Supplement for

Ambient Nitro-Aromatic Compounds - Biomass Burning versus Secondary Formation in rural China

Christian Mark Garcia Salvador¹, Rongzhi Tang², Michael Priestley¹, Lin Jie Li¹, Epameinondas Tsiligiannis¹, Michael Le Breton^{1, #}, Wenfei Zhu³, Limin Zeng¹, Hui Wang¹, Ying Yu¹, Min Hu¹, Song Guo^{2,*}, Mattias Hallquist^{1,*}

Figure S1. Typical desorption profile FIGAERO settings used in this study

Figure S2. High Resolution peak fitting of individual nitro-aromatic compounds (NACs) (part 1)

Figure S2. High Resolution peak fitting of individual nitro-aromatic compounds (NACs) (part 1)

Figure S3. Diurnal profile of nitro-aromatic compounds measured in gas and particle phase (part 1)

Figure S3. Diurnal profile of nitro-aromatic compounds measured in gas and particle phase (part 2)

s study
thi
d in
) measured
IACs)
5
compounds
o-aromatic
^c nitrc
lo ı
iformation
ıl ir
Physica
SI.
Table

	Sensitivity	****0	Exact	Campaign	Daytime	Night-time		Regime Con	centration		с Г
INAUS	Factor ^s	CIASS	[M-H]	Ave_Conc	Conc	Conc	1	2	3	4	гþ
$C_6H_4N_2O_5$	0.009	DNP	183.004	151.99/17.00	241.29/20.45	99.90/15.05	108.47/28.39	135.70/12.26	184.45/20.16	203.86/11.46	13.03
C ₆ H ₅ NO ₃	0.019	NP	138.019	444.42/56.70	529.98/59.60	394.51/55.18	623.76/161.89	275.43/14.66	622.00/78.54	423.64/24.09	9.11
C ₆ H ₅ NO ₄	0.272	NC	154.014	93.46/21.99	124.03/19.36	75.63/23.58	116.82/63.27	74.23/10.75	107.77/22.15	105.30/8.94	17.90
C ₆ H ₅ NO ₅	·	NC	170.009	23.62/10.24	28.41/7.03	20.83/12.13	27.96/25.98	19.75/10.35	27.32/4.23	23.66/1.46	28.09
$C_7H_5NO_4$	·	NB	166.014	64.92/7.49	97.81/8.72	45.73/6.80	54.84/11.69	54.38/5.05	79.15/9.86	90.43/5.20	13.39
$C_7H_6N_2O_5$	·	DNP	197.020	40.98/4.64	64.31/4.85	27.33/4.54	31.09/10.64	32.44/2.67	56.36/5.24	51.38/2.59	14.25
$C_7H_6N_2O_6$	·	DNP	213.015	39.27/14.14	49.49/12.45	33.31/15.16	47.35/30.09	32.44/14.97	47.08/7.74	34.69/2.09	24.24
$C_7H_7NO_3$	·	NP	152.035	260.91/47.36	319.55/50.95	226.71/45.41	416.36/141.28	111.15/9.27	423.91/67.61	230.60/18.76	12.00
$C_7H_7NO_4$	·	NC	168.030	131.57/26.67	187.64/25.82	98.87/27.23	178.51/74.00	90.45/10.10	164.80/32.36	153.06/13.25	16.59
$C_7H_7NO_5$	·	NC	184.024	53.95/10.66	70.92/8.66	44.05/11.85	57.83/25.36	42.52/7.33	64.42/9.64	72.85/5.94	17.62
$C_8H_7NO_4$	·	NB	180.030	36.92/6.17	50.18/6.12	29.19/6.22	35.94/13.41	28.77/4.09	46.97/6.53	48.04/3.19	15.16
$C_8H_8N_2O_5$	·	DNP	211.035	45.11/8.77	64.33/9.62	33.90/8.30	47.45/20.17	36.42/6.93	55.20/7.23	52.60/3.28	17.03
C ₈ H ₉ NO ₃	·	NP	166.050	158.13/33.43	191.86/35.36	138.45/32.41	275.86/105.37	56.13/5.96	264.20/45.85	132.63/12.75	13.91
C ₈ H ₉ NO ₅	ı	NC	198.040	52.05/12.01	63.14/9.23	45.58/13.65	80.44/37.39	29.94/5.54	69.00/11.10	62.29/5.01	17.60
$C_9H_9NO_4$		NB	194.045	87.01/17.48	110.42/13.56	73.35/19.80	131.44/58.59	45.51/6.06	118.43/16.73	124.23/9.10	14.90
$C_{10}H_7NO_3$	I	NP	188.035	29.24/3.99	36.75/4.17	24.85/3.90	31.69/9.01	21.98/1.70	38.19/5.29	33.28/3.13	11.89

^{\$}Sensitivities calculated for nitrophenol and dinitrophenol were enormously low, which will result in unusual high mixing ratios of NACs. Instead, the concentration of all the NACs were calculated based on the sensitivity factor of nitrocatechol.

*Classification: (NP) Nitrophenol; (NC) Nitrocatechol, (DNP) Dinitrophenol, (NB) Nitrobenzoic acid analog ** All concentrations presented here are in ng m^{-3} . The first and second values indicate concentration in gas and particle phase, respectively.

NAC	All		Reg	gime	
		1	2	3	4
$C_6H_4N_2O_5$	0.351	0.321	0.417	0.643	0.589
C ₆ H ₅ NO ₃	0.828	0.949	0.537	0.835	0.793
C ₆ H ₅ NO ₄	0.355	0.233	0.448	0.199	0.001
C ₆ H ₅ NO ₅	0.147	0.071	0.261	-0.023	0.104
$C_7H_5NO_4$	0.285	0.543	0.115	0.51	0.476
$C_7H_6N_2O_5$	0.173	0.375	0.199	0.272	0.124
$C_7H_6N_2O_6$	0.38	0.534	0.606	0.516	0.549
C7H7NO3	0.835	0.937	0.672	0.867	0.858
$C_7H_7NO_4$	0.505	0.511	0.502	0.524	0.593
$C_7H_7NO_5$	0.156	0.118	0.243	0.044	0.357
$C_8H_7NO_4$	0.262	0.146	0.363	0.397	0.587
$C_8H_8N_2O_5$	0.296	0.256	0.363	0.52	0.758
C ₈ H ₉ NO ₃	0.838	0.917	0.642	0.887	0.873
C ₈ H ₉ NO ₅	0.602	0.854	0.392	0.404	0.806
C ₉ H ₉ NO ₄	0.474	0.756	0.51	0.352	0.799
$C_{10}H_7NO_3$	0.57	0.406	0.521	0.657	0.374

Table S2. Correlation coefficient (r) of mixing ratios of NACs in gas and particle phase. Values in red highlight the nitrophenols with strong association between the gas and particle phase.

Figure S4. Correlation analysis of $C_9H_8NO_4$ and levoglucosan for the analysis of the contribution of biomass burning using EC tracer method. Red points are the data used to determine [NAC/lev]_{BB} (A.U. = arbitrary units)

Species	Mixing Ratio, ppbv		
СО	1213±683		
NO	21±25		
O_3	17±11		
NO_2	26±9		
Catechol	0.0061 ± 0.0025		
HONO	2.948±2.17		
НСНО	4.832 ± 2.834		
HNO ₃	1.123 ± 0.98		
Propylene	2.244±1.718		
Isoprene	0.047 ± 0.129		
Ethane	11.37±8.557		
Ethylene	7.731±5.212		
m/p-Xylene	0.699 ± 0.852		
o-Xylene	0.242 ± 0.349		
Toluene	1.676 ± 2.122		
Styrene	0.152 ± 0.277		
Trimethylbenzene 1,3,5-	0.032 ± 0.117		
Trimethylbenzene1,2,4-	0.091±0.173		
Trimethylbenzene1,2,3-	0.033±0.121		
Propane	7.418 ± 7.137		
Acetylene	6.133±5.849		
Dichloromethane	4.993±20.014		
Isobutane	1.687 ± 1.388		
n-Butane	3.742±3.727		
Acetaldehyde	3.203 ± 1.702		
Acetone	2.408 ± 1.153		

Table S3. Measured concentration of major gaseous atmospheric components in Dezhou, China constrained inthe model (mean \pm standard deviation)

Figure S5. Sensitivity test physical loss rate (PLR) of nitrocatechol

Figure S6. Major production and loss pathways of NO₃ radicals

Contribution of Traffic Sources to the formation of NACs

Traffic emission was deemed as not a significant source of the measured NACs based on the weak association of nitro-aromatic compounds to automobile exhaust tracers. To further verify such claim, another set of model simulation was developed to account for the contribution of traffic emission by constraining benzene as the primary precursor. The time series of benzene during this study coincided with the influx of traffic, thus making such anthropogenic VOC as a suitable representative of traffic emissions. In MCM, OH oxidation of benzene forms phenol and further reaction of phenol with OH radicals yield catechol. The calculated nitrocatechol concentration in the new model simulation only accounted for less than 1.5% of the observed nitrocatechol. This validates the negligible involvement of traffic emission in the secondary production of NACs.

Figure S7. Comparison of time series profile of calculated nitrocatechol when benzene (traffic) as primary precursor. Note that the observed and calculated concentrations are given in two different axes.