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Abstract. To mitigate the impacts of the pandemic of coronavirus disease 2019 (COVID-19), the Indian government 

implemented lockdown measures on March 24, 2020, which prohibit unnecessary anthropogenic activities and thus leading to 

a significant reduction in emissions. To investigate the impacts of this lockdown measure on air quality in India, we used the 

Community Multi-Scale Air Quality (CMAQ) model to estimate the changes of key air pollutants. From pre-lockdown to 15 

lockdown periods, improved air quality is observed in India, indicated by the lower key pollutant levels such as PM2.5 (-26%), 

maximum daily 8-h average ozone (MDA8 O3) (-11%), NO2 (-50%), and SO2 (-14%). In addition, changes in these pollutants 

show distinct spatial variations with the more important decrease in northern and western India. During the lockdown, our 

results illustrate that such emission reductions play a positive role in the improvement of air quality. Significant reductions of 

PM2.5 concentration and its major components are predicted, especially for secondary inorganic aerosols that are up to 92%, 20 

57%, and 79% for nitrate (NO3
-), sulfate (SO4

2-), ammonium (NH4
+), respectively. On average, the MDA8 O3 also decreases 

15% during the lockdown period although it increases sparsely in some VOC-limited urban locations, which is mainly due to 

the more significant reduction of NOx than VOCs. More aggressive and localized emissions control strategies should be 

implemented in India to mitigate air pollutions in the future.   

1 Introduction 25 

India, the second-most populous country in the world, has been suffered from severe air pollution along with rapid urbanization 

and industrialization in recent decades (Karambelas et al., 2018), and 13 Indian cities were among the world's top 20 most 

polluted cities according to the World Health Organization (WHO) (WHO, 2018). High-level pollution leads to health risks 

and ecosystem damages, which caused 1.24 million deaths in India in 2017 (Balakrishnan et al., 2019) and a great loss of crops 

(Oksanen et al., 2013; Lal et al., 2017). To mitigate air pollution, the Indian government has been promoting effective emission 30 

control strategies such as the conversion of fossil fuels to clean fuels in the nationwide campaign Clean India Mission (CIM). 
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However, such long-term or short-term reduction strategies seem to show insufficiency in the restoration of ambient air quality 

(Beig et al., 2013; Purohit et al., 2019; Banerjee et al., 2017). 

Due to the pandemic of coronavirus disease 2019 (COVID-19), nationwide or partial lockdown measures have been 

implemented in many countries (Chintalapudi et al., 2020; Dantas et al., 2020; Ehrlich et al., 2020). Indian government declared 35 

corresponding bans since the detection of the first confirmed case on January 30, 2020. Then, to counter the fast contagion of 

COVID-19, a 3-week nationwide lockdown was imposed in India on March 24, which was expended till June 30. The 

lockdown measures mitigate the impact of COVID-19 on Indian health infrastructure and it also helped in curbing the rate of 

the spread of this infectious disease among people (Pai et al., 2020; Anderson et al., 2020). Because of the prohibition of 

industrial activities and mass transportation, anthropogenic emissions showed a tremendous reduction. Besides, several studies 40 

showed that dramatic emission reductions had an enormous impact on the formation of air pollution and positively influence 

air quality (Isaifan, 2020; Bao and Zhang, 2020; Gautam, 2020). Thus, the lockdown also provides a valuable opportunity to 

assess the changes in air pollutants with significantly reduced anthropogenic emissions in a short time. 

Conspicuous reductions in concentrations of pollutants were also claimed in different regions (Otmani et al., 2020; Dantas et 

al., 2020; Nakada and Urban, 2020). Most Indian studies claimed the greatest reduction of particulate matter with an 45 

aerodynamic diameter of less than 2.5 μm (PM2.5), up to 50% (Kumar et al., 2020; Mahato et al., 2020; Sharma et al., 2020). 

However, an increase in ozone (O3) concentrations was observed (Collivignarelli et al., 2020; Sicard et al., 2020) and severe 

air pollution events still occurred after large emissions reduction due to unfavorable meteorological conditions (Wang et al., 

2020). Moreover, another analysis showed that the effects of lockdown during the COVID-19 pandemic on PM2.5 and O3 

pollution levels were less than the expected response to the enacted stay-at-home order (Bujin et al., 2020). Hence, the 50 

significance and impacts of lockdown measures are still not well understood. 

Therefore, it is significant to understand the mechanisms involving in air pollution formation before and after dramatic 

emission changes comprehensively, in addition to the comparison of air pollution levels. Mahato et al. (2020) concluded that 

air quality in India from March 24 to April 14 was improved sharply according to the change of the National Air Quality Index, 

especially for Delhi. Srivastava et al. (2020) reported the concentrations of primary air pollutants are drastically lowed as a 55 

result of emission reduction. Kumari and Toshniwal (2020) also stated that the concentration of key pollutants such as PM2.5 

in both Delhi and Mumbai shows a decreasing trend. These studies pointed out that the air quality was improved during the 

lockdown period compared with the period before lockdown and depends on the duration of the lockdown (Kumar et al., 2020; 

Mor et al., 2021). Besides, compared with the same period in previous years, Gautam (2020) claimed that aerosol concentration 

levels are at their lowest in the last 20 years during lockdown based on satellite data. Selvam et al. (2020) stated that Air 60 

Quality Index (AQI) was improved by 58% in Gujarat state of western India during lockdown (March 24, 2020 – April 20, 

2020) compared to 2019. Kabiraj and Gavli (2020) concluded that the mean concentration of PM2.5 decreased by 42.25% from 

January to May in 2020 compared with 2019. Similarly, Das et al. (2020) also showed that great reductions of PM2.5 were 

found across cities in the Indo-Gangetic Plain (IGP) compared with 2018 and 2019. However, the role of meteorological 

conditions and chemical reactions involving changes in air quality is not clear from these observation-based studies, which 65 
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only showed the phenomenon of concentration reduction and switch of major primary pollutants mainly in urban cities. Further, 

the number of monitoring stations in the country is way below the guidelines by the governing bodies and not uniformly 

distributed, which results in observation data limitations in India (Sahu et al., 2020). 

In this study, the Community Multi-Scale Air Quality (CMAQ) model was used to investigate changes in air pollutants during 

the pre-lockdown (from February 21, 2020 to March 23, 2020) and lockdown (from March 24, 2020 to April 24, 2020) periods 70 

throughout Indian region. We explored the synergetic impacts from the meteorological conditions and anthropogenic emissions 

during the pre-lockdown and lockdown periods. Besides, we directly quantified the change in air quality during the lockdown 

due to the reduced anthropogenic emissions by comparing the differences between Case 1 (without emission reductions) and 

Case 2 (with emission reductions). The model performance was evaluated by comparing the simulation results with the 

observation data, which is collected by the Central Pollution Control Board (CPCB). This study has important implications for 75 

developing control strategies to improve air quality in India. 

2 Methodology 

2.1 Data collection 

We used observed hourly PM2.5, O3, carbon monoxide (CO), and nitrogen dioxide (NO2) data from February 21, 2020 to April 

24, 2020 from the CPCB online database (https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing, last access: July 80 

07, 2020), which is widely applied in previous studies (Kumar, 2020; Sharma et al., 2020; Srivastava et al., 2020; Shehzad et 

al., 2020). The CPCB database provides data quality assurance (QA) or quality control (QC) programs by establishing strict 

procedures for sampling, analysis, and calibration (Gurjar et al., 2016). Besides, the observed daily averages of PM2.5 and 

maximum daily 8-h average ozone (MDA8 O3) have been further calculated to analyze the change in air quality during the 

pre-lockdown (from February 21, 2020 to March 23, 2020) and lockdown (from March 24, 2020 to April 24, 2020). The 85 

satellite-observed NO2 and formaldehyde (HCHO) column number density datasets are from the Sentinel-5 Precursor 

TROPOspheric Monitoring Instrument (S-5P TROPOMI) (https://scihub.copernicus.eu). Besides, we effectively removed the 

pixels with a QA value less than 0.75 for NO2 tropospheric column density and 0.5 for HCHO from the datasets to exclude the 

interferences such as clouds and snow/ice (Apituley, 2018). 

2.2 Model description 90 

This study applied CMAQ (Byun and Schere, 2006) version 5.0.2 with updated SAPRC-11 photochemical mechanism (Carter, 

2011; Hu et al., 2016) and aerosol module (AERO6) (Binkowski and Roselle, 2003) to simulate air pollution across India with 

a horizontal resolution of 36 km × 36 km (117 × 117 grid cells). Figure 1 shows the simulation domain with positions of main 

Indian cities. The simulation was conducted from February 21 to March 23 as a pre-lockdown and March 24 to April 24 as a 

lockdown period.  95 
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The Weather Research & Forecasting model (WRF) version 3.6.1 was utilized to generate meteorology fields driven by the 

latest FNL (Final) Operational Global Analysis data. Anthropogenic emissions were from the monthly data from the Emissions 

Database for Global Atmospheric Research (EDGAR) version 4.3 (http://edgar.jrc.ec.europa.eu/overview.php?v=431). The 

monthly emissions from different source sectors were divided into six major groups of residential, industrial, agriculture, on-

road, off-road, and energy before being adjusted from the base year of 2010 to 2019 based on population and economic growths 100 

similar to Guo et al. (2017) and the adjustment factors are shown in Table S1-S3. Weekly and diurnal profiles were used to 

convert monthly emissions to hourly inputs and the US EPA's SPECIATE 4.3 source profiles were used to speciate total 

particulate matters (PM) and volatile organic compounds (VOCs) to model species (Wang et al., 2014). 

The biogenic emissions were derived from The Model of Emissions of Gases and Aerosols from Nature (MEGAN) version 

2.1 (Guenther et al., 2012), and the emissions from biomass burning for 2018 were based on the Fire Inventory from the 105 

National Center for Atmospheric Research (FINN) (Wiedinmyer et al., 2011). 

2.3 Emission reduction during COVID-19 

Due to the COVID-19 lockdown, human activities were limited and related anthropogenic emissions were reduced. Different 

sources were used to obtain changes in anthropogenic emissions from different sectors in comparison to 2019.  

For the sector of on-road and off-road, the vehicle emissions changes were based on the number of registered vehicles verified 110 

from the article (Bureau, 2020). The changes in energy demand were obtained from official data released by Power System 

Operation Corporation (POSOCO) (Abdi, 2020). Residential and agricultural emissions remain unchanged due to a lack of 

sufficient information. 

For the industrial sector, we classify the Indian industries into 3 different classes based on the degree of air pollution caused 

(https://www.indianmirror.com/indian-industries/environment.html) (Table S4) including very polluting (VP), medium 115 

polluting (MP), and low polluting (LP) industries. The Pollution Index (PI) of any industry is a number ranging from 0 to 100 

and the increasing value of PI denotes the increasing degree of pollution load from the industry. Besides, CPCB, State Pollution 

Control Boards (SPCBs), and the Ministry of Environment, Forest and Climate Change (MoEFCC) have finalized the criteria 

on the range of PI for the purpose of categorization of the industrial sector 

(https://pib.gov.in/newsite/printrelease.aspx?relid=137373) (Table 1). 120 

Based on the above definition of the VP, MP, and LP industry, the emissions before lockdown can be expressed as: 

E1=NVP-pre×SVP+NMP-pre×SMP+NLP-pre×SLP ,           (1) 

where SVP, SMP, and SLP are 1, 0.6, and 0.4 as the assigned scores, and NVP-pre, NMP-pre, and NLP-pre are the number of each 

category industry during pre-lockdown. Similarly, the emissions during the lockdown are as follows: 

E2=NVP-lock×SVP+NMP-lock×SMP+NLP-lock×SLP ,             (2) 125 

where NVP-lock, NMP-lock, and NLP-lock are the number of functioning industries during the lockdown. Therefore, the percent 

reduction of industrial emissions can be calculated as:  
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%reduction= E1-E2
E1

×100 ,           (3) 

In this study, two sensitivity simulations were conducted during the lockdown periods. Case 1 assumes business as usual with 

the same emissions as in 2019, while Case 2 adjusts anthropogenic emissions using factors obtained above for different sectors 130 

(Table 2). The differences between Case 2 and Case 1 can be assumed as the effects of COVID-19 lockdowns. 

3 Results and discussion 

3.1 WRF-CMAQ model validation 

Meteorology plays an important role in emissions, transport, deposition, and formation of air pollutants (Zhang et al., 2015). 

Hence, the performance of WRF is validated to assure accurate air pollution simulation against available observation from the 135 

National Climate Data Center (NCDC). There are more than 1300 stations within the simulation domain with hourly 

observations. The considered variables contain temperature at 2 m above the surface (T2), wind speed (WS), wind direction 

(WD), and relative humidity (RH). Table S5 shows the statistics of mean observation and mean prediction of meteorological 

parameters, along with mean bias (MB), gross error (GE), and root mean squared error (RMSE), which are compared to 

benchmarks suggested by Emery et al. (2001a). All the statistical indexes are listed in Table S6. 140 

In general, the WRF model performance is similar to previous studies in India (Kota et al., 2018). For the pre-lockdown and 

lockdown period, predicted T2 was under-estimated with MB values of -1.5 K and -1.2 K, respectively. The GE values for 

WS were 1.7% (pre-lockdown) and 1.8% (lockdown), satisfying the suggested criteria of 2.0%, and RMSE was slightly over 

the criteria. The MB values for WD were 3.2° and 2.6° during the two periods, which are within the criteria of ±10°. The GE 

and RMSE for WD were slightly out of the benchmarks. The under-predicted RH was also observed in this study, which was 145 

reported in other Asian studies (Hu et al., 2015). Those statistic values that did fall in the benchmark were mainly due to the 

resolution (36 km) applied in this study compared to the finer resolution (4–12 km) suggested in Emery et al. (2001b) (Sahu 

et al., 2020).  

Table S7 shows the model performance of MDA8 O3, PM2.5, CO, and NO2 in five major cities in India including Delhi, 

Mumbai, Chennai, Hyderabad, and Bengaluru. For PM2.5, after excluding some abnormally high values of greater than 300 µg 150 

m-3, the averaged mean fractional bias (MFB) (-0.48) and mean fractional error (MFE) (0.61) values in all the five urban cites 

met the criteria limits of ±0.6 and 0.75 claimed by the EPA (2007). And the recommended criteria are commonly used for 

validating air quality model performance in the Indian region (Mohan and Gupta, 2018; Kota et al., 2018). For O3, a cut-off 

value of 40 ppb is applied, which is based on EPA's recommendations (EPA, 2005). Besides, the model was able to reproduce 

the variation trends of observed hourly O3 in all these major cities, although slightly over-estimations have occurred. And 155 

averaged MFB (-0.05) and MFE (0.25) values of O3 also satisfy the benchmarks of ±0.15 and 0.30 set by the EPA (2005) in 

most of these cities with Chennai and Hyderabad exceeding the limits slightly. The performance of PM2.5, NO2, O3, and CO in 

these urban areas was also similar to Kota et al. (2018), which could provide robust results for the following air quality study. 
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To further validate modeled HCHO and NO2, we compared our simulated results with satellite-observed data during pre-

lockdown and lockdown periods (Fig. S1). The CMAQ predicted vertical column densities (VCD) of tropospheric NO2 and 160 

HCHO were calculated using Eq. (4) (H. J. Eskes, 2020).  

VCD=∑ Ci×Hi×αn
i=1  ,           (4) 

where n equals 17 as the number of vertical layers in the model (with the highest layer height of ~10 km), Ci means species 

concentration (ppm), Hi represents each layer height (m), and α is the coefficient for converting units from ppm to molec cm-

2. The predicted regional distribution of tropospheric column NO2 and HCHO is similar to satellite-observations. Overall, 165 

HCHO and NO2 are higher in eastern and northern India than in other regions. And their variation trends from CMAQ and 

TROPOMI are consistent that NO2 decreases while HCHO increases during the lockdown. We also acknowledge that the 

uncertainty of emission inventory and chemical mechanism in the modelling may affect the simulated results (Dominutti et al., 

2020; Kitayama et al., 2019). 

3.2 Changes in air quality from pre-lockdown to lockdown periods 170 

Figure 2 shows predicted and observed PM2.5 from February 21 to April 24 in Delhi, Mumbai, Chennai, Hyderabad, and 

Bengaluru. The model succeeds in estimating the observed peak and valley values with slight under-estimation in all these 

cities. Overall, sharp decreases are found in the observed PM2.5 in all these cities, and the averaged PM2.5 level drops from 

43.18 µg m-3 to 27.62 µg m-3. The mean observed PM2.5 concentrations during lockdown are 42.47 µg m-3 (Delhi), 24.53 µg 

m-3 (Mumbai), 15.73 µg m-3 (Chennai), 31.29 µg m-3 (Hyderabad), 24.08 µg m-3 (Bengaluru), which are reduced by 41%, 40%, 175 

42%, 10%, and 43% respectively compared with that of the pre-lockdown period. Besides, the observed peak values of PM2.5 

in each city also decrease appreciably (up to 57%) during the lockdown period. On March 24 that the first day of lockdown, a 

significant drop in PM2.5 concentration due to the emission reduction of primary pollutants is observed (Fig. S2).  However, 

most of the PM2.5 concentrations are still above the WHO annual guideline values of 10 µg m-3 (WHO, 2016) during the 

lockdown period, with peak values over 60 µg m-3 occasionally. 180 

Figure 3 shows the temporal variation of MDA8 O3 in these five cities. The predicted MDA8 O3 is consistent in trend with 

observation values in most days, while simulated concentrations are overall higher, particularly in Hyderabad. The observed 

average MDA8 O3 during lockdown is higher than that of pre-lockdown in Delhi (2%), Hyderabad (12%), and Bengaluru (2%). 

This is likely due to the fact that O3 formation in these cities is under VOC control (Sharma et al., 2020), and nitrogen oxide 

(NOx) reduction leads to O3 increase by enhanced hydrogen oxide radicals (HOx) concentrations (Zhao et al., 2017). The 185 

increase of monthly average T2 from pre-lockdown (281.0 K) to lockdown (285.1 K) could also lead to an increase of O3 

(Chen et al., 2019). In contrast, the observed average MDA8 O3 during lockdown is reduced compared with the pre-lockdown 

period in both Mumbai (-35%) and Chennai (-13%). This could be caused by a much larger reduction in emissions as Mumbai 

and Chennai with high urbanization and industrialization are the most affected areas. In specific, more stringent lockdown 

measures may be implemented in Mumbai than we assumed, which accounted for more than a fifth of infections in India 190 

(Mukherjee, 2020).  
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Figure 4 shows the comparison of predicted air pollutants before and during the lockdown throughout India. Generally, 

decreases of key pollutants including particulate matter with an aerodynamic diameter of less than 10 μm (PM10) (-16%), PM2.5 

(-26%), MDA8 O3 (-11%), NO2 (-50%), and sulfur dioxide (SO2) (-14%) are calculated across India. Changes in these 

pollutants present distinct regional variations. In northern and western India, the lower levels of these pollutants are observed 195 

during the lockdown, with the reductions of PM2.5 and PM10 up to 79%. In particular, the most significant decreases are found 

in the populated, industrialized, and polluted IGP region during the lockdown. The average PM2.5 even drops from 

approximately 35–70 µg m-3 (pre-lockdown) to 15–40 µg m-3 (lockdown) in these regions because local emissions are generally 

the largest contributor (38–78%) to PM2.5 in India (David et al., 2019). However, increases in these key pollutants are found 

mainly in the northeastern, eastern, and parts of southern India. 200 

Besides, changes in PM2.5 also show prominent differences in the rural and urban areas. In India, rural areas have different 

emission sources from urban areas and are less influenced by lockdown measures (Garaga et al., 2020). In megacities such as 

Delhi, the predicted concentrations of PM2.5 decline during the lockdown, which is consistent with previous results (Kumari 

and Toshniwal, 2020; Chauhan and Singh, 2020). For instance, over a 60% reduction of PM2.5 is estimated in Delhi and 

Ahmedabad. However, increases of PM2.5 (~20%) are observed in the far-flung northeastern part of India. Variations in near-205 

surface meteorological factors during lockdown also play an important role in PM2.5 changes. As is shown in Fig. S3, lower 

PM2.5 in urban areas during lockdown (Fig. 4) may be attributed to the decrease of RH and increase of planetary boundary 

layer (PBL) height, while the decrease of precipitation and WS allows PM2.5 to accumulate in some rural areas (Schnell et al., 

2018; Le et al., 2020). 

As gaseous precursors of major components to PM2.5 (Jain et al., 2020), concentrations of NO2 and SO2 also decrease 210 

significantly in most regions by up to 90% and 87%, respectively. However, their levels increase in parts of the east and south 

India and thus leading to higher levels of PM2.5 and PM10 in the same regions. MDA8 O3 is also rising in eastern India by the 

highest increasing rate of 29%, while a 30% reduction is observed in northern and western India. Although significant 

reductions are found in O3 precursor emissions throughout India during the lockdown, the MDA8 O3 has not shown a  

comparable decrease, which is affected by meteorological conditions such as an increase of temperature and decrease of RH 215 

(Fig. S3). Higher temperature speeds up photochemical processes that produce O3, while higher RH reduces them (Chen et al., 

2019; Zhao et al., 2017; Ali et al., 2012). 

In summary, the decrease of PM2.5, PM10, NO2, SO2, and the increase of MDA8 O3 during lockdown is consistent with previous 

results (Srivastava et al., 2020; Mahato et al., 2020). In the case of Delhi, compared with the previous studies, the PM2.5 

reduction (34%) is comparable with 35% reported by Chauhan and Singh (2020), while less than 53% stated by Mahato et al. 220 

(2020) and 49% calculated by Kumari and Toshniwal (2020) during the first phase of lockdown (from March 24, 2020 to April 

15, 2020). These differences may be caused by the considered duration of the lockdown period. The later lockdown period 

(after April 15, 2020) is concerned in our study when there is an increase in traffic flow and some relaxation of lockdown 

measures (Kumar, 2020). Moreover, the different characteristics of these air pollutants in rural and urban areas have not been 

investigated comprehensively in previous studies. Kumari and Toshniwal (2020) also concluded that concentrations of PM10, 225 
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PM2.5, and SO2 tended to rise in Singrauli (rural area, located in central India) during the lockdown, contrary to the results of 

Delhi and Mumbai. Therefore, our results have important implications for the study of air quality changes and their regional 

distribution across India and indicate more strident emission reduction policies should be implemented across India, especially 

in the later phases of lockdown and in rural areas. 

3.3 Effects of emission reductions on PM2.5 during the lockdown 230 

There are significant changes in PM2.5 between the lockdown and pre-lockdown periods. Moreover, we directly quantify the 

change in PM2.5 during the lockdown. Figure 5 shows the differences in major PM2.5 components during the lockdown period 

with (Case 2) and without (Case 1) control measures.  

Major components of PM2.5 including nitrate (NO3
-), sulfate (SO4

2-), ammonium (NH4
+), elemental carbon (EC), primary 

organic aerosol (POA), and secondary organic aerosol (SOA), decreased significantly in Case 2 compared to Case 1, indicating 235 

the positive effects of emission reduction. Primary components of PM2.5 (EC and POA) are lowered by an average of 37% and 

14%, respectively. EC is usually emitted from combustion sources and a drastic decrease of up to 74% directly reflected the 

impact of emission reductions from industry and transportation. Secondary inorganic aerosol (SIA) including NO3
-, SO4

2-, and 

NH4
+ and SOA accounted for most of the PM2.5 bulk mass (39%) and showed greater decreases than primary components. 

Moreover, the spatial distribution of SIA is similar to PM2.5 in that the reduction is more significant in the north of India where 240 

the decrease of NO3
-, SO4

2-, and NH4
+ are up to 92%, 57%, and 79% respectively. The largest reduction of NO3

- by averaged 

62% resulted from transportation reduction and SO4
2- reduction (averaged 31%) is likely due to the falling release of industry 

(Gawhane et al., 2017; Wang et al., 2020). On average, NH4
+ and SOA are decreased by 41% and 14%, respectively. The 

significant decrease in NH4
+ cannot be attributed to the absence of reduced agricultural emissions in the simulation but may 

be due to the relatively reduced (NH4)2SO4 and NH4NO3 in the CMAQ chemistry-transport model (Fountoukis and Nenes, 245 

2007). By contrast, compared with VOCs, an important precursor of SOA, the smaller reduction of SOA may be related to the 

weakening of the atmospheric oxidizing capacity (AOC), which plays an important role in the formation of SOA (Feng et al., 

2019). Besides, the reduction of NOx may lead to an increase in SOA offsetting some of the influence by the reduction in VOC 

emissions (Kroll et al., 2020). 

Figure 6 shows the predicted response of changes in concentration of primary PM2.5 (PPM) and secondary components to the 250 

reduced emissions of related precursors in Delhi, Mumbai, Kolkata, Bengaluru, Hyderabad, Chennai, Ahmedabad, and 

Lucknow. Generally, all species decreased with the reduced emissions and the great sensitivity of PM2.5 component 

concentrations to emissions showed the important role of meteorology and the effectiveness of stringent measures to reduce 

emissions. 

On average, NO3
- shares the largest reduction of 77% mainly driven by the decrease of its gaseous precursor NOx (71%). At 255 

least a 27% decrease of SO4
2- is found in each city caused by the largest reduction of SO2 (averaged 59%). Over 70% average 

reduction of NOx and NO3
- may still relate to the reduction of vehicles. And SOA is dropped by an average of 18% because of 

the lack of precursors due to the emission reduction of VOCs (29%). Due to the reduction of emitting precursors, the 
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concentration reduction of PM2.5 secondary components is less than that of primary components. The ratios of PPM reduction 

in emission (averaged 39%) are larger than the reduction in concentration (averaged 43%) in five selected cities. Especially, a 260 

7% reduction in emission of PPM caused a 43% decline in its concentration in Hyderabad. Emissions of EC and organic carbon 

(OC) have also been reduced by a certain proportion resulting in a similar or greater reduction in concentrations. 

The response of concentration to emissions in all cities presented a nonlinear change that has been confirmed previously by 

Zhao et al. (2017), which is related to various meteorological conditions (Wang et al., 2020). For example, in Lucknow, PPM, 

EC, OC, SO2, NOx, and VOCs decreased by 14%, 25%, 8%, 39%, 55%, and 11% respectively, while the concentration of 265 

PPM, EC, OC, SO4
2-, NO3

-, and SOA dropped by 21%, 32%, 12%, 43%, 78%, and 18%. Besides, the concentration response 

to emission reduction is likely to be more prominent in highly polluted and industrialized areas. The highest reductions in PPM 

and these secondary components of PM2.5 happened in Ahmedabad (an industrial city located in western India) with high 

vehicular populations. While Bengaluru, a major southern Indian city, is considered as one of the cleaner Indian major cities 

because of its low PM2.5 concentrations with no heavy industries (Guttikunda et al., 2019). Consequently, the reduction in 270 

PM2.5 and its major components (especially for secondary components) in Bengaluru is not as significant as in Ahmedabad 

although a similar reduction in emissions is observed. 

3.4 Effects of emission reductions on O3 during the lockdown 

We investigated the changes of MDA8 O3 and its major precursors NOx and HCHO during the lockdown period. HCHO is 

one of the major contributors to total VOCs reactivity (Zhang et al., 2012; Steiner et al., 2008). It also has a strong correlation 275 

with VOC (R2 up to 0.93) (Fig. S4) and performs well when validated by comparing with satellite-observed data. As a result, 

HCHO is used as a good proxy in the model for the total VOCs, consistent with previous studies such as Palmer et al. (2003). 

Figure 7 shows that MDA8 O3, NOx, and HCHO decreased all over India. The average reduction rates of MDA8 O3, NOx, and 

HCHO are approximately 15%, 50%, and 15%, respectively. For both Case 1 and Case 2, the higher levels of MDA8 O3 are 

in eastern India (over 60 ppb, Case 1) in which the higher NOx is also observed (over 12 ppb, Case 1) during the lockdown. 280 

Compared to PM2.5, no significant north-south differences are found in the change of O3. NOx concentration has the greatest 

reduction that is mostly driven by the large cutting of energy emission by 26%, which is consistent with the decline of India's 

electricity consumption (9.2%) (Reuters, 2020).  

Figure S5 shows the O3 production sensitivity (O3/NOy) in India during the lockdown, which is considered as an indicator of 

O3 sensitivity to NOx and VOCs (Sillman, 1995; Sillman and He, 2002). Besides, O3/NOy < 6 indicates that O3 formation is 285 

VOC-limited, O3/NOy > 8 indicates NOx-limited, and intermediate values are transitional. In India, NOx-limited regimes are 

found in vast areas from both Case 1 and Case 2, which was also reported in previous studies (Mahajan et al., 2015). As a 

result, the large reduction of NOx leads to decreased MDA8 O3 in most Indian regions. Compared to Case 1, the VOC-limited 

area expands mainly in the northwest and south of India from Case 2 during the lockdown. Simultaneously, the rise of MDA8 

O3 (averaged 5% and up to 21%) is found sporadically in these VOC-limited areas in which more significant decreases of NOx 290 

(compared with VOCs) reduce the O3 consumption (NO + O3 = NO2 + O2) and enhance HOx concentrations result in an 
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increase in O3 levels. It may also indicate that the increase in O3 is amplified regionally by the expansion of the VOC-limited 

regimes due to the lockdown. 

Figure 8 compares the concentrations of MDA8 O3, HCHO, and NOx with emissions of VOCs, HCHO, and NOx in eight major 

cities of India, Delhi, Mumbai, Kolkata, Bengaluru, Hyderabad, Chennai, Ahmedabad, and Lucknow. Generally, the decline 295 

in O3 concentration in Delhi (14%), Mumbai (23%), Kolkata (24%), Bengaluru (20%), Hyderabad (17%), Chennai (20%), 

Ahmedabad (21%), and Lucknow (15%) showed that effectiveness of emission reductions that play an important role in the 

control of O3 pollution, even in these VOC-limited areas. 

The changes in emissions and concentrations of MDA8 O3, HCHO, and NOx showed a non-linear response. In Delhi, a 76% 

reduction in NOx emissions resulted in a 77% reduction in its concentration, while a 29% reduction in HCHO resulted in only 300 

an 11% reduction. In a megacity like Delhi, about 7 million vehicles and many fossil fuel-based plants lead to high NOx 

emissions, and local restricted transportation and industrial activities during lockdown could lead to a significant reduction of 

primary NOx emissions (Sharma et al., 2016). The concentration of NOx is appreciably highly sensitive to a primary NOx 

emission reduction. However, the VOCs emission reduction resulting from the lockdown is relatively less than NOx in each 

city. And most of the reduction of HCHO concentration is less than that of emission reduction, which is different from NOx, 305 

which indicated that the change of HCHO concentrations is not dominated by primary HCHO emission reduction. 

4 Conclusion 

Compared with pre-lockdown, observed PM2.5 during the lockdown in Delhi, Mumbai, Chennai, Hyderabad, and Bengaluru 

shows an overall decrease. In contrast, MDA8 O3 increases in three of these cities. The comparison of predicted air pollutants 

across India before and during the lockdown shows distinct regional characteristics. The most significant reductions of PM2.5 310 

and PM10 (up to 79%) are observed in most of northern and western India including all these megacities. However, increases 

of MDA8 O3 (up to 29%) and other key pollutants are reported in northeastern, eastern, and parts of southern India covering 

most of the rural areas. Besides, it can be concluded that the synergetic impact from the meteorological conditions and 

anthropogenic emissions plays an important role in those increases from pre-lockdown to lockdown. 

The drastic decline in PM2.5 and its major components during the lockdown period in Case 2 compared with Case 1 shows the 315 

positive impacts of emission control measures, especially for SIA. During the lockdown, the decrease of MDA8 O3 (averaged 

15%) occurs in most regions in India, which is attributed to the lower emissions of NOx (48%) and VOCs (6%) that are 

precursors of O3. Our results demonstrate that the strident emissions controls due to the lockdown have mitigated air pollution 

in India. However, more stringent mitigation measures are needed to achieve effective control of air pollution from secondary 

air pollutants and their components, particularly in rural areas. We also find the scattered increases in MDA8 O3 (up to 21%) 320 

in some urban locations in the VOC-limited areas due to the emissions reduction. This indicates that a more localized control 

policy with the consideration of the O3 sensitivity regime should be implemented in India to improve the air quality especially 

for secondary pollutants such as O3.  
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 540 
Table 1: The criteria on the “Range of Pollution Index” for the purpose of categorization of industrial sectors. 

Categories* Pollution Index score 

Very polluting (VP) ≥60 

Medium polluting (MP) 41–59 

Low polluting (LP) 21–40 

Note: * VP, MP, and LP industries are also defined as the red, orange, and green categories of industrial sectors respectively, based on the 

Indian Ministry of Environment, Forest and Climate Change website (https://pib.gov.in/newsite/printrelease.aspx?relid=137373). 

 

Table 2: Percent reduction in anthropogenic emissions in India during COVID-19 lockdown. 545 

Sector %Reduction 

Residential 0 

Industrial 82 

Agriculture 0 

On-road 85 
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Off-road 85 

Energy 26 

 

 
Figure 1: The simulation domain with the location of major Indian cities selected for analysis. 
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Figure 2: Comparison of predicted and observed PM2.5 from February 21 to April 24, 2020 in Delhi, Mumbai, Chennai, Hyderabad, 550 
and Bengaluru. The unit is µg m-3. 
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Figure 3: Comparison of predicted and observed MDA8 O3 from February 21 to April 24, 2020 in Delhi, Mumbai, Chennai, 

Hyderabad, and Bengaluru. The unit is ppb. 

 555 
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Figure 4: Predicted PM10 (µg m-3), PM2.5 (µg m-3), MDA8 O3 (ppb), NO2 (ppb), and SO2 (ppb) before lockdown, during the lockdown 

and the changes between them in India. “Case2 - Case1” indicates (Case 2 – Case 1)/Case 1, reported as %. 
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Figure 5: Predicted PM2.5 components and the changes caused by lockdown measures from March 24 to April 24, 2020 in India. The 560 
unit is µg m-3. “Case2 - Case1” indicates (Case 2 – Case 1)/Case 1, reported as %. 
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Figure 6: Predicted relative changes in concentrations of primary and secondary components, and emissions of their precursors in 

eight cities of India in Case 2 to Case 1.  
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 565 
Figure 7: Predicted O3, NOx, HCHO, and the changes caused by nationwide lockdown measures from March 24 to April 24, 2020 in 

India. The unit is ppb. “Case2 - Case1” indicates (Case 2 – Case 1)/Case 1, reported as %. 
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Figure 8: Predicted relative changes in concentrations of O3, HCHO, and NOx and emissions of VOCs, HCHO, and NOx in eight 

major cities of India in Case 2 to Case 1. 570 
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