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Dear Referee #3, We appreciate your comments to help improve the manuscript. We
tried our best to address your comments and detailed responses and related changes
are shown below. Our response is in blue and the modifications in the manuscript are
in red. Besides, please note the supplementary PDF file in the reply.

Comments: The paper by Zhang et al. entitled “Impact of reduced anthropogenic
emissions during COVID-19 on air quality in India” is on a very relevant and inter-
esting topic which is to use the covid lockdown emission reductions for assessing
impacts on air quality over India. Unfortunately, the analyses and interpretation are
weak in several places (listed below). There are hardly any new trustworthy insights
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from this modelling study which have not been reported already by the authors in
previous works on the same topic published recently (see Sharma, S., Zhang, M.,
Anshika, Gao, J., Zhang, H., and Kota, S. H.: Effect of restricted emissions during
COVID-19 on air quality in India, Science of The Total Environment, 728, 138878,
https://doi.org/10.1016/j.scitotenv.2020.138878, 2020). Response: We appreciate the
comments. However, we don’t agree that there are hardly any new trustworthy insights.
We comprehensively evaluate the impact of the nationwide lockdown on air quality in
India, which also provides reliable recommendations for the improvement of emission
reduction policies. First, we determined the response of air quality in India under the
synergetic impacts from the meteorological conditions and anthropogenic emissions
during the pre-lockdown and lockdown periods. For instance, we directly quantified
the change in air quality during lockdown due to the reduced anthropogenic emissions
through differences between Case 1 (without emission reductions) and Case 2 (with
emission reductions) during the lockdown. This casts lights on the policy implemen-
tation in India, which may help to mitigate air pollution in the future. Second, we are
the first study that explored the impacts of COVID-19 lockdown on Indian air quality
on a regional scale. It allows us to figure out the changes of primary and even sec-
ondary pollutants during two periods (pre-lockdown and lockdown) and illustrate their
differences in urban and rural areas. This could be a great help to formulate the city-
level control policy in India. Third, in atmospheric chemistry, we developed a better
understanding of the secondary pollutants formations by investigating their non-linear
responses to the precursors’ changes during the lockdown. In particular, the sensitivity
of PM2.5 secondary components (Fig. 6 in the revised manuscript) and the change of
spatial distributions of O3 production sensitivity (Fig. S5 in the revised supplement)
due to emission changes during the lockdown give us a more in-depth discussion
on secondary pollutants. In the revised manuscript, we added such information to
the Introduction to make it clear. Changes in manuscript: Introduction (Lines 64-68
in the revision): “However, the role of meteorological conditions and chemical reac-
tions involving changes in air quality is not clear from these observation-based studies,
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which only showed the phenomenon of concentration reduction and switch of major
primary pollutants mainly in urban cities. Further, the number of monitoring stations
in the country is way below the guidelines by the governing bodies and not uniformly
distributed, which results in observation data limitations in India (Sahu et al., 2020).”
Introduction (Lines 69-74 in the revision): “In this study, the Community Multi-Scale
Air Quality (CMAQ) model was used to investigate changes in air pollutants during the
pre-lockdown (from February 21, 2020 to March 23, 2020) and lockdown (from March
24, 2020 to April 24, 2020) periods throughout Indian region. We explored the syner-
getic impacts from the meteorological conditions and anthropogenic emissions during
the pre-lockdown and lockdown periods. Besides, we directly quantified the change in
air quality during the lockdown due to the reduced anthropogenic emissions by com-
paring the differences between Case 1 (without emission reductions) and Case 2 (with
emission reductions).” Conclusion (Lines 309-310 in the revision): “However, more
stringent mitigation measures are needed to achieve effective control of air pollution
from secondary air pollutants and their components, particularly in rural areas.”

Comments: Instead there are even discrepancies from the earlier work based on inter-
pretation of what appears to be the same measured dataset. While in the previous work
(Sharma et al., 2020) it was reported that there was a 17% increase in ozone during
COVID, in the present work it has been reported that a significant decrease in surface
ozone (MDA8 values) occurred, without even clarifying what changed between the two
studies except for additional modelling analyses in this study. Response: We are sorry
for being not clear enough. As described in the previous response, these two studies
are different in many aspects and we are not aiming to show the same results. First,
the duration of lockdown considered in this study (from March 24 to April 24, 2020) is
different from Sharma et al. (from March 15th to April 14, 2020). Second, the variations
of MDA8 O3 in this study included all India within the 36-km domain (117×117 grids)
(Fig. 1 in the manuscript), while Sharma et al. only focused on urban measurements at
22 cities. Third, this study excluded the influence of meteorology by comparing Case
1 (without emission reductions) and Case 2 (with emission reductions) during the lock-
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down, while Sharma et al. concluded the increase in O3 by comparing 2020 and the
previous three years. Moreover, the results of our study are consistent with Sharma
et al. in the urban areas. In these areas that were under VOC-limited conditions, both
studies concluded that O3 increased during the lockdown. In our study, the increase
in MDA8 O3 was up to 21%, which was close to Shame et al. In summary, different
research methods and study periods result in different O3 changing ratios, and it is not
able to conclude that as discrepancies. Changes in manuscript: Since the differences
have been added in the previous comment, no special changes were made for this
point.

Comments: There are several major issues with the present submission which need
to be addressed/clarified for meriting further publication in ACP. Response: We thank
the reviewers for the detailed comments below and made necessary changes to the
manuscript.

Comments: Validation of the model used in this work has not been done/described
adequately: Authors use only 2 m level measurements of temperature and meteoro-
logical data and chemical data from 5 monitoring stations operated by the regulatory
agency of India located within cities to compare their modelled output. Response: We
collected all available observations to validate our WRF and CMAQ models. Since
the observations are limited in India, it is important to conduct simulation studies like
this one to improve our understanding and help design control strategies. Changes in
manuscript: No changes were made for this point.

Comments: Measured chemical data: The authors present only daily averaged data
in the plots (Figures 2 and 3). This would be fine but I could find no details of the
original high resolution primary data (presumably available at temporal resolution of
few minutes from the analyzers in the monitoring stations) to build confidence in the
reader about the trustworthiness of the primary data and its quality assurance. If they
could provide such high resolution data for the five stations (even for few days in both
periods) for ozone, NO, NO2, PM2.5 etc.. with gaps in measurements if any (after all

C4



there was a lockdown so maintenance could be difficult), and the calibration data of any
of the analyzers, it would go a long way in instilling confidence in the highly averaged
data. The reviewer looked up their previous study Sharma et al 2020 which has been
cited for detailed description of the primary data and found that this reference did not
contain these details and somewhat remarkably the Sharma et al. 2020 paper reported
data until April 14th 2020 in that work, was submitted on April 16th, 2020 and accepted
on April 19th, 2020. While this does not necessarily suggest that due diligence was
not taken as given the nature of topic urgency to publish would have been a factor, the
rapid turn-around time and lack of experimental details in the peer reviewed reference
cited and which forms the basis of the daily averages does leave room for concern. So
the authors should provide the original primary data as a time series for these 5 mon-
itoring stations in the revised supplement along with details of calibration experiments
and data quality control followed to allay such potential concerns about the primary
measured dataset. Response: Although higher resolution from some sampling equip-
ment is available, monitoring agencies worldwide only report hourly data. The data
from the CPCB database can be downloaded at https://app.cpcbccr.com/ccr/#/caaqm-
dashboard-all/caaqm-landing/data and we are not able to post the raw data here due to
the CPCB’s data access statement. Also, the temporal-resolution of the CMAQ model
is hourly. Besides, daily average PM2.5 is commonly used in previous studies due
to its practical significance and data availability. For O3, the maximum daily 8-hour
concentration (MDA8 O3) calculated as running the maximum continuous 8-hour data
is used to represent pollution level (Lei et al., 2019). Thus, we used the daily aver-
age PM2.5 and MDA8 O3 specifically in Figures 2 and 3 in the manuscript. We are
sorry that the validity of the observation data is not clear. The observation data from
CPCB has been through quality assurance or quality control programs by establishing
strict procedures for sampling, analysis, and calibration before publication (Gurjar et
al., 2016). Thus, studies usually use the data directly. In this study, we made additional
checks to screen out outliers. For example, a cut-off value of 40 ppb was applied to
hourly O3 based on EPA’s recommendations (EPA, 2005). For PM2.5, abnormally high
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values of greater than 300 µg m-3 were excluded. These explanations were added in
different parts of the revised manuscript. Changes in manuscript: Methodology (Lines
82-83 in the revision): “The CPCB database provides data quality assurance (QA) or
quality control (QC) programs by establishing strict procedures for sampling, analysis,
and calibration (Gurjar et al., 2016).” Results and discussion (Lines 150-153 in the
revision): “For PM2.5, the averaged mean fractional bias (MFB) (-0.48) and mean frac-
tional error (MFE) (0.61) values met the criteria limits of ±0.6 and 0.75 claimed by the
EPA (2007b) in all the five urban cites after excluding some abnormally high values of
greater than 300 µg m-3. For O3, a cut-off value of 40 ppb is applied, which is based
on EPA’s recommendations (EPA, 2005).”

Comments: Also they should discuss whether data from 5 cities are adequate to make
inferences about all of India with same degree of confidence which spans vast rural
and countryside regions? It might be advisable to better focus on the 5 cities alone
for which they have the data and even there they should acknowledge how data from
one monitoring station may be limited for representing air quality of the entire city. In
fact, a combination of monitoring station data and satellite data (agreed also can have
issues but better than nothing) would be better. Response: Thanks for the comments.
First of all, we agree that 5 cities were maybe inadequate to evaluate the model for the
whole of India. However, it is an endless effort and impractical to monitor the whole
country. Focusing only on areas with observations is a safe idea, but not a promising
one. This actually is the advantage of modelling work and the merit of this study. Be-
sides, when we validate our simulated results in urban areas, we have the confidence
to investigate rural and countryside regions. The modelling work is not only to repro-
duce what has been observed but more importantly to investigate what is not been
observed after enough validation. If the monitoring station can represent the entire
city is another good question for observation experts. In this study, the observation
data we compare with the predicted values are an average of multiple sites in each
city (Table 1 in the attached PDF file), which can represent the PM2.5 and O3 levels
of the entire city well. We also added more observations to make the results more

C6



representative in the revision (Fig. 1, Fig. 2). The model performed well at simulating
O3, PM2.5, CO, and NO2 in these major cities in India (Table 2 in the attached PDF
file). Thanks to the suggestion of using satellite, we compared model performance with
satellite observations (TROPOMI) for HCHO and NO2 (Fig. 3). The corresponding ex-
planatory statements were added in the Results and discussion section. Changes in
manuscript: Results and discussion (Lines 150-153 in the revision): “For PM2.5, the
averaged mean fractional bias (MFB) (-0.48) and mean fractional error (MFE) (0.61)
values met the criteria limits of ±0.6 and 0.75 claimed by the EPA (2007b) in all the five
urban cites after excluding some abnormally high values of greater than 300 µg m-3.
For O3, a cut-off value of 40 ppb is applied, which is based on EPA’s recommendations
(EPA, 2005).” Results and discussion(Lines 154-156 in the revision): “And averaged
MFB (-0.05) and MFE (0.25) values of O3 also satisfy the benchmarks of ±0.15 and
0.30 set by the EPA (2005) in most of these cities with Chennai and Hyderabad exceed-
ing the limits slightly.” Results and discussion (Lines 168-172 in the revision): “Overall,
sharp decreases are found in the observed PM2.5 in all these cities, and the averaged
PM2.5 level drops from 43.18 µg m-3 to 27.62 µg m-3. The mean observed PM2.5
concentrations during lockdown are 42.47 µg m-3 (Delhi), 24.53 µg m-3 (Mumbai),
15.73 µg m-3 (Chennai), 31.29 µg m-3 (Hyderabad), 24.08 µg m-3 (Bengaluru), which
are reduced by 41%, 40%, 42%, 10%, and 43% respectively compared with that of the
pre-lockdown period. Besides, the observed peak values of PM2.5 in each city also
decrease appreciably (up to 57%) during the lockdown period.” Results and discussion
(Lines 177-178 in the revision): “The observed average MDA8 O3 during lockdown is
higher than that of pre-lockdown in Delhi (2%), Hyderabad (12%), and Bengaluru (2%).”
Results and discussion (Lines 182-183 in the revision): “In contrast, the observed av-
erage MDA8 O3 during lockdown is reduced compared with the pre-lockdown period
in both Mumbai (-35%) and Chennai (-13%).” Methodology (Lines 85-89 in the revi-
sion): “The satellite-observed NO2 and formaldehyde (HCHO) column number density
datasets are from the Sentinel-5 Precursor TROPOspheric Monitoring Instrument (S-
5P TROPOMI) (https://scihub.copernicus.eu). Besides, we filter the satellite data under
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the recommended criteria of QA values greater than 75% for tropospheric NO2 column
number density datasets and 50% for HCHO (Apituley, 2018).” Results and discussion
(Lines 158-163 in the revision): “To further validate modeled HCHO and NO2, we com-
pared our simulated results with satellite-observed data during pre-lockdown and lock-
down periods (Fig. S1). The tropospheric column densities of NO2 and HCHO were
calculated by summing their concentrations of 17 vertical layers in the CMAQ model
(H. J. Eskes, 2020). The predicted regional distribution of tropospheric column NO2
and HCHO is similar to satellite-observations. Overall, HCHO and NO2 are higher in
eastern and northern India than in other regions. And their variation trends from CMAQ
and TROPOMI are consistent that NO2 decreases while HCHO increases during the
lockdown.”

Comments: Validation of model using 2 m level measured meteorological data: For
the kind of modelling investigation the authors are making namely, effect of emission
changes on concentrations of pollutants use of only the 2 m level observations with-
out comparison with satellite data, sonde data, mixing layer height data (see ERA5
products) seems to be a major shortcoming. Note that the changes in ventilation coef-
ficient before and during lockdown and the changing season (Spring to Summer) can
alone have big impacts on the concentrations. Response: Thanks for the referee’s
comments. The weather research and forecasting (WRF) ARW regional model is a
highâĂŘresolution meteorology model that is widely used in Indian studies (Gevor-
gyan, 2018; Srinivas et al., 2013; Chawla et al., 2018; Ashrit and Mohandas, 2010).
The capability of the WRF model has been validated for providing reliable meteoro-
logical inputs to air quality models even under extreme weather events (Zhang et al.,
2020; Stella and Agnihotri, 2015; Pattanaik and Rama Rao, 2009; Rajeevan et al.,
2010). In the manuscript, we validated the model performance of WRF using obser-
vation from the National Climate Data Center (NCDC). Although only the near-surface
meteorological factors are considered, our prediction also shows good performance
with the comparison of satellite data (NO2 and HCHO) (Fig. 3). As suggested by
the referee, the reanalysis-based ERA5 product produces global atmospheric quan-
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tities at 31-km horizontal resolution combining model simulations and observations.
However, there are uncertainties such as its high root-mean-square error values in
the tropical and subtropical climate zone so that the reliability and applicability of the
ERA5 dataset still need to be explored in India with a tropical monsoon climate (Jiang
et al., 2020; Kolluru et al., 2020). In follow-up studies, we will consider its application
to further validate the WRF model. As for the impacts of ventilation coefficient and
changing season, we added more analysis of the difference in meteorological condi-
tions between pre-lockdown and lockdown periods including temperature (T), relative
humidity (RH), planetary boundary layer (PBL) height, the average daily precipitation,
and wind fields in Fig. 4. The explanations about the impacts of these meteorological
conditions on Indian air quality are also added in the Results and discussion section.
Changes in manuscript: Results and discussion (Lines 199-203 in the revision): “Vari-
ations in near-surface meteorological factors during lockdown also play an important
role in PM2.5 changes. As is shown in Fig. S3, lower PM2.5 in urban areas dur-
ing lockdown (Fig. 4) may attribute to the decrease of RH and increase of planetary
boundary layer (PBL) height, while the decrease of precipitation and WS allows PM2.5
to accumulate in some rural areas (Schnell et al., 2018; Le et al., 2020).” Results
and discussion (Lines 207-211 in the revision): “Although significant reductions are
found in O3 precursor emissions throughout India during the lockdown, the MDA8 O3
has not shown comparable decreasing trends, which is affected by the meteorological
conditions such as an increase of temperature and decrease of RH (Fig. S3). Higher
temperature speeds up photochemical processes that produce O3, while higher RH re-
duces them (Chen et al., 2019; Zhao et al., 2017; Ali et al., 2012).” Conclusion (Lines
302-303 in the revision): “It can be concluded that meteorological conditions play an
important role in those increases according to the comparison between pre-lockdown
(Case 1), and lockdown (Case 2).”

Comments: Changes in atmospheric chemistry of primary pollutant removal and for-
mation of secondary pollutants: Currently the study tends to attribute all the observed
concentration changes in pollutants primarily to the emission reductions. However it

C9

has been documented elegantly in the following paper: Kroll, J.H., Heald, C.L., Cappa,
C.D. et al. The complex chemical effects of COVID-19 shutdowns on air quality. Nat.
Chem. 12, 777–779 (2020). https://doi.org/10.1038/s41557-020-0535-z, that several
other processes play a big role. The purpose of using a model should be that these
effects can be teased out through sensitivity experiments but unfortunately this has not
been addressed in current version of the manuscript. For example the authors note that
the temperature increased during the lockdown period. A key question is what effect
the temperature change and the reduced emission of VOCs (no VOC measurements
have been provided at all), NOx and CO would have on the removal rates of primary
pollutants and formation of secondary pollutants. Further have authors identified days
when it rained in both pre covid lockdown and during lockdown periods which would
cause strong biases for the comparisons. Response: We showed not only the impact
of emission reductions but also that the meteorology conditions and explained that the
specific chemical reactions can affect the change of pollutant concentrations. We also
added more comprehensive discussions about the effects of chemical processes in the
manuscript (see the Results and discussion section). We utilized the model to explore
the comprehensive effects of meteorology including the increased temperature on the
change of primary and secondary pollutants by comparing pre-lockdown (Case 1) and
lockdown (Case 2) rather than focusing on a single variable. We also investigated the
nonlinear relationship between emissions and atmospheric composition. For example,
Fig. 8 in the manuscript also showed the relative changes in concentrations of HCHO
and NOx and emissions of HCHO and NOx in eight major cities of India in Case 2 to
Case 1 and proved that the concentration of NOx is appreciably highly sensitive to a
primary NOx emission reduction compared with HCHO. In specific, though we can’t
obtain a reliable VOC observation dataset, the high correlation between HCHO and
the total VOCs is shown in Fig. 5 below, and HCHO has been further validated by
satellite-observations (Fig. 3). We also added discussion on the effects of variations
in precipitation during the lockdown on PM2.5 and MDA8 O3 changes in the Results
and discussion results. In addition to the regional change of precipitation shown in Fig.
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4, we also added the daily average precipitation figures in these 5 major cities from
February 21 to April 24, 2020 (Fig. 6 in the response). On average, the precipitation in
India is relatively low from the pre-lockdown to lockdown periods (lower than 1 mm for
each city). Although the few rainy days (such as March 5, 2020) may promote PM2.5
removal, generally, it has little impact on the comparison of overall air quality before
and during the lockdown. Changes in manuscript: Results and discussion (Lines 199-
203 in the revision): “Variations in near-surface meteorological factors during lockdown
also play an important role in PM2.5 changes. As is shown in Fig. S3, lower PM2.5
in urban areas during lockdown (Fig. 4) may attribute to the decrease of RH and in-
crease of planetary boundary layer (PBL) height, while the decrease of precipitation
and WS allows PM2.5 to accumulate in some rural areas (Schnell et al., 2018; Le et
al., 2020).” Results and discussion (Lines 241-242 in the revision): “Besides, the re-
duction of NOx may lead to an increase of SOA offsetting some of the influence caused
by the reduction in VOC emissions (Kroll et al., 2020).”

Comments: Existing inadequacies in VOC emission inventories and modelled ozone
simulations over India: While the authors are using pre lockdown and lockdown peri-
ods for comparison, it is a fact that of all emission inventories, VOC emissions are the
most poorly constrained due to the absence of in-situ VOC data over many regions
in India. A generic problem also seen is the tendency for overestimation of ozone
by models over the Indian region. This suggests that the basic reactant mixture and
chemistry are still inadequate for modelling ozone and secondary pollutant formation
accurately over India. So how can one be sure that the changed chemical mixture be-
tween pre-lockdown and during lockdown are not skewed by these gaps in our basic
undertanding? While it would be unfair to hold the authors to solve all these issues, one
does expect that the limitations and existing issues are duly acknowledged in the work
instead of making highly speculative and prescriptive measures for air quality mitiga-
tion based on such modelling results. Response: Thanks for pointing out this. We also
acknowledge that there are still many limitations and deficiencies in the VOC emission
inventories, and the simulation of O3 is usually over-estimated (Kota et al., 2018; Hu et
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al., 2015). Much more needs to be done regarding emissions and chemical reactions
to better simulate O3 in India. But there is no denying that the simulation results of
this model are acceptable compared with the standards recommended by EPA (EPA,
2005, 2007a). In the future, we will continuously apply new information to improve our
modelling results once they are available. Changes in manuscript: Results and dis-
cussion (Lines 163-164 in the revision): “We also acknowledge that the uncertainty of
emission inventory and chemical mechanism in the modelling may affect the simulated
results (Dominutti et al., 2020; Kitayama et al., 2019).” Comments: Use of formaldehye
for constraining VOC emissions where a large number of more reactive primary VOC
emissions occur should also be discussed and clarified. Trusting the formaldehye from
the model in absence of in-situ formaldehye measurements to compare with or even
satellite or columnar measurements which have been reported from India is recom-
mended. Response: As one of the most abundant oxygenated VOCs, HCHO is one
of the major contributors to total VOCs reactivity (Zhang et al., 2012; Steiner et al.,
2008). Therefore, it is used to show the model performance on VOCs due to the lack
of VOCs observations. Figure 5 shows scatter plots comparing the simulated average
daily HCHO and the total VOCs at all 117×117 grids during the study period. It can be
seen from the results that HCHO has a high correlation with VOCs, and R2 reaches
0.93. We also compared the simulated HCHO and NO2 with satellite observations
(TROPOMI) to further verify the model (Fig. 3). Changes in manuscript: Methodology
(Lines 85-89 in the revision): “The satellite-observed NO2 and formaldehyde (HCHO)
column number density datasets are from the Sentinel-5 Precursor TROPOspheric
Monitoring Instrument (S-5P TROPOMI) (https://scihub.copernicus.eu). Besides, we
filter the satellite data under the recommended criteria of QA values greater than 75%
for tropospheric NO2 column number density datasets and 50% for HCHO (Apituley,
2018).” Results and discussion (Lines 158-163 in the revision): “To further validate
modeled HCHO and NO2, we compared our simulated results with satellite-observed
data during pre-lockdown and lockdown periods (Fig. S1). The tropospheric column
densities of NO2 and HCHO were calculated by summing their concentrations of 17
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vertical layers in the CMAQ model (H. J. Eskes, 2020). The predicted regional distribu-
tion of tropospheric column NO2 and HCHO is similar to satellite-observations. Overall,
HCHO and NO2 are higher in eastern and northern India than in other regions. And
their variation trends from CMAQ and TROPOMI are consistent that NO2 decreases
while HCHO increases during the lockdown.”

Comments: Are benzene and toluene data available from the monitoring stations which
could be included in the analyses? If so these should also be included in view of their
health and SOA formation potential. Response: Thanks for the referee’s comments.
The available observational data for benzene and toluene from the CPCB dataset is ex-
tremely limited. For example, Chennai does not have a single monitoring site to provide
its hourly observations. In the model simulation, the EDGAR emission inventory does
not provide a separate benzene emission and toluene is lumped into ARO1 species in
the SAPRC-11 photochemical mechanism (Carter, 2011; Hu et al., 2016). So it is a
pity that the observation of benzene and toluene cannot be compared with the model
simulation. Besides, our study is not focused on health risks or their specific impact on
SOA formation, but on the impact of anthropogenic emission reductions on major air
pollutants during the lockdown. Changes in manuscript: No changes were made for
this point.

Comments: Choice of scaling factors for emission reductions: The authors make sev-
eral assumptions and justification for the use of scaling factors for emissions which are
valid (see Equations 1 and 2). For example: Ammonia agricultural emissions: Sev-
eral satellite studies have indicated high ammonia emissions from agriculture and a
recent by G.K. Singh, P. Rajeev, D. Paul, et al., Chemical characterization and stable
nitrogen isotope composition of nitrogenous component of ambient aerosols, Science
of the Total Environment, https://doi.org/10.1016/j.scitotenv.2020.143032 showed that
agriculture activities and waste generation are major sources of ammonia. The as-
sumption by the authors that the agricultural emissions do not change between pre-
lockdown and during lockdown is not valid for large parts of the India in particular the
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Indo-Gangetic Plain because during the pre-lockdown dates farmers were still applying
fertilizers to the wheat crops, whereas by last week of March this completely stops. So
infact the ammonia and hence ammonium ion source from agriculture is likely stronger
in pre-lockdown period and so cannot be treated as constant between both periods.
As ammonia is such an important emission for PM2.5 too, this has large implications
for the inferences currently drawn by the authors. Response: Thanks for the helpful
suggestion from the referee. However, due to the data limitation, we cannot calculate
a specific emission reduction ratio for agriculture due to the lockdown on a regional
scale. As long as we can get more information, we will further refine the proportion of
emission reduction in the lockdown in the follow-up study. Changes in manuscript: No
changes were made for this point.

Comments: Ozone production sensitivity indicator: The use of HCHO/NO2 as based
on Silman et al 1995 which the authors cite cannot be applied blindly because as noted
by the original authors (Silman and He in their JGR paper in 2002) is suitable only for
ambient ozone mixing ratios in the range of 80-200 ppb and then again for columns
retrieved using satellite data. For ground based data, more robust proxies would be
H2O2/ HNO3 or even O3/NOy. Response: Thanks for the referee’s comments. As
shown in Fig. 7, we change the indicator of O3 sensitivity to NOx and VOCs into
O3/NOy and Sillman (1995) suggested the transition value that separate NOx-sensitive
and VOC-sensitive locations (O3/NOy= 6-8). According to the value, we can find the
most Indian region is NOx-sensitive and the VOC-limited and transition regimes expand
during the lockdown because of the reduction of anthropogenic emissions. Changes
in manuscript: Results and discussion (Lines 275-280 in the revision): “Figure S5
shows the O3 production sensitivity (O3/NOy) in India during the lockdown, which is
considered as an indicator of O3 sensitivity to NOx and VOCs (Sillman, 1995; Sillman
and He, 2002). In India, NOx-limited regimes (O3/NOy > 8) are found in vast areas from
both Case 1 and Case 2, which was also reported in previous studies (Mahajan et al.,
2015). Compared to Case 1, the VOC-limited area (O3/NOy < 6) expands mainly in the
northwest and south of India from Case 2 during the lockdown. The transition regimes
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(6< O3/NOy < 8) that O3 formation is controlled by both NOx and VOC emissions in
the vicinity of the VOC-limited regions.”

Comments: In the absence of measured VOC data presented by the authors to val-
idate their model VOC data (note there are no measurements of HCHO presented),
the authors should remove this discussion completely or present for each city site
the high resolution O3 Vs NOx data from daytime for pre and during lockdown pe-
riods. Response: As shown in responses to previous comments, we compared the
simulated HCHO with satellite observations (TROPOMI) to further verify the model
(Fig. 3). We believe that the discussion is useful to readers, and we acknowl-
edged that more studies are needed to better illustrate the relationship between O3,
VOCs, and NOx. Changes in manuscript: Methodology (Lines 85-89 in the revi-
sion): “The satellite-observed NO2 and formaldehyde (HCHO) column number density
datasets are from the Sentinel-5 Precursor TROPOspheric Monitoring Instrument (S-
5P TROPOMI) (https://scihub.copernicus.eu). Besides, we filter the satellite data under
the recommended criteria of QA values greater than 75% for tropospheric NO2 column
number density datasets and 50% for HCHO (Apituley, 2018).” Results and discussion
(Lines 158-163 in the revision): “To further validate modeled HCHO and NO2, we com-
pared our simulated results with satellite-observed data during pre-lockdown and lock-
down periods (Fig. S1). The tropospheric column densities of NO2 and HCHO were
calculated by summing their concentrations of 17 vertical layers in the CMAQ model
(H. J. Eskes, 2020). The predicted regional distribution of tropospheric column NO2
and HCHO is similar to satellite-observations. Overall, HCHO and NO2 are higher in
eastern and northern India than in other regions. And their variation trends from CMAQ
and TROPOMI are consistent that NO2 decreases while HCHO increases during the
lockdown.”

Comments: In several instances, the grammar and language also need to be cor-
rected. I recommend the authors to consider the above major concerns to revise and
improve the manuscript. Response: As suggested, we made corresponding changes
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and improved the grammar and language in the revised manuscript.

Please also note the supplement to this comment:
https://acp.copernicus.org/preprints/acp-2020-903/acp-2020-903-AC3-supplement.pdf

Interactive comment on Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-903,
2020.
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Fig. 5.

C21

Fig. 6.

C22



Fig. 7.

C23


