

- 1 Dynamic Processes Dominating Ozone Variability in
- ² Warm Seasons of 2014–2018 over the Yangtze River

³ Delta Region, China

- 4 Da Gao¹, Min Xie^{1*}, Jane Liu^{2,3}, Tijian Wang¹, Chaoqun Ma^{1,a}, Haokun Bai¹, Xing Chen¹
- 5 ¹ School of Atmospheric Sciences, Joint Center for Atmospheric Radar Research of CMA/NJU,
- 6 CMA-NJU Joint Laboratory for Climate Prediction Studies, Jiangsu Collaborative Innovation
- 7 Center for Climate Change, Nanjing University, Nanjing 210023, China
- 8 ²College of Geographic Sciences, Fujian Normal University, Fuzhou 350007, China
- 9 ³ Department of Geography and Planning, University of Toronto M5S 3G3, Canada
- 10 a now at: Minerva Research Group, Max Planck Institute for Chemistry, Mainz, Germany
- 11 -----
- 12 * Corresponding author. School of Atmospheric Sciences, Nanjing University, Nanjing 210023,
- 13 China. minxie@nju.edu.cn (M. Xie)
- 14

15 Abstract: Ozone (O₃) pollution is of great concern in the Yangtze River Delta (YRD) region of China, and the regional O₃ pollution is closely associated with dominant weather systems. With a 16 17 focus on the warm seasons (April-September) from 2014 to 2018, we quantitatively analyze the 18 characteristics of O₃ variations over the YRD, the impacts of large-scale and synoptic-scale 19 circulations on the variations and the associated meteorological controlling factors, based on 20 observed ground-level O₃ and meteorological data. Our analysis suggests an increasing trend of 21 the regional mean O_3 concentration in the YRD at 1.81 ppb per year over 2014-2018. Spatially, the 22 empirical orthogonal function (EOF) analysis suggests the dominant mode accounting for 65.70% 23 variation in O_3 , implying that an increase in O_3 is the dominant tendency in the entire YRD. 24 Meteorology is estimated to increase the regional mean O_3 concentration by 2.81 ppb at most from 25 2014 to 2018. Relative humidity is found to be the most influential meteorological factor 26 impacting O₃ concentration. As the atmospheric circulation can affect local meteorological factors 27 and O₃ levels, we identify five dominant synoptic weather patterns (SWPs) in the warm seasons in 28 the YRD using the t-mode principal component analysis (PTT) classification. The typical weather 29 systems of SWPs include western Pacific Subtropical High (WPSH) under SWP1, a continental Page 1 of 30

30 high under SWP2, an extratropical cyclone under SWP3, a southern low pressure and WPSH 31 under SWP4 and the north China anticyclone under SWP5. The annual variations of all five SWPs are favorable to the increase in O3 concentrations over 2014-2018. Moreover, the change in SWP 32 33 intensity contributes more to the O_3 inter-annual variation than the SWP frequency change. The 34 SWP intensity change includes the weakening and northward-extending of the western Pacific subtropical high (WPSH) under SWP1, the weakening of the continental high under SWP2, an 35 extratropical cyclone strengthening under SWP3, the southern low pressure weakening and WPSH 36 37 weakening under SWP4, and the north China anticyclone weakening under SWP5. All these 38 changes prevent the water vapor in the southern sea from being transported to the YRD, and increase air temperature in the YRD. In addition, the descending motions strengthen in the YRD 39 40 located behind the trough and in front of the ridge due to the strengthening of the ridge and trough 41 in the westerlies. Then, the strengthened descending motion leads to less cloud cover and strong 42 solar radiation, which are favorable to O_3 formation and accumulation. Finally, we reconstruct an 43 EOF mode 1 time series that shows high correlation with the original O_3 time series, and the 44 reconstructed time series performs well in defining the change in SWP intensity according to the 45 unique feature under each of the SWPs.

46

47 1. Introduction

48 As an air pollutant, surface ozone (O_3) is harmful to human health and vegetation growth, such 49 as damaging human lungs (Jerrett et al. 2009; Day et al. 2017) and destroying forest and 50 agricultural crops (Yue et al. 2017). In recent years, after reducing the emissions following "Thirteenth Five-Year Plan" Comprehensive Work Plan for Energy Saving and Emission 51 Reduction since 2016, concentrations of many pollutants have decreased over the past few years 52 53 in China, but not for O₃. Furthermore, heavy O₃ pollutions occur more frequently and more 54 severely in China than those in Japan, South Korea, Europe and the United States (Lu et al. 2018). 55 Li et al. (2018) proposed that the rapid decrease of fine particulate matter (PM) in China is a 56 reason for such O_3 increase by slowing down the aerosol sink of hydro-preoxy radicals. Yet, the 57 contribution of meteorological factors to the O3 increase is unclear. 58 Surface O_3 is mainly formed through complex and nonlinear photochemical reactions of

59 volatile organic compounds (VOCs) and nitrogen oxides (NOx) exposed to the sunlight. Ozone Page 2 of 30

60 formation is sensitive to concentrations of NOx and VOCs, i.e., O₃ formation can be NOx-limited 61 or VOC-limited regimes depending on concentrations of NO_x and VOCs (Xie et al. 2014; Jin and 62 Holloway 2015). Meteorology could also affect O₃ levels through modulation of photochemical 63 reactions, advection, convection and turbulent transport, as well as dry and wet depositions (Liu et 64 al. 2013). Synoptic weather patterns (SWPs) and the associated meteorological conditions can 65 impact long-term and daily O3 variations. Understanding the mechanisms of meteorological influences on O3 variations and quantifying such influences would help provide effective 66 emission-controlling plans for O₃ pollution. 67

68 Severe O₃ pollution episodes are accompanied with specific local meteorological conditions, such as high temperature, strong solar radiation, drying condition and stagnant weather (Jacob and 69 70 Winner 2009; Doherty et al. 2013; Pu et al. 2017; Zhang et al. 2018). Moreover, local 71 meteorological conditions are often related to specific synoptic-scale and large-scale atmospheric 72 circulation systems. For example, O₃ pollution in the eastern United States is notably influenced 73 by the cyclone frequency (Leibensperger et al. 2008), latitude of the polar jet over eastern North 74 America (Barnes and Fiore. 2013) and the behavior of the quasi-permanent Bermuda High (Fiore 75 et al. 2003, Wang et al. 2016). In China, Yang et al. (2014) illustrated that the changes in 76 meteorological parameters, associated with the East Asian summer monsoon, lead to 2-5 % 77 inter-annual variations in surface O₃ concentrations over the central-eastern China. Zhao and 78 Wang et al. (2017) found that a significantly strong western Pacific subtropical high (WPSH) 79 could result in higher relative humidity (RH), more clouds, more rainfall, and less ultraviolet 80 radiation, finally leading to less O₃ formation. Using model simulation, Shu et al. (2016) 81 investigated the synergistical impact of the WPSH and typhoon on O3 level in Yangtze River Delta 82 region.

As known, a region is influenced by different weather systems. Weather classification, as a way to distinguish the different large-scale and synoptic-scale atmospheric circulation systems, is widely used in exploring connections between weather patterns and O₃ levels (Han et al. 2020; Gao et al. 2020). Gao et al. (2020) discussed influences of SWPs on O₃ levels, and revealed differences in O₃ pollution levels due to the minor changes in atmospheric circulations. However, spatially, it is uncertain that how the change in SWPs could lead to O₃ pollution in detail,

especially in the YRD. For the northern China and the PRD region, Liu et al. (2019) quantified the impact of synoptic circulation patterns on O₃ variability in the northern China from April to October during 2013–2017. Yang et al. (2019) quantitatively assessed the impacts of meteorological factors and the precursor emissions on the long-term trend of ambient O₃ over the PRD region. Yet, whether variations in SWPs can lead to O₃ increases has not be sufficiently addressed.

95 Due to the ever-growing O3 level in the YRD (Tong et al. 2017; Gao et al. 2017), the studies on characteristics of O_3 variation and the underlying mechanisms for the variation are urgently 96 97 required. To this end, here the O₃ variations in space and time, as well as 5-year trend, in the YRD is quantitatively investigated, and the mechanisms of meteorological influences on the O3 98 99 variations are analyzed. Especially, the characteristics of the corresponding SWPs are discussed in 100 detailed. The remainder of this paper is organized as follows. Data and methods are introduced in 101 section 2. The inter-annual variation and 5-year trend and spatial variation characteristics are 102 illustrated in section 3.1. The impact of meteorological factors on the O_3 variation is discussed in 103 section 3.2. The main SWPs and the effects of their change on the O₃ variation are described in section 3.3. Section 3.4 discusses the contributions of the SWP intensity and frequency change to 104 105 the inter-annual variation and trend of O_3 . Finally, the conclusion and discussions are shown in 106 section 4.

107

108 **2. Data and methods**

109 2.1. O₃ and meteorological datasets

110 The maximum daily 8-hours average O_3 data are available from the National Environmental 111 Monitoring Center of China, which were acquired from the air quality real-time publishing platform (http://106.37.208.233:20035). The hourly observation data of meteorological factors 112 113 including air temperature (T), RH, wind speed (WS) and sunshine duration (SD) in the warm 114 seasons from April to September over 2014-2018 were acquired from the National Meteorological 115 Center of China Meteorological Administration (http://eng.nmc.cn). 26 cities are selected as 116 typical cities representative of the YRD according to the "Urban agglomeration on Yangtze River 117 Delta" approved by China's State Council in 2016. In this paper, the term "O₃ concentration" 118 refers to the maximum daily 8-hours average O3 concentration unless stated otherwise.

119

120 2.2. Linear trend analyses

In order to characterize the O3 variation in the warm seasons during 2014-2018 over the 121 122 YRD, a linear trend method based on monthly anomalies is used (see Equation 1), which has been 123 widely used to calculate the trends of time series with seasonal cycles and autocorrelation. The O_3 124 monthly anomalies are more precise than O₃ monthly means because of the reducing impact of 125 missing data. Using this method, Cooper et al. (2020) and Lu et al. (2020) quantified the O3 trend 126 in 27 globally distributed remote locations and the whole China. In addition, anomalies of monthly 127 average O₃ concentration are defined as the difference between the individual monthly mean and 128 the monthly mean of 2014-2018. The parametric linear trend is calculated by using the 129 generalized least-squares method with auto-regression.

130
$$y_t = b + kt + \alpha \cos\left(\frac{2\pi M}{6}\right) + \beta \sin\left(\frac{2\pi M}{6}\right) + R_t$$
 (1)

131 where y_t represents the monthly anomaly, t is the monthly index from April to September 132 during 2014–2018, b denotes the intercept, k is the linear trend, α and β are coefficients for a 133 6-month harmonic series (M ranges from 1 to 6) which is used to account for potentially 134 remaining seasonal signals, and R_t represents a normal random error series.

135

136 2.3. Meteorological adjustment

137 The meteorological adjustment, a statistical method, is applied to quantify the impact of 138 meteorology on O_3 variation through removing such impact in the original O_3 data. It is similar to 139 a model simulation that keeps the emission levels fixed but allows meteorology to vary. Yet, this 140 method requires much less computing resources than a model simulation. The method is 141 introduced in detail as follows.

In the meteorological adjustment, the observed O₃ and meteorological data are separated into
long-term, seasonal, and short-term data (Rao and Zurbenko 1994a, b). The
Kolmogorov-Zurbenko (KZ) filter can be expressed as follows.

145 R(t) = L(t) + S(t) + W(t) (2),

146 where R(t) represents the raw time series data, L(t) the long-term trend on a timescale of years,

147 S(t) the seasonal variation on a timescale of months, and W(t) the short-term component on a

- timescale of days.
- 149 In order to remove the high-pass signal, the KZ filter carries out p times of iterations of a
- 150 moving average with the window length *m*, which is defined as
- 151 $Y_i = \frac{1}{m} \sum_{j=-k}^{k} R_{i+j}$ (3)

where *R* is the original time series, *i* an index for the time of iteration, *j* an index for sampling inside the window, and *k* the number of sampling on one side of the window. The window length m = 2k + 1. *Y* is the input time series after one iteration. Different scales of motions are obtained by changing the window length and the number of iterations (Milanchus et al. 1998; Eskridge et al. 1997). The filter periods of less than *N* days can be calculated with window length *m* and the number of iteration *p*, as follows:

$$158 \qquad \mathbf{m} \times p^{\frac{1}{2}} \le N \qquad (4).$$

159 Therefore, the cycles of 33 days can be removed by a KZ (15, 5) filter with the window length of

- 160 15 and 5 iterations. In the following equation 5, BL(t) is the O_3 and meteorological time series
- 161 obtained by KZ(15,5) filter and refers to their baseline variations which are the sum of the long
- 162 term L(t) and the seasonal component S(t)..
- 163 $BL(t) = KZ_{(15,5)} = L(t) + S(t) = KZ_{(183,3)} + S(t)$ (5).
- 164 The long-term trend is separated from the raw data obtained by KZ (183, 3) with the periods of >
- 165 632 days, and then the seasonal and the short-term component W(t) can be defined as

166
$$S(t) = KZ_{(15,5)} - KZ_{(183,3)}$$
 (6),

167
$$W(t) = X(t) - BL(t) = X(t) - KZ_{(15,5)}$$
 (7)

168 After KZ filtering, the meteorological adjustment is conducted by the multivariate regression

- 169 between the O₃ concentration and meteorological factors such as T, RH, wind speed and sunshine
- 170 duration (Wise and Comrie 2005; Papanastasiou et al. 2012).
- 171 $A_{BL}(t) = a_{BL} + \sum b_{BLi} \cdot M_{BLi} + \epsilon_{BL}(t)$ (8),
- 172 $A_W(t) = a_W + \sum b_{Wi} \cdot M_{Wi} + \epsilon_W(t)$ (9),

173
$$\epsilon(t) = \epsilon_{BL}(t) + \epsilon_W(t)$$
 (10)

174
$$A_{ad}(t) = \epsilon(t) + \sum b_{BLi} \cdot M_{BLi} + \sum b_{Wi} \cdot M_{Wi} + a_{BL} + a_W$$
(11).

175 the multivariate regression models between baseline and short-term O₃ and meteorological factors

176 are shown in equations 8 and 9. The $A_{BL}(t)$ and M_{BLi} represent the sum of the long term L(t) Page 6 of 30

- 177 and the seasonal component S(t) of O₃ concentration and meteorological factors. The $A_W(t)$ and 178 M_{Wi} represent the short-term W(t) of O₃ concentration and meteorological factors. The a and b are the fitted parameters, and i is time point (days). $\epsilon(t)$ is the residual term. The average 179 180 meteorological condition \overline{M} at the same calendar date during the 5 years is regarded as the base 181 condition for that date, and the meteorological adjustment is conducted against the base condition. 182 By these steps, $A_{ad}(t)$ refers to the meteorologically adjusted O₃ variation with the homogenized 183 annual variation in meteorological conditions. The difference between raw O3 time series and $A_{ad}(t)$ represents the meteorological impact. 184
- 185

186 2.4. Classification of SWPs

187 In order to find the detailed variation characteristics of SWPs, we first extract the 188 predominant SWPs in the warm seasons over the YRD using a weather classification method. 189 Common objective classification methods include using predefined type, the leader algorithm, the 190 cluster analysis, optimization algorithms and eigenvectors (Philipp et al. 2016). The PTT method, 191 a simplified variant of t-mode principal component analysis using orthogonal rotation, is used to classify SWPs during 2014-2018. It is one of the methods for weather classification in European 192 193 Cooperation in Science and Technology Action 733 (Philipp et al. 2016), which is widely used in 194 atmospheric sciences (Hou et al. 2019).

195

196 2.5. FNL and ERA-Interim meteorological data

197 The National Center for Environmental Prediction Final Operational Global Analysis (FNL) 198 data (http://rda.ucar.edu/datasets/ds083.2/) produced by the Global Data Assimilation System are 199 used in classifying SWPs and analyzing atmospheric circulations. The data have a horizontal resolution of 2.5 °×2.5 °, with 144×73 horizontal grids available every 6 hours. From the near 200 201 surface layer to 10 hPa, there are 17 pressure levels in the vertical direction. The data of the 202 geopotential height and wind at 500 hPa and 850 hPa, the vertical wind (Ω) , T and RH are used in 203 this study. At the same time, the total cloud cover (TCC) and solar radiation (SR) from 204 ERA-interim are supplemented in this study, which have the same temporal and spatial resolutions 205 as the FNL data.

- 206 The FNL geopotential height field at 850 hPa can capture the synoptic circulation variations
- 207 over the YRD well (Shu et al. 2017). In this study, we use the geopotential height at 850 hPa from
- 208 April to September during 2014–2018 as the input for the PTT.
- 209

210 2.6. Reconstruction of O₃ concentration based on SWP

To quantify the inter-annual variability captured by the variations (frequency and intensity) in the synoptic weather patterns, Yaranl (1992) provided an algorithm to find the contribution of SWP frequency variation to the inter-annual O₃ variation. The specific calculation is as follows.

214
$$\overline{O_{3m}}(fre) = \sum_{k=1}^{6} \overline{O_{3k}} F_{km}$$
(12),

where $\overline{O_{3m}}(fre)$ is the reconstructed mean O₃ concentration influenced by the frequency variation in SWPs from April to September for year m, $\overline{O_{3k}}$ is the 5-year mean O₃ concentration for SWP k, and F_{km} is the occurrence frequency of SWP k during April–September for year m.

Hegarty et al. (2007) suggested that changes in the SWP include both frequency change and
intensity change. The intensity of SWPs represents the location and strength of the weather system.
Moreover, they noted that the environmental and climate-related contributions to the inter-annual
variations of O₃ could be better separated by considering these two changes. So, Equation12 is
modified into the following form.

223
$$\overline{O_{3m}}(fre + int) = \sum_{k=1}^{6} (\overline{O_{3k}} + \Delta O_{3km}) F_{km}$$
(13)

224 where $\overline{O_{3m}}(fre + int)$ is the reconstructed average O₃ concentration influenced by the 225 frequency and intensity changes of SWPs from April to September for year m; ΔO_{3km} is the 226 modified difference on the fitting line, which is obtained through a linear fitting of the annual O_3 concentration anomalies (ΔO_3) to the SWP intensity index (SWPII) for SWP k in year m. ΔO_{3km} 227 228 represents the part of the annual observed O₃ oscillation caused by the intensity variation in each 229 SWP. Hegarty et al. (2007) used the domain averaged sea level pressure to represent the 230 circulation intensity index (CII). Liu et al. (2019) reconstructed the inter-annual O3 level in the 231 northern China using the center pressure of the lowest pressure system. But we find the intensity 232 variation in each SWP is different when O_3 increases. So we select different SWPII under each 233 pattern according to the characteristics of high O₃ concentration. Lastly, we select the maximum 234 height in zone-1 (25 N-40 N, 110 E-130 E), the maximum height in zone-2 (20 N-50 N,

- 235 90 E-140 E) and the mean height in zone-3 (10 N-40 N, 110 E-130 E). Detailed demonstration
- is introduced in section 3.5.
- 237
- 238 3. Results and discussion
- 239 3.1. Spatio-temporal variations of O₃ in the YRD region
- 240 3.1.1. Inter-annual variations of O₃

241 Fig. 1a shows the time series of the anomalies of the monthly mean O3 concentration over the YRD from April to September during 2014–2018, as well as the corresponding linear fitting curve. 242 Figure 1b shows the annual variation in the total number of days with O₃ concentration exceeding 243 the national standard during the period. As shown in Fig. 1a, the monthly mean O3 concentration 244 245 in the warm seasons increases over 2014-2018, reaching the maximum of 37.44 ppb in 2017 and maintaining at a high level in 2018. Specifically, O₃ concentration in the YRD shows a large 246 increasing trend of 1.81 ppb (5.21%) per year, which is slightly higher than that in the entire China 247 248 (5.00% per year, Lu et al. 2020). Meanwhile, the annual average days with O₃ exceeding the standard also show an increasing trend, reaching a peak in 2017 and maintaining at a high level in 249 250 2018. In all, both means and extremes of O3 concentration have increased over the YRD.

251

Fig. 1. (a) Anomalies of monthly average O₃ concentration from April to September during 2014–2018. The purple solid line represents the linear fitted curve, and the color number represents the annual (April–September) mean of O₃ concentration. (b) Annual (April–September) variation in the days with O₃ exceeding the national standard.

257

252

258 **3.1.2.** Characteristics of O₃ variability based on the EOF analysis

259	In order to further discuss the spatio-temporal distribution characteristics of the observed O ₃
260	concentration, the EOF approach is used to uncover the relationship between the spatial
261	distribution and temporal variation. By removing the missing data for 17 days, O_3 concentrations
262	in 898 days are processed. The percentages of variance contribution for the first three patterns are
263	65.70 %, 13.80 % and 9.10 %, respectively. The significance tests of the EOF eigenvalue confirm
264	that the first three patterns are significantly separated. Approximately 88.60 % of the variability in
265	the original data is contained in these three patterns. In the first EOF pattern (EOF1), the observed
266	O_3 over the YRD changes similarly and the center of the variation is located in the middle of the
267	YRD (Fig. 2a). As shown in Fig. 2b, the time series of EOF1 presents a decreasing trend and
268	shows a high negative correlation with the time series of O_3 (R = -0.93). Therefore, to some extent
269	the EOF1 time series variation can represent the daily mean O3 variation during these periods.
270	Considering the negative values in EOF1, the EOF1 time series implies an increasing trend of
271	regional mean O_3 concentration. In addition, the relationships between the time series of EOF1
272	and different weather systems, as well as the meteorological factors have been investigated.
273	Weather systems include the WPSH and the East Asian summer monsoon, which are dominant
274	weather systems affecting the YRD. Both of them show a poor correlation with the EOF1 time
275	series ($R_{WPSH} = 0.13$ and $R_{EASM} = 0.04$). It indicates that the daily O_3 variation is too complex to
276	be comprehensively explained through the change in a single weather system. Furthermore, the
277	RH presents a good correlation with the EOF1 time series ($R = 0.59$). Han et al. (2020) also found
278	that RH is the most important factor affecting O_3 in the YRD. However, it is still unclear how the
279	change in different weather systems causes the variation in RH, and how the RH variation impacts
280	the other meteorological factors and O ₃ accumulation.
281	In the second EOF pattern (EOF2), there is obvious east-west contrast. In contrast, the third

In the second EOF pattern (EOF2), there is obvious east-west contrast. In contrast, the third EOF (EOF3) pattern presents a notable south-north contrast. At the same time, the increasing trend of EOF2 time series and the decreasing trend of EOF3 time series indicate that O_3 concentrations in the west and northwest have risen from 2014 to 2018. It implies that a higher rate of O_3 increasing would occur in the northwest. As known, the variance contribution of EOF1 is 65.70 % that is greater than EOF2 (13.80 %) and EOF3 (9.10 %). Therefore, the O_3 increasing in the whole YRD region is the main trend.

Fig. 2. Three EOF patterns of O₃ concentration in the warm seasons from 2014 to 2018, including the spatial pattern (a, c and e) and time coefficient (b, d and f). The percentage in panels (a, c and e) is the variance contribution of each EOF mode. The orange dash line in panels (b, d and f) represents the linear fitted curve.

296

297 **3.2.** Effects of meteorological conditions on O₃ concentration over the YRD region

298 **3.2.1. Quantifying the effects of meteorological conditions**

With the primary pollutant emission being cut down, the O_3 increase might be affected by a variety of factors, one of which was suggested to be the slowing down sink of hydroperoxy radicals, related to the variation in PM_{2.5} (Li et al. 2019). Yet, it is uncertain how meteorological conditions influence this increasing trend. Yang et al. (2019) quantified the meteorological impact on O_3 variation over the Pearl River Delta region using the meteorological adjustment. Similarly

304	to the methodology in Yang et al. (2019), we investigate the ozone increase over the YRD in the
305	warm seasons during 2014–2018. Fig. 3a shows the ambient O_3 variation from 2014 to 2018: i.e.
306	O_3 concentration increases form 2014, reaches the maximum in 2017, and maintains at a relatively
307	high level in 2018. After the meteorological adjustment, the increasing magnitude is lower than
308	the original one, implying that if the meteorological conditions remained unchanged over the 5
309	years, the increasing magnitude of ambient O_3 concentration would be lower. The meteorological
310	impact can be examined from the difference between the black solid and dashed lines in Fig. 3a.
311	We focus on periods from the middle of 2014 to the middle of 2018 when the difference is
312	negatively from the middle of 2014 to the middle of 2016 and positively large from middle of
313	2016 to the meddle of 2018. In 2017, the meteorological conditions increase the O_3 concentration
314	by about 1.20 ppb. However, in 2015, the meteorological conditions become unfavorable to the O_3
315	accumulation, leading to an O ₃ reduction of 1.10 ppb. The meteorological conditions changed the
316	O_{3} concentration by 2.81 ppb between the most favorable year (2017) and the most unfavorable
317	year (2015), which roughly corresponds to 9.62% $\left(\frac{max(ME0\ imapct) - min(ME0\ impact)}{03(5\ year\ average)}\right)$ of the
318	annual O ₃ concentration.

319 In addition, we select the most influential meteorological factors to discuss their impact on 320 O3 variation, including T, RH, sunshine duration and wind speed. As shown in Fig. 3b, RH is the 321 most crucial factor and its variation is similar to the variation in the total meteorological impact. 322 Han et al. (2020) also found that RH is the most influential factor in the central and south parts of 323 eastern China. The East Asian summer monsoon plays a key role in affecting the local RH, and meanwhile it might bring a certain amount of O3 from the south area. However, O3 concentration 324 325 is highly negatively related to RH, which implies that the local chemical reaction might contribute 326 more to the O3 accumulation than the regional transport. The contributions of the other three 327 factors are relatively insignificant.

Fig. 3. (a) 5-year trends of ambient O₃ (solid black line), meteorological adjusted O₃ (dashed black line), and the meteorological impact (pink line) over the YRD during 2014–2018. Periods with positive and negative meteorological impacts are shaded with red and green, respectively; red and green bars represent the O₃ increasing and decreasing caused by meteorological conditions in each year. (b) 5-year variations in the meteorological impact of different meteorological factors (MER), including relative humidity (RH), sunshine duration (SR), air temperature (T2) and wind speed (WP).

337

338 **3.3. Dynamic processes of** O₃ variation driven by synoptic circulations

339 As discussed in section 3.2, the local meteorological factors have a great impact on the O₃ 340 variation. However, to some extent, the variation in local meteorological factors is largely affected 341 by the synoptic-scale weather circulations (Leibensperger et al. 2008; Fiore et al. 2003; Wang et al. 342 2016). For example, in summer the YRD is under a hot-wet environment controlled by the WPSH. 343 While in winter it is under a cold-dry environment affected by the northwesterly flow caused by 344 the Siberian High. The different weather systems under their corresponding SWPs have their 345 unique meteorological characteristics. Moreover, even under one SWP, the location and intensity 346 changes in a specific weather system can cause the changes in meteorological factors 347 correspondingly (Gao et al. 2020).

348

349 3.3.1. The main synoptic weather patterns in the warm season over the YRD

Applying the PTT classification method, nine SWPs are identified for the warm seasons in the YRD. Due to the relatively large variance, the first dominant five types are selected, and the other four types are grouped as 'other types'. As shown in Table 1, SWP1, SWP2 and SWP4 are

353	dominant, accounting for 40.66%, 22.84% and 13.99% occurances, respectively. In contrast,
354	SWP3, SWP5 and other types are relatively lower, and their occurrence frequencies are 7.65%,
355	6.99% and 6.01%, respectively. Specifically, SWP1 is affected by the southeasterly flow
356	introduced by the WPSH. SWP2 is influenced by the northwesterly flow introduced by a
357	persistent high pressure. SWP4 is influenced by the southeasterly flow introduced by the WPSH
358	and a cyclone. SWP3 and SWP5 are affected by a cyclone and an anticyclone. For SWP1 and
359	SWP4, it is with high temperature and humidity affected by the southerly flow. But for SWP5,
360	because of the weak northerly flow which brings insufficient water vapor, the YRD is with high
361	temperature and low RH. SWP2 is with relatively lower temperature. SWP3 is under the control
362	of a cyclone and the strong upward motion, it is with weak SR and lower T.

363

364TABLE 1. The occurrence days and frequency, typical characteristics, regional mean \pm the365standard error for temperature (T), relative humidity (RH), wind speed (WS) and solar366radiation (SR) and positive and negative days under each SWP. The > 0 and > 0.5 represent367the value of EOF1 time series more than 0 and 0.5, respectively. The < 0 and < 0.5 is on the</td>368contrary.

Type and number	Trucical changed side of		Pos (>0 and >0.5)
of days	swp-	Meteorological factors	Neg (<0 and <0.5)
(frequency)	SWPs		(number of days)
	Southwesterly flow	T(°C): 28.38 ± 4.94	
SWP1		RH (%): 77.98 ± 10.44	194, 125
372 (41.43%)	introduced by WPSH	WS (m/s): 7.30 ± 0.54	175, 112
		SR (W/m ²): 1606.20 \pm 537.77	
	Northwesterly flow SWP2 209 (23.27%) high pressure	T(°C): 26.40 ± 5.37	
SWP2		RH (%): 73.97 ± 12.85	97, 57
209 (23.27%)		WS (m/s): 7.28 ± 0.51	110, 73
		SR (W/m ²): 1615.00 \pm 563.20	
SWP3	P3	T (°C): 25.41 ± 4.37	58, 45
an extratropical cyclone 70 (7.80%)		RH (%): 86.80 ± 6.25	12, 6

		WS (m/s): 7.33 ± 0.58	
		SR (W/m ²): 959.73 \pm 478.14	
	Southoostala flow how of	T (°C): 29.29 ± 4.24	
SWP4	by WPSH and a southern	RH (%): 78.67 ± 8.51	82, 58
128 (14.25%)		WS (m/s): 7.11 ± 0.56	46, 30
	cyclone system	SR (W/m ²): 1505.97 \pm 538.96	
		T (°C): 28.08 ± 4.99	
SWP5	The north China	RH (%): 73.97 ± 12.03	23, 14
64 (7.13%)	anticyclone system	WS (m/s): 7.22 ± 0.45	40, 24
		SR (W/m ²): 1586.78 \pm 479.65	
others	,	,	,
55 (6 100()	/	/	/

369

370 **3.3.2.** Impacts of SWP change on O₃ concentration variation

371 We explore the impacts of SWP change on O_3 variation through combining the EOF1 mode. As illustrated in section 3.1.2, the EOF1 mode is the dominant mode, and it implies the increase of 372 373 O3 in the whole area is the main trend. Regarding EOF1 time series, it has a high correlation 374 coefficient with regional O_3 concentration (R = -0.93). In this study, we mainly focus on why O_3 375 concentration increases in the entire YRD region, rather than why the increases in O₃ differ spatially inside the YRD. Therefore, we use the EOF1 time series as a proxy to present the 376 377 regional O₃ concentration. In Table 1, the positive phase (Pos) represents that the EOF1 time series 378 is more than 0 and it is not beneficial to the production and accumulation of O₃. On the contrary, the negative phase (Neg) means the higher O_3 concentration. We extract the information by 379 380 comparing Neg with Pos to find the changes of each pattern. Yin et al. (2019) explored dominant patterns of summer O₃ pollution and associated atmospheric circulation changes in eastern China. 381 382 Different from their study, we have analyzed the daily variation in SWPs, and can obtain the 383 change in atmospheric circulations more precisely.

In the five main SWPs, the EOF1 time series show a decrease trend during their occurrence days in the warm seasons. It means the five main patterns tend to cause high ambient O₃

- - -

386	concentration through the change in SWPs. In addition, the SWP change includes both frequency
387	and intensity changes. We find that the frequency change in SWPs has less impact on the
388	inter-annual variation in O_3 levels than the intensity change in SWPs, which is consistent with the
389	results of Hegarty et al. (2007) and Liu et al. (2019). The contribution of intensity change and
390	frequency change will be further discussed in section 3.4. In the following, we will concretely
391	discuss the variation characteristics of SWPs and their impacts to the increase of O_3 in the YRD.
392	Fig. 4 shows the atmospheric circulations at 850 hPa and 500 hPa, and the box plot of
393	normalizing factors includes SR, T, TCC, RH, meridional wind at 850hPa (V850) and W (vertical
394	velocity) for SWP1_Pos and SWP1_Neg. As shown in Figs. 4a and 4b, the YRD is located at the
395	northwest of the WPSH, mainly affected by the southwesterly winds. Compared with the
396	SWP1_Pos, the range of WPSH is wider in the northwest area under SWP1_Neg, leading to the
397	strengthened southerly wind in the northwest, which results in higher temperature in this area. Due
398	to the weakening of V850, the water vapor transport acts in response from the south. RH shows a
399	decrease trend. At 500 hPa, a shallow trough is replaced by a slowly moving weak ridge, and the
400	downward motion would strengthen and last longer. The sink motion is favorable for the O_3
401	accumulation and O ₃ photochemical reaction at the near surface. Besides, the decreasing water

radiation hits the ground due to the less shelter from the cloud, further leading to higher air
temperature and stronger O₃ photochemical reaction.

vapor under the downward motion condition make the cloud cover hard to form. So, stronger solar

405

402

Fig. 4. The geopotential height (shaded) and 850-hPa wind with temperature (color vector) under (a) SWP1_Pos and (b) SWP1_Neg. The geopotential height (shaded) and 500-hPa wind with temperature (color vector) under (c) SWP1_Pos and (d) SWP1_Neg. The red values represent regional average wind speed at 500 hPa in the zone around black lines. (e) The regional average meteorological factors under SWP1_Pos and SWP1_Neg, including SR, TCC, 2-m air temperature, RH, meridional wind at 850 hPa (V850) and W (vertical velocity). The boxed area in Figs.4a-4d encloses the YRD.

417

Fig. 5 shows the atmospheric circulation structures at 850 hPa and 500 hPa, and the box plot of normalizing factors includes SR, T, TCC, RH, V850 and W for SWP2_Pos and SWP2_Neg. As shown in Figs. 5a and 5b, the YRD is affected by a continental high and the Aleutian low, characterized by northwesterly flow and a bit southwesterly flow. Compared with the SWP2_Pos, the northwesterly flow introduced by the continental high in SWP2_Neg is weaker. At the same time, as the Aleutian low moves southward slightly, the southwesterly flow can hardly bring water Page 17 of 30

- 424 vapor to the YRD, which leads to RH decreases in this area. The correlation between the EOF1 425 time series and 2-m air temperature under SWP2 ($R_{P2} = -0.41$) is closer than the correlation in the 426 whole period ($R_{all} = -0.24$). This implies that the weakening of the continent high plays an 427 important role in enhancing O₃ there. At 500 hPa, a trough is strengthened, leading to the stronger 428 downward motion. Just like SWP1, stronger downward motion and lower RH cause strong SR and 429 high air temperature. All these changes are beneficial to the O₃ formation and accumulation.
- 430

431

Fig. 5. The geopotential height (shaded) and 850-hPa wind with temperature (color vector) under (a) SWP2_Pos and (b) SWP2_Neg. The geopotential height (shaded) and 500-hPa wind with temperature (color vector) under (c) SWP2_Pos and (d) SWP2_Neg. The red values represent regional average wind speed at 500 hPa in the zone around black lines. (e) The regional average meteorological factors under SWP2_Pos and SWP2_Neg, including SR, TCC, 2-m air temperature, RH, meridional wind at 850 hPa (V850) and W. The boxed area in Figs.5a-5d encloses the YRD.

- 443
- 444

445 Fig. 6 shows the atmospheric circulations at 850 hPa and 500 hPa, and the box plot of 446 normalizing factors includes SR, T, CC, RH, V850 and W for SWP3_Pos and SWP3_Neg. As 447 shown in Figs. 6a and 6b, the YRD is controlled by an extratropical cyclone. Compared with the 448 SWP3_Pos, the low pressure is lower and its location is slightly further eastward SWP3_Neg. Under this circumstance, the southerly flow at the bottom of the low pressure could hardly bring 449 the water vapor to the YRD. At 500 hPa, the downward motion would be strengthened due to the 450 451 strengthened trough. The intense downward motion and low RH result in less CC and strong SR, as well as high T, which are instrumental in high O₃ concentration. 452

Fig. 6. The geopotential height (shaded) and 850-hPa wind with temperature (color vector) under (a) SWP3_Pos and (b) SWP3_Neg. The geopotential height (shaded) and 500-hPa wind with temperature (color vector) under (c) SWP3_Pos and (d) SWP3_Neg. The red values represent regional average wind speed at 500 hPa in the zone around black lines. (e) The regional average meteorological factors under SWP3_Pos and SWP3_Neg, including SR,

- 463 TCC, 2-m air temperature, RH, meridional wind at 850 hPa (V850) and W. The boxed area
- 464 in Figs6a-6d encloses the YRD.
- 465

Fig. 7 shows the atmospheric circulations at 850 hPa and 500 hPa, and the box plot of 466 normalizing factors includes SR, T, TCC, RH, V850 and W for SWP4_Pos and SWP4_Neg. As 467 468 shown in Figs. 7a and 7b, the southeasterly wins prevails in the YRD, which is caused by a 469 southern low pressure and the WPSH. Compared with the SWP4_Pos, the southern low pressure and southeasterly flow is weaker in SWP4_Neg, and thus it brings less water vapor to the YRD. At 470 471 500hPa, a shallow trough strengthens, causing the strong sink motion. High temperature, strong 472 SR and low RH caused by the low V850 and downward motion are favorable for the O3 473 accumulation.

474

Fig. 7. The geopotential height (shaded) and 850-hPa wind with temperature (color vector)
under (a) SWP4_Pos and (b) SWP4_Neg. The geopotential height (shaded) and 500-hPa
wind with temperature (color vector) under (c) SWP4_Pos and (d) SWP4_Neg. The red
values represent regional average wind speed at 500 hPa in the zone around black lines. (e)
The regional average meteorological factors under SWP4_Pos and SWP4_Neg, including SR,
TCC, 2-m air temperature, RH, meridional wind at 850 hPa (V850) and W. The boxed area
in Figs.7a-7d encloses the YRD.

485

477

Fig. 8 shows the atmospheric circulations at 850 hPa and 500 hPa, and the box plot of 486 487 normalizing factors includes SR, T, TCC, RH, V850 and W for SWP5_Pos and SWP5_Neg. As 488 shown in Figs. 8a and 8b, the YRD is controlled by the north China anticyclone, characterized by 489 the northeasterly and the southwesterly winds. Compared with the SWP5_Pos, the high pressure 490 in the SWP5_Neg is weaker and the northeasterly flow would act in response. The weakened cold 491 sea flow makes the air warmer and dryer. At 500hPa, a trough controlling the YRD would be 492 strengthened. The downward motion would become strong correspondingly. The favorable for the 493 O3 accumulation.

499 Fig. 8. The geopotential height (shaded) and 850-hPa wind with temperature (color vector) under (a) SWP5_Pos and (b) SWP5_Neg. The geopotential height (shaded) and 500 hPa 500 501 wind with temperature (color vector) under (c) SWP5_Pos and (d) SWP5_Neg. The red 502 values represent regional average wind speed at 500 hPa in the zone around black lines. (e) 503 The regional average meteorological factors under SWP5_Pos and SWP5_Neg, including SR,

- 504 TCC, 2-m air temperature, RH, meridional wind at 850 hPa (V850) and W. The boxed area
- 505 in Figs.8a-8d encloses the YRD.
- 506
- 3.4. Indicators for reconstructing inter-annual O₃ variation affected by synoptic-scale
 atmospheric circulation

509 Due to the similar variations in regional mean O_3 concentration and EOF1 time series, we 510 have reconstructed the inter-annual EOF1 time series to replace the regional mean O3 concentration by taking into account either frequency-variation-only or both frequency and 511 512 intensity variations in SWPs, which are EOF1 time series (Fre) and EOF1 time series (Fre + Int), respectively. The observed and reconstructed inter-annual EOF1 time series in 2014-2018 in the 513 514 whole region are shown in Fig. 9. Obviously, the frequency changes in SWPs almost have no 515 impact on the O_3 variability in the entire YRD. Regarding the intensity change, the fitting curve 516 would be closer to the EOF1 time series. Hegarty et al. (2007) and Liu et al. (2019) reconstructed 517 the inter-annual O₃ level in the northeastern United States and the northern China using the same 518 method as ours. Moreover, they defined the intensity change in SWPs using the domain-averaged sea level pressure and the pressure of the lowest-pressure system. As illustrated by Hegarty et al. 519 520 (2007), the correlation under Pattern V is poor. It indicates we should select the SWPIIs under 521 each pattern according to their unique characteristics on high O_3 concentration. We select six 522 SWPIIs: the maximum pressure in zone 1 (25 N-40 N, 110 E-130 E) and zone 2 (20 N-50 N, 523 90 E-140 E), the minimum pressure in zone 1 (25 N-40 N, 110 E-130 E) and zone 2 524 (20 N-50 N, 90 E-140 E), and the average pressure in zone 1 (25 N-40 N, 110 E-130 E) and 525 zone 3 (10 N -40 N, 110 E-130 E). As shown in Table 2, the SWPII for the maximum pressure 526 in zone 1 has a relative high correlation between SWP3 and SWP5, and the SWPII for the 527 maximum pressure in zone 2 has a relative high correlation between SWP1 and SWP4. The annual 528 EOF1 time series anomalies show a relative good correlation with the maximum pressure. It is 529 because the maximum pressure reflects the wind speed affecting the water vapor transport under 530 this pattern. Compared with SWP3 and SWP5, the synoptic system is larger than the classification 531 region for SWP1 and SWP4. So it can represent the SWPII more precisely in a large region. 532 Under SWP2, when O₃ concentration tends to be at a high level, a cold continent high behind the

533 YRD would tend to weaken. Therefore, we select the average height in zone 3 to represent the 534 SWPII under SWP2. From Table 2, we can know it has better reconstructed curve when we 535 selected different SWPIIs according to the characteristics of high O₃ level under each pattern. 536 Above all, the intensity change in SWP is more important to the inter-annual O₃ variation than the 537 frequency change.

538

Fig. 9. The original and reconstructed inter-annual EOF1 time series trend based on SWP frequency and intensity variations. The pink curve represents the original inter-annual EOF1 time series, whereas the green and blue lines are the trends of reconstructed inter-annual EOF1 time series according to the frequency-variation-only and both frequency and intensity variations in SWPs, respectively.

545

547

each SWP.

546 TABLE 2. Correlation coefficients between EOF1 time series and different SWPIIs under

Z_{2-max} $Z_{3\text{-ave}}$ Type $Z_{1\text{-ave}}$ Z_{1-max} $Z_{1\text{-min}}$ $Z_{2\text{-min}}$ SWP1 -0.47 -0.29 -0.35 -0.33 -0.60 -0.32 SWP2 -0.14 -0.08 0.02 -0.07 -0.09 -0.40 SWP3 0.28 0.61 0.03 0.005 0.43 -0.60 SWP4 -0.14 -0.03 -0.17 -0.22 0.78 -0.38 Page 25 of 30

SWP5 0.52 0.76 0.39 0.56 0.72 0.58	
------------------------------------	--

5	4	8

549 4. Conclusions and discussions

In this study, we discussed the meteorological influences on the O_3 variation in the warm seasons during 2014–2018 in the YRD, China. Specifically, we analyzed the O_3 spatio-temporal distribution characteristics, quantified the contribution of meteorological conditions to O_3 variations, explored how the change in SWPs and corresponding meteorological factors lead to O_3 increase over 2014-2018, and quantitatively analyzed the impact of SWP frequency and intensity on the inter-annual O_3 variation. The main conclusions are as follows.

556 The annual regional averaged O₃ concentrations from 2014 to 2018 in the YRD are 32.49, 33.03, 35.14, 37.44 and 35.98 ppb, respectively, with a significantly increasing rate of 1.81 ppb 557 558 year⁻¹ (5.21% year⁻¹). At the same time, the total number of days on which O_3 concentration 559 exceeds the national standard also increases with year in a similar pattern. Through the EOF 560 analysis of O_3 in space and time, three dominant modes were identified. The first mode is the most 561 dominant mode, accounting for 65.7% of O₃ variation, implying that the O₃ increasing in the entire 562 YRD is the main tendency. A high correlation coefficient between the EOF1 time series and RH 563 $(R_{rh} = 0.59)$ indicates that RH is the most influential factor leading to the O₃ increase.

564 We quantified the influence of meteorology on inter-annual variation and trend of O₃ over the YRD from 2014-2018, and found that the influence could lead to a regional O₃ increase by 2.81 565 ppb at most. Especially, RH plays the most important role in modulating the inter-annual O3 566 567 variation. Moreover, in order to explore connections between the O_3 variation and synoptic 568 circulations, nine types of SWPs were objectively identified based on the PTT method, and five 569 main types were selected to correlate with the EOF1 time series. We found that the variation in all 570 SWPs over 2014-2018 are favorable to O₃ increase in that period. The variation in SWP intensity include the WPSH weakening and northward extending under SWP1, a continent high weakening 571 572 under SWP2, an extratropical cyclone strengthening under SWP3, the southern low pressure 573 weakening and the WPSH weakening under SWP4, and the north China anticyclone weakening 574 under SWP5. All these changes prevent the water vapor from being transported to the YRD and increase air temperature in YRD. In addition, the downward motions strengthen in the YRD, 575

576	which is behind the trough and in front of the ridge due to the strengthening of the ridge and
577	trough, leading to less cloud cover and stronger SR. All of these are favorable to O_3 formation and
578	accumulation.
579	We found that the change in SWPs intensity is more important to the O_3 increase over
580	2014-2018 than that in SWPs frequency. We further reconstructed the EOF1 time series by
581	considering different SWPIIs due to the unique characteristics of each SWP. The results are better
582	than those in Hegarty et al. (2007) and Liu et al. (2019) who used the same SWPIIs in all SWPs.
583	In summary, this study quantified the inter-annual variation and increasing rate of O_3 in the
584	YRD, China, and explored the connection between SWP variations and the O_3 increase. It
585	provides an enhanced understanding of response of O3 variation to changes in SWPs from year to
586	year and thus this understanding may be insightful to planning strategies for O_3 pollution control.
587	
588	Authorship contribution statement
589	Da Gao: Conceptualization, Data curation, Formal analysis, Meteorology, Investigation,
590	software, Writing - original draft, Writing - revision. Min Xie: Conceptualization, Methodology,
591	Writing - revision, Project administration, Funding acquisition. Jane Liu: Formal analysis,
592	Meteorology, Writing - revision. Tijian Wang: Formal analysis, Funding acquisition. Chaoqun
593	Ma: Formal analysis, Meteorology. Haokun Bai: Formal analysis, Meteorology. Xing Chen:
594	Formal analysis.
595	
596	Declaration of competing interest
597	The authors declare that they have no known competing financial interests or personal
598	relationships that could have appeared to influence the work reported in this paper.
599	
600	Acknowledgements
601	This work was supported by the National Key Research and Development Program of China
602	(2018YFC0213502, 2018YFC1506404).
603	

604 References

605 Barnes, E. A., and Fiore, A. M.: Surface ozone variability and the jet position: Implications for projecting Page **27** of **30**

606	future air quality, Geophys Res Lett, 40, 2839-2844, 10.1002/grl.50411, 2013.
607	Cooper, O. R., Schultz, M. G., Schroder, S., Chang, K. L., Gaudel, A., Benitez, G. C., Cuevas, E., Frohlich, M.,
608	Galbally, I. E., Molloy, S., Kubistin, D., Lu, X., McClure-Begley, A., Nedelec, P., O'Brien, J., Oltmans, S. J.,
609	Petropavlovskikh, I., Ries, L., Senik, I., Sjoberg, K., Solberg, S., Spain, G. T., Spangl, W., Steinbacher, M.,
610	Tarasick, D., Thouret, V., and Xu, X. B.: Multi-decadal surface ozone trends at globally distributed remote
611	locations, Elementa-Sci Anthrop, 8, Artn 23 10.1525/Elementa.420, 2020.
612	Day, D. B., Xiang, J., and Mo, J.: Association of ozone exposure with cardiorespiratory pathophysiologic
613	mechanisms in healthy adults (vol 177, pg 1344, 2017), Jama Intern Med, 177, 1400-1400,
614	10.1001/jamainternmed.2017.4605, 2017.
615	Doherty, R. M., Wild, O., Shindell, D. T., Zeng, G., MacKenzie, I. A., Collins, W. J., Fiore, A. M., Stevenson, D. S.,
616	Dentener, F. J., Schultz, M. G., Hess, P., Derwent, R. G., and Keating, T. J.: Impacts of climate change on
617	surface ozone and intercontinental ozone pollution: A multi-model study, J Geophys Res-Atmos, 118,
618	3744-3763, 10.1002/jgrd.50266, 2013.
619	Eskridge, R. E., Ku, J. Y., Rao, S. T., Porter, P. S., and Zurbenko, I. G.: Separating different scales of motion in
620	time series of meteorological variables, B Am Meteorol Soc, 78, 1473-1483, Doi
621	- 10.1175/1520-0477(1997)078<1473:Sdsomi>2.0.Co;2, 1997.
622	Fiore, A. M., Jacob, D. J., Mathur, R., and Martin, R. V.: Application of empirical orthogonal functions to
623	evaluate ozone simulations with regional and global models, J Geophys Res-Atmos, 108, Artn 4431
624	10.1029/2002jd003151, 2003.
625	Gao, D., Xie, M., Chen, X., Wang, T. J., Liu, J., Xu, Q., Mu, X. Y., Chen, F., Li, S., Zhuang, B. L., Li, M. M., Zhao,
626	M., and Ren, J. Y.: Systematic classification of circulation patterns and integrated analysis of their effects
627	on different ozone pollution levels in the Yangtze River Delta Region, China, Atmos Environ,
628	https://doi.org/10.1016/j.atmosenv.2020.117760 2020.
629	Gao, W., Tie, X. X., Xu, J. M., Huang, R. J., Mao, X. Q., Zhou, G. Q., and Chang, L. Y.: Long-term trend of O ₃ in
630	a mega City (Shanghai), China: Characteristics, causes, and interactions with precursors, Sci Total
631	Environ, 603, 425-433, 10.1016/j.scitotenv.2017.06.099, 2017.
632	Han, H., Liu, J. E., Shu, L., Wang, T. J., and Yuan, H. L.: Local and synoptic meteorological influences on daily
633	variability in summertime surface ozone in eastern China, Atmos Chem Phys, 20, 203-222,
634	10.5194/acp-20-203-2020, 2020.
635	He, J. J., Gong, S. L., Yu, Y., Yu, L. J., Wu, L., Mao, H. J., Song, C. B., Zhao, S. P., Liu, H. L., Li, X. Y., and Li, R. P.:
636	Air pollution characteristics and their relation to meteorological conditions during 2014-2015 in major
637	Chinese cities, Environ Pollut, 223, 484-496, 10.1016/j.envpol.2017.01.050, 2017.
638	Hegarty, J., Mao, H., and Talbot, R.: Synoptic controls on summertime surface ozone in the northeastern
639	United States, J Geophys Res-Atmos, 112, Artn D14306 10.1029/2006jd008170, 2007.
640	Hou, X. W., Zhu, B., Kumar, K. R., and Lu, W.: Inter-annual variability in fine particulate matter pollution
641	over China during 2013-2018: Role of meteorology, Atmos Environ, 214, ARTN 116842
642	10.1016/j.atmosenv.2019.116842, 2019.
643	Jacob, D. J., and Winner, D. A.: Effect of climate change on air quality, Atmos Environ, 43, 51-63,
644	10.1016/j.atmosenv.2008.09.051, 2009.
645	Jacob, D. J., and Winner, D. A.: Effect of climate change on air quality, Atmos Environ, 43, 51-63, 2009.
646	Jerrett, M., Burnett, R. T., Pope, C. A., Ito, K., Thurston, G., Krewski, D., Shi, Y. L., Calle, E., and Thun, M.:
647	Long-Term Ozone Exposure and Mortality., New Engl J Med, 360, 1085-1095, Doi
648	10.1056/Nejmoa0803894, 2009.
649	Jin, X. M., and Holloway, T.: Spatial and temporal variability of ozone sensitivity over China observed from

Page 28 of 30

the Ozone Monitoring Instrument, J Geophys Res-Atmos, 120, 7229-7246, 10.1002/2015JD023250,
2015.

- Leibensperger, E. M., Mickley, L. J., and Jacob, D. J.: Sensitivity of US air quality to mid-latitude cyclone
 frequency and implications of 1980-2006 climate change, Atmos Chem Phys, 8, 7075-7086, DOI
 10.5194/acp-8-7075-2008, 2008.
- Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., and Bates, K. H.: Anthropogenic drivers of 2013-2017 trends
 in summer surface ozone in China, P Natl Acad Sci USA, 116, 422-427, 2019.
- Liu, J. D., Wang, L. L., Li, M. G., Liao, Z. H., Sun, Y., Song, T., Gao, W. K., Wang, Y. H., Li, Y., Ji, D. S., Hu, B.,
 Kerminen, V. M., Wang, Y. S., and Kulmala, M.: Quantifying the impact of synoptic circulation patterns on
 ozone variability in northern China from April to October 2013-2017, Atmos Chem Phys, 19,
 14477-14492, 10.5194/acp-19-14477-2019, 2019.
- Lu, X., Hong, J. Y., Zhang, L., Cooper, O. R., Schultz, M. G., Xu, X. B., Wang, T., Gao, M., Zhao, Y. H., and
 Zhang, Y. H.: Severe Surface Ozone Pollution in China: A Global Perspective, Environ Sci Tech Let, 5,
 487-494, 10.1021/acs.estlett.8b00366, 2018.
- Lu, X., Zhang, L., Chen, Y. F., Zhou, M., Zheng, B., Li, K., Liu, Y. M., Lin, J. T., Fu, T. M., and Zhang, Q.: Exploring
 2016-2017 surface ozone pollution over China: source contributions and meteorological influences,
 Atmos Chem Phys, 19, 8339-8361, 10.5194/acp-19-8339-2019, 2019.
- Lu, X., Zhang, L., Wang, X. L., Gao, M., Li, K., Zhang, Y. Z., Yue, X., and Zhang, Y. H.: Rapid Increases in
 Warm-Season Surface Ozone and Resulting Health Impact in China Since 2013, Environ Sci Tech Let, 7,
 240-247, 10.1021/acs.estlett.0c00171, 2020.
- Milanchus, M. L., Rao, S. T., and Zurbenko, I. G.: Evaluating the effectiveness of ozone management efforts
 in the presence of meteorological variability, J Air Waste Manage, 48, 201-215, Doi
 10.1080/10473289.1998.10463673, 1998.
- Papanastasiou, D. K., Melas, D., Bartzanas, T., and Kittas, C.: Estimation of Ozone Trend in Central Greece,
 Based on Meteorologically Adjusted Time Series, Environ Model Assess, 17, 353-361,
 10.1007/s10666-011-9299-6, 2012.
- Philipp, A., Beck, C., Huth, R., and Jacobeit, J.: Development and comparison of circulation type
 classifications using the COST 733 dataset and software, Int J Climatol, 36, 2673-2691, 10.1002/joc.3920,
 2016.
- Pu, X., Wang, T. J., Huang, X., Melas, D., Zanis, P., Papanastasiou, D. K., and Poupkou, A.: Enhanced surface
 ozone during the heat wave of 2013 in Yangtze River Delta region, China, Sci Total Environ, 603,
 807-816, 10.1016/j.scitotenv.2017.03.056, 2017.
- Rao, S. T., and Zurbenko, I. G.: Detecting And Tracking Changes In Ozone Air-Quality, J Air Waste Manage,
 44, 1089-1092, Doi 10.1080/10473289.1994.10467303, 1994.
- Rao, S. T., and Zurbenko, I. G.: Detecting And Tracking Changes In Ozone Air-Quality, J Air Waste Manage,
 44, 1089-1092, Doi 10.1080/10473289.1994.10467303, 1994.
- Shu, L., Xie, M., Wang, T. J., Gao, D., Chen, P. L., Han, Y., Li, S., Zhuang, B. L., and Li, M. M.: Integrated studies
 of a regional ozone pollution synthetically affected by subtropical high and typhoon system in the
 Yangtze River Delta region, China, Atmos Chem Phys, 16, 15801-15819, 10.5194/acp-16-15801-2016,
 2016.
- Shu, L., Xie, M., Gao, D., Wang, T. J., Fang, D. X., Liu, Q., Huang, A. N., and Peng, L. W.: Regional severe
 particle pollution and its association with synoptic weather patterns in the Yangtze River Delta region,
 China, Atmos Chem Phys, 17, 12871-12891, 10.5194/acp-17-12871-2017, 2017.
- 693 Tong, L., Zhang, H. L., Yu, J., He, M. M., Xu, N. B., Zhang, J. J., Qian, F. Z., Feng, J. Y., and Xiao, H.:

694	Characteristics of surface ozone and nitrogen oxides at urban, suburban and rural sites in Ningbo,
695	China, Atmos Res, 187, 57-68, 2017.
696	Wang, T., Xue, L. K., Brimblecombe, P., Lam, Y. F., Li, L., and Zhang, L.: Ozone pollution in China: A review of
697	concentrations, meteorological influences, chemical precursors, and effects, Sci Total Environ, 575,
698	1582-1596, 10.1016/j.scitotenv.2016.10.081, 2017.
699	Wise, E. K., and Comrie, A. C.: Extending the Kolmogorov-Zurbenko filter: Application to ozone,
700	particulate matter, and meteorological trends, J Air Waste Manage, 55, 1208-1216, Doi
701	10.1080/10473289.2005.10464718, 2005.
702	Xie, M., Zhu, K. G., Wang, T. J., Yang, H. M., Zhuang, B. L., Li, S., Li, M. G., Zhu, X. S., and Ouyang, Y.:
703	Application of photochemical indicators to evaluate ozone nonlinear chemistry and pollution control
704	countermeasure in China, Atmos Environ, 99, 466-473, 10.1016/j.atmosenv.2014.10.013, 2014.
705	Yang, Y., Liao, H., and Li, J.: Impacts of the East Asian summer monsoon on interannual variations of
706	summertime surface-layer ozone concentrations over China, Atmos Chem Phys, 14, 6867-6879, 2014.
707	Yang, L. F., Luo, H. H., Yuan, Z. B., Zheng, J. Y., Huang, Z. J., Li, C., Lin, X. H., Louie, P. K. K., Chen, D. H., and
708	Bian, Y. H.: Quantitative impacts of meteorology and precursor emission changes on the long-term
709	trend of ambient ozone over the Pearl River Delta, China, and implications for ozone control strategy,
710	Atmos Chem Phys, 19, 12901-12916, 10.5194/acp-19-12901-2019, 2019.
711	Yarnal, B.: Synoptic Climatology in Environmental Analysis A Primer, Journal of Preventive Medicine
712	Information, 347, 170-180, 1993.
713	Yin, Z. C., Cao, B. F., and Wang, H. J.: Dominant patterns of summer ozone pollution in eastern China and
714	associated atmospheric circulations, Atmos Chem Phys, 19, 13933-13943, 10.5194/acp-19-13933-2019,
715	2019.
716	Yue, X., Unger, N., Harper, K., Xia, X. G., Liao, H., Zhu, T., Xiao, J. F., Feng, Z. Z., and Li, J.: Ozone and haze
717	pollution weakens net primary productivity in China, Atmos Chem Phys, 17, 6073-6089,
718	10.5194/acp-17-6073-2017, 2017.
719	Zhang, J. X., Gao, Y., Luo, K., Leung, L. R., Zhang, Y., Wang, K., and Fan, J. R.: Impacts of compound extreme
720	weather events on ozone in the present and future, Atmos Chem Phys, 18, 9861-9877,
721	10.5194/acp-18-9861-2018, 2018.
722	Zhao, Z. J., and Wang, Y. X.: Influence of the West Pacific subtropical high on surface ozone daily variability
723	in summertime over eastern China, Atmos Environ, 170, 197-204, 2017.