
Response to the comments of editor: 

Please check significant digits for all numbers. For example, 65.70% in line 23, 3.03 ppb in 

line 25, and all values through to 1970.97 W/m2 for SR in Table 3 etc are to be checked 

carefully as if their last digits are meaningful, considering large uncertainty ranges. 

Thanks for your comments. All values have been checked carefully. Some values have 

been corrected, and others sustain original significant digits. For all changed or 

unchanged numbers, we give the corresponding reasons. Specific illustrations are listed 

as follows. 

 

Firstly, we introduce the data we used. R_table1 lists the number of significant digits 

for raw data of all variables. Secondly, we introduce the significant digits rules when 

we calculate mean values of all variables. 

 

R_table1. Significant digits of raw data of all variables 

Variables O3 T2 RH WS SR LCC TCLW V850 W 

Number of 

significant 

digits 

2 3 2 2 7 7 7 7 7 

T2, RH, WS, SR, LCC, TCLW, V850 and W represent air temperature, relative humidity, 

wind speed at surface layer, solar radiation, low cloud cover, total liquid cloud water, 

zonal wind speed at 850 hPa and vertical speed, respectively. 

 

The significant digits rules 

We know how to get the significant digit of one value (for example, the significant 

digits of 20 are 2). But when we calculate the mean values, the total number of values 

we used has to be taken into consideration. If we calculate the daily mean value, the 

significant digits of the sum and mean value of this array are 3. 

Example 

Sum value: 20×24= 480  

Mean value: 480/24= 20.0 

 

In this paper, before O3 and other meteorological factors are analyzed, we calculated 

their daily mean values, According to the significant digits rules and R_table1, for all 

variables, the tenths place of the average is a significant digit, we can retain the tenths 

place at least. Therefore, we changed all values except the fitting function in section 

3.1.1, percentages of variance contribution in Section 3.1.2, O3 variations in Section 

3.2.1, all values in Table 1, all values in Table 3 except LCC, TCLW and W, and SWPs 

frequency and intensity contribution index in Section 3.4. These values are retained one 

decimal place.  

Besides, in order to distinguish some closed numbers, all correlation coefficients and 

LCC, TCLW and W in table 3 retain two decimal places. And for the purpose of refined 



calculation, fitting function in section 3.1.1 retains three decimal places. 

 

Please see all corrections in the new revised manuscript with modification marks in 

appendix. 
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Abstract: Ozone (O3) pollution is of great concern in the Yangtze River Delta (YRD) region of 

China, and the regional O3 pollution is closely associated with dominant weather systems. With a 

focus on the warm seasons (April–September) from 2014 to 2018, we quantitatively analyze the 

characteristics of O3 variations over the YRD, the impacts of large-scale and synoptic-scale 

circulations on the O3 variations and the associated meteorological controlling factors, based on 

observed ground-level O3 and meteorological data. Our analysis suggests an increasing trend of the 

regional mean O3 concentration in the YRD at 1.81 ppb per year over 2014–2018. Spatially, the 

empirical orthogonal function analysis suggests the dominant mode accounting for 65.70% variation 

in O3, implying that an increase in O3 is the dominant tendency in the entire YRD. Meteorology is 

estimated to increase the regional mean O3 concentration by 3.103 ppb at most from 2014 to 2018. 

Especially, relative humidity (RH) plays the most important role in modulating the inter-annual O3 

variation, followed by solar radiation (SR) and low cloud cover (LCC). As atmospheric circulations 



can affect local meteorological factors and O3 levels, we identify five dominant synoptic weather 

patterns (SWPs) in the warm seasons in the YRD using the t-mode principal component analysis 

classification. The typical weather systems of SWPs include the western Pacific Subtropical High 

(WPSH) under SWP1, a continental high and the Aleutian low under SWP2, an extratropical 

cyclone under SWP3, a southern low pressure and WPSH under SWP4 and the north China 

anticyclone under SWP5. The variations of the five SWPs are all favorable to the increase in O3 

concentrations over 2014–2018. However, crucial meteorological factors leading to increases in O3 

concentrations are different under different SWPs. These factors are identified as significant 

decreases in RH and increases in SR under SWPs 1, 4 and 5, significant decreases in RH, increases 

in SR and air temperature (T2) under SWP2, and significant decreases in RH under SWP3. Under 

SWPs 1, 4 and 5, significant decreases in RH and increases in SR are predominantly caused by the 

WPSH weakening under SWP1, the southern low pressure weakening under SWP4, and the north 

China anticyclone weakening under SWP5. Under SWP2, significant decreases in RH, increases in 

SR and T2 are mainly produced by the Aleutian low southward extending and a continental high 

weakening. Under SWP3, significant decreases in RH is mainly induced by an extratropical cyclone 

strengthening. These changes in atmospheric circulations prevent the water vapor in the southern 

and northern sea from being transported to the YRD and result in RH significantly decreasing under 

each SWP. In addition, strengthened descending motions (behind the strengthening trough and in 

front of the strengthening ridge) lead to decreases in LCC and significant increases in SR under 

SWP1, 2, 4 and 5. The significant increases in T2 would be due to weakening cold flow introduced 

by a weakening continental high. Most importantly, the changes in the SWP intensity can make 

large variations in meteorological factors and contribute more to the O3 inter-annual variation than 

the changes in the SWP frequency. Finally, we reconstruct an EOF mode 1 time series that is highly 

correlated with the original O3 time series, and the reconstructed time series performs well in 

defining the change in SWP intensity according to the unique feature under each of the SWPs.  

 

1. Introduction 

As an air pollutant, surface ozone (O3) is harmful to human health and vegetation growth, such 

as damaging human lungs (Jerrett et al. 2009; Day et al. 2017) and destroying forest and agricultural 

crops (Yue et al. 2017). After the emission control following “Thirteenth Five-Year Plan” 



Comprehensive Work Plan for Energy Saving and Emission Reduction in China since 2016, 

concentrations of many pollutants have decreased over the past few years in China, but not for O3. 

Furthermore, heavy O3 pollution episodes occur more frequently and more severely in China than 

in Japan, South Korea, the United States, and the European countries (Lu et al. 2018). Li et al. (2018) 

proposed that the rapid decrease of fine particulate matter (PM) in China is a reason for such O3 

increase as aerosol sinks of hydro-preoxy radicals are reduced. Yet, meteorological influences on 

the O3 increase are unclear and require further investigations. 

Surface O3 is mainly formed through complex and nonlinear photochemical reactions of volatile 

organic compounds (VOCs) and nitrogen oxides (NOx) exposed to the sunlight (Xie et al. 2014). 

Meteorology can affect O3 levels through modulation of photochemical reactions, advection, 

convection and turbulent transport, as well as dry and wet depositions (Liu et al. 2013; Xie et al., 

2016a, 2016b). Synoptic weather patterns (SWPs) and the associated meteorological conditions can 

impact long-term and daily O3 variations (Hegarty et al. 2007; Santurtún et al. 2015; Gao et al. 2020; 

Shu et al., 2020). Understanding the mechanisms of meteorological influences on O3 variations and 

quantifying such influences would help to understand the formation of O3 pollution. 

Previous studies have revealed that severe O3 pollution episodes are usually accompanied with 

high temperature, strong solar radiation, drying condition and stagnant weather (Jacob and Winner 

2009; Doherty et al. 2013; Shu et al. 2016; Pu et al. 2017; Zhang et al. 2018), and these local 

meteorological conditions are often related to specific synoptic-scale and large-scale atmospheric 

circulation systems (Fiore et al. 2003; Leibensperger et al. 2008; Barnes and Fiore. 2013; Shu et al. 

2016; Wang et al. 2016; Zhao and Wang. 2017). For example, O3 pollution in the eastern United 

States is notably influenced by the cyclone frequency (Leibensperger et al. 2008), latitude of the 

polar jet over eastern North America (Barnes and Fiore. 2013) and the behavior of the quasi-

permanent Bermuda High (Fiore et al. 2003; Wang et al. 2016). In China, Yang et al. (2014) 

illustrated that the changes in meteorological variables, associated with the East Asian summer 

monsoon, lead to 2–5 % inter-annual variations in surface O3 concentrations over the central-eastern 

China. Zhao and Wang (2017) found that a significantly strong western Pacific subtropical high 

(WPSH) could result in higher relative humidity (RH), more clouds, more rainfall, and less 

ultraviolet radiation, finally leading to less O3 formation. Using model simulation, Shu et al. (2016) 

investigated the synergistical impact of the WPSH and typhoons on O3 pollution in Yangtze River 



Delta region.  

As known, a region is influenced by different weather systems. Weather classification, as a way 

to distinguish the different large-scale and synoptic-scale atmospheric circulation systems, is widely 

used in exploring connections between weather patterns and O3 levels (Han et al. 2020; Gao et al. 

2020). Gao et al. (2020) discussed influences of six SWPs on O3 levels in the YRD, and revealed 

differences in O3 pollution levels due to minor changes in atmospheric circulations. However, it is 

uncertain that how changes in the SWPs could lead to O3 pollution in detail, especially in the YRD. 

For the northern China and the PRD region, Liu et al. (2019) quantified the impact of synoptic 

circulation patterns on O3 variability in the northern China from April to October during 2013–2017. 

Yang et al. (2019) quantitatively assessed the impacts of meteorological factors and the precursor 

emissions on the long-term trend of ambient O3 over the PRD region. However, whether variations 

in SWPs can lead to O3 increases in recent years over the YRD has not be sufficiently addressed.  

     Due to the recent increases in O3 level over the YRD (Gao et al. 2017; Xie et al. 2017), studies 

on characterizing the O3 variation in the region and understanding the mechanisms for the variation 

are urgently required. To this end, the temporal and spatial variations in surface O3 including 5-year 

trend over the YRD are quantitatively investigated, and the mechanisms of meteorological 

influences on the O3 variations are analyzed. Especially, the characteristics of the corresponding 

SWPs are discussed in detailed. The remainder of this paper is organized as follows. Data and 

methods are introduced in section 2. The inter-annual variation and 5-year trend and spatial variation 

characteristics of surface ozone in the YRD are illustrated in section 3.1. The impact of 

meteorological factors on the O3 variation is discussed in section 3.2. The main SWPs and the effects 

of their changes on the O3 variation are described in section 3.3. Section 3.4 discusses the 

contributions of the changes in SWP intensity and frequency to the inter-annual variation and trend 

of O3. Finally, the conclusion and discussions are shown in section 4. 

 

2. Data and methods 

2.1. O3 and meteorological datasets 

The maximum daily 8-hours average O3 data are available from the National Environmental 

Monitoring Center of China, which were acquired from the air quality real-time publishing platform 

(http://106.37.208.233:20035). The hourly observation data of meteorological factors including air 



temperature (T2), RH and wind speed (WS) in the warm seasons from April to September over 

2014–2018 were acquired from the National Meteorological Center of China Meteorological 

Administration (http://eng.nmc.cn). 26 cities are selected as typical cities representative of the YRD 

according to the “Urban agglomeration on Yangtze River Delta” approved by China’s State Council 

in 2016. There are total 172 stations in 26 cities. In order to better characterize the O3 pollution 

levels of each city, the hourly O3 concentration of each city is calculated as the average value of the 

O3 concentrations measured in several of the national monitoring sites in that city. In this paper, the 

term "O3 concentration" refers to the maximum daily 8-hours average O3 concentration unless stated 

otherwise. 

 

2.2. Linear trend analyses 

To characterize the O3 variation in the warm seasons during 2014–2018 over the YRD, a 

linear trend method based on monthly anomalies is used (see Equation 1), which has been widely 

used to calculate the trends of time series with seasonal cycles and autocorrelation. The O3 monthly 

anomalies are more precise than O3 monthly means because the impact of missing data is reduced. 

In addition, hourly O3 data and fewer yearly O3 data are inappropriate to use because of too many 

temporal variation signals and easily overfitting. Using this method, Cooper et al. (2020) and Lu et 

al. (2020) quantified the O3 trend in 27 globally distributed remote locations and the whole China. 

Anomalies of monthly average O3 concentration are defined as the difference between the individual 

monthly mean and the monthly mean of 2014–2018. The parametric linear trend is calculated by 

using the generalized least-squares method with auto-regression. 

𝑦𝑡 = 𝑏 + 𝑘𝑡 + α cos (
2𝜋𝑀

6
) + 𝛽 sin (

2𝜋𝑀

6
) + 𝑅𝑡      (1), 

where 𝑦𝑡 represents the monthly anomaly, 𝑡 is the monthly index from April to September during 

2014–2018, 𝑏  denotes the intercept, 𝑘  is the linear trend, 𝛼  and 𝛽  are coefficients for a 6-

month harmonic series (M ranges from 1 to 6) which is used to account for potentially remaining 

seasonal signals, and 𝑅𝑡 represents a normal random error series. In this study, linear trend k is 

regarded as the inter-annual O3 variation trend and is discussed in section 3.1.1. 

 

2.3. Meteorological adjustment 



The meteorological adjustment, a statistical method, is applied to quantify the impact of 

meteorology on O3 variation through removing such impact in the original O3 data. It is similar to a 

model simulation that keeps the emission levels fixed but allows meteorology to vary. Yet, this 

method requires much less computing resources than a model simulation. The method is introduced 

in detail as follows. 

In the meteorological adjustment, the observed O3 and meteorological data are separated into 

long-term, seasonal, and short-term data (Rao and Zurbenko 1994a, b). The Kolmogorov-Zurbenko 

(KZ) filter can be expressed as follows. 

𝑅(𝑡) = 𝐿(𝑡) + 𝑆(𝑡) + 𝑊(𝑡)      (2), 

where 𝑅(𝑡) represents the raw time series data, 𝐿(𝑡) the long-term trend on a timescale of years, 

𝑆(𝑡) the seasonal variation on a timescale of months, and 𝑊(𝑡) the short-term component on a 

timescale of days. 

     In order to remove the high-pass signal, the KZ filter carries out p times of iterations of a 

moving average with the window length m, which is defined as  

𝑌𝑖 =
1

𝑚
∑ 𝑅𝑖+𝑗

𝑘
𝑗=−𝑘      (3) 

where R is the original time series, i an index for the time of iteration, j an index for sampling inside 

the window, and k the number of sampling on one side of the window. The window length m = 2k 

+1. Y is the input time series after one iteration. Different scales of motions are obtained by changing 

the window length and the number of iterations (Milanchus et al. 1998; Eskridge et al. 1997). The 

filter periods of less than 𝑁 days can be calculated with window length 𝑚 and the number of 

iteration 𝑝, as follows: 

m × 𝑝
1

2 ≤ 𝑁      (4). 

Therefore, the cycles of 33 days can be removed by a KZ(15, 5) filter with the window length of 15 

and 5 iterations. In Equation 5, BL(t) is the O3 and meteorological time series obtained by KZ(15,5) 

filter and refers to their baseline variations which are the sum of the long term L(t) and the seasonal 

component S(t). 

𝐵𝐿(𝑡) = 𝐾𝑍(15,5) = 𝐿(𝑡) + 𝑆(𝑡) = 𝐾𝑍(183,3) + 𝑆(𝑡)      (5). 

The long-term trend is separated from the raw data obtained by KZ (183, 3) with the periods of > 

632 days, and then the seasonal and the short-term component 𝑊(𝑡) can be defined as   



𝑆(𝑡) = 𝐾𝑍(15,5) − 𝐾𝑍(183,3)      (6), 

𝑊(𝑡) = X(t) − BL(t) = X(t) − 𝐾𝑍(15,5)      (7). 

After KZ filtering, the meteorological adjustment is conducted by the multivariate regression 

between the O3 concentration and meteorological factors such as T, RH, wind speed and sunshine 

duration (Wise and Comrie 2005; Papanastasiou et al. 2012). 

𝐴𝐵𝐿(𝑡) = 𝑎𝐵𝐿 + ∑ 𝑏𝐵𝐿𝑖 ∙ 𝑀𝐵𝐿𝑖 + 𝜖𝐵𝐿(𝑡)      (8), 

𝐴𝑊(𝑡) = 𝑎𝑊 + ∑ 𝑏𝑊𝑖 ∙ 𝑀𝑊𝑖 + 𝜖𝑊(𝑡)       (9), 

      ϵ(t) = 𝜖𝐵𝐿(𝑡) + 𝜖𝑊(𝑡)             (10), 

𝐴𝑎𝑑(𝑡) = 𝜖(𝑡) + ∑ 𝑏𝐵𝐿𝑖 ∙ 𝑀𝐵𝐿𝑖 + ∑ 𝑏𝑊𝑖 ∙ 𝑀𝑊𝑖 + 𝑎𝐵𝐿 + 𝑎𝑊     (11). 

the multivariate regression models between baseline and short-term O3 and meteorological factors 

are shown in Equations 8 and 9. The 𝐴𝐵𝐿(𝑡) and 𝑀𝐵𝐿𝑖 represent the sum of the long term L(t) and 

the seasonal component S(t) of O3 concentration and meteorological factors. The 𝐴𝑊(𝑡)  and  

𝑀𝑊𝑖 represent the short-term W(t) of O3 concentration and meteorological factors. The 𝑎 and 𝑏 

are the fitted parameters, and 𝑖  is time point (days). 𝜖(𝑡)  is the residual term. The average 

meteorological condition 𝑀 at the same calendar date during the 5 years is regarded as the base 

condition for that date, and the meteorological adjustment is conducted against the base condition. 

In these steps, 𝐴𝑎𝑑(𝑡) refers to the meteorologically adjusted O3 variation with the homogenized 

annual variation in meteorological conditions. The difference between  raw O3 time series and 

𝐴𝑎𝑑(𝑡) represents the meteorological impact. 

 

2.4. Classification of SWPs  

In order to find the detailed variation characteristics of SWPs, we first extract the predominant 

SWPs in the warm seasons over the YRD using a weather classification method. Common objective 

classification methods include using predefined type, the leader algorithm, the cluster analysis, 

optimization algorithms and eigenvectors (Philipp et al. 2016). The PTT method, a simplified 

variant of t-mode principal component analysis using orthogonal rotation, is used to classify SWPs 

during 2014–2018. It is one of the methods for weather classification in European Cooperation in 

Science and Technology Action 733 (Philipp et al. 2016), which is widely used in atmospheric 

sciences (Hou et al. 2019).  

 



2.5. FNL and ERA-Interim meteorological data 

The National Center for Environmental Prediction Final Operational Global Analysis (FNL) 

data (http://rda.ucar.edu/datasets/ds083.2/) produced by the Global Data Assimilation System are 

used in classifying SWPs and analyzing atmospheric circulations. The data have a horizontal 

resolution of 2.5°×2.5°, with 144×73 horizontal grids available every 6 hours. From the near surface 

layer to 10 hPa, there are 17 pressure levels in the vertical direction. The data of the geopotential 

height and wind at 500 hPa and 850 hPa, the vertical wind (Ω), temperature are used in this study. 

At the same time, the low cloud cover (LCC), the total cloud liquid water (TCLW) and solar 

radiation (SR) from ERA-interim are supplemented in this study, which have the same temporal and 

spatial resolutions as the FNL data. Moreover, the western Pacific Subtropical High index (WPSHI) 

and the eastern Asian summer monsoon index (EASMI) are calculated using the FNL data of the 

geopotential height and wind at 850 hPa. The WPSHI is defined following the western Pacific 

Subtropical High intensity index in the National Climate Center of China. Specific formula refers 

to website (https://cmdp.ncc-cma.net/extreme/floods.php?product=floods_diag). The EASMI is a 

shear vorticity index. It is defined as the difference of regional mean zonal wind at 850 hPa between 

5 and 15°N, 22.5 and 32.5°N, 90 and 130°E, and 110 and 140°E in Wang and Fan (1999), 

recommended by Wang et al. (2008). 

The FNL geopotential height field at 850 hPa can capture the synoptic circulation variations 

over the YRD well (Shu et al. 2017). In this study, we use the geopotential height at 850 hPa from 

April to September during 2014–2018 as the input for the PTT. WPSHI and EASMI are correlated 

with the O3 time series. We used the Pearson correlation coefficient to calculate the correlations 

between two time series. 

 

2.6. Reconstruction of O3 concentration based on SWP 

   To quantify the inter-annual variability captured by the variations (frequency and intensity) in 

the SWPs, Yaranl (1992) provided an algorithm to find the contribution of SWPs frequency variation 

to the inter-annual O3 variation. The specific calculation is as follows. 

𝑂3𝑚
̿̿ ̿̿ ̿̿ (𝑓𝑟𝑒) =  ∑ 𝑂3𝑘

̅̅ ̅̅ ̅𝐹𝑘𝑚
6
𝑘=1       (12), 

where 𝑂3𝑚
̿̿ ̿̿ ̿̿ (𝑓𝑟𝑒) is the reconstructed mean O3 concentration influenced by the frequency variation 

in SWPs from April to September for year 𝑚, 𝑂3𝑘
̅̅ ̅̅ ̅ is the 5-year mean O3 concentration for SWP 

https://cmdp.ncc-cma.net/extreme/floods.php?product=floods_diag


𝑘, and 𝐹𝑘𝑚 is the occurrence frequency of SWP k during April–September for year m. 

    Hegarty et al. (2007) suggested that changes in the SWP include both frequency change and 

intensity change. The intensity of SWPs represents the location and strength of the weather system. 

Moreover, they noted that the environmental and climate-related contributions to the inter-annual 

variations of O3 could be better separated by considering these two changes. So, Equation 12 is 

modified into the following form. 

𝑂3𝑚
̿̿ ̿̿ ̿̿ (𝑓𝑟𝑒 + 𝑖𝑛𝑡) =  ∑ (𝑂3𝑘

̅̅ ̅̅ ̅ + ∆𝑂3𝑘𝑚)𝐹𝑘𝑚
6
𝑘=1       (13), 

where 𝑂3𝑚
̿̿ ̿̿ ̿̿ (𝑓𝑟𝑒 + 𝑖𝑛𝑡) is the reconstructed average O3 concentration influenced by the frequency 

and intensity changes of SWPs from April to September for year m; ∆𝑂3𝑘𝑚  is the modified 

difference on the fitting line, which is obtained through a linear fitting of the annual O3 concentration 

anomalies (∆𝑂3) to the SWP intensity index (SWPII) for SWP k in year m. ∆𝑂3𝑘𝑚 represents the 

part of the annual observed O3 oscillation caused by the intensity variation in each SWP. Hegarty et 

al. (2007) used the domain averaged sea level pressure to represent the circulation intensity index 

(CII). Liu et al. (2019) reconstructed the inter-annual O3 level in the northern China using the center 

pressure of the lowest pressure system. However, we find the intensity variation in each SWP is 

different when O3 increases. So we select different SWPII under each SWP according to the 

characteristics of high O3 concentration. Lastly, we select the maximum height in zone-1 (25°N–

40°N, 110°E–130°E), the maximum height in zone-2 (20°N–50°N, 90°E–140°E) and the mean 

height in zone-3 (10°N–40°N, 110°E–130°E). Especially, zones1, 2 and 3 were selected in term of 

location of dominated weather systems under each SWP. Detailed demonstration is introduced in 

section 3.5.  

 

3. Results and discussion 

3.1. Spatio-temporal variations of O3 in the YRD region  

3.1.1. Inter-annual variations of O3  

   Fig. 1a shows the time series of the anomalies of the monthly mean O3 concentration over the 

YRD from April to September during 2014–2018, as well as the corresponding linear fitting curve. 

Fig. 1b shows the annual variation in the total number of days with O3 concentration exceeding the 

national standard during the warm seasons over 2014-2018. As shown in Fig. 1a, the monthly mean 

O3 concentration in the warm seasons increases over 2014-2018, reaching the maximum of 37.44 



ppb in 2017 and maintaining at a high level in 2018. According to the generalized least-squares 

method with auto-regression in section 2.2, obtained fitting function is 𝑦𝑡 = −0.80876 +

0.0521𝑡 − 0.4824 cos (
2𝜋𝑀

6
) + 0.66546 sin (

2𝜋𝑀

6
) + 𝑅𝑡. Specifically, 5.21% (1.81 ppb) of k value 

as the O3 inter-annual variation shows a large increasing trend in the YRD, which is slightly higher 

than that in the entire China (5.00% per year, Lu et al. 2020). Meanwhile, the annual average days 

with O3 exceeding the standard during the warm seasons also show an increasing trend, reaching a 

peak in 2017 and maintaining at a high level in 2018. In all, both means and extremes of O3 

concentration have increased over the YRD. 

 

 

 

Fig. 1. (a) Anomalies of monthly average O3 concentration from April to September during 

2014–2018. The purple solid line represents the linear fitted curve ( 𝒚𝒕 = −𝟎. 𝟖𝟎𝟖𝟕𝟔 +

𝟎. 𝟎𝟓𝟐𝟏𝒕 )  and the color number represents the annual (April–September) mean of O3 

concentration. (b) Annual (April–September) variation in the days with O3 exceeding the 

national standard. 

 

3.1.2. Characteristics of O3 variability based on the EOF analysis  

   To further discuss the spatio-temporal distribution characteristics of the observed O3 



concentration, the EOF approach is used to uncover the relationship between the spatial distribution 

and temporal variation. By removing the missing data for 17 days, O3 concentrations in 898 days 

are processed. The percentages of variance contribution for the first three patterns are 65.70 %, 

13.80 % and 9.10 %, respectively. The significance tests of the EOF eigenvalue confirm that the 

first three patterns are significantly separated. Approximately 88.60 % of the variability in the 

original data is contained in these three patterns. In the first EOF pattern (EOF1), the observed O3 

over the YRD changes similarly and the center of the variation is located in the middle of the YRD 

(Fig. 2a). As shown in Fig. 2b, the time series of EOF1 presents an increasing trend and shows a 

high negative correlation with the time series of O3 (R = 0.98). Therefore, to some extent, the EOF1 

time series variation can represent the daily mean O3 variation and implies an increasing trend of 

regional mean O3 concentration during these periods. Furthermore, we investigated the relationships 

between the time series of EOF1 and different weather systems, as well as the meteorological factors. 

Weather systems include the WPSH and the East Asian summer monsoon, which are dominant 

weather systems affecting the YRD. Both of them show a poor correlation with the EOF1 time series 

(RWPSHI = -0.13 and REASMI = -0.04). It indicates that the daily O3 variation is too complex to be 

comprehensively explained through the change in a single weather system. Furthermore, the RH 

and SR present a good correlation with the EOF1 time series (RRH = -0.59 and RSR = 0.56). However, 

it is still unclear how the change in different weather systems causes the variation in RH and SR, 

and how the variations in RH and SR impact the other meteorological factors and O3 accumulation.  

In the second EOF pattern (EOF2), there is obvious east-west contrast. In contrast, the third 

EOF (EOF3) pattern presents a notable south-north contrast. At the same time, the increasing trend 

of EOF2 time series and the decreasing trend of EOF3 time series indicate that O3 concentrations in 

the west and northwest have risen from 2014 to 2018. It implies that a higher rate of O3 increasing 

would occur in the northwest. As known, the variance contribution of EOF1 is 65.70 % that is 

greater than EOF2 (13.80 %) and EOF3 (9.10 %). Therefore, increases in O3 in the entire YRD 

region is the main trend.  

 



 

Fig. 2. Three EOF patterns of O3 concentration in the warm seasons from 2014 to 2018  

including the spatial pattern (a  c and e) and time coefficient (b  d and f). The percentage in 

panels (a  c and e) is the variance contribution of each EOF mode. The pink dash line in panels 

(b  d and f) represents the linear fitted curve. 

 

3.2. Effects of meteorological conditions on O3 concentration over the YRD region 

3.2.1. Quantifying the effects of meteorological conditions  

   With the primary pollutant emissions being cut down, the surface O3 increase in the recent years 

in China might be attributable to a variety of factors, one of which was suggested to be the slowing 

down sink of hydroperoxy radicals, related to the variation in PM2.5 (Li et al. 2019). Yet, it is 

uncertain how meteorological conditions influence the increasing trend in surface O3. Yang et al. 

(2019) quantified the meteorological impact on O3 variation over the Pearl River Delta region using 

the meteorological adjustment. Using the methodology similar to that in Yang et al. (2019), we 

investigate meteorological influences on the increase in ozone over the YRD in the warm seasons 



during 2014–2018. Fig. 3a shows the ambient O3 variation from 2014 to 2018: i.e. O3 concentration 

increases from 2014, reaches the maximum in 2017, and maintains at a relatively high level in 2018. 

After the meteorological adjustment, the variable magnitude is lower than the original one, implying 

that if the meteorological conditions remained unchanged over the 5 years, the variation in ambient 

O3 concentration would be lower. The meteorological impact can be examined from the difference 

between the black solid and dashed lines in Fig. 3a. The difference is negative from 2014 to the 

middle of 2016 and positive from middle of 2016 to 2018. In 2017, the meteorological conditions 

increase O3 concentration by about 1.216 ppb. However, in 2015, the meteorological conditions 

become unfavorable to the O3 accumulation, leading to an O3 reduction of 1.439 ppb. The 

meteorological conditions make a difference in O3 concentration by 3.103 ppb at most between the 

most favorable year (2017) and the most unfavorable year (2015), which roughly corresponds to 

8.70% (
𝑚𝑎𝑥(𝑀𝐸𝑂 𝑖𝑚𝑎𝑝𝑐𝑡)−𝑚𝑖𝑛(𝑀𝐸𝑂 𝑖𝑚𝑝𝑎𝑐𝑡)

𝑂3(5 𝑦𝑒𝑎𝑟 𝑎𝑣𝑒𝑟𝑎𝑔𝑒)
) of the annual O3 concentration. 

In addition, we select the most influential meteorological factors to discuss their impacts on O3 

variation, including T2, RH, SR, LCC and WS. As shown in Fig. 3b, RH is the most crucial factor 

and its variation is similar to the variation in the total meteorological impact. In addition, SR and 

LCC also play important roles and have large impacts on O3 variation. RH can impact O3 

concentration in two ways. One is gas phase H2O reacting with O3 (𝑂3 + 𝐻2𝑂(𝑔𝑎𝑠) + ℎ𝑣 → 𝑂2 +

2𝑂𝐻). The other is its influencing on clouds and thereby shielding SR. The East Asian summer 

monsoon plays a key role in affecting the local RH, and meanwhile it might bring a certain amount 

of O3 from the areas south of the YRD. However, O3 concentration is high negatively related to RH, 

which implies that the local chemical reaction might contribute to the O3 accumulation more than 

the regional transport. The impacts of T2 and WS are inconsistent with the overall meteorological 

impacts. 

 



 

 

Fig. 3. (a) 5-year trends of ambient O3 (solid black line)  meteorological adjusted O3 (dashed 

black line)  and the meteorological impact (pink line) over the YRD during 2014–2018. Periods 

with positive and negative meteorological impacts are shaded in red and green  respectively; 

red and green bars represent the O3 increases and decreases attributable to meteorological 

influences in each year. (b) 5-year variations in the meteorological impact of different 

meteorological factors (MEO)  including relative humidity (RH)  solar radiation (SR)  air 

temperature (T2)  wind speed (WS) and low cloud cover (LCC). 

 

3.3. Dynamic processes of O3 variation driven by synoptic circulations 

As discussed in section 3.2, the local meteorological factors have a large impact on the O3 

variation. However, to some extent, the variation in local meteorological factors is largely affected 

by the synoptic-scale weather circulations (Leibensperger et al. 2008; Fiore et al. 2003; Wang et al. 

2016). For example, in summer the YRD is under a hot-wet environment controlled by the WPSH. 

While in winter it is under a cold-dry environment affected by the northwesterly flow caused by the 

Siberian High. The different weather systems under their corresponding SWPs have their unique 

meteorological characteristics. Moreover, even under one SWP, the location and intensity changes 

in a specific weather system can cause the changes in local meteorological factors correspondingly 

(Gao et al. 2020).  



 

3.3.1. The main synoptic weather patterns in the warm season over the YRD 

    Applying the PTT classification method, nine SWPs are identified for the warm seasons in the 

YRD. Due to the relatively large variance, the first dominant five SWPs are selected, and the other 

four SWPs are grouped as ‘others’. As shown in Table 1, SWP1, SWP2 and SWP4 are dominant, 

accounting for 41.440.66%, 23.32.84% and 14.313.99% of the occurrence frequency, respectively. 

In contrast, SWP3, SWP5 and other types occur in low frequencies, being 7.865%, 7.16.99% and 

6.101%, respectively. Specifically, SWP1 is under control of the southwesterly flow introduced by 

the WPSH. SWP2 is influenced by the northwesterly flow introduced by a continental high pressure 

and the Aleutian low pressure. SWP4 is influenced by the southeasterly flow introduced by the 

WPSH and a cyclone. SWP3 and SWP5 are affected by a cyclone and an anticyclone. SWP1 and 

SWP4 are with high T2 and RH induced by the southerly flow. While under SWP5, the YRD is with 

high T2 and low RH because of the northerly flows are weakened and could not carry sufficient 

water vapor. SWP2 is with relatively low T2. SWP3 is under the control of a cyclone and the strong 

upward motion, it is with weak SR and low T2. Specific figures of atmospheric circulation at 850 

hPa under the five SWPs are provided in the supplement. 

 

TABLE 1. The occurrence days and frequency  typical characteristics  regional mean ± the 

standard error for T2  RH  WS and SR and positive and negative days under each SWP. The > 

0 and > 0.5 represent the value of EOF1 time series more than 0 and 0.5  respectively. The < 0 

and < 0.5 is on the contrary.  

Type and number 

of days 

(frequency ) 

Typical characteristic of 

SWPs 

Meteorological factors 

Pos (>0 and >0.5) 

Neg (<0 and <0.5) 

(number of days) 

SWP1 

372 (41.43%) 

Southwesterly flow 

introduced by WPSH 

 

T2(℃): 28.38 ± 4.94 

RH (%): 77.98 ± 10.44 

WS (m/s): 7.30 ± 0.54 

SR (W/m2): 1606.20 ± 537.77 

175, 112 

194, 125 

SWP2 Northwesterly flow T2 (℃): 26.40 ± 5.37 110, 73 



209 (23.27%) introduced by a continental 

high pressure and the 

Aleutian low pressure 

RH (%): 73.97 ± 12.85 

WS (m/s): 7.28 ± 0.51 

SR (W/m2): 1615.00 ± 563.20 

97, 57 

SWP3 

70 (7.80%) 

an extratropical cyclone 

T2 (℃): 25.41 ± 4.37 

RH (%): 86.80 ± 6.25 

WS (m/s): 7.33 ± 0.58 

SR (W/m2): 959.73 ± 478.14 

12, 6 

58, 45 

SWP4 

128 (14.25%) 

Southeasterly flow brought 

by WPSH and a southern 

cyclone system 

T2 (℃): 29.29 ± 4.24 

RH (%): 78.67 ± 8.51 

WS (m/s): 7.11 ± 0.56 

SR (W/m2): 1505.97 ± 538.96 

46, 30 

82, 58 

SWP5 

64 (7.13%) 

 

The north China 

anticyclone system 

 

T2(℃): 28.08 ± 4.99 

RH (%): 73.97 ± 12.03 

WS (m/s): 7.22 ± 0.45 

SR (W/m2): 1586.78 ± 479.65 

40, 24 

23, 14 

others 

55 (6.12%) 

/ / / 

Type and number 

of days 

(frequency ) 

Typical characteristic of 

SWPs 

Meteorological factors Pos (>0 and >0.5) 

Neg (<0 and <0.5) 

(number of days) 

SWP1 

372 (41.4%) 

Southwesterly flow 

introduced by WPSH 

 

T2(℃): 28.4 ± 4.9 

RH (%): 78.0 ± 10.4 

WS (m/s): 7.3 ± 0.5 

SR (W/m2): 1606.2 ± 537.8 

175, 112 

194, 125 

SWP2 

209 (23.3%) 

Northwesterly flow 

introduced by a continental 

high pressure and the 

Aleutian low pressure 

T2 (℃): 26.4 ± 5.4 

RH (%): 74.0 ± 12.9 

WS (m/s): 7.3 ± 0.5 

SR (W/m2): 1615.0 ± 563.2 

110, 73 

97, 57 

SWP3 an extratropical cyclone T2 (℃): 25.4 ± 4.4 12, 6 



70 (7.8%) RH (%): 86.8 ± 6.3 

WS (m/s): 7.3 ± 0.6 

SR (W/m2): 959.7 ± 478.1 

58, 45 

SWP4 

128 (14.3%) 

Southeasterly flow brought 

by WPSH and a southern 

cyclone system 

T2 (℃): 29.3 ± 4.2 

RH (%): 78.7 ± 8.5 

WS (m/s): 7.1 ± 0.6 

SR (W/m2): 1506.0 ± 539.0 

46, 30 

82, 58 

SWP5 

64 (7.1%) 

 

The north China 

anticyclone system 

 

T2(℃): 28.1 ± 5.0 

RH (%): 74.0 ± 12.0 

WS (m/s): 7.2 ± 0.5 

SR (W/m2): 1586.8 ± 479.7 

40, 24 

23, 14 

others 

55 (6.1%) 

/ / / 

 

3.3.2. Impacts of SWP change on O3 concentration variation 

    We explore the impacts of SWP change on O3 variation through an analysis combined with 

EOF. As illustrated in section 3.1.2, the EOF1 mode is the dominant mode, and it implies the 

increase of O3 in the entire YRD is the main trend. The EOF1 time series is closely correlated to the 

regional mean O3 concentration (R = 0.98). In this study, we primarily focus on why O3 

concentration increases in the entire YRD region, rather than on why the increases in O3 differ 

spatially inside the YRD. Therefore, we use the EOF1 time series as a proxy to present the regional 

O3 concentration. In Table 1, the positive phase (Pos) represents that the EOF1 time series is more 

than 0 and it is beneficial to the production and accumulation of O3. On the contrary, the negative 

phase (Neg) corresponds low O3 concentrations. We extract the information by comparing Pos with 

Neg to find the changes in each SWP. Yin et al. (2019) explored dominant patterns of summer O3 

pollution and associated atmospheric circulation changes in eastern China. Differently from their 

study, we analyzed the daily variation in SWPs, and thus identified the change in atmospheric 

circulations more precisely. 

 In the five main SWPs, the EOF1 time series show an increase trend during their occurrence 



days in the warm seasons. It means that the five main SWPs tend to bring high ambient O3 

concentration through changes in the SWPs, which include SWP changes in both frequency and 

intensity. We find that the change in SWP intensity impacts more significantly the inter-annual 

variation in O3 levels than the change in SWP frequency, consistent with the results of Hegarty et 

al. (2007) and Liu et al. (2019). This will be further discussed in section 3.4. In the following, we 

will concretely discuss the variation characteristics of the five SWPs and their impacts on the 

increase of O3 in the YRD. Especially, we will show atmospheric circulations at 850 hPa and 500 

hPa, meteorological factors including SR, T2, LCC, TCLW, RH, meridional wind at 850hPa (V850) 

and W (vertical velocity) under positive and negative phase of all SWPs, and correlation coefficients 

of RH, SR and T2 with EOF1 time series under all SWPs. 

As shown in previous study, SR, T2 and RH are dominated meteorological factors and can 

directly impact O3 photochemical formation and loss (Xie et al. 2017; Gao et al. 2020). To explore 

the importance and difference of their impacts on O3 concentrations under different SWPs, we 

calculate the correlation coefficients between the EOF1 time series and these meteorological factors 

under each SWP. As shown in table 2 and 3, when the absolute values of the calculated correlation 

coefficients under a SWP are greater than 0.40, the corresponding meteorological factors present 

significant changes between Pos and Neg phases. Therefore, we regard them as the crucial 

meteorological factors that impact O3 variation under that SWP. In the end, we find that significant 

decreases in RH and increases in SR are the crucial meteorological factors under SWP1, SWP4 and 

SWP5. For SWP2, significant decreases in RH, increases in SR and T2 are the crucial 

meteorological factors. For SWP3, significant decreases in RH is the crucial meteorological factor. 

Hereinafter, we discuss variations in crucial meteorological factors induced by change in 

atmospheric circulations.  

 

TABLE 2. Correlation coefficients of RH  SR and T2 with EOF1 time series under each SWP. 

Variable SWP1 SWP2 SWP3 SWP4 SWP5 

RH -0.59 -0.52 -0.50 -0.64 -0.59 

SR 0.58 0.56 0.33 0.46 0.48 

T2 0.19 0.41 0.26 0.15 0.30 

 

Fig. 4 shows the atmospheric circulations at 850 hPa and 500 hPa, and Table 3 shows 



meteorological factors including SR, T2, TCC, TCLW, RH, V850 and W for SWP1_Pos and 

SWP1_Neg. As shown in Figs. 4a and 4b, the YRD is located at the northwest of the WPSH, mainly 

affected by the southwesterly winds. Due to the weakening of the WPSH, compared with V850 of 

4.327 m/s under SWP1_neg, weakening V850 of 2.989 m/s under SWP1_pos bring a less amount 

of water vapor to YRD region, therefore, RH significantly decreases by 15.24%. At 500 hPa, a 

shallow trough located at approximate 113°E is replaced by a slowly straight westerly flow, and the 

downward motion would strengthen and last longer. Besides, significant decreases in RH under the 

downward motion condition hinder cloud formation. LCC and TCLW decrease by 0.30 and 0.04, 

respectively. Furthermore, SR significantly increases by 730.104 W/m2 due to the less shelter of the 

clouds and less reflection above the cloud. Eventually, significant decreases in RH and increases in 

SR lead to stronger O3 photochemical reaction.  

 

 



 

Fig. 4. The geopotential height (shaded) and 850 hPa wind with temperature (color vector) 

under (a) SWP1_Pos and (b) SWP1_Neg. The geopotential height (shaded) and 500 hPa wind 

with temperature (color vector) under (c) SWP1_Pos and (d) SWP1_Neg. The red values 

represent the regionally averaged wind speed at 500 hPa in the zone around black lines. The 

boxed area in Figs. 4a-d encloses the YRD. 

 

Fig. 5 shows the atmospheric circulations at 850 hPa and 500 hPa, and Table 3 shows 

meteorological factors including SR, T2, TCC, TCLW, RH, V850 and W for SWP2_Pos and 

SWP2_Neg. As shown in Figs. 5a and 5b, the YRD is affected by a continental high and the Aleutian 

low, characterized by northwesterly flow and a bit southwesterly flow. Compared with the 

SWP2_Neg, the continental high in SWP2_Pos is weakening. Therefore, the YRD region is 

influenced by warm flows and T2 significantly increases by 4.91 ℃. The correlation between the 

EOF1 time series and T2 under SWP2 (RT2-SWP2 = −0.41) is closer than the correlation in the whole 

period (RT2-all = −0.24). This implies that the weakening of the continental high plays an important 

role in enhancing O3 there. Meanwhile, as the Aleutian low moves southward slightly, the 



southwesterly flow can hardly bring water vapor to the YRD, which leads to significant decreases 

in RH by 14.879%. At 500 hPa, a trough located at approximate 120°E–125°E is strengthened 

associated with Aleutian low shifting southward, leading to the stronger downward motion in the 

northwestern YRD behind the strengthening trough. Just like SWP1, stronger downward motion 

and significantly decreasing RH enhance SR significantly by 790.106 W/m2. Significant decreases 

in RH, increases in SR and T2 are beneficial to O3 formation. 

 

 

Fig. 5. The geopotential height (shaded) and 850 hPa wind with temperature (color vector) 

under (a) SWP2_Pos and (b) SWP2_Neg. The geopotential height (shaded) and 500 hPa wind 

with temperature (color vector) under (c) SWP2_Pos and (d) SWP2_Neg. The boxed area in 

Figs. 5a-d encloses the YRD. 

 

Fig. 6 shows the atmospheric circulations at 850 hPa and 500 hPa, and Table 3 shows 

meteorological factors including SR, T2, TCC, TCLW, RH, V850 and W for SWP3_Pos and 

SWP3_Neg. As shown in Figs. 6a and 6b, the YRD is controlled by an extratropical cyclone. 

Compared with the SWP3_Neg, the low pressure in SWP3_Pos strengthens and its location is 



slightly further eastward. Under this circumstance, the weakening southerly flow could hardly bring 

water vapor to the YRD and thus RH significantly decreases by 11.73%. At 500 hPa, the upward 

motion would be weakening due to the eastern movement of cyclone and western area controlled 

by back of a strengthening trough located at about 120°E. However, LCC still is at a high level 

under upward motion condition. Furthermore, high LCC and its less variation lead to low SR. 

Therefore, the correlation coefficient between SR and EOF1 time series is relatively low under this 

SWP3 (RSR-SWP3=-0.33). Lastly, only significant decreases in RH would be crucial factor for high 

O3 concentration. 

 

 

Fig. 6. The geopotential height (shaded) and 850 hPa wind with temperature (color vector) 

under (a) SWP3_Pos and (b) SWP3_Neg. The geopotential height (shaded) and 500 hPa wind 

with temperature (color vector) under (c) SWP3_Pos and (d) SWP3_Neg. The boxed area in 

Figs. 6a-d encloses the YRD. 

 

Fig. 7 shows the atmospheric circulations at 850 hPa and 500 hPa, and Table 3 shows 

meteorological factors including SR, T2, LCC, TCLW, RH, V850 and W for SWP4_Pos and 



SWP4_Neg. As shown in Figs. 7a and 7b, southeasterly winds prevail in the YRD, which is 

modulated by a southern low pressure and WPSH. Compared with the SWP4_Neg, the southern 

low pressure and southeasterly flow in SWP4_Pos is weaker, and thus it brings less water vapor to 

the YRD and significantly decreases RH by 12.326%. At 500 hPa, a shallow trough located at about 

125°E strengthens associated with weakening of the southern cyclone pressure, causing the strong 

sink motion, less LCC and significant increases in SR by 538.53 W/m2. Significant increases in SR 

and decreases in RH are important for O3 pollution. 

 

 

Fig. 7. The geopotential height (shaded) and 850 hPa wind with temperature (color vector) 

under (a) SWP4_Pos and (b) SWP4_Neg. The geopotential height (shaded) and 500 hPa wind 

with temperature (color vector) under (c) SWP4_Pos and (d) SWP4_Neg. The boxed area in 

Figs. 7a-d encloses the YRD. 

 

Fig. 8 shows the atmospheric circulations at 850 hPa and 500 hPa, and Table 3 shows 

meteorological factors including SR, T2, LCC, TCLW, RH, V850 and W for SWP5_Pos and 

SWP5_Neg. As shown in Figs. 8a and 8b, the YRD is controlled by the north China anticyclone, 



characterized by the northeasterly and the southwesterly winds. Compared with the SWP5_Neg, the 

high pressure in the SWP5_Pos is weaker and the northeasterly flow respond accordingly. The 

weakened sea flow makes air dryer and RH significantly lower by 17.34%. At 500hPa, a trough 

located at about 130°E controlling the YRD strengthens associated the Japan low pressure 

appearance. The downward motions become strong correspondingly and result in significant 

increases in SR by 628.326 W/m2. Significant increases in SR and decreases in RH lead to increases 

in O3 concentration. 

 

 

Fig. 8. The geopotential height (shaded) and 850 hPa wind with temperature (color vector) 

under (a) SWP5_Pos and (b) SWP5_Neg. The geopotential height (shaded) and 500 hPa wind 

with temperature (color vector) under (c) SWP5_Pos and (d) SWP5_Neg. The boxed area in 

Figs.8a-d encloses the YRD. 

 

TABLE 3. Regional mean ±  the standard error of meteorological factors in Pos and Neg 

phases and their difference under each SWP pattern. 



 

3.4. Indicators for reconstructing inter-annual O3 variation affected by synoptic-scale 

atmospheric circulation 

Due to the similar variations in regional mean O3 concentration and EOF1 time series, we 

have reconstructed the inter-annual EOF1 time series to replace the regional mean O3 concentration 

by accounting either frequency-variation-only or both frequency and intensity variations in SWPs, 

SWP phase RH (%) SR (W/m2) T2 (℃) LCC TCLW V850 (m/s) W (Pa/s) 

P1 

Pos 69.70±9.69 1970.97±403.19 29.90±4.76 0.07±0.15 0.06±0.08 2.89±2.24 0.00±0.05 

Neg 84.94±6.53 1240.93±460.18 27.45±4.78 0.37±0.27 0.17±0.14 4.27±2.73 -0.05±0.05 

Diff -15.24 730.04 2.45 -0.30 -0.11 -1.38 0.05 

P2 

Pos 66.49±10.96 1968.41±377.12 28.81±4.32 0.07±0.14 0.06±0.09 -2.47±3.09 0.02±0.05 

Neg 81.29±10.78 1178.34±479.58 23.89±5.90 0.48±0.31 0.19±0.14 -1.37±3.21 -0.03±0.06 

Diff -14.79 790.06 4.91 -0.41 -0.13 -1.10 0.05 

P3 

Pos 76.89±7.09 1371.42±605.82 27.83±2.45 0.34±0.18 0.21±0.19 -0.67±3.43 -0.02±0.04 

Neg 88.62±5.14 854.96±395.09 24.77±4.58 0.58±0.24 0.31±0.16 1.93±3.65 -0.09±0.06 

Diff -11.73 516.45 3.06 -0.24 -0.10 -2.60 0.07 

P4 

Pos 71.11±7.15 1882.33±388.10 30.62±3.69 0.11±0.16 0.12±0.16 0.57±2.40 0.01±0.04 

Neg 83.37±6.76 1343.80±547.50 28.93±4.19 0.35±0.24 0.19±0.19 2.46±3.60 -0.04±0.06 

Diff -12.26 538.53 1.69 -0.24 -0.07 -1.89 0.05 

P5 

Pos 68.47±14.19 1827.46±447.37 29.60±5.25 0.07±0.11 0.09±0.14 -1.83±3.42 0.01±0.04 

Neg 85.81±3.45 1199.21±397.17 26.43±3.82 0.43±0.30 0.16±0.09 -2.31±5.25 -0.02±0.04 

Diff -17.34 628.26 3.17 -0.35 -0.07 0.48 0.03 

Others / /  /  / / 

SWP phase RH (%) SR (W/m2) T2 (℃) LCC TCLW V850 (m/s) W (Pa/s) 

P1 

Pos 69.7±9.7 1971.0±403.2 29.9±4.8 0.07±0.15 0.06±0.08 2.9±2.2 0.00±0.05 

Neg 84.9±6.5 1240.9±460.2 27.5±4.8 0.37±0.27 0.17±0.14 4.3±2.7 -0.05±0.05 

Diff -15.2 730.1 2.4 -0.30 -0.11 -1.4 0.05 

P2 

Pos 66.5±11.0 1968.4±377.1 28.8±4.3 0.07±0.14 0.06±0.09 -2.5±3.1 0.02±0.05 

Neg 81.3±10.8 1178.3±479.6 23.9±5.9 0.48±0.31 0.19±0.14 -1.4±3.2 -0.03±0.06 

Diff -14.8 790.1 4.9 -0.41 -0.13 -1.1 0.05 

P3 

Pos 76.9±7.1 1371.4±605.8 27.8±2.5 0.34±0.18 0.21±0.19 -0.7±3.4 -0.02±0.04 

Neg 88.6±5.1 855.0±395.1 24.8±4.6 0.58±0.24 0.31±0.16 1.9±3.7 -0.09±0.06 

Diff -11.7 516.4 3.0 -0.24 -0.10 -2.6 0.07 

P4 

Pos 71.1±7.2 1882.3±388.1 30.6±3.7 0.11±0.16 0.12±0.16 0.6±2.4 0.01±0.04 

Neg 83.4±6.8 1343.8±547.5 28.9±4.2 0.35±0.24 0.19±0.19 2.5±3.6 -0.04±0.06 

Diff -12.3 538.5 1.7 -0.24 -0.07 -1.9 0.05 

P5 

Pos 68.5±14.2 1827.5±447.4 29.6±5.3 0.07±0.11 0.09±0.14 -1.8±3.4 0.01±0.04 

Neg 85.8±3.5 1199.2±397.2 26.4±3.8 0.43±0.30 0.16±0.09 -2.3±5.3 -0.02±0.04 

Diff -17.3 628.3 3.2 -0.35 -0.07 0.5 0.03 

Others / /  /  / / 



which are EOF1 time series (Fre) and EOF1 time series (Fre + Int), respectively. The observed and 

reconstructed inter-annual EOF1 time series in 2014–2018 over the entire YRD region are shown 

in Fig. 9. Obviously, the frequency changes in SWPs almost have no impact on the O3 variability in 

the entire YRD. However, considering intensity change, the fitting curve would be closer to the 

EOF1 time series. To obtain the accurate frequency and intensity change contributions, quantitative 

evaluation is carried out, we define the contribution index as the difference between the maximum 

and the minimum of a certain reconstructed time series divided by the difference between the 

maximum and the minimum of inter-annual EOF1 time series: Contribution Index = (The 

reconstructed maximum – the reconstructed minimum)/(the original maximum – the original 

minimum). Through the above equation, we derive the relative contribution (contribution index) of 

the frequency change and the intensity change. Compared with the contribution index of 10.986% 

for SWPs frequency change, the value of 48.989% for SWPs intensity change accounts for a larger 

proportion. Therefore, the intensity change in SWP is more important to the inter-annual O3 

variation than the frequency change. 

During the reconstructed process, we drastically found that SWPIIs (SWP intensity indexes) 

definition play an important role to reconstructing curve. In previous studies, Hegarty et al. (2007) 

and Liu et al. (2019) reconstructed the inter-annual O3 level in the northeastern United States and 

the northern China using the same method as ours. They defined the intensity change in SWPs using 

the domain-averaged sea level pressure and the pressure of the lowest-pressure system. However,  

the correlation under Hegarty’s Pattern V is poor, which has negative effect on their reconstructed 

curve. Therefore, we select six SWPIIs and judge their rationality through their correlation 

coefficients with EOF1 time series under each SWP: the maximum geopotential height in zone 1 

(25°N–40°N, 110°E–130°E) and zone 2 (20°N–50°N, 90°E–140°E), the minimum geopotential 

height in zone 1 (25°N–40°N, 110°E–130°E) and zone 2 (20°N–50°N, 90°E–140°E), and the 

average geopotential height in zone 1 (25°N–40°N, 110°E–130°E) and zone 3 (10°N –40°N, 110°E–

130°E). As shown in Table 4, for SWP3 and SWP5, the SWPII for the maximum geopotential height 

in zone 1 has a relative high correlation. For SWP1 and SWP4, the SWPII for the maximum 

geopotential height in zone 2 has a relative high correlation. we found that the maximum 

geopotential height show a relatively close correlation with the annual EOF1 time series. It is 

because the maximum geopotential height reflects the wind speed affecting water vapor transport 



under this pattern. Compared with SWP3 and SWP5, the weather systems are larger than the 

classification region for SWP1 and SWP4. So it shows better correlation coefficients in the large 

zone 2 than in zone 1 under SWP1 and SWP4. For SWP2, when O3 concentration tends to be at a 

high level, a cold continental high behind the YRD tends to weaken. Therefore, we select the average 

geopotential height in zone 3 to represent the SWPII. Table 4 shows that the reconstructed curve 

becomes good when we select different SWPIIs according to the characteristics of high O3 level 

under each SWP.  

 

 

Fig. 9. The trend of the inter-annual EOF1 time series in the warm seasons. The pink curve 

represents the original inter-annual EOF1 time series in the warm seasons  the green line 

represents the reconstructed EOF1 time series only accounting the frequency variation in 

SWPs  and blue line represents the reconstructed one accounting both the frequency and the 

intensity variations in SWPs. 

 

TABLE 4. Correlation coefficients between EOF1 time series and different SWPIIs under each 

SWP. 

Type Z1-ave Z1-max Z1-min Z2-min Z2-max Z3-ave 

SWP1 -0.47 -0.29 -0.35 -0.33 -0.60 -0.32 

SWP2 -0.14 -0.08 0.02 -0.07 -0.09 -0.40 

SWP3 0.28 0.61 0.03 0.05 0.43 -0.60 

SWP4 -0.14 -0.03 -0.17 -0.22 0.78 -0.38 

SWP5 0.52 0.76 0.39 0.56 0.72 0.58 



 

4. Conclusions and discussions 

In this study, we discussed meteorological influences on the O3 variation in the warm seasons 

during 2014–2018 in the YRD, China. Specifically, we analyzed the O3 spatio-temporal distribution 

characteristics, quantified the contribution of meteorological conditions to the O3 variations, 

explored how changes in SWPs and corresponding meteorological factors lead to O3 increase in the 

YRD over 2014–2018, and assessed the contributions of SWP frequency and intensity to the inter-

annual O3 variation in the region. The main conclusions are as follows.  

The annual mean O3 concentrations during the warm seasons averaged over the YRD are 32.549, 

33.03, 35.14, 37.44 and 36.05.98 ppb, respectively, for each year from 2014 to 2018, with a 

significantly increasing rate of 1.81 ppb year-1 (5.21% year-1). Meanwhile, the total number of days 

on which O3 concentration exceeding the national standard also increases with year in a similar 

pattern. Through the EOF analysis of O3 in space and time, three dominant modes were identified. 

The first mode is the most dominant mode, accounting for 65.7% of the O3 variation, suggesting 

that increase tendencies in O3 prevail over the entire YRD.  

We quantified the influence of meteorology on the inter-annual variation and trend of O3 over 

the YRD from 2014–2018, and found that the influence could lead to a regional O3 increase by 

3.103 ppb at most. Especially, RH plays the most important role in modulating the inter-annual O3 

variation, followed by SR and LCC. RH impacts on O3 concentration through two ways. One is gas 

phase H2O reacting with O3  (𝑂3 + 𝐻2𝑂(𝑔𝑎𝑠) + ℎ𝑣 → 𝑂2 + 2𝑂𝐻). The other is its influencing on 

clouds and thereby shielding SR. To explore connections between the O3 variation and synoptic 

circulations, we further identified nine types of SWPs objectively based on the PTT method, and 

selected five main types to explore their impact on O3 variation. The typical weather systems of the 

five SWPs include the WPSH under SWP1, a continental high and the Aleutian low under SWP2, 

an extratropical cyclone under SWP3, a southern low pressure and the WPSH under SWP4 and the 

north China anticyclone under SWP5. Combining EOF1 time series variation under each SWP, we 

found that the variation in all SWPs over 2014–2018 are favorable to O3 increase during that period. 

However, the crucial changes in meteorological factors attributable to the increases in O3 

concentrations are different under each SWP. For SWPs 1, 4 and 5, the crucial changes in 

meteorological factors include significant decreases in RH and increases in SR, which are 



predominantly attributable to the WPSH weakening under SWP1, the southern low pressure 

weakening under SWP4, and the north China anticyclone weakening under SWP5. These changes 

in weather systems prevent the water vapor from being transported to the YRD and result in RH 

significantly decreased by 15.24, 12.326 and 17.34%, respectively. Moreover, the significant 

decreases in RH and increases in downward motion (behind the strengthening trough and in front 

of the strengthening ridge) lead to less LCC, and thereby SR significantly increases by 730.104, 

538.53 and 628.326 W/m2, respectively. Under SWP2, the crucial changes in meteorological factors 

are significant decrease in RH by 14.879%, and increases in SR by 790.106 W/m2 and T2 by 4.91 ℃. 

Significant decrease in RH and increases in SR are mainly induced by the Aleutian low southward 

extending, which has a similar influential mechanism between RH, LCC and SR with SWPs 1, 4 

and 5. In addition, significantly increases in T2 would be due to weakening cold flow introduced by 

a weakening continental high. Under SWP3, the significant decreases in RH by 11.73% is mainly 

induced by an intensified extratropical cyclone that blocks the southerly flow carrying water vapor 

into the YRD. All changes are critical to O3 formation under each SWP.  

As the overall change in SWP intensity and that in SWP frequency contribute to 48.989% and 

10.986% to the changes in O3, we conclude that the change in SWP intensity is more important to 

the O3 increase over 2014–2018 than that in SWP frequency. We further reconstructed the EOF1 

time series by considering different SWPIIs due to the unique characteristics of each SWP. The 

results are better than those in Hegarty et al. (2007) and Liu et al. (2019) who used the same SWPIIs 

in all SWPs.  

This study quantified the inter-annual variation and increasing rate of O3 in the YRD, China, 

and explored the connection between SWP variations and the O3 increase. It provides an enhanced 

understanding of response of O3 variation to changes in SWPs from year to year and thus this 

understanding may be insightful to planning strategies for O3 pollution control. 
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