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Abstract. To mitigate the impacts of the pandemic of coronavirus disease 2019 (COVID-19), the Indian government 

implemented lockdown measures on March 24, 2020, which prohibit unnecessary anthropogenic activities and thus leading to 

a significant reduction in emissions. To investigate the impacts of this lockdown measures on air quality in India, we used the 

Community Multi-Scale Air Quality (CMAQ) model to estimate the changes of key air pollutants. From pre-lockdown to 15 

lockdown periods, improved air quality is observed in India, indicated by the lower key pollutant levels such as PM2.5 (-26%), 

maximum daily 8-h average ozone (MDA8 O3) (-11%), NO2 (-50%), and SO2 (-14%). In addition, changes in these pollutants 

show distinct spatial variations with the more important decrease in northern and western India. During the lockdown, our 

results illustrate that such emission reductions play a positive role in the improvement of air quality. Significant reductions of 

PM2.5 and its major components are observed especially for secondary inorganic aerosols with the decreasing rates up to 92%, 20 

57%, and 79% for nitrate (NO3
-), sulfate (SO4

2-), ammonium (NH4
+), respectively. On average, the MDA8 O3 also decreases 

15% during the lockdown period although it increases sparsely in some urban locations, which is mainly due to the lower NOx 

and VOCs emissions. More aggressive and localized emissions control strategies should be implemented in India to mitigate 

air pollutions in the future.   

1 Introduction 25 

India, the second most populous country in the world, has been suffered from severe air pollution along with rapid urbanization 

and industrialization in recent decades (Karambelas et al., 2018), and 13 Indian cities were among the world's top 20 most 

polluted cities according to the World Health Organization (WHO) (WHO, 2018). High-level pollution leads to health risks 

and ecosystem damages, which caused 1.24 million deaths in India in 2017 (Balakrishnan et al., 2019) and a great loss of crops 

(Oksanen et al., 2013; Lal et al., 2017). To mitigate air pollution, the Indian government has been promoting effective emission 30 

control strategies such as the conversion of fossil fuels to clean fuels in the nationwide campaign Clean India Mission (CIM). 
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However, such long-term or short-term reduction strategies seem to show insufficiency in the restoration of ambient air quality 

(Beig et al., 2013; Purohit et al., 2019; Banerjee et al., 2017). 

Due to the pandemic of coronavirus disease 2019 (COVID-19), nationwide or partial lockdown measures have been 

implemented in many countries (Chintalapudi et al., 2020; Dantas et al., 2020; Ehrlich et al., 2020). India government declared 35 

corresponding bans since the detection of the first confirmed case on January 30, 2020. Then, to counter the fast contagion of 

COVID-19, a 3-week nationwide lockdown was imposed in India on March 24, which was expended till June 30. The 

lockdown measures mitigate the impact of COVID-19 on Indian health infrastructure and it also helped in curbing the rate of 

the spread of this infectious disease among people (Pai et al., 2020; Anderson et al., 2020). Because of the prohibition of 

industrial activities and mass transportation, anthropogenic emissions showed a tremendous reduction. Besides, several studies 40 

showed that dramatic emission reductions had an enormous impact on the formation of air pollution and positively influence 

air quality (Isaifan, 2020; Bao and Zhang, 2020; Gautam, 2020). Thus, the lockdown also provides a valuable opportunity to 

assess the changes in air pollutants with significantly reduced anthropogenic emissions in a short time. 

Conspicuous reductions in concentrations of pollutants were also claimed in different regions (Otmani et al., 2020; Dantas et 

al., 2020; Nakada and Urban, 2020). Most Indian studies claimed the greatest reduction of particulate matter with an 45 

aerodynamic diameter of less than 2.5 μm (PM2.5), up to 50% (Kumar et al., 2020; Mahato et al., 2020; Sharma et al., 2020). 

However, an increase of ozone (O3) concentrations was observed (Collivignarelli et al., 2020; Sicard et al., 2020) and severe 

air pollution events still occurred after large emissions reduction due to unfavorable meteorological conditions (Wang et al., 

2020). Moreover, another analysis showed that the effects of lockdown during the COVID-19 pandemic on PM2.5 and O3 

pollution levels were less than the expected response to the enacted stay-at-home order (Bujin et al., 2020). Hence, the 50 

significance and impacts of lockdown measures are still not well understood. 

Therefore, it is significant to understand the mechanisms involving in air pollution formation before and after dramatic 

emission changes comprehensively, which are limited in India. Many studies pointed out that the air quality was improved 

during the lockdown period and depends on the duration of the lockdown (Kumar et al., 2020). For instance, Mahato et al. 

(2020) concluded that air quality in India from March 24 to April 14 was improved sharply according to the change of the 55 

National Air Quality Index, especially for Delhi.  also stated that the concentration of key pollutants such as PM2.5 in both 

Delhi and Mumbai shows a decreasing trend. Compared with the same period in previous years, Gautam (2020) claimed that 

aerosol concentration levels are at its lowest in the last 20 years during lockdown based on satellite data. Srivastava et al. (2020) 

reported the concentrations of primary air pollutants are drastically lowed as a result of emission reduction. However, the role 

of meteorology and chemical reactions involving changes in air quality is not clear from these observation-based studies, which 60 

only showed the phenomenon of concentration reduction and switch of major primary pollutants. Further, the number of 

monitoring stations in the country is way below the guidelines by the governing bodies and not uniformly distributed. 

In this study, the Community Multi-Scale Air Quality (CMAQ) model was used to investigate changes of air pollutants during 

the pre-lockdown (from February 21, 2020 to March 23, 2020) and lockdown (from March 24, 2020 to April 24, 2020) periods. 

Through two simulation scenarios, the air quality without emission reduction (Case 1) and with emissions reduction due to 65 
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COVID-19 nationwide lockdown (Case 2) were compared to evaluate the impact of the reduction in anthropogenic emissions 

brought by nationwide lockdown on air quality and explore the specific impacts of meteorology and chemistry. The model 

performance was evaluated by comparing the simulation results with the observation data, which is collected by the Central 

Pollution Control Board (CPCB). This study has important implications for developing control strategies to improve air quality 

in India. 70 

2 Methodology 

2.1 Data collection 

We used observed hourly PM2.5, O3, carbon monoxide (CO), and nitrogen dioxide (NO2) data from February 21, 2020 to April 

24, 2020 from the CPCB online database (https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing, last access: July 

07, 2020), which is widely applied in previous studies (Kumar, 2020;Sharma et al., 2020;Srivastava et al., 2020;Shehzad et al., 75 

2020). The CPCB database provides data quality assurance or quality control programs by establishing strict procedures for 

sampling, analysis and calibration. Besides, the observed daily averages of PM2.5 and maximum daily 8-h average ozone 

(MDA8 O3) have been further calculated to analyse the change in air quality during the pre-lockdown (from February 21, 2020 

to March 23, 2020) and lockdown (from March 24, 2020 to April 24, 2020). 

2.2 Model description 80 

This study applied CMAQ (Byun and Schere, 2006) version 5.0.2 with updated SAPRC-11 photochemical mechanism (Carter, 

2011;Hu et al., 2016) and aerosol module (AERO6) (Binkowski and Roselle, 2003) to simulate air pollution across India with 

a horizontal resolution of 36 km × 36 km (117 × 117 grid cells). Figure 1 shows the simulation domain with positions of main 

Indian cities. The simulation was conducted from February 21 to March 23 as a pre-lockdown and March 24 to April 24 as a 

lockdown period.  85 

The Weather Research & Forecasting model (WRF) version 3.6.1 was utilized to generate meteorology fields driven by the 

latest FNL (Final) Operational Global Analysis data. Anthropogenic emissions were from the monthly data from the Emissions 

Database for Global Atmospheric Research (EDGAR) version 4.3 (http://edgar.jrc.ec.europa.eu/overview.php?v=431). The 

monthly emissions from different source sectors were divided into six major groups of residential, industrial, agriculture, on-

road, off-road, and energy before being adjusted from the base year of 2010 to 2019 based on population and economic growths 90 

similar to Guo et al. (2017) and the adjustment factors are shown in Table S1-S3. Weekly and diurnal profiles were used to 

convert monthly emissions to hourly inputs and the US EPA's SPECIATE 4.3 source profiles were used to speciate total 

particulate matters (PM) and volatile organic compounds (VOCs) to model species (Wang et al., 2014). 

The biogenic emissions were derived from The Model of Emissions of Gases and Aerosols from Nature (MEGAN) version 

2.1 (Guenther et al., 2012) and the emissions from biomass burning for 2018 were based on the Fire Inventory from the 95 

National Center for Atmospheric Research (FINN) (Wiedinmyer et al., 2011). 
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2.3 Emission reduction during COVID-19 

Due to the COVID-19 lockdown, human activities were limited and related anthropogenic emissions were reduced. Different 

sources were used to obtain changes in anthropogenic emissions from different sectors in comparison to 2019.  

For the sector of on-road and off-road, the vehicle emissions changes were based on the number of registered vehicles verified 100 

from the article (Bureau, 2020). The changes in energy demand were obtained from official data released by Power System 

Operation Corporation (POSOCO) (Abdi, 2020). Residential and agricultural emissions remain unchanged due to a lack of 

sufficient information. 

For the industrial sector, we classify the Indian industries into 3 different classes based on the degree of air pollution caused 

(https://www.indianmirror.com/indian-industries/environment.html) (Table S4): 1) the red being the most polluting, 2) the 105 

orange, and 3) the green. The Pollution Index (PI) of any industry is a number ranging from 0 to 100 and the increasing value 

of PI denotes the increasing degree of pollution load from the industry. CPCB, State Pollution Control Boards (SPCBs) and 

the Ministry of Environment, Forest and Climate Change (MoEFCC) have finalized the following criteria on “Range of 

Pollution Index” for the purpose of categorization of the industrial sector 

(https://pib.gov.in/newsite/printrelease.aspx?relid=137373) which is shown in Table 1. 110 

Based on the above definition of the red, orange, and green industry, the scores of 1, 0.6, and 0.4 have been assigned to each 

category. The emissions before lockdown can be expressed as: 

E1=25x+7y+31z ,            (1) 

where the ratio of x, y, and z is 1: 0.6: 0.4 as the scores and the numbers of red, orange, and green industries identified are 25, 

7, and 31 before lockdown. Similarly, the emissions during the lockdown are as follows: 115 

E2=5x+y+5z ,            (2) 

Therefore, the percent reduction of industrial emissions can be calculated as:  

%reduction=
E1-E2

E1
×100 ,           (3) 

In this study, two sensitivity simulations were conducted during the lockdown periods. Case 1 assumes business as usual with 

the same emissions as in 2019, while Case 2 adjusts anthropogenic emissions using factors obtained above for different sectors 120 

(Table 2). The differences between Case 2 and Case 1 can be assumed as the effects of COVID-19 lockdowns. 

3 Results and discussion 

3.1 WRF-CMAQ model validation 

Meteorology plays an important role in emissions, transport, deposition, and formation of air pollutants (Zhang et al., 2015). 

Hence, the performance of WRF is validated to assure accurate air pollution simulation against available observation from the 125 
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National Climate Data Center (NCDC). There are more than 1300 stations within the simulation domain with hourly 

observations. The considered variables contain temperature at 2 m above the surface (T2), wind speed (WS), wind direction 

(WD), and relative humidity (RH). Table S5 shows the statistics of mean observation and mean prediction of meteorological 

parameters, along with mean bias (MB), gross error (GE), and root mean squared error (RMSE), which are compared to 

benchmarks suggested by Emery et al. (2001b). All the statistical indexes are listed in Table S6. 130 

In general, the WRF model performance is acceptable and similar to previous studies in India (Kota et al., 2018). For the pre-

lockdown and lockdown period, predicted T2 was under-estimated with MB values of -1.5K and -1.2 K, respectively. The GE 

values for WS were 1.7% (pre-lockdown) and 1.8% (lockdown), satisfying the suggested criteria of 2.0%, and RMSE was 

slightly over the criteria. The MB values for WD were 3.2° and 2.6° during the two periods, which are within the criteria of 

±10°. The GE and RMSE for WD were slightly out of the benchmarks. The under-predicted RH was also observed in this 135 

study, which was reported in other Asian studies (Hu et al., 2015). Those statistic values that did fall in the benchmark were 

mainly due to the resolution (36 km) applied in this study compared to the finer resolution (4–12 km) suggested in Emery et 

al. (2001a) (Sahu et al., 2020).  

Table S7 shows the model performance of MDA8 O3, PM2.5, CO, and NO2 in five major cities in India including Delhi, 

Mumbai, Chennai, Hyderabad, and Bengaluru. For PM2.5, the averaged MFB (-0.37) and MFE (0.62) values met the criteria 140 

limits of ±0.6 and 0.75 claimed by the EPA (2007) in all the five urban cites. For O3, a cut off value of 40 ppb is applied, which 

is based on EPA's recommendations. Besides, the model was able to reproduce the variation trends of observed hourly O3 in 

all these major cities, although slightly over-estimations have occurred. And averaged MFB (-0.02) and MFE (0.29) values of 

O3 also satisfy the benchmarks of ±0.15 and 0.30 set by the EPA (2005) in most of these cities with Chennai and Hyderabad 

exceeding the limits slightly. The performance of PM2.5, NO2, O3, and CO in these urban areas were also similar to Kota et al. 145 

(2018), which could provide robust results for the following air quality study. 

3.2 Changes in air quality from pre-lockdown to lockdown periods 

Figure 2 shows predicted and observed PM2.5 from February 21 to April 24 in Delhi, Mumbai, Chennai, Hyderabad, and 

Bengaluru. The model succeeds in estimating the observed peak and valley values with slight under-estimation in all these 

cities. Overall, sharp decreases are found in the observed PM2.5 in all these cities, and the averaged PM2.5 level drops from 150 

38.41 µg m-3 to 27.30 µg m-3. The mean observed PM2.5 concentrations during lockdown are 37.33 µg m-3 (Delhi), 26.93 µg 

m-3 (Mumbai), 15.49 µg m-3 (Chennai), 30.50 µg m-3 (Hyderabad), 26.23 µg m-3 (Bengaluru), which are reduced by 34%, 31%, 

46%, 22%, and 10% respectively compared with that of the pre-lockdown period. Besides, the observed peak values of PM2.5 

in each city also decrease appreciably (up to 71%) during the lockdown period except Chennai. On March 24 that the first day 

of lockdown, a significant drop in PM2.5 concentration due to the emission reduction of primary pollutants is observed (Fig. 155 

S1).  However, most of the PM2.5 concentrations are still above the WHO annual guideline values of 10 µg m-3 WHO (WHO, 

2016) during the lockdown period, with peak values over 60 µg m-3 occasionally. 
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Figure 3 shows the temporal variation of MDA8 O3 in these five cities. The predicted MDA8 O3 is consistent in trend with 

observation values in most days, while simulated concentrations are overall higher, particularly in Hyderabad. The observed 

average MDA8 O3 during lockdown is higher than that of pre-lockdown in Delhi (11%), Hyderabad (3%), and Bengaluru 160 

(26%). This is likely due to the fact that O3 formation in these cities is under VOC control (Sharma et al., 2020), and nitrogen 

oxide (NOx) reduction leads to O3 increase by enhanced hydrogen oxide radicals (HOx) concentrations (Zhao et al., 2017). The 

increase of monthly average T2 from pre-lockdown (281.0 K) to lockdown (285.1 K) could also lead to an increase of O3 

(Chen et al., 2019). In contrast, the observed average MDA8 O3 during lockdown is reduced compared with the pre-lockdown 

period in both Mumbai (-22%) and Chennai (-37%). This could be caused by the much larger reduction in emissions as Mumbai 165 

and Chennai are the most affected areas. In specific, Mumbai accounted for more than a fifth of infections in India (Mukherjee, 

2020).  

Figure 4 shows the comparison of predicted air pollutants before and during the lockdown throughout India. Generally, 

decreasing trends of key pollutants including particulate matter with an aerodynamic diameter of less than 10 μm (PM10) (-

16%), PM2.5 (-26%), MDA8 O3 (-11%), NO2 (-50%) and sulfur dioxide (SO2) (-14%) are observed across Indian. Changes of 170 

these pollutants present distinct regional variations. In the northern and western India, the lower levels of these pollutants are 

observed during the lockdown, with the reductions of PM2.5 and PM10 up to 79%. In particular, the most significant decreases 

are found in the populated, industrialized, and polluted Indo-Gangetic Plain (IGP) during the lockdown. The averaged PM2.5 

even drops from approximately 35–70 µg m-3 (pre-lockdown) to 15–40 µg m-3 (lockdown) in these regions because local 

emissions are generally the largest contributor (38–78%) to PM2.5 in India (David et al., 2019). However, rising trends of these 175 

key pollutants are found mainly in the northeastern, eastern, and parts of southern India. 

Besides, changes in PM2.5 also show prominent differences in the rural and urban areas. In India, rural areas have different 

emission sources from that of urban areas and are less influenced by lock measures (Garaga et al., 2020). In megacities such 

as Delhi, the predicted concentrations of PM2.5 decline during the lockdown, which is consistent with previous results (Kumari 

and Toshniwal, 2020;Chauhan and Singh, 2020). For instance, over a 60% reduction of PM2.5 is estimated in Delhi and 180 

Ahmedabad. However, rising trends of PM2.5 (~20%) are observed in the far-flung northeastern part of India.  

As gaseous precursors of major components to PM2.5 (Jain et al., 2020), concentrations of NO2 and SO2 also decrease 

significantly in most regions by up to 90% and 87%, respectively. However, their levels increase in parts of the east and south 

India and thus leading to higher levels of PM2.5 and PM10 in the same regions. MDA8 O3 is also rising in eastern India by the 

highest increasing rate of 29%, while 30% reduction is observed in northern and western India. Although significant reductions 185 

are found in O3 precursor emissions throughout India during the lockdown, the MDA8 O3 has not shown comparable 

decreasing trends, which is affected by the meteorological conditions such as an increase of temperature (Fig. S2) and the 

influence of chemical processes (Chen et al., 2019;Zhao et al., 2017). 

In summary, the decrease of PM2.5, PM10, NO2, SO2, and the increase of MDA8 O3 during lockdown is consistent with previous 

results (Srivastava et al., 2020;Mahato et al., 2020). In case of Delhi, compared with the previous studies, the PM2.5 reduction 190 

(34%) is comparable with 35% reported by Chauhan and Singh (2020), while less than 53% stated by Mahato et al. (2020) and 
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49% calculated by Kumari and Toshniwal (2020) during the first phase of lockdown (from March 24, 2020 to April 15, 2020). 

These differences highly depends on the duration of lockdown because there is an increase in traffic flow and some relaxation 

in the later lockdown period (after April 15, 2020) (Kumar, 2020).  Moreover, the different characteristics of these air pollutants 

in rural and urban areas have not been investigated comprehensively in previous studies. Kumari and Toshniwal (2020) also 195 

concluded that concentrations of PM10, PM2.5, and SO2 tended to rise in Singrauli (rural area, located in central India) during 

the lockdown, contrary to the results of Delhi and Mumbai. Therefore, our results have important implications for the study of 

air quality changes and their regional distribution across India and indicate more strident emission reduction policies should 

be implemented across India, especially in the later phases of lockdown and in rural areas. 

3.3 Effects of emission reductions on PM2.5 during the lockdown 200 

There are significant changes of PM2.5 between the lockdown and pre-lockdown periods, but it remains unclear regards the 

direct impacts of emission reductions during the lockdown. Figure 5 shows the differences in major PM2.5 components during 

the lockdown period with (Case 2) and without (Case 1) control measures.  

Major components of PM2.5 including nitrate (NO3
-), sulfate (SO4

2-), ammonium (NH4
+), elemental carbon (EC), primary 

organic aerosol (POA), and secondary organic aerosol (SOA), decreased significantly in Case 2 compared to Case 1, indicating 205 

the positive effects of emission reduction. Primary components of PM2.5 (EC and POA) are dropped by averaged 37% and 

14%, respectively. EC is usually emitted from combustion sources and a drastic decrease of up to 74% directly reflected the 

impact of emission reductions from industry and transportation. Secondary inorganic aerosol (SIA) including NO3
-, SO4

2-, and 

NH4
+ and SOA accounted for most of the PM2.5 bulk mass (39%) and showed greater decreases than primary components. 

Moreover, the spatial distribution of SIA is apparently affected similar to PM2.5 that the reduction is more significant in the 210 

north of India where the decrease of NO3
-, SO4

2-, and NH4
+ are up to 92%, 57%, and 79% respectively. The largest reduction 

of NO3
- by averaged 62% resulted from transportation reduction and SO4

2- reduction (averaged 31%) is likely due to the falling 

release of industry (Gawhane et al., 2017;Wang et al., 2020). On average, NH4
+ and SOA are decreased by 41% and 14%, 

respectively. The significant decrease in NH4
+ cannot be attributed to the absence of reduced agricultural emissions in the 

simulation but may be due to the relatively reduced (NH4)2SO4 and NH4NO3 in CMAQ chemistry-transport model (Fountoukis 215 

and Nenes, 2007). By contrast, compared with VOCs, an important precursor of SOA, the smaller reduction of SOA may be 

related to the weakening of the atmospheric oxidizing capacity (AOC), which plays an important role in the formation of SOA 

(Feng et al., 2019).  

Figure 6 shows the predicted response of changes in concentration of primary PM2.5 (PPM) and secondary components to the 

reduced emissions of related precursors in Delhi, Mumbai, Kolkata, Bengaluru, Hyderabad, Chennai, Ahmedabad, and 220 

Lucknow. Generally, all species decreased with the reduced emissions and the great sensitivity of PM2.5 component 

concentrations to emissions showed the important role of meteorology and the effectiveness of stringent measures to reduce 

emissions. 
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On average, NO3
- shares the largest reduction of 77% mainly driven by the decrease of its gaseous precursor NOx (71%). At 

least 27% decrease of SO4
2- is found in each city caused by the largest reduction of SO2 (averaged 59%). Over 70% average 225 

reduction of NOx and NO3
- may still relate to the reduction of vehicles. And SOA is dropped by averaged 18% because of the 

lack of precursors due to the emission reduction of VOCs (29%). Due to the reduction of emitting precursors, the concentration 

reduction of PM2.5 secondary components is less than that of primary components. The ratios of PPM reduction in emission 

(averaged 39%) are larger than the reduction in concentration (averaged 43%) in five selected cities. Especially, a 7% reduction 

in emission of PPM caused a 43% decline in its concentration in Hyderabad. Emissions of EC and organic carbon (OC) have 230 

also been reduced by a certain proportion resulting in a similar or greater reduction in concentrations. 

The response of concentration to emissions in all cities presented a nonlinear change that has been confirmed previously by 

Zhao et al. (2017), which is related to various meteorological conditions (Wang et al., 2020). For example, in Lucknow, PPM, 

EC, OC, SO2, NOx, and VOCs decreased by 14%, 25%, 8%, 39%, 55%, and 11% respectively, while the concentration of 

PPM, EC, OC, SO4
2-, NO3

-, and SOA dropped by 21%, 32%, 12%, 43%, 78%, and 18%. Besides, the concentration response 235 

to emission reduction is likely to be more prominent in highly polluted and industrialized areas. The highest reductions in PPM 

and these secondary components of PM2.5 happened in Ahmedabad (an industrial city located in western India) with high 

vehicular populations. While Bengaluru, a major southern Indian city, is considered as one of the cleaner Indian major cities 

because of its low PM2.5 concentrations with no heavy industries (Guttikunda et al., 2019). Consequently, the reduction in 

PM2.5 and its major components (especially for secondary components) in Bengaluru is not as significant as Ahmedabad 240 

although a similar reduction in emissions is observed. 

3.4 Effects of emission reductions on O3 during the lockdown 

We investigated the changes of MDA8 O3 and its major precursors NOx and formaldehyde (HCHO) that is an important 

component of total VOCs reactivity (Steiner et al., 2008) during the lockdown period. Figure 7 shows that MDA8 O3, NOx, 

and HCHO decreased all over India. The average reduction rates of MDA8 O3, NOx, and HCHO are approximately 15%, 50%, 245 

and 15%, respectively. For both Case 1 and Case 2, the higher levels of MDA8 O3 are in eastern India (over 60 ppb, Case 1) 

in which the higher NOx is also observed (over 12 ppb, Case 1) during the lockdown. Compared to PM2.5, no significant north-

south differences are found in the change of O3. NOx concentration has the greatest reduction that is mostly driven by the large 

cutting of energy emission by 26%, which is consistent with the decline of India's electricity consumption (9.2%) (Reuters, 

2020).  250 

Figure S2 shows the spatial distributions of O3 production sensitivity in India during the lockdown, according to the ratio of 

HCHO/NO2, which is considered as an indicator of O3 sensitivity to NOx and VOCs (Sillman, 1995). The criteria used to 

identify O3 precursor sensitivity from the ratio of HCHO/NO2 is suggested by Duncan et al. (2010). In India, NOx-limited 

regimes (HCHO/NO2 > 2) are found in vast areas from both Case 1 and Case 2, which was also reported in previous studies 

(Mahajan et al., 2015). Compared to Case 1, the VOC-limited area (HCHO/NO2 < 1) expands mainly in the northwest and 255 

south of India from Case 2 during the lockdown. The transition regimes (1<HCHO/NO2 < 2) that O3 formation is controlled 
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by both NOx and VOC emissions in the vicinity of the VOC-limited regions. Simultaneously, the rise of MDA8 O3 (averaged 

5% and up to 21%) is found sporadically in these VOC-limited areas in which more significant decreases of NOx (compared 

with VOCs) reduce the O3 consumption (NO + O3 = NO2 + O2) and enhance HOx concentrations resulting in an increase in O3 

levels.  260 

Figure 8 compares the concentrations of MDA8 O3, HCHO, and NOx with emissions of VOCs, HCHO, and NOx in eight major 

cities of India, Delhi, Mumbai, Kolkata, Bengaluru, Hyderabad, Chennai, Ahmedabad, and Lucknow. Generally, the decline 

in O3 concentration in Delhi (14%), Mumbai (23%), Kolkata (24%), Bengaluru (20%), Hyderabad (17%), Chennai (20%), 

Ahmedabad (21%), and Lucknow (15%) showed that effectiveness of emission reductions that play an important role in the 

control of O3 pollution, even in these VOC-limited areas. 265 

The changes in emissions and concentrations of MDA8 O3, HCHO, and NOx showed a non-linear response. In Delhi, a 76% 

reduction in NOx emissions resulted in a 77% reduction in its concentration, while a 29% reduction in HCHO resulted in only 

an 11% reduction. In a megacity like Delhi, about 7 million vehicles and many fossil fuel-based plants lead to high NOx 

emissions, and local restricted transportation and industrial activities during lockdown could lead to a significant reduction of 

primary NOx emissions (Sharma et al., 2016). The concentration of NOx is appreciably highly sensitive to a primary NOx 270 

emission reduction. However, the VOCs emission reduction resulting from the lockdown is relatively less than NOx in each 

city. And most of the reduction of HCHO concentration is less than that of emission reduction, which is different from NOx, 

which indicated that the change of HCHO concentrations is not dominated by primary HCHO emission reduction. 

4 Conclusion 

Compared with pre-lockdown, observed PM2.5 during the lockdown in Delhi, Mumbai, Chennai, Hyderabad, and Bengaluru 275 

shows an overall decreasing trend. In contrast, MDA8 O3 increases in three of these cities. The comparison of predicted air 

pollutants across India before and during the lockdown shows distinct regional characteristics. The most significant reductions 

of PM2.5 and PM10 (up to 79%) are observed in most of northern and western India including all these megacities. However, 

increases of MDA8 O3 (up to 29%) and other key pollutants are reported in northeastern, eastern, and parts of southern India 

covering most of the rural areas.  280 

The drastic decline in PM2.5 and its major components during the lockdown period in Case 2 compared with Case 1 shows the 

positive impacts of emission control measures, especially for SIA that the decrease of NO3
-, SO4

2-, and NH4
+ are up to 92%, 

57%, and 79%, respectively. During the lockdown, the decrease of MDA8 O3 (averaged 15%) occurs in most regions in India, 

which is attributed to the lower emissions of NOx (48%) and VOCs (6%) that are precursors of O3. Our results demonstrate 

that the strident emissions controls due to the lockdown have mitigated air pollution in India. However, we also find the 285 

scattered increases in MDA8 O3 (up to 21%) in some urban locations in the VOC-limited areas due to the emissions reduction. 

This indicates that a more localized control policy with the consideration of the O3 sensitivity regime should be implemented 

in India to improve the air quality especially for secondary pollutants such as O3.  
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Table 1: The criteria on the “Range of Pollution Index” for the purpose of categorization of industrial sectors. 

Categories Pollution Index score 

Red category ≥60 

Orange category 41–59 

Green category 21–40 

 465 

Table 2: Percent reduction in anthropogenic emissions in India during COVID-19 lockdown. 

Sector %Reduction 

Residential 0 

Industrial 82 

Agriculture 0 

On-road 85 

Off-road 85 

Energy 26 
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Figure 1: The simulation domain with the location of major Indian cities selected for analysis. 
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Figure 2: Comparison of predicted and observed PM2.5 from February 21 to April 24 in Delhi, Mumbai, Chennai, Hyderabad, and 470 

Bengaluru. The unit is µg m-3. 
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Figure 3: Comparison of predicted and observed MDA8 O3 from February 21 to April 24 in Delhi, Mumbai, Chennai, Hyderabad, 

and Bengaluru. The unit is ppb. 
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Figure 4: Predicted PM10 (µg m-3), PM2.5 (µg m-3), MDA8 O3 (ppb), NO2 (ppb), and SO2 (ppb) before lockdown, during the lockdown 

and the changes between them in India. 
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Figure 5: Predicted PM2.5 components and the changes caused by lockdown measures from March 24 to April 24, 2020 in India. The 480 

unit is µg m-3. 
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Figure 6: Predicted relative changes in concentrations of primary and secondary components, and emissions of their precursors in 

eight cities of India in Case 2 to Case 1.  
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Figure 7: Predicted O3, NOx, HCHO, and the changes caused by nationwide lockdown measures from March 24 to April 24, 2020 in 

India. The unit is ppb. 
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Figure 8: Predicted relative changes in concentrations of O3, HCHO, and NOx and emissions of VOCs, HCHO, and NOx in eight 

major cities of India in Case 2 to Case 1. 490 

https://doi.org/10.5194/acp-2020-903
Preprint. Discussion started: 9 October 2020
c© Author(s) 2020. CC BY 4.0 License.


