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Journal: Atmospheric Chemistry and Physics  

Manuscript ID: acp-2020-903 

Title: “Impact of reduced anthropogenic emissions during COVID-19 on air quality in India” 

 

Dear Referee #3, 

We appreciate your comments to help improve the manuscript. We tried our best to address your 

comments and detailed responses and related changes are shown below. Our response is in blue and the 

modifications in the manuscript are in red. 

 

Comments: The paper by Zhang et al. entitled “Impact of reduced anthropogenic emissions during COVID-

19 on air quality in India” is on a very relevant and interesting topic which is to use the covid lockdown 

emission reductions for assessing impacts on air quality over India. Unfortunately, the analyses and 

interpretation are weak in several places (listed below). There are hardly any new trustworthy insights from 

this modelling study which have not been reported already by the authors in previous works on the same 

topic published recently (see Sharma, S., Zhang, M., Anshika, Gao, J., Zhang, H., and Kota, S. H.: Effect of 

restricted emissions during COVID-19 on air quality in India, Science of The Total Environment, 728, 

138878, https://doi.org/10.1016/j.scitotenv.2020.138878, 2020).  

Response:  

We appreciate the comments. However, we don’t agree that there are hardly any new trustworthy 

insights. We comprehensively evaluate the impact of the nationwide lockdown on air quality in India, which 

also provides reliable recommendations for the improvement of emission reduction policies.  

First, we determined the response of air quality in India under the synergetic impacts from the 

meteorological conditions and anthropogenic emissions during the pre-lockdown and lockdown periods. For 

instance, we directly quantified the change in air quality during lockdown due to the reduced anthropogenic 

emissions through differences between Case 1 (without emission reductions) and Case 2 (with emission 

reductions) during the lockdown. This casts lights on the policy implementation in India, which may help to 

mitigate air pollution in the future.  

Second, we are the first study that explored the impacts of COVID-19 lockdown on Indian air quality 

on a regional scale. It allows us to figure out the changes of primary and even secondary pollutants during 

two periods (pre-lockdown and lockdown) and illustrate their differences in urban and rural areas. This could 

be a great help to formulate the city-level control policy in India.    

Third, in atmospheric chemistry, we developed a better understanding of the secondary pollutants 

formations by investigating their non-linear responses to the precursors' changes during the lockdown. In 

particular, the sensitivity of PM2.5 secondary components (Fig. 6 in the revised manuscript) and the change 

of spatial distributions of O3 production sensitivity (Fig. S5 in the revised supplement) due to emission 

changes during the lockdown give us a more in-depth discussion on secondary pollutants. 



In the revised manuscript, we added such information to the Introduction to make it clear.  

Changes in manuscript: 

Introduction (Lines 64-68 in the revision): “However, the role of meteorological conditions and chemical 

reactions involving changes in air quality is not clear from these observation-based studies, which only 

showed the phenomenon of concentration reduction and switch of major primary pollutants mainly in urban 

cities. Further, the number of monitoring stations in the country is way below the guidelines by the governing 

bodies and not uniformly distributed, which results in observation data limitations in India (Sahu et al., 2020).” 

Introduction (Lines 69-74 in the revision): “In this study, the Community Multi-Scale Air Quality (CMAQ) 

model was used to investigate changes in air pollutants during the pre-lockdown (from February 21, 2020 to 

March 23, 2020) and lockdown (from March 24, 2020 to April 24, 2020) periods throughout Indian region. 

We explored the synergetic impacts from the meteorological conditions and anthropogenic emissions during 

the pre-lockdown and lockdown periods. Besides, we directly quantified the change in air quality during the 

lockdown due to the reduced anthropogenic emissions by comparing the differences between Case 1 (without 

emission reductions) and Case 2 (with emission reductions).” 

Conclusion (Lines 309-310 in the revision): “However, more stringent mitigation measures are needed to 

achieve effective control of air pollution from secondary air pollutants and their components, particularly in 

rural areas.” 

 

Comments: Instead there are even discrepancies from the earlier work based on interpretation of what 

appears to be the same measured dataset. While in the previous work (Sharma et al., 2020) it was reported 

that there was a 17% increase in ozone during COVID, in the present work it has been reported that a 

significant decrease in surface ozone (MDA8 values) occurred, without even clarifying what changed 

between the two studies except for additional modelling analyses in this study.  

Response:  

We are sorry for being not clear enough. As described in the previous response, these two studies are 

different in many aspects and we are not aiming to show the same results.  

First, the duration of lockdown considered in this study (from March 24 to April 24, 2020) is different 

from Sharma et al. (from March 15th to April 14, 2020). Second, the variations of MDA8 O3 in this study 

included all India within the 36-km domain (117×117 grids) (Fig. 1 in the manuscript), while Sharma et al. 

only focused on urban measurements at 22 cities. Third, this study excluded the influence of meteorology by 

comparing Case 1 (without emission reductions) and Case 2 (with emission reductions) during the lockdown, 

while Sharma et al. concluded the increase in O3 by comparing 2020 and the previous three years.   

Moreover, the results of our study are consistent with Sharma et al. in the urban areas. In these areas 

that were under VOC-limited conditions, both studies concluded that O3 increased during the lockdown. In 

our study, the increase in MDA8 O3 was up to 21%, which was close to Shame et al.  

In summary, different research methods and study periods result in different O3 changing ratios, and it 

is not able to conclude that as discrepancies. 



Changes in manuscript: Since the differences have been added in the previous comment, no special changes 

were made for this point.  

 

Comments: There are several major issues with the present submission which need to be addressed/clarified 

for meriting further publication in ACP. 

Response: We thank the reviewers for the detailed comments below and made necessary changes to the 

manuscript.  

 

Comments: Validation of the model used in this work has not been done/described adequately: 

Authors use only 2 m level measurements of temperature and meteorological data and chemical data from 5 

monitoring stations operated by the regulatory agency of India located within cities to compare their modelled 

output. 

Response:  

We collected all available observations to validate our WRF and CMAQ models. Since the observations 

are limited in India, it is important to conduct simulation studies like this one to improve our understanding 

and help design control strategies.  

Changes in manuscript: No changes were made for this point. 

 

Comments: Measured chemical data: The authors present only daily averaged data in the plots (Figures 2 

and 3). This would be fine but I could find no details of the original high resolution primary data (presumably 

available at temporal resolution of few minutes from the analyzers in the monitoring stations) to build 

confidence in the reader about the trustworthiness of the primary data and its quality assurance. If they could 

provide such high resolution data for the five stations (even for few days in both periods) for ozone, NO, 

NO2, PM2.5 etc.. with gaps in measurements if any (after all there was a lockdown so maintenance could be 

difficult), and the calibration data of any of the analyzers, it would go a long way in instilling confidence in 

the highly averaged data. The reviewer looked up their previous study Sharma et al 2020 which has been 

cited for detailed description of the primary data and found that this reference did not contain these details 

and somewhat remarkably the Sharma et al. 2020 paper reported data until April 14th 2020 in that work, was 

submitted on April 16th, 2020 and accepted on April 19th, 2020. While this does not necessarily suggest that 

due diligence was not taken as given the nature of topic urgency to publish would have been a factor, the 

rapid turn-around time and lack of experimental details in the peer reviewed reference cited and which forms 

the basis of the daily averages does leave room for concern. So the authors should provide the original 

primary data as a time series for these 5 monitoring stations in the revised supplement along with details of 

calibration experiments and data quality control followed to allay such potential concerns about the primary 

measured dataset. 

Response:  



Although higher resolution from some sampling equipment is available, monitoring agencies worldwide 

only report hourly data. The data from the CPCB database can be downloaded at 

https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing/data and we are not able to post the raw 

data here due to the CPCB’s data access statement. Also, the temporal-resolution of the CMAQ model is 

hourly. Besides, daily average PM2.5 is commonly used in previous studies due to its practical significance 

and data availability. For O3, the maximum daily 8-hour concentration (MDA8 O3) calculated as running the 

maximum continuous 8-hour data is used to represent pollution level (Lei et al., 2019). Thus, we used the 

daily average PM2.5 and MDA8 O3 specifically in Figures 2 and 3 in the manuscript. 

We are sorry that the validity of the observation data is not clear. The observation data from CPCB has 

been through quality assurance or quality control programs by establishing strict procedures for sampling, 

analysis, and calibration before publication (Gurjar et al., 2016). Thus, studies usually use the data directly. 

In this study, we made additional checks to screen out outliers. For example, a cut-off value of 40 ppb was 

applied to hourly O3 based on EPA's recommendations (EPA, 2005). For PM2.5, abnormally high values of 

greater than 300 µg m-3 were excluded. These explanations were added in different parts of the revised 

manuscript. 

Changes in manuscript: 

Methodology (Lines 82-83 in the revision): “The CPCB database provides data quality assurance (QA) or 

quality control (QC) programs by establishing strict procedures for sampling, analysis, and calibration 

(Gurjar et al., 2016).” 

Results and discussion (Lines 150-153 in the revision): “For PM2.5, the averaged mean fractional bias 

(MFB) (-0.48) and mean fractional error (MFE) (0.61) values met the criteria limits of ±0.6 and 0.75 claimed 

by the EPA (2007b) in all the five urban cites after excluding some abnormally high values of greater than 

300 µg m-3. For O3, a cut-off value of 40 ppb is applied, which is based on EPA's recommendations (EPA, 

2005).” 

 

Comments: Also they should discuss whether data from 5 cities are adequate to make inferences about all 

of India with same degree of confidence which spans vast rural and countryside regions? It might be advisable 

to better focus on the 5 cities alone for which they have the data and even there they should acknowledge 

how data from one monitoring station may be limited for representing air quality of the entire city. In fact, a 

combination of monitoring station data and satellite data (agreed also can have issues but better than nothing) 

would be better. 

Response:  

Thanks for the comments. First of all, we agree that 5 cities were maybe inadequate to evaluate the 

model for the whole of India. However, it is an endless effort and impractical to monitor the whole country. 

Focusing only on areas with observations is a safe idea, but not a promising one. This actually is the advantage 

of modelling work and the merit of this study. Besides, when we validate our simulated results in urban areas, 

we have the confidence to investigate rural and countryside regions. The modelling work is not only to 

https://app.cpcbccr.com/ccr/%23/caaqm-dashboard-all/caaqm-landing/data


reproduce what has been observed but more importantly to investigate what is not been observed after enough 

validation.  

If the monitoring station can represent the entire city is another good question for observation experts. 

In this study, the observation data we compare with the predicted values are an average of multiple sites in 

each city (Table 1), which can represent the PM2.5 and O3 levels of the entire city well. We also added more 

observations to make the results more representative in the revision (Fig. 1 also added as Fig. 2 in the revised 

manuscript & Fig. 2 added as Fig. 3 in the revised manuscript). The model performed well at simulating O3, 

PM2.5, CO, and NO2 in these major cities in India (Table 2, also added as Table S7 in the revised supplement). 

Thanks to the suggestion of using satellite, we compared model performance with satellite observations 

(TROPOMI) for HCHO and NO2 (Fig. 3, also revised Fig. S1 in the supplement). The corresponding 

explanatory statements were added in the Results and discussion section. 

Table 1: Cities and monitoring sites selected for observation data from the CPCB database. 

City Monitoring sites 

Hyderabad Bollaram Industrial Area, Hyderabad - TSPCB 

ICRISAT Patancheru, Hyderabad - TSPCB 

IDA Pashamylaram, Hyderabad - TSPCB 

Chennai Velachery Res. Area, Chennai - CPCB 

Alandur Bus Depot, Chennai - CPCB 

Manali Village, Chennai - TNPCB 

Mumbai Chhatrapati Shivaji Intl. Airport (T2), Mumbai - MPCB 

Bandra, Mumbai - MPCB 

Borivali East, Mumbai - MPCB 

Powai, Mumbai - MPCB 

Sion, Mumbai - MPCB 

Bengaluru BTM Layout, Bengaluru - CPCB 

BWSSB Kadabesanahalli, Bengaluru - CPCB 

Silk Board, Bengaluru - KSPCB 

Delhi Aya Nagar, Delhi - IMD 

Ashok Vihar, Delhi - DPCC 

Bawana, Delhi - DPCC 

Alipur, Delhi - DPCC 

Anand Vihar, Delhi - DPCC 

CRRI Mathura Road, Delhi - IMD 

DTU, Delhi - CPCB 

Dr. Karni Singh Shooting Range, Delhi - DPCC 

Dwarka-Sector 8, Delhi - DPCC 

ITO, Delhi - CPCB 



Jahangirpuri, Delhi - DPCC 

Jawaharlal Nehru Stadium, Delhi - DPCC 

Lodhi Road, Delhi - IMD 

Major Dhyan Chand National Stadium, Delhi - DPCC 

Mandir Marg, Delhi - DPCC 

NSIT Dwarka, Delhi - CPCB 

Najafgarh, Delhi - DPCC 

Nehru Nagar, Delhi - DPCC 

North Campus, DU, Delhi - IMD 

Okhla Phase-2, Delhi - DPCC 

Patparganj, Delhi - DPCC 

R K Puram, Delhi - DPCC 

Shadipur, Delhi - CPCB 

Sri Aurobindo Marg, Delhi - DPCC 

Vivek Vihar, Delhi - DPCC 

 

Table 2: model performance of O3 (ppb), PM2.5 (µg m-3), CO (ppb), and NO2 (ppb) at Delhi, Mumbai, 

Chennai, Hyderabad, and Bengaluru (OBS is mean observation; PRE is mean prediction; MFB is 

mean fractional bias; MFE is mean fractional error; MNB is mean normalized bias; MNE is mean 

normalized error). 

Variable Statistics Delhi Mumbai Chennai Hyderabad Bengaluru ALL Benchmark 

O3 OBS 61.37 56.64 49.94 44.03 47.66 51.93  

 PRE 56.86 47.06 39.32 52.56 43.58 47.88  

 MNB -0.04 -0.13 -0.20 0.20 -0.07 -0.05 ≤±0.15 

 MNE 0.20 0.28 0.29 0.22 0.26 0.25 ≤0.30 

 MFB -0.08 -0.20 -0.27 0.17 -0.17 -0.11  

 MFE 0.21 0.32 0.36 0.18 0.33 0.28  

PM2.5 OBS 58.08 33.10 23.09 33.09 33.79 36.23  

 PRE 38.10 21.46 15.57 18.28 16.29 21.94  

 MNB -0.16 -0.28 -0.12 -0.41 -0.41 -0.28  

 MNE 0.54 0.44 0.46 0.47 0.51 0.48  

 MFB -0.40 -0.46 -0.30 -0.59 -0.66 -0.48 ≤±0.6 

 MFE 0.62 0.59 0.51 0.63 0.73 0.61 ≤0.75 

NO2 OBS 13.87 11.17 3.74 10.60 10.68 10.01  

 PRE 7.00 9.68 4.34 3.04 8.64 6.54  

 MNB -0.51 0.42 0.46 -0.74 -0.30 -0.14  

 MNE 0.74 1.34 1.11 0.86 0.89 0.99  



 MFB -1.00 -0.47 -0.20 -1.44 -0.90 -0.80  

 MFE 1.13 1.18 0.82 1.51 1.19 1.17  

CO OBS 0.69 0.65 0.45 0.38 0.74 0.58  

 PRE 0.26 0.16 0.12 0.13 0.14 0.16  

 MNB -0.59 -0.72 -0.71 -0.61 -0.78 -0.68  

 MNE 0.59 0.72 0.71 0.61 0.78 0.68  

 MFB -0.88 -1.15 -1.13 -0.92 -1.32 -1.08  

 MFE 0.89 1.15 1.13 0.92 1.32 1.08  

 

 
Figure 1: Comparison of predicted and observed PM2.5 from February 21 to April 24, 2020 in Delhi, 

Mumbai, Chennai, Hyderabad, and Bengaluru. The unit is µg m-3. 



 
Figure 2: Comparison of predicted and observed MDA8 O3 from February 21 to April 24, 2020 in 

Delhi, Mumbai, Chennai, Hyderabad, and Bengaluru. The unit is ppb. 



 
Figure 3: Comparison of the simulated and satellite-observed NO2 and HCHO column number density 

before lockdown and during the lockdown in India. The unit is 1015 molec cm-2. 

Changes in manuscript: 

Results and discussion (Lines 150-153 in the revision): “For PM2.5, the averaged mean fractional bias 

(MFB) (-0.48) and mean fractional error (MFE) (0.61) values met the criteria limits of ±0.6 and 0.75 claimed 

by the EPA (2007b) in all the five urban cites after excluding some abnormally high values of greater than 

300 µg m-3. For O3, a cut-off value of 40 ppb is applied, which is based on EPA's recommendations (EPA, 

2005).” 

Results and discussion(Lines 154-156 in the revision):  “And averaged MFB (-0.05) and MFE (0.25) values 

of O3 also satisfy the benchmarks of ±0.15 and 0.30 set by the EPA (2005) in most of these cities with 

Chennai and Hyderabad exceeding the limits slightly.” 



Results and discussion (Lines 168-172 in the revision): “Overall, sharp decreases are found in the observed 

PM2.5 in all these cities, and the averaged PM2.5 level drops from 43.18 µg m-3 to 27.62 µg m-3. The mean 

observed PM2.5 concentrations during lockdown are 42.47 µg m-3 (Delhi), 24.53 µg m-3 (Mumbai), 15.73 µg 

m-3 (Chennai), 31.29 µg m-3 (Hyderabad), 24.08 µg m-3 (Bengaluru), which are reduced by 41%, 40%, 42%, 

10%, and 43% respectively compared with that of the pre-lockdown period. Besides, the observed peak 

values of PM2.5 in each city also decrease appreciably (up to 57%) during the lockdown period.”  

Results and discussion (Lines 177-178 in the revision): “The observed average MDA8 O3 during lockdown 

is higher than that of pre-lockdown in Delhi (2%), Hyderabad (12%), and Bengaluru (2%).” 

Results and discussion (Lines 182-183 in the revision): “In contrast, the observed average MDA8 O3 

during lockdown is reduced compared with the pre-lockdown period in both Mumbai (-35%) and Chennai (-

13%).” 

Methodology (Lines 85-89 in the revision): “The satellite-observed NO2 and formaldehyde (HCHO) 

column number density datasets are from the Sentinel-5 Precursor TROPOspheric Monitoring Instrument (S-

5P TROPOMI) (https://scihub.copernicus.eu). Besides, we filter the satellite data under the recommended 

criteria of QA values greater than 75% for tropospheric NO2 column number density datasets and 50% for 

HCHO (Apituley, 2018).” 

Results and discussion (Lines 158-163 in the revision): “To further validate modeled HCHO and NO2, we 

compared our simulated results with satellite-observed data during pre-lockdown and lockdown periods (Fig. 

S1). The tropospheric column densities of NO2 and HCHO were calculated by summing their concentrations 

of 17 vertical layers in the CMAQ model (H. J. Eskes, 2020). The predicted regional distribution of 

tropospheric column NO2 and HCHO is similar to satellite-observations. Overall, HCHO and NO2 are higher 

in eastern and northern India than in other regions. And their variation trends from CMAQ and TROPOMI 

are consistent that NO2 decreases while HCHO increases during the lockdown.” 

 

Comments: Validation of model using 2 m level measured meteorological data: For the kind of modelling 

investigation the authors are making namely, effect of emission changes on concentrations of pollutants use 

of only the 2 m level observations without comparison with satellite data, sonde data, mixing layer height 

data (see ERA5 products) seems to be a major shortcoming. Note that the changes in ventilation coefficient 

before and during lockdown and the changing season (Spring to Summer) can alone have big impacts on the 

concentrations. 

Response:  

Thanks for the referee's comments. The weather research and forecasting (WRF) ARW regional model 

is a high‐resolution meteorology model that is widely used in Indian studies (Gevorgyan, 2018; Srinivas et 

al., 2013; Chawla et al., 2018; Ashrit and Mohandas, 2010). The capability of the WRF model has been 

validated for providing reliable meteorological inputs to air quality models even under extreme weather 

events (Zhang et al., 2020; Stella and Agnihotri, 2015; Pattanaik and Rama Rao, 2009; Rajeevan et al., 2010). 

In the manuscript, we validated the model performance of WRF using observation from the National Climate 



Data Center (NCDC). Although only the near-surface meteorological factors are considered, our prediction 

also shows good performance with the comparison of satellite data (NO2 and HCHO) (Fig. 3, also added as 

Fig. S1 in the revised supplement). As suggested by the referee, the reanalysis-based ERA5 product produces 

global atmospheric quantities at 31-km horizontal resolution combining model simulations and observations. 

However, there are uncertainties such as its high root-mean-square error values in the tropical and subtropical 

climate zone so that the reliability and applicability of the ERA5 dataset still need to be explored in India 

with a tropical monsoon climate (Jiang et al., 2020; Kolluru et al., 2020). In follow-up studies, we will 

consider its application to further validate the WRF model. 

As for the impacts of ventilation coefficient and changing season, we added more analysis of the 

difference in meteorological conditions between pre-lockdown and lockdown periods including temperature 

(T), relative humidity (RH), planetary boundary layer (PBL) height, the average daily precipitation, and wind 

fields in Fig. 4 (also added as Fig. S3 in the revised supplement). The explanations about the impacts of these 

meteorological conditions on Indian air quality are also added in the Results and discussion section. 

 
Figure 4: Distribution of simulated temperature (T), relative humidity (RH), planetary boundary layer 

(PBL) height, the average daily precipitation, and wind fields in India before and during the lockdown 

period. “Case2 - Case1” indicates (Case 2 – Case 1)/Case 1, reported as %. 

Changes in manuscript: 



Results and discussion (Lines 199-203 in the revision): “Variations in near-surface meteorological factors 

during lockdown also play an important role in PM2.5 changes. As is shown in Fig. S3, lower PM2.5 in urban 

areas during lockdown (Fig. 4) may attribute to the decrease of RH and increase of planetary boundary layer 

(PBL) height, while the decrease of precipitation and WS allows PM2.5 to accumulate in some rural areas 

(Schnell et al., 2018; Le et al., 2020).” 

Results and discussion (Lines 207-211 in the revision): “Although significant reductions are found in O3 

precursor emissions throughout India during the lockdown, the MDA8 O3 has not shown comparable 

decreasing trends, which is affected by the meteorological conditions such as an increase of temperature and 

decrease of RH (Fig. S3). Higher temperature speeds up photochemical processes that produce O3, while 

higher RH reduces them (Chen et al., 2019; Zhao et al., 2017; Ali et al., 2012).” 

Conclusion (Lines 302-303 in the revision): “It can be concluded that meteorological conditions play an 

important role in those increases according to the comparison between pre-lockdown (Case 1), and lockdown 

(Case 2).” 

 

Comments: Changes in atmospheric chemistry of primary pollutant removal and formation of 

secondary pollutants:  

Currently the study tends to attribute all the observed concentration changes in pollutants primarily to the 

emission reductions. However it has been documented elegantly in the following paper: Kroll, J.H., Heald, 

C.L., Cappa, C.D. et al. The complex chemical effects of COVID-19 shutdowns on air quality. Nat. Chem. 

12, 777–779 (2020). https://doi.org/10.1038/s41557-020-0535-z, that several other processes play a big role. 

The purpose of using a model should be that these effects can be teased out through sensitivity experiments 

but unfortunately this has not been addressed in current version of the manuscript. For example the authors 

note that the temperature increased during the lockdown period. A key question is what effect the temperature 

change and the reduced emission of VOCs (no VOC measurements have been provided at all), NOx and CO 

would have on the removal rates of primary pollutants and formation of secondary pollutants. 

Further have authors identified days when it rained in both pre covid lockdown and during lockdown periods 

which would cause strong biases for the comparisons. 

Response:  

We showed not only the impact of emission reductions but also that the meteorology conditions and 

explained that the specific chemical reactions can affect the change of pollutant concentrations. We also 

added more comprehensive discussions about the effects of chemical processes in the manuscript (see the 

Results and discussion section).  

We utilized the model to explore the comprehensive effects of meteorology including the increased 

temperature on the change of primary and secondary pollutants by comparing pre-lockdown (Case 1) and 

lockdown (Case 2) rather than focusing on a single variable. We also investigated the nonlinear relationship 

between emissions and atmospheric composition. For example, Fig. 8 in the manuscript also showed the 

relative changes in concentrations of HCHO and NOx and emissions of HCHO and NOx in eight major cities 



of India in Case 2 to Case 1 and proved that the concentration of NOx is appreciably highly sensitive to a 

primary NOx emission reduction compared with HCHO.  

In specific, though we can’t obtain a reliable VOC observation dataset, the high correlation between 

HCHO and the total VOCs is shown in Fig. 5 below, and HCHO has been further validated by satellite-

observations (Fig. 3, also added as Fig. S1 in the revised supplement).  

We also added discussion on the effects of variations in precipitation during the lockdown on PM2.5 and 

MDA8 O3 changes in the Results and discussion results. In addition to the regional change of precipitation 

shown in Fig. 4 (also added as Fig. S3 in the revised supplement), we also added the daily average 

precipitation figures in these 5 major cities from February 21 to April 24, 2020 (Fig. 6 in the response). On 

average, the precipitation in India is relatively low from the pre-lockdown to lockdown periods (lower than 

1 mm for each city). Although the few rainy days (such as March 5, 2020) may promote PM2.5 removal, 

generally, it has little impact on the comparison of overall air quality before and during the lockdown. 

 
Figure 5: Scatter plots comparing the simulated average daily HCHO and the total VOCs at all 

117×117 grids from February 21 to April 24, 2020. 

 



 
Figure 6: The predicted average daily precipitation from February 21 to April 24, 2020 in Delhi, 

Mumbai, Chennai, Hyderabad, and Bengaluru. The unit is mm. 

Changes in manuscript: 

Results and discussion (Lines 199-203 in the revision): “Variations in near-surface meteorological factors 

during lockdown also play an important role in PM2.5 changes. As is shown in Fig. S3, lower PM2.5 in urban 

areas during lockdown (Fig. 4) may attribute to the decrease of RH and increase of planetary boundary layer 

(PBL) height, while the decrease of precipitation and WS allows PM2.5 to accumulate in some rural areas 

(Schnell et al., 2018; Le et al., 2020).” 

Results and discussion (Lines 241-242 in the revision): “Besides, the reduction of NOx may lead to an 

increase of SOA offsetting some of the influence caused by the reduction in VOC emissions (Kroll et al., 

2020).” 

 

Comments: Existing inadequacies in VOC emission inventories and modelled ozone simulations over 

India: While the authors are using pre lockdown and lockdown periods for comparison, it is a fact that of all 

emission inventories, VOC emissions are the most poorly constrained due to the absence of in-situ VOC data 

over many regions in India. A generic problem also seen is the tendency for overestimation of ozone by 

models over the Indian region. This suggests that the basic reactant mixture and chemistry are still inadequate 

for modelling ozone and secondary pollutant formation accurately over India. So how can one be sure that 

the changed chemical mixture between pre-lockdown and during lockdown are not skewed by these gaps in 

our basic undertanding? While it would be unfair to hold the authors to solve all these issues, one does expect 

that the limitations and existing issues are duly acknowledged in the work instead of making highly 

speculative and prescriptive measures for air quality mitigation based on such modelling results.  



Response:  

Thanks for pointing out this. We also acknowledge that there are still many limitations and deficiencies 

in the VOC emission inventories, and the simulation of O3 is usually over-estimated (Kota et al., 2018; Hu 

et al., 2015). Much more needs to be done regarding emissions and chemical reactions to better simulate O3 

in India. But there is no denying that the simulation results of this model are acceptable compared with the 

standards recommended by EPA (EPA, 2005, 2007a). In the future, we will continuously apply new 

information to improve our modelling results once they are available. 

Changes in manuscript:  

Results and discussion (Lines 163-164 in the revision): “We also acknowledge that the uncertainty of 

emission inventory and chemical mechanism in the modelling may affect the simulated results (Dominutti et 

al., 2020; Kitayama et al., 2019).” 

Comments: Use of formaldehye for constraining VOC emissions where a large number of more reactive 

primary VOC emissions occur should also be discussed and clarified. Trusting the formaldehye from the 

model in absence of in-situ formaldehye measurements to compare with or even satellite or columnar 

measurements which have been reported from India is recommended. 

Response:  

As one of the most abundant oxygenated VOCs, HCHO is one of the major contributors to total VOCs 

reactivity (Zhang et al., 2012; Steiner et al., 2008). Therefore, it is used to show the model performance on 

VOCs due to the lack of VOCs observations. Figure 5 (added as Fig.S4 in the revised supplement) shows 

scatter plots comparing the simulated average daily HCHO and the total VOCs at all 117×117 grids during 

the study period. It can be seen from the results that HCHO has a high correlation with VOCs, and R2 reaches 

0.93. We also compared the simulated HCHO and NO2 with satellite observations (TROPOMI) to further 

verify the model (Fig. 3, also Fig. S1 in the revised supplement).  

Changes in manuscript: 

Methodology (Lines 85-89 in the revision): “The satellite-observed NO2 and formaldehyde (HCHO) 

column number density datasets are from the Sentinel-5 Precursor TROPOspheric Monitoring Instrument (S-

5P TROPOMI) (https://scihub.copernicus.eu). Besides, we filter the satellite data under the recommended 

criteria of QA values greater than 75% for tropospheric NO2 column number density datasets and 50% for 

HCHO (Apituley, 2018).” 

Results and discussion (Lines 158-163 in the revision): “To further validate modeled HCHO and NO2, we 

compared our simulated results with satellite-observed data during pre-lockdown and lockdown periods (Fig. 

S1). The tropospheric column densities of NO2 and HCHO were calculated by summing their concentrations 

of 17 vertical layers in the CMAQ model (H. J. Eskes, 2020). The predicted regional distribution of 

tropospheric column NO2 and HCHO is similar to satellite-observations. Overall, HCHO and NO2 are higher 

in eastern and northern India than in other regions. And their variation trends from CMAQ and TROPOMI 

are consistent that NO2 decreases while HCHO increases during the lockdown.” 

 



Comments: Are benzene and toluene data available from the monitoring stations which could be included 

in the analyses? If so these should also be included in view of their health and SOA formation potential. 

Response:  

Thanks for the referee's comments. The available observational data for benzene and toluene from the 

CPCB dataset is extremely limited. For example, Chennai does not have a single monitoring site to provide 

its hourly observations. In the model simulation, the EDGAR emission inventory does not provide a separate 

benzene emission and toluene is lumped into ARO1 species in the SAPRC-11 photochemical mechanism 

(Carter, 2011; Hu et al., 2016). So it is a pity that the observation of benzene and toluene cannot be compared 

with the model simulation. Besides, our study is not focused on health risks or their specific impact on SOA 

formation, but on the impact of anthropogenic emission reductions on major air pollutants during the 

lockdown. 

Changes in manuscript: No changes were made for this point. 

 

Comments: Choice of scaling factors for emission reductions: The authors make several assumptions and 

justification for the use of scaling factors for emissions which are valid (see Equations 1 and 2). 

For example: 

Ammonia agricultural emissions: Several satellite studies have indicated high ammonia emissions from 

agriculture and a recent by G.K. Singh, P. Rajeev, D. Paul, et al., Chemical characterization and stable 

nitrogen isotope composition of nitrogenous component of ambient aerosols, Science of the Total 

Environment, https://doi.org/10.1016/j.scitotenv.2020.143032 showed that agriculture activities and waste 

generation are major sources of ammonia. The assumption by the authors that the agricultural emissions do 

not change between pre-lockdown and during lockdown is not valid for large parts of the India in particular 

the Indo-Gangetic Plain because during the pre-lockdown dates farmers were still applying fertilizers to the 

wheat crops, whereas by last week of March this completely stops. So infact the ammonia and hence 

ammonium ion source from agriculture is likely stronger in pre-lockdown period and so cannot be treated as 

constant between both periods. As ammonia is such an important emission for PM2.5 too, this has large 

implications for the inferences currently drawn by the authors. 

Response:  

Thanks for the helpful suggestion from the referee. However, due to the data limitation, we cannot 

calculate a specific emission reduction ratio for agriculture due to the lockdown on a regional scale. As long 

as we can get more information, we will further refine the proportion of emission reduction in the lockdown 

in the follow-up study. 

Changes in manuscript: No changes were made for this point. 

 

Comments: Ozone production sensitivity indicator: The use of HCHO/NO2 as based on Silman et al 1995 

which the authors cite cannot be applied blindly because as noted by the original authors (Silman and He in 

their JGR paper in 2002) is suitable only for ambient ozone mixing ratios in the range of 80-200 ppb and then 



again for columns retrieved using satellite data. For ground based data, more robust proxies would be H2O2/ 

HNO3 or even O3/NOy.  

Response:  

Thanks for the referee's comments. As shown in Fig. 7 (revised Fig. S5 in the supplement), we change 

the indicator of O3 sensitivity to NOx and VOCs into O3/NOy and Sillman (1995) suggested the transition 

value that separate NOx-sensitive and VOC-sensitive locations (O3/NOy= 6-8). According to the value, we 

can find the most Indian region is NOx-sensitive and the VOC-limited and transition regimes expand during 

the lockdown because of the reduction of anthropogenic emissions.  

 
Figure 7: Spatial distributions of O3 production sensitivity in India from March 24 to April 24, 2020. 

Changes in manuscript: 

Results and discussion (Lines 275-280 in the revision): “Figure S5 shows the O3 production sensitivity 

(O3/NOy) in India during the lockdown, which is considered as an indicator of O3 sensitivity to NOx and 

VOCs (Sillman, 1995; Sillman and He, 2002). In India, NOx-limited regimes (O3/NOy > 8) are found in vast 

areas from both Case 1 and Case 2, which was also reported in previous studies (Mahajan et al., 2015). 

Compared to Case 1, the VOC-limited area (O3/NOy < 6) expands mainly in the northwest and south of India 

from Case 2 during the lockdown. The transition regimes (6< O3/NOy < 8) that O3 formation is controlled by 

both NOx and VOC emissions in the vicinity of the VOC-limited regions.” 

 

Comments: In the absence of measured VOC data presented by the authors to validate their model VOC 

data (note there are no measurements of HCHO presented), the authors should remove this discussion 

completely or present for each city site the high resolution O3 Vs NOx data from daytime for pre and during 

lockdown periods. 

Response:  

As shown in responses to previous comments, we compared the simulated HCHO with satellite 

observations (TROPOMI) to further verify the model (Fig. 3, also revised Fig. S1 in the supplement). We 

believe that the discussion is useful to readers, and we acknowledged that more studies are needed to better 

illustrate the relationship between O3, VOCs, and NOx. 

Changes in manuscript: 



Methodology (Lines 85-89 in the revision): “The satellite-observed NO2 and formaldehyde (HCHO) 

column number density datasets are from the Sentinel-5 Precursor TROPOspheric Monitoring Instrument (S-

5P TROPOMI) (https://scihub.copernicus.eu). Besides, we filter the satellite data under the recommended 

criteria of QA values greater than 75% for tropospheric NO2 column number density datasets and 50% for 

HCHO (Apituley, 2018).” 

Results and discussion (Lines 158-163 in the revision): “To further validate modeled HCHO and NO2, we 

compared our simulated results with satellite-observed data during pre-lockdown and lockdown periods (Fig. 

S1). The tropospheric column densities of NO2 and HCHO were calculated by summing their concentrations 

of 17 vertical layers in the CMAQ model (H. J. Eskes, 2020). The predicted regional distribution of 

tropospheric column NO2 and HCHO is similar to satellite-observations. Overall, HCHO and NO2 are higher 

in eastern and northern India than in other regions. And their variation trends from CMAQ and TROPOMI 

are consistent that NO2 decreases while HCHO increases during the lockdown.” 

 

Comments: In several instances, the grammar and language also need to be corrected. I recommend the 

authors to consider the above major concerns to revise and improve the manuscript. 

Response: As suggested, we made corresponding changes and improved the grammar and language in the 

revised manuscript. 
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