Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Preprints
https://doi.org/10.5194/acp-2020-902
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-2020-902
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  02 Nov 2020

02 Nov 2020

Review status
This preprint is currently under review for the journal ACP.

Dynamic Processes Dominating Ozone Variability in Warm Seasons of 2014–2018 over the Yangtze River Delta Region, China

Da Gao1, Min Xie1, Jane Liu2,3, Tijian Wang1, Chaoqun Ma1,a, Haokun Bai1, and Xing Chen1 Da Gao et al.
  • 1School of Atmospheric Sciences, Joint Center for Atmospheric Radar Research of CMA/NJU, CMA-NJU Joint Laboratory for Climate Prediction Studies, Jiangsu Collaborative Innovation Center for Climate Change, Nanjing University, Nanjing 210023, China
  • 2College of Geographic Sciences, Fujian Normal University, Fuzhou 350007, China
  • 3Department of Geography and Planning, University of Toronto M5S 3G3, Canada
  • anow at: Minerva Research Group, Max Planck Institute for Chemistry, Mainz, Germany

Abstract. Ozone (O3) pollution is of great concern in the Yangtze River Delta (YRD) region of China, and the regional O3 pollution is closely associated with dominant weather systems. With a focus on the warm seasons (April–September) from 2014 to 2018, we quantitatively analyze the characteristics of O3 variations over the YRD, the impacts of large-scale and synoptic-scale circulations on the variations and the associated meteorological controlling factors, based on observed ground-level O3 and meteorological data. Our analysis suggests an increasing trend of the regional mean O3 concentration in the YRD at 1.81 ppb per year over 2014–2018. Spatially, the empirical orthogonal function (EOF) analysis suggests the dominant mode accounting for 65.70 % variation in O3, implying that an increase in O3 is the dominant tendency in the entire YRD. Meteorology is estimated to increase the regional mean O3 concentration by 2.81 ppb at most from 2014 to 2018. Relative humidity is found to be the most influential meteorological factor impacting O3 concentration. As the atmospheric circulation can affect local meteorological factors and O3 levels, we identify five dominant synoptic weather patterns (SWPs) in the warm seasons in the YRD using the t-mode principal component analysis (PTT) classification. The typical weather systems of SWPs include western Pacific Subtropical High (WPSH) under SWP1, a continental high under SWP2, an extratropical cyclone under SWP3, a southern low pressure and WPSH under SWP4 and the north China anticyclone under SWP5. The annual variations of all five SWPs are favorable to the increase in O3 concentrations over 2014–2018. Moreover, the change in SWP intensity contributes more to the O3 inter-annual variation than the SWP frequency change. The SWP intensity change includes the weakening and northward-extending of the western Pacific subtropical high (WPSH) under SWP1, the weakening of the continental high under SWP2, an extratropical cyclone strengthening under SWP3, the southern low pressure weakening and WPSH weakening under SWP4, and the north China anticyclone weakening under SWP5. All these changes prevent the water vapor in the southern sea from being transported to the YRD, and increase air temperature in the YRD. In addition, the descending motions strengthen in the YRD located behind the trough and in front of the ridge due to the strengthening of the ridge and trough in the westerlies. Then, the strengthened descending motion leads to less cloud cover and strong solar radiation, which are favorable to O3 formation and accumulation. Finally, we reconstruct an EOF mode 1 time series that shows high correlation with the original O3 time series, and the reconstructed time series performs well in defining the change in SWP intensity according to the unique feature under each of the SWPs.

Da Gao et al.

Interactive discussion

Status: open (until 28 Dec 2020)
Status: open (until 28 Dec 2020)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Da Gao et al.

Da Gao et al.

Viewed

Total article views: 32 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
17 14 1 32 1 2
  • HTML: 17
  • PDF: 14
  • XML: 1
  • Total: 32
  • BibTeX: 1
  • EndNote: 2
Views and downloads (calculated since 02 Nov 2020)
Cumulative views and downloads (calculated since 02 Nov 2020)

Viewed (geographical distribution)

Total article views: 150 (including HTML, PDF, and XML) Thereof 149 with geography defined and 1 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 24 Nov 2020
Publications Copernicus
Download
Short summary
O3 becomes the ever-growing in recent years over the Yangtze River Delta region of China, and is closely associated with dominant weather systems. Still, the study on the impact of changes in synoptic weather patterns (SWPs) on O3 variation is quite limited. This work aims to reveal the unique feature of changes in each SWP under O3 variation, and quantifies the effects of meteorological conditions on O3 variation. Our findings could be helpful to the strategy-planning for O3 pollution control.
O3 becomes the ever-growing in recent years over the Yangtze River Delta region of China, and is...
Citation
Altmetrics