

:::::
being

::::::::::::
representative

::
of

:::
the

:::::
clean

:::
air

:::::::
typically

::::::
found

::
at

::::::::::
Cardington.

::::::::
However,

::::
our simulations used a single

:::::::::::
accumulation aerosol mode to maintain consistency with the tests in the Shipway Box Model, which showed that when con-

sidering aerosol activation,
:
the activated Na for IOP1 can be accounted for by accumulation mode aerosols (not shown).275

Therefore,
:
A
:::::::::::

consequence
:::

of
::::::::
assuming

:
a
::::::

single
:::::::::::
accumulation

:::::
mode

::::::::::
potentially

:::::
limits

::::::
droplet

::::::::::::
concentration

:::::::::::::
overestimation,

:::::
which

:::::
would

::::
lead

::
to

:::
the

:::
fog

:::::
layer

:::::::::::
transitioning

:::
too

::::::
quickly

::
in

::::::
optical

:::::::::
thickness.

::::::::
However,

:::::
based

::
on

::::
our

:::::
offline

::::
test

::::::
results, we

believe that using a multi-mode aerosol spectrum would have led to an unnecessary computational expense in this study. This

reasoning may be different should these simulations have been run with a prognostic for supersaturation, however,
::
but

:
this is

outside the scope of this work. To reduce computational expense and data storage, 1D diagnostics are output every 1min and280

3D diagnostics are output every 5min.

SMOD was implemented into MONC based on Eq. (9), which involves adding the adiabatic and non-adiabatic contributions

together for the combined cooling rate to them be used for aerosol activation. The adiabatic contribution for this equation

was derived from the resolved positive updraft velocity in MONC. The non-adiabatic contribution to date only consists of the

longwave heating tendency that is derived using SOCRATES. For reference, the implementation of these partitioned terms is285

done similarly to the aerosol activation scheme used by Vie et al. (2016). Although it has been acknowledged that there are

other non-adiabatic contributions to changes in supersaturation such as turbulent mixing, further model development would

be required to account for these changes. However, given that radiative cooling is the biggest source of saturation during fog
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Table 5. Details of the simulations using the Shipway and SMOD activation scheme. The value of wmin has been lowered from 0.1 to 0.01

m s−1 based on the results from Sec. 4. Cooling rate equivalent calculated using the dry adiabatic lapse rate assumption.

Test no. Test name Scheme Imposed wmin (m s−1) Threshold cooling rate equivalent (K hr−1) re (µm)

T1 T_shipway_wmin Shipway 0.1 3.51 10

T2 T_shipway_0.01 Shipway 0.01 0.351 10

T3 T_SMOD SMOD N/A N/A 10

T4 T_SMOD_er_15 SMOD N/A N/A 15

T5 T_SMOD_er_20 SMOD N/A N/A 20

formation (Roach et al., 1976), these results should provide useful insight into the representation of aerosol activation during a

stable fog case.290

Table 5 displays all tests that will evaluate Shipway against SMOD. The first objective will be addressed by comparing

test’s T1 - T3 , and
:::
and

:::
the outcome of this comparison will improved

:::::::
improve the understanding of how different activation

representations could influence the fog droplet number concentration (FDNC) evolution in IOP1. To date, the effective radius,

re, has the option to be fixed or for it to vary with a change in FDNC. In order to
::
To isolate the impact of aerosol activation on

number concentration, this work used a fixed re. As the non-adiabatic contribution in the SMOD scheme is directly influenced295

by re, two tests were setup testing its sensitivity, and hence will motivate future work that involves deciding whether a coupled

effective radius is required when using the SMOD scheme.

5.2 Comparing simulations using the Shipway and SMOD scheme

Fog forms in tests T_shipway_wmin, T_shipway_0.01 and T_SMOD at 1700 UTC, and all decrease to a mean near-surface

visibility of 120 m by the end of the night (Fig. 3a). For all model simulations, visibility, V is, is calculated using the formula300

of Gultepe et al. (2006):

V is=
1.002

(LWC ×FDNC)0.6473
, (12)

where LWC is the liquid water content and FDNC is the fog droplet number concentration. Equation (12) was derived

based on observations of fog in mainland Europe and is valid over a range of droplet concentrations from a few per cubic

centimetre up to a few hundred per cubic centimetre (Gultepe et al., 2006).305

Despite the differences in near-surface visibility, all three tests have the strongest rate of decrease between 1700 and 1845

UTC (Fig. 3a). During this time, the mean near-surface visibility in T_shipway_wmin, T_shipway_0.01 and T_SMOD decrease

to 208, 151 and 210 m respectively. T_shipway_0.01 has a noticeably higher near-surface visibility before 1830 UTC and

best agrees with observations, before decreasing in visibility at the same rate as T_shipway_wmin. Upon first inspection, it

appears that just lowering wmin is the solution to prevent the simulation overestimating aerosol activation in fog, as shown310
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Figure 3. (a) - Time series of the near-surface mean visibility (V is; m) at a 2 m altitude. Purple – T_shipway_wmin; green – T_shipway_0.01;

red – T_SMOD; blue – T_SMOD_er_15; orange – T_SMOD_er_20; light blue – observations. (b) - Time series of the surface sensible heat

flux (W m−2). Purple – T_shipway_wmin; green – T_shipway_0.01; red – T_SMOD; blue – T_SMOD_er_15; orange – T_SMOD_er_20;

light blue – observations. Minimum and maximum (a) visibility and (b) sensible heat flux are marked on the figure by the shaded area.

by T_shipway_0.01. However, the model’s spin-up period lasted around an hour in these simulations, meaning that the FDNC

calculation is likely being influenced by initial prescribed random perturbations, as opposed to turbulence driven by either

wind shear or convective motion. Unfortunately, with the earliest radiosonde data available being at 1700 UTC, the features

in T_shipway_0.01 could not be avoided (for context, the observations show a stable boundary layer (SBL) beginning to form

around the time of model initialisation). Nonetheless, the lower threshold used in T_shipway_0.01 allows for the simulation315

to undergo a slower transition in near-surface visibility to a thicker fog. This suggests that the number of activated droplets

calculated may account for
::
an inaccurate representation of what was observed during IOP1.

Up until 2100 UTC, T_shipway_wmin and T_SMOD and T_shipway_0.01 mostly experience a zero or slightly negative

sensible heat flux (SHF), which agrees well with observations (Fig. 3b). After 2100 UTC, all three simulations grow positively
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Table 6. Ratio of modelled to observed cloud drop number averaged over the vertical height across tested time frames (3 sf).

Test name 2230 UTC 0030 UTC 0330 UTC

T_shipway_wmin 2.77 1.66 2.99

T_shipway_0.01 2.54 1.69 2.96

T_SMOD 3.03 1.70 3.07

T_SMOD_er_15 2.78 1.65 3.00

T_SMOD_er_20 2.63 1.59 2.92

in SHF, with both T_shipway_wmin and T_SMOD experiencing two distinct maxima of 6 and 14 W ms−2 at times 0000 and320

0400 UTC respectively. A mostly positive SHF is due to the fog layer growing enough in both depth and optical thickness

that it will begin to warm the surface (Price, 2011). As the observed SHF was mostly zero throughout the night, our results

indicate that the default wmin used in the Shipway scheme will lead to the fog episode transitioning to a well-mixed layer too

quickly. Up until 0100 UTC, T_shipway_0.01 has a lower SHF than T_shipway_wmin and T_SMOD, despite it still remaining

positive. This result highlights the inaccuracy of simulating fog cases with just an updraft velocity, providing further evidence325

for the use of the SMOD scheme. However, despite this suggestion, T_SMOD in its default settings is performing worse

than T_shipway_0.01. This discrepancy will be discussed further in Section 5.2.1 of this paper. There is a possibility that the

simulated SHF results may have some uncertainty due to no land-surface scheme being coupled to MONC to date, which has

been shown to be important when the fog becomes optically thick (e.g. Porson et al., 2011). Unfortunately, investigating this

uncertainity
:::::::::
uncertainty

:
is outside the scope of this work.330

Vertical profiles of observed fog droplet number concentration (FDNC) initially show spatial variation throughout the layer,

where it begins to homogenise throughout the night (Fig. 4). At 0030 UTC, it appears as though the fog layer decreased in

height. However, this feature is most likely due to an instrumentation limitation, resulting in only accounting cloud droplets

that were of sizes between 2 and 40 µm in diameter, with a 1 µm uncertainty (Price et al., 2018). Therefore, there is a potential

that droplets that have begun growing through condensation were not accounted for. Within the fog layer, T_shipway_wmin335

and T_SMOD both have an activation rate between 75-80%, which increases to around 90% later in the night. Furthermore,

the modelled to observed fog droplets for both simulations is 2.77 and 3.03 respectively (Table 6). Consequently, both the

simulated activation and proportion rates lead to the fog layer growing 40 m too deep in comparison to observations. Initially,

T_shipway_0.01 has a
:::
the lowest droplet proportion rate, with the simulated spatial vertical FDNC agreeing best with observa-

tions. However, it begins to have activation and proportion rates similar to T_shipway_wmin and T_SMOD. This results
:::::
result340

suggests that T_shipway_0.01 transition rate to a thicker fog is still too fast, indicating that using an activation scheme driven

by just an updraft velocity is unsuitable for fog simulations.

Throughout the night, both T_shipway_wmin and T_SMOD have a higher LWP than T_shipway_0.01 (Fig. 5). Poku et al.

(2019) showed that the LWP increases with aerosol concentration and hence FDNC, with Porson et al. (2011) demonstrat-

ing that the increase in FDNC resulted in a stronger downwelling longwave flux, signalling the presence of a deeper fog.345
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Figure 4. Vertical profiles of the fog droplet number concentration (cm−3) at 2230, 0030 and 0330 UTC. The dashed lines represent

observations, and solid lines represent simulated values. Purple – T_shipway_wmin; green – T_shipway_0.01; red – T_SMOD; blue –

T_SMOD_er_15; orange – T_SMOD_er_20.
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Figure 5. (a) - Time series of the surface deposition rate (g m−2 hr−1). Purple – T_shipway_wmin; green – T_shipway_0.01; red – T_SMOD;

blue – T_SMOD_er_15; orange – T_SMOD_er_20; light blue – observations. (b) - Time series of the liquid water path (g m−2). Purple –

T_shipway_wmin; green – T_shipway_0.01; red – T_SMOD; blue – T_SMOD_er_15; orange – T_SMOD_er_20; light blue – observations;

blue dashed - running average over observations (40 points).

T_shipway_wmin has the steepest decrease in the visibility during fog formation, suggesting that it has the highest initial

FDNC. As these tests all have the same fixed effective radius (unlike studies such as Stolaki et al., 2015), the change in LWP

is primarily due to the sedimentation rate, therefore indicating that T_shipway_wmin has the slowest sedimentation rate of

all three tests as a result. A decreased sedimentation rate will lead to more liquid water being present in the fog layer. Con-

sequently, this will lead to stronger cooling at the fog top (Poku et al., 2019), strengthening the feedback of increased liquid350

water production in the layer. This result provides further evidence of how the error in aerosol activation that utilises a wmin

of 0.1 m s−1 impacts the fog, especially during the initial formation stage. The LWP and mean near-surface visibility are not

appreciably different between T_shipway_wmin and T_SMOD (Fig. 5), suggesting the FDNC is very similar between the two.

T_shipway_0.01 has the highest near-surface visibility between 1700 and 2300 UTC by up to 340 m, in addition to the lowest

LWP by up to 4 g m−2. Averaged time-height slices of FDNC and LWC were taken for all three tests, showing relatively small355

changes in the fog layer’s FDNC between T_shipway_wmin and T_SMOD (not shown).

So far we have seen that T_SMOD is performing similar to T_shipway_wmin, with T_shipway_0.01 appearing to be the

ideal solution for simulating IOP1. However, this may indicate that the default settings for SMOD may not be suitable for our

study. The similarity of T_shipway_wmin and T_SMOD suggests that the combined cooling rate in T_SMOD is similar to

the cooling rate associated with wmin in T_shipway_wmin. To understand whether this is the case, a horizontal slice at z = 2360

m of FDNC and the contributions to the relative cooling rates were taken at different times, as shown in Fig. 6. As 2 m is

not at the model’s lowest vertical grid box, there should not be any direct heating from the imposed surface conditions. At

1730 UTC the FDNC is about 83 cm−3 (Fig. 6a), with more than 85% of the total cooling contribution being due to longwave

heating (Fig. 6m). However, later in the night, the cooling contribution to longwave tendencies increases to around 90% within
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Figure 6. Horizontal slices made at z = 2 m of FDNC (cm−3) in T_SMOD at (a) - 1730, (b) - 1900, (c) - 2100 and (d) - 0100 UTC. (e) - (h):

non-adiabatic cooling (K hr−1); (i) - (l): adiabatic cooling (K hr−1); (m) - (p): Non-adiabatic cooling contribution (%). Note: for the cooling

contribution, white masks out regions where the contribution is greater than 140 (%).

the fog layer (Fig. 6o), due to a decrease in the adiabatic cooling tendency to about 0.5 K hr−1 (Fig. 6k). Eventually, the fog365

develops, resulting in the longwave contribution to cooling decreasing to around 15% (Fig. 6p), with an increase in cooling

due to vertical motion. The drop in near-surface longwave cooling occurs as the fog transitions to become optically thick, and

so the longwave flux divergence becomes smaller near the surface, while the adiabatic effects become larger due to the onset

of convection driven by radiative cooling at the fog top (Mazoyer et al., 2017).

The new SMOD activation scheme is more physically realistic, in that it is coupled to the radiative cooling in the fog, making370

the scheme potentially more sensitive to the way that this cooling is calculated in the model. Therefore, the assumption of the
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effective radius being fixed for these simulations may not be suitable to accurately simulate the radiative impact of the fog

layer. The following section will present some sensitivity tests to assess the impact of this assumption on fog development.

5.2.1 Sensitivity of SMOD to the effective radius

Hill et al. (2008) showed the impact of using a fixed effective radius on stratocumulus clouds simulations, with studies such as375

Bierwirth et al. (2013) and Young et al. (2016) showing how the observed effective radius in arctic clouds can change (between

5 to 15 µm) in relation to the cloud’s LWC and FDNC. As this variability may be key to modelling radiation fog using the

SMOD activation scheme, two tests were conducted that investigated the fog’s sensitivity to a change in re.

When increasing re from 10 to 20 µm, the near-surface visibility increases by up to 40%, and decreases the LWP by up to

42% (Fig. 3a). Furthermore, increasing re leads to the simulated SHF better agreeing with observations, despite it still being380

positive later in the night (Fig. 3b). However, although increasing re results in the LWP agreeing better with observations

(Fig. 5), neither test captures the changes in near-surface visibility during fog formation (Fig. 3b). Previous studies (e.g.

Bergot et al., 2015; Ducongé et al., 2020) argued that it’s critical to account for a heterogeneous terrain when simulating

the fog’s initial spatial variability. However, Cardington is relatively homogeneous and hence potentially highlights a further

discrepancy in the aerosol representation in these simulations. As an example, in-cloud removal (nucleation scavenging) has385

not been accounted for in this work, which has been shown to impact the spatial variability and development of mixed-phased

clouds (Miltenberger et al., 2018). In addition, the discrepancy in our results may be due to these simulations utilising a bulk

microphysics scheme, which has been shown to not account for hydrated and small newly formed droplets (Schwenkel and

Maronga, 2020). Nonetheless, the decrease in liquid water indicates that the fog’s development in optical thickness has slowed

down with an increase in re and hence the importance of coupling both CASIM and SOCRATES together. Going forward,390

future studies should use a coupled re as this should, in theory, lead to an improvement in FDNC as the better representation

in aerosol activation in the SMOD scheme will feed into the radiation scheme.

Figure 7 shows time-height slices of FDNC and LWC for T_SMOD, T_SMOD_er_15 and T_SMOD_er_20. Before 2145

UTC, the FDNC in T_SMOD is strongest towards the top at around 80 cm−3. After this time, it increases throughout the fog

layer to a range between 86 and 94 cm−3 (Fig. 7a). These changes in FDNC can be noted when compared to observations,395

where both T_SMOD_er_15 and T_SMOD_er_20 begins to have a less uniform structure throughout the fog layer (Fig. 4).

Coinciding with this is an increase in LWC from 0.2 to 0.24 g kg−1, suggesting the time at which the fog began to develop and

grow in optical thickness. However, an increase in re results in delayed onset of the growth in optical thickness to 2300 and

0030 UTC for T_SMOD_er_15 and T_SMOD_er_20 respectively. The FDNC on average decreases for both T_SMOD_er_15

and T_SMOD_er_20 across the whole fog layer, with a noticeable rise at around 2300 UTC for T_SMOD_er_15. Although this400

pattern is the same for T_SMOD_er_20, there are periods where there are visible decreases in FDNC, e.g. between 0130 and

0230 UTC (Figs. 7c and e respectively). A combination of both the FDNC and LWC decreasing results in a slower transition

in the fog layer, which is shown in the downwelling longwave at 2 m (Fig.8). The downwelling longwave decreases by a

maximum of 20 W m−2 between T_SMOD and T_SMOD_er_20, with T_SMOD_er_20 undergoing the slowest positive rate
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Figure 7. Plots of (a), (c), (e) - mean FDNC (cm−3); and (b), (d), (f) - mean LWC (g kg−1). (a), (b): T_SMOD; (c), (d): T_SMOD_er_15;

(e), (f); T_SMOD_er_20.

with all the simulations presented in this paper. There are differences between the observed and simulated downwelling in all405

three simulations, however, before 2200 UTC, T_SMOD_er_20 decreases this difference to a maximum of 10 W m−2.
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Figure 8. Time series of the downwelling longwave radiation (W m−2) at a 2 m altitude. Purple – T_shipway_wmin; green –

T_shipway_0.01; red – T_SMOD; blue – T_SMOD_er_15; orange – T_SMOD_er_20; black – observations. The minimum and maximum

downwelling longwave radiation are marked on the figure by the shaded area.

SOCRATES calculates the longwave radiative fluxes by the cloud’s optical depth, τ , (Edwards and Slingo, 1996):

τ = k(e)∆m, (13)

such that ∆m is the change in mass for a given spectral band and k(e) is the mass extinction coefficient, which is defined as:

k(e) = L

(
a+

b

re

)
. (14)410

For SMOD scheme, both the FDNC and LWC is sensitive to re, given Eq’s (13) and (14). This leads to a more physical

representation of aerosol activation that should be considered when simulating cases of fog. These results demonstrate the

importance of an accurate effective radius and the reasons for using a coupled re, given its impact on the fog evolution.

6 Discussion

This work aimed to investigate how the representation of aerosol activation influenced nocturnal radiation fog simulations.415

There was a strong focus on critiquing the assumptions used in several current aerosol activation schemes, which are usually

designed for clouds where cooling is driven by adiabatic ascent. This work addressed two research questions.

6.1 What are the potential differences in aerosol activation between the Shipway and SMOD scheme?

The assumptions used in the Shipway (2015) scheme to date, i.e. the use of just an updraft velocity with a minimum threshold

wmin, were tested against the SMOD scheme in an offline box model. The sensitivity of Shipway to wmin was first tested. For420
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accumulation and coarse mode aerosol, there was a monotonical decrease in Nact as wmin approached 0 m s−1. These tests

also highlighted the stepwise function present in Aitken mode aerosol in the low updraft velocity regime. Given the fraction

of Aitken aerosols activated, our results may suggest that Aitken mode aerosol can be ignored when modelling activation in

fog based on the range of environmental aerosol size distributions, as the required environmental supersaturation for impact is

substantially higher than supersaturation’s seen in reality. However, the stepwise behaviour was caused by the poor resolution425

in the look-up table that calculated smax in this regime, therefore demonstrating why just removing wmin with no alternative

cooling source may not be an appropriate solution when simulating aerosol activation in fog.

For accumulation mode aerosol, there were noticeable percentage differences between the actual cooling rate and the use of a

wmin equal to 0.1 m s−1 (as typically used in clouds) by up to 70%, as the environment becomes more polluted. In reality, for a

given liquid water path, increasing the aerosol concentration will result in a larger concentration of smaller droplets, increasing430

the fog’s optical depth (Twomey, 1977), and may cause the fog to become well-mixed too quickly. Therefore for this example, a

similar effect could occur should an unsuitablewmin be used in fog simulations. In addition, these tests demonstrated that using

an aerosol activation scheme that assumes just adiabatic ascent may potentially underestimate Nact by 20% in an environment

driven by non-adiabatic cooling processes (i.e. fog formation). Furthermore, the associated percentage difference in the choice

of wmin would be the same should SMOD be run with just an adiabatic cooling source, given there were no differences in435

Shipway and SMOD in an adiabatic setup. Consequently, both of these results show that the aerosol indirect effects may not

be properly accounted for in fog simulations when using a traditional aerosol activation scheme.

6.2 How do the differences in aerosol activation representation impact on the fog evolution in a large eddy

simulation?

The Shipway (2015) aerosol activation scheme was used to test the impact wmin could have on simulating fog in MONC using440

only accumulation mode aerosol. It was shown that a reduction in wmin lowered the initial FDNC during formation, resulting

in the fog undergoing a slower transition to a well-mixed layer. Reducing wmin to 0.01 m s−1 displayed some unusual model

behaviours during fog formation, which is most likely driven by the model’s spin-up period, rather than shear or convection

motion. However, the only way to confirm this is to initialise the model earlier, which is not possible with the given radiosonde

data from IOP1. Upon initial analysis, there was not an improved performance using the SMOD scheme against the Shipway445

scheme with an applied wmin of 0.1 m s−1. Upon further inspection, it was shown that the cause of this result was due to re not

reflecting the change in FDNC. When re was increased from 10 to 20 µm, the result was a slower transition to a well-mixed

layer, which was more in line with observations of IOP1. This highlighted the importance of the effective radius and provides

further motivation to couple the effective radius with a change in FDNC. However, despite this result using the SMOD scheme,

our work has highlighted potential physical processes regarding aerosol missing in this study, demonstrating the complexities450

when simulating aerosol-fog interactions in nocturnal radiation fog.
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7 Conclusions

This work has demonstrated the unsuitability of using an aerosol activation scheme designed for convective clouds in fog

simulations, complementing previous studies such as Schwenkel and Maronga (2019), who have shown how the choice in

aerosol activation scheme impacts the fog evolution through a change in the FDNC. Similar to our study, they and authors such455

as Mazoyer et al. (2017) have used a similar mathematical framework with their choice in using a non-adiabatic cooling in

aerosol activation scheme first utilised by Zhang et al. (2014). Our work in this paper compliments
::::::::::
complements

:
this and other

studies by doing the following:

1. Although as suggested by Boutle et al. (2018) that the solution is to remove thewmin threshold when simulating radiation

fog, our results show that this is not necessarily a suitable option. This is highlighted with T_shipway_0.01, which460

although did initially perform better than the rest of the tests discussed, it transitioned
::::::
quicker

:
to a thicker fog than both

T_SMOD_er_15 and T_SMOD_er_20. As aerosol activation in T_shipway_0.01 was driven by just an updaft
::::::
updraft

velocity, this suggests why a more physical based activation scheme such as SMOD is critical to simulate nocturnal

radiation fog. More specifically, the choice in activation scheme is key when the fog layer may transition to an optically

thick layer.465

2. Although there has
:::
have

:
been studies investigating the use of the non-adiabatic framework in fog simulations, this is the

first study to the author’s knowledge that critiques this framework with a fog case that formed in a clean aerosol regimes

(accumulation CCN < 100 cm−3 as defined by Boutle et al., 2018), therefore supporting previous literature on the topic

of aerosol-fog interactions.

Work to develop the SMOD scheme is still ongoing and will include a total non-adiabatic cooling tendency that will account470

for additional non-adiabatic processes such as turbulent or subgrid mixing. Completing this work could make it easier to

incorporate the SMOD scheme into a model such as an NWP model. This is because the non-adiabatic process would be a

change in temperature within the grid box, rather than requiring an explicit additional term. It was shown that SMOD is sensitive

to SOCRATES with regards to the fixed effective radius, especially when considering the decrease in FDNC. Therefore, future

work should run the new scheme with the interactive coupling of re to CASIM, should the option be available.475

As noted in Section 5.2, SMOD was unable to capture the fog’s spatial variability during initial formation. Poku et al.

(2019) discussed how using a more "realistic" activation scheme such as SMOD would be a suitable solution, as the FDNC

would be able to capture the fog’s transitional period. However, although our work has shown that SMOD may be a bet-

ter option than Shipway, none of our simulations were able
:::
not

::::
able

::
to

:
simulate both the initial fog formation variability

and remain stable throughout the night. This feature may have been due to our study using a bulk microphysics scheme,480

and more specifically a saturation adjustment condensation calculation, which has shown to be problematic in other cloud

regimes (e.g. surface precipitation in convective clouds Lebo et al., 2012).
:::
e.g.

:::::
deep

:::::::::
convective

::::::
clouds

::::::::::::::::
(Lebo et al., 2012)

:::
and

:::::::::::
stratocumulus

::::::
clouds

::::::::::::::::::
(Thouron et al., 2012)

:
. Previous LES studies of IOP1 (e.g. Boutle et al., 2018) have addressed this lim-

itation by using a prognostic for supersaturation, which in their works led to a reasonable transition to when the fog became
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optically thick. In addition, Schwenkel and Maronga (2020) proposed moving away from bulk microphysics schemes and485

instead uses a lagrangian
:::::::::
Lagrangian

:
cloud model (LCM), which can account for small droplets and swollen aerosols (for con-

text, our results do not capture changes in the drop-size distribution with aerosol activation representation). Therefore, future

work should include simulating IOP1 using a
:
an

:
LCM, which could be capable to improve capturing the features of a thin fog.

However, as

::::
Since

:
our study was motivated to develop and test a suitable scheme that could be used in NWPs to account for aerosol490

impacts in fog, a
::
an

:
LCM mechanism may be unsuitable in an NWP due to additional computational expense. Furthermore,

using a prognostic for supersaturation is unsuitable due to the timestep for changes in supersaturation being too small for most

NWPs (Morrison and Gettelman, 2008). Miltenberger et al. (2018) showed that by including in-cloud aerosol removal, the

source of aerosol began depleting through nucleation, resulting in a more open-cell cloud structure and changes in the cloud

dynamics. As this study was done using a bulk microphysics scheme, this may be a suitable option when testing the SMOD495

scheme. To date, there are no studies that have investigated the use of a nucleation scavenging parameterisation in fog in the

context of bulk microphysical parameterisations, therefore suggesting a future piece of work within the subject of aerosol-fog

interactions. For this work, there was a lack of simultaneous measurements of observed aerosol and cloud droplets. Given the

wmin’s sensitivity to aerosol concentration, having these measurements in future studies will both help constrain the model

and highlight any further discrepancies in aerosol activation representation in fog. Finally, our study has focused on the first 10500

hours of IOP1 and hence has not accounted for the fog evolution during daytime. Given the impact additional processes such

as aerosol-radiation interactions and
:
an

:
interactive surface scheme will have on fog dissipation, it’s critical to ensure schemes

such as SOCRATES and CASIM are coupled for this future work.

As a wider implication, aerosol-cloud interactions are a big source of uncertainty when modelling atmospheric processes,

both within forecasting (NWP) and climate (GCM) models and the choice of aerosol activation can influence how big this505

uncertainty is. Typically, the resolution of NWP and GCM model simulations is very coarse compared to LES, meaning that any

present updraft velocities are usually subgrid and hence cannot be resolved. To represent aerosol activation on a subgrid level,

the vertical velocity is either in the form a characteristic vertical velocity (e.g. Ghan et al., 1997) or a PDF function based on

the vertical velocity (e.g. West et al., 2014). More recently, Malavelle et al. (2014), for example, discussed methods to account

for subgrid velocities used in aerosol activation in convection-permitting models. These methods utilise a wmin, however,510

this should be lowered systematically for future work regarding aerosol activation in fog. Although gaining measurements of

vertical velocity PDFs could be difficult in fog, the results presented in this paper could provide a useful framework to estimate

what the variation in vertical velocities in fog could be, therefore providing a good estimation of the types of distributions that

best match these velocities. Finally, to have a full cooling term applied in an NWP model, it is important to know how these

vertical velocities correlate with the changes in non-adiabatic cooling.515

This paper has shown the need to differentiate between optically thin fog (wmin ≈ 0 m s−1) and optically thick fog, where

sub-grid vertical velocities can be important. The method being presented in this work is computationally efficient and pro-

vided an additional level of flexibility
::
to consider different cooling sources in cases where updrafts are not the dominant

cooling source. Given this flexibility, this will allow the SMOD scheme to undergo further testing in both high resolution and
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NWP models. Whilst this has been tested in only the Shipway and SMOD activation schemes, the framework for a change in520

supersaturation is generic enough for it to be applied to other activation schemes too.

Appendix A: Mathematical formulation for the change in supersaturation

Pruppacher and Klett (2010) defined supersaturation in terms of the water vapour mixing ratio, qv , as:

qv = (1 + s)

(
εes
p

)
, (A1)

where p is the pressure of dry air, s is the environment’s supersaturation, es is the saturation vapour pressure and ε=
Ra
Rv

=525

0.622; the ratio of the gas constant of dry air to water vapour. Differentiating Eq. (A1) with respect to time, and rearranging for

the change in supersaturation gives:

ds

dt
=

(
p

εes

)
dqv
dt
− (1 + s)

[
1

es

des
dt
− 1

p

dp

dt

]
. (A2)

The Clausius-Clapeyron equation is defined as:

des
dT

=
Les
RvT 2

, (A3)530

with L being defined as specific latent heat. Applying the chain rule gives:

des
dt

=
Les
RvT 2

dT

dt

∣∣∣∣
tot

.

=
Les
RvT 2

[
dT

dt

∣∣∣∣
ad

+
dT

dt

∣∣∣∣
non_ad

+
dT

dt

∣∣∣∣
lat

]
.

(A4)

dT

dt

∣∣∣∣
ad

is the change in temperature due to dry adiabatic processes, such that:

dT

dt

∣∣∣∣
ad

≡−Γ
dz

dt
=−Γ w; (A5)

where Γ =
g

cp
, the dry adiabatic lapse rate with cp being the specific heat capacity, and w is the updraft velocity.

dT

dt

∣∣∣∣
non_ad

535

is the change in temperature due to non-adiabatic processes (e.g. radiative cooling, turbulent mixing), that excludes latent

heat release, and
dT

dt

∣∣∣∣
lat

is the change in temperature due to latent heat release i.e. condensation/evaporation. For adiabatic

expansion (lifting), there are corresponding pressure and temperature changes (that satisfy the first law of thermodynamics).

26



However, for isobaric non-adiabatic heating processes, there is no change in p but there is a change in T that modifies Eq. (A4).

Therefore, for the change in p, by:540

1. assuming hydrostatic equilibrium, where
dp

dz
=−ρg;

2. using the equation for the ideal gas law, where p= ρRaT ;

dp

dt
=
dp

dz

dz

dt

=− pg

RaT
w.

(A6)

The change in temperature due to latent heat release is proportional to the change in vapour mixing ratio, such that:

dT

dt

∣∣∣∣
lat

=− L
cp

dqv
dt

∣∣∣∣
cond

=
L

cp

dql
dt
. (A7)545

Inserting Eq.’s (A4), (A6) and (A7) into Eq. (A2), and assuming 1 + s≈ 1 gives:

ds

dt
=

(
Lg

RvT 2cp
− g

RaT

)
w− L

RvT 2

dT

dt

∣∣∣∣
non_ad

−
(
p

εes
+

L2

RvcpT 2

)
dql
dt
. (A8)

Eq. (A8) can be used to simulate aerosol activation in both fog and convective cloud regimes, highlighting the flexibility

of the SMOD scheme. As an objective for this work is to understand how using an adiabatic framework to represent aerosol

activation in an non-adiabatic environment (e.g. fog) may impact Nact, w in Eq.(A8) will be rewritten as dT
dt

∣∣
ad

, such that:550

ds

dt
= ψ1

dT

dt

∣∣∣∣
ad

+ψ2
dT

dt

∣∣∣∣
non_ad

− γ dql
dt
, (A9)

where:

ψ1 =
cp
RaT

− L

RvT 2
,

ψ2 =− L

RvT 2
,

γ =
p

εes
+

L2

RvcpT 2
.

(A10)
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Appendix B: Fitting modelled LWP and cloud drop-size distribution to observations - shape parameter

All tests in this paper assume a fixed re, implying that the change in liquid water is controlled by the sedimentation rate, as555

discussed in Poku et al. (2019). The sedimentation rate is controlled by the cloud drop-size distribution (see Eq. 11), with its

skewness being determined by the shape parameter, µd. Mazoyer et al. (2017) adapted the default shape parameter to best fit

the modelled cloud drop-size distribution to observations. For this work, a similar approach would have ideally been chosen to

find a suitable µd to capture the changes in liquid water. However, the instrumentation only began to record spectra during IOP1

4 hours into the observed fog case, and by this time, the layer had already begun to grow in optical thickness. To account for560

this limitation, the LWP was used to decide on a suitable choice of µd. These simulations were then compared to the available

IOP1 cloud spectra data, to validate and hence choose a µd going forward. For this fitting, µd ranged from 0 to 3, with these

tests denoted as T_mu_0, T_mu_1, T_mu_2 and T_mu_3 respectively. Although simulations were conducted to increase the

shape parameter up to a value of µd = 7 (similar to Mazoyer et al., 2017), the LWP for tests where µd > 4 were higher than

the observed mean LWP and hence these results will not be shown.565

Both the surface deposition rate and LWP increase with µd (Figs. B1a-b), with this increase being more inline with observa-

tions. T_mu_2 and T_mu_3 both show improved LWP when compared to observations, especially before 2200 UTC. As there

are potentially multiple options in choosing µd, the modelled cloud drop-size distribution was compared to observations, as

shown in Fig. B2. Prior to
:::::
Before

:
2200 UTC, all shape parameter tests began with an abundance of small droplets, signalling

the formation of fog, and the density of small droplets being greatest in T_mu_0 (not shown). During fog evolution, all tests570

begin moving right in terms of skewness with the exception for T_mu_0 (due to T_mu_0 being logarithmic). For the tests

where µd > 0, increasing the shape parameter results in the peak of the distribution decreasing and moving to the right, for

all tested time frames. For example, increasing the shape parameter to µd = 3 results in a peak droplet diameter of 11 µm.

These results suggest a limitation in the default choice in µd = 0 and hence the assumption of a logarithmic distribution for fog

development during IOP1. By increasing the shape parameter during the fog evolution, fewer large droplets will sediment out575

of the fog layer, therefore explaining the presence of bigger droplets still within the system in these tests (for example, tests

T_mu_1 - 3).

At 2200 UTC, the observed cloud droplet spectrum mostly follows a logarithmic distribution, however, later in the night, it

evolves more into a bi-modal distribution (as seen in Price, 2011). For example, at 0000 UTC, the peaks occur at 8 and 22 µm.

Of the shape parameter tests, the observations are in best agreement with T_mu_3 for droplet size diameters between 22 to 27580

µm at 0000 UTC, however, this fit does not take into account the peak shown within the smaller droplets. In an ideal situation,

a modelled cloud drop-size distribution would take into account the bi-modal nature shown within the distribution. In reality, it

is likely that these smaller droplets have not activated, but instead are a source of hydrated aerosol which can contribute up to

68% of the total light scattered, and hence result in the reduction in visibility within the fog (Hammer et al., 2014). However,

although these smaller droplets may potentially change the microphysical structure of the fog, the introduction of a bi-modal585

distribution (or a varying shape parameter) within CASIM may increase model computational expense, with no appreciable

changes in the fog evolution. Given these results, a shape parameter of µd = 3 will be used in this paper.
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Figure B1. a) - Time series of the surface deposition rate (g m−2 hr−1). Purple – T_mu_0; green – T_mu_0; red – T_mu_1; dark blue –

T_mu_3; light blue – observations. (b) Time series of the liquid water path (g m−2). Purple – T_control; green – T_mu_1; red – T_mu_2;

dark blue – T_mu_3; light blue – observations; blue dashed – running average over observations (40 points).
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Figure B2. Cloud drop-size distributions for shape parameter simulations at 1710, 1800 and 2200 UTC at 2 m. T_mu_0; green – T_mu_0;

red – T_mu_1; dark blue – T_mu_3; grey - observations.
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