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Abstract 13 

A critical step in satellite retrievals of trace gas columns is the calculation of the air mass factor 14 

(AMF) used to convert observed slant columns to vertical columns. This calculation requires a 15 

priori information on the shape of the vertical profile. As a result, comparisons between satellite-16 

retrieved and model-simulated column abundances are influenced by the a priori profile shape. 17 

We examine how differences between the shape of the simulated and a priori profile can impact 18 

the interpretation of satellite retrievals by performing an adjoint-based 4D-Var assimilation of 19 

synthetic NO2 observations for constraining NOx emissions. We use the GEOS-Chem Adjoint 20 

model to perform assimilations using a variety of AMFs to examine how a posteriori emission 21 

estimates are affected if the AMF is calculated using an a priori shape factor that is inconsistent 22 

with the simulated profile. In these tests, an inconsistent a priori shape factor increased root 23 

mean square errors in a posteriori emission estimates by up to 30% for realistic conditions over 24 

polluted regions. As the difference between the simulated profile shape and the a priori profile 25 

shape increases, so do the corresponding assimilated emission errors. This reveals the importance 26 

of using simulated profile information for AMF calculations when comparing that simulated 27 

output to satellite retrieved columns.  28 

 29 

1. Introduction 30 

Satellite observations provide a wealth of information on the abundance of trace gases in 31 

the troposphere (Fishman et al., 2008). The next generation of satellite instruments, including the 32 
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upcoming geostationary constellation of TEMPO (Chance et al., 2013; Zoogman et al., 2017), 33 

Sentinal-4 (Bazalgette Courrèges-Lacoste et al., 2011; Ingmann et al., 2012), and GEMS (Bak et 34 

al., 2013; Kim, 2012), will provide information on NO2 and other air quality relevant pollutants 35 

on unprecedented spatial and temporal scales. Insight into processes that affect atmospheric 36 

composition, including emissions (Streets et al., 2013), lifetimes (Fioletov et al., 2015; de Foy et 37 

al., 2015; Laughner and Cohen, 2019), and deposition (Geddes and Martin, 2017; Kharol et al., 38 

2018) can be gained by interpreting this information with atmospheric chemistry models.  39 

There are three main stages in retrieving trace gas abundances from ultraviolet and 40 

visible solar backscatter radiance measurements: calculating a light-path “slant column” by 41 

fitting observed spectra to known spectral signatures of trace gases, removing the stratospheric 42 

portion of the column, and converting the slant column to a vertical column density using an air 43 

mass factor (AMF). AMFs are calculated using a radiative transfer model and are a function of 44 

viewing geometry, surface reflectance, clouds, and radiative transfer properties of the 45 

atmosphere. AMF calculations also require an a priori estimate of the trace gas vertical profile 46 

and are sensitive to the profile shape (Eskes and Boersma, 2003; Palmer et al., 2001). 47 

Uncertainties in AMF calculations are the dominant source of uncertainty in satellite NO2 48 

retrievals over polluted regions (Boersma et al., 2007; Martin et al., 2002) largely due to 49 

sensitivity to surface reflectance, clouds, aerosols, and a priori profile information (Lorente et 50 

al., 2017). 51 

Boersma et al. (2016) highlighted the issue of representativeness errors in comparing 52 

model simulated values with UV-Vis satellite-retrieved columns. Vertical representativeness 53 

errors arise from the satellite’s altitude-dependent sensitivity due to atmospheric scattering and 54 

can degrade the quality of model-measurement comparisons beyond errors that arise from either 55 

modeling or measurements alone. A consistent accounting of the altitude-dependent sensitivity is 56 

necessary to limit these errors.  57 

Two common methods are used to account for vertical representativeness. In one method, 58 

observed slant columns are converted to vertical columns using an air mass factor calculated 59 

with scattering weights to represent instrument vertical sensitivity and shape factors to represent 60 

the vertical profile (Palmer et al., 2001). Another commonly used method employs an AMF 61 

provided with the retrieval to convert slant columns to vertical columns, and then applies an 62 

averaging kernel to the simulated profile to resample the simulated profile in a manner that 63 



3 
 

mimics the satellite vertical sensitivity (Eskes and Boersma, 2003). In this method both the 64 

averaging kernel and the retrieval AMF are calculated using an a priori NO2 profile that may 65 

have a different shape than the simulated profile, which may introduce errors in the observation-66 

simulation comparison (Zhu et al., 2016). 67 

A common application of comparisons between satellite observed columns and model 68 

simulations is to constrain NOx emissions (e.g. Ding et al., 2018; Ghude et al., 2013; Lamsal et 69 

al., 2011; Martin et al., 2003; Vinken et al., 2014). One such approach is the use of four-70 

dimensional variational (4D-Var) data assimilation, which seeks to minimize a cost function that 71 

accounts for the difference between simulated and retrieved values. As the cost function is a 72 

difference between observed and simulated NO2 columns, it is susceptible to vertical 73 

representativeness errors resulting from inconsistent a priori vertical profile information.  74 

In this work we examine how a priori profile assumptions impact satellite-model 75 

comparisons and use the GEOS-Chem adjoint as a case study to assess how this impact can 76 

affect the interpretation of satellite observations. Section 2 provides the mathematical framework 77 

for AMF calculations and satellite-model comparisons. Section 3 describes the adjoint model and 78 

synthetic observations for the case study. Section 4 discusses the results.  79 

 80 

2. Mathematical frameworks 81 

2.1 AMFs and averaging kernels 82 

The air mass factor translates the line-of-sight slant column abundances (Ωs) retrieved 83 

from satellite observed radiances into vertical column abundances (Ωv). An air mass factor is the 84 

ratio of Ωs to Ωv and depends on the atmospheric path as determined by geometry, NO2 vertical 85 

profile (n), surface reflectance, and radiative transfer properties of the atmosphere. Here we use 86 

M(n) to represent an air mass factor derived using the vertical number density profile n: 87 

 
𝑀(𝒏) =

Ω𝑠
Ω𝑣

 
(1) 

 88 

In the method described by Palmer et al. (2001), a radiative transfer model is used calculate 89 

scattering weights w(z) (also known as box air mass factors) which characterize the sensitivity of 90 

backscattered radiance IB to the abundance of a trace gas at altitude z: 91 

 92 
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𝑤(𝑧) = −

1

𝑀𝑔

𝛼𝑎,𝑧
𝛼𝑒𝑓𝑓

𝜕ln(𝐼𝐵)

𝜕𝜏
 

(2) 

where αa,z is the temperature-dependent absorption cross section (m2 molec-1), αeff is the effective 93 

(weighted average) absorption cross section (m2 molec-1) and   is the incremental trace gas 94 

optical depth. MG represents a geometric path correction accounting for the satellite viewing 95 

geometry:  96 

 𝑀𝐺 = sec 𝜃𝑜 + sec 𝜃 (3) 

where θ is the solar zenith angle and θo is the satellite viewing angle. This information is then 97 

combined with an a priori NO2 shape factor (i.e. normalized vertical profile)  98 

 
𝑺(𝑧) =

𝒏(𝑧)

Ω𝑣
 

(4) 

typically calculated with an atmospheric chemistry model to provide an air mass factor via: 99 

 100 

 
𝑀(𝒏) = ∫ 𝒘(𝑧)𝑺(𝑧)𝑑𝑧

𝑡𝑟𝑜𝑝𝑜𝑝𝑎𝑢𝑠𝑒

0

 
(5) 

where S(z) is calculated using vertical profile n(z). An attribute of the formulation of Palmer et 101 

al. (2001) is the independence of atmospheric radiative transfer properties w(z) and the vertical 102 

trace gas profile S(z). The AMF definition in Equation (1) combined with Eq. (4) indicates that a 103 

slant column can be calculated from a known vertical profile via: 104 

 
Ω𝑠 = ∫ 𝒘(𝑧)𝒏(𝑧)𝑑𝑧

𝑡𝑟𝑜𝑝𝑜𝑝𝑎𝑢𝑠𝑒

0

 
(6) 

 105 

In an alternative formulation, the air mass factor is represented as part of an averaging 106 

kernel.  As formulated by Rodgers and Connor (2003), the averaging kernel (A) provides the 107 

information needed to relate the retrieved quantity �̂� to the true atmospheric profile n: 108 

 109 

 �̂� − 𝒏𝒂 = 𝑨(𝒏 − 𝒏𝒂) (7) 

where na is an assumed a priori profile of number density. The elements of the column 110 

averaging kernel are related to the scattering weights by: 111 

 
𝑨(𝑧) =

𝒘(𝑧)

𝑀(𝒏𝒂)
 

(8) 

where M(na) is an air mass factor calculated using a priori vertical profile information. It is 112 
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important to note that unlike scattering weights, averaging kernels depend on the a priori 113 

assumed vertical profile shape.  114 

A lexicon is given in Table 1 as notation used to describe these treatments has varied 115 

across the literature. We choose M for air mass factor as a single letter is clearer in equations, w 116 

for scattering weights to maintain the original formulation of Palmer et al. (2001), n for number 117 

density following IUPAC recommendations, and Ω for column densities as is common in 118 

radiative transfer literature. 119 

Figure 1 shows examples of typical shape factor, scattering weight, and averaging kernel 120 

profiles for a range of atmospheric conditions. NO2 shape factors have significant variability; 121 

Shape factors peak near the surface in urban regions due to local pollution sources, but peak in 122 

the upper troposphere in more remote regions due to lightning. The shape of a scattering weight 123 

profile depends strongly on surface reflectance and cloud conditions. Sensitivity in the lower 124 

troposphere increases over reflective surfaces. Clouds increase sensitivity above due to their 125 

reflectance but shield the satellite from observing the atmosphere below. Averaging kernels have 126 

similarities with scattering weights but depend on both the shape of the prior and the satellite 127 

sensitivity. As AMF calculations are a convolution of the shape factor and the scattering weight 128 

profiles, these shapes affect NO2 retrievals. For these examples, the AMF for a clear sky 129 

observation with surface reflectance of 0.01 can range from 0.7 in an urban region to 1.7 in a 130 

remote region. This large difference demonstrates the importance of the assumed profile shape to 131 

the retrieval process. 132 

 133 

2.2 Comparing satellite observations to simulated values 134 

 135 

The following section expresses mathematically how satellite-model comparisons are made 136 

using various a priori profiles. 137 

 138 

2.2.1 Using scattering weights 139 

Following Palmer et al. (2001), a retrieved vertical column (Ω̂𝑣,𝑜) is estimated using an 140 

observed slant column Ωs,o and a simulation-based air mass factor M(nm), which can be 141 

calculated with Eq. (5) using the model-simulated NO2 profile (nm): 142 

 143 
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Ω̂𝑣,𝑜 =

Ω𝑠,𝑜
𝑀(𝒏𝒎)

 
(9) 

 144 

The difference ∆m between the estimated retrieved column and the model-simulated vertical 145 

column (Ωv,m) is: 146 

 Δ𝑚 = Ω𝑣,𝑚 − Ω̂𝑣,𝑜 (10) 

 Δ𝑚 = (∑ 𝑛𝑚
𝑡𝑟𝑜𝑝𝑜𝑝𝑎𝑢𝑠𝑒

0
) −

Ω𝑠,𝑜
𝑀(𝒏𝒎)

 (11) 

Equation (11) describes how this comparison is used in practice. However, we can rearrange this 147 

expression in terms of model (Ωs,m) and observed (Ωs,o) slant columns using the definition of air 148 

mass factor: 149 

 
Δ𝑚 =

Ω𝑠,𝑚
𝑀(𝒏𝒎)

−
Ω𝑠,𝑜

𝑀(𝒏𝒎)
 

(12) 

 
Δ𝑚 =

1

𝑀(𝒏𝒎)
(Ω𝑠,𝑚 − Ω𝑠,𝑜) 

(13) 

 150 

2.2.2 Using averaging kernels  151 

 152 

Comparison of simulated and retrieved columns using the averaging kernel is described 153 

by Eskes and Boersma (2003) and in the retrieval documentation in Boersma et al. (2011). The 154 

averaging kernel is applied to the simulated profile in order to sample the simulated column in a 155 

manner that reflects the retrieval sensitivity:  156 

 
Ω̂𝑣,𝑚 =∑ 𝑨𝒏𝒎

𝑡𝑟𝑜𝑝𝑜𝑝𝑎𝑢𝑠𝑒

0
 

(14) 

The resampled simulated column is then compared to the retrieved vertical column (Ωv,o) using 157 

the a priori-based air mass factor M(na) supplied with the retrieval dataset: 158 

 159 

 Δ𝑎 = Ω̂𝑣,𝑚 − Ω𝑣,𝑜 (15) 

 
Δ𝑎 = (∑ 𝑨𝒊𝒏𝒎,𝒊

𝑡𝑟𝑜𝑝𝑜𝑝𝑎𝑢𝑠𝑒

𝑖=0
) −

Ω𝑠,𝑜
𝑀(𝒏𝒂)

 
(16) 

Equation (16) describes how this method is used in practice. To facilitate the comparison with 160 

Eq. (13), Eq. (16) can be rewritten using an alternative formulation relating averaging kernels to 161 

scattering weights: 162 
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 163 

 
Δ𝑎 = (∑

𝒘𝒊𝒏𝒎,𝒊

𝑀(𝒏𝒂)

𝑡𝑟𝑜𝑝𝑜𝑝𝑎𝑢𝑠𝑒

𝑖=0
) −

Ω𝑠,𝑜
𝑀(𝒏𝒂)

 
(17) 

 
Δ𝑎 =

1

𝑀(𝒏𝒂)
(Ω𝑠,𝑚 − Ω𝑠,𝑜) 

(18) 

 164 

By comparing Eq. (13) to Eq. (18), it is evident that the underlying difference between the two 165 

approaches is the choice of a priori profile information used to calculate the AMF, as the 166 

averaging kernel method is not independent of a priori profile assumptions. This bias could be 167 

addressed by replacing the a priori -based AMF in Eq. (18) with a simulation-based AMF using 168 

the following relationship (Boersma et al., 2016; Lamsal et al., 2010): 169 

 
𝑀(𝒏𝒎) = 𝑀(𝒏𝒂)

∑𝑨𝒏𝒎
∑𝒏𝒎

 
(19) 

It should be noted that both the averaging kernel and scattering weight methods are 170 

equivalent for comparisons that examine ratios of retrieved and modeled columns: 171 

 

r𝑚 =
Ω𝑣,�̂�
Ω𝑣,𝑚

=

Ω𝑠,𝑜
𝑀(𝒏𝒎)
⁄

∑𝒏𝒎
=

Ω𝑠,𝑜
∑𝒏𝒎

∑𝒏𝒎
∑𝒘𝒏𝒎

=
Ω𝑠,𝑜

∑𝒘𝒏𝒎
 

(20) 

 

r𝑎 =
Ω𝑣,𝑜

Ω𝑣,�̂�
=

Ω𝑠,𝑜
𝑀(𝒏𝒂)
⁄

∑𝑨𝒏𝒎
=

Ω𝑠,𝑜
𝑀(𝒏𝒂)
⁄

∑𝒘𝒏𝒎/𝑀(𝒏𝒂)
=

Ω𝑠,𝑜
∑𝒘𝒏𝒎

 

(21) 

 172 

For ratios, both methods are dependent on geophysical assumptions used to calculate scattering 173 

weights but are independent of a priori profile information. Lastly, some studies (e.g., Buscela et 174 

al., 2013; Qu et al., 2017) may directly assimilate slant column densities rather than vertical 175 

column densities using  176 

 Δ𝑠,𝑎 = Ω̂𝑠,𝑚 − Ω𝑠,𝑜 

 

(22) 

 
= (∑ 𝒘𝒊𝒏𝒎,𝒊

𝑡𝑟𝑜𝑝𝑜𝑝𝑎𝑢𝑠𝑒

𝑖=0
) − Ω𝑠,𝑜 

 

(23) 

This approach is also still dependent upon the scattering weights but not upon external a priori 177 

profile information.  Overall, the choice of approach may be influenced by whether or not 178 
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scattering weights are available from either the NO2 retrieval product or radiative transfer 179 

calculations applied to the model. In contrast, use of Eq. (11) or (16) are applicable when these 180 

are not explicitly available or provided. 181 

 182 

3. Tools and Methodology 183 

3.1 GEOS-Chem and its adjoint 184 

 The GEOS-Chem chemical transport model (www.geos-chem.org) is used to create 185 

synthetic NO2 observations and for their analysis. The GEOS-Chem version used here is version 186 

35j of the GEOS-Chem Adjoint model. GEOS-Chem includes a detailed oxidant-aerosol 187 

chemical mechanism (Bey et al., 2001; Park et al., 2004) and uses assimilated meteorological 188 

fields from the Goddard Earth Observation System (GEOS-5), with 47 vertical levels up to 0.01 189 

hPa and a horizontal resolution of 4°x5°. Global anthropogenic NOx emissions are provided by 190 

the Emission Database for Global Atmospheric Research (EDGAR) inventory (Olivier et al., 191 

2005) with regional overwrites over North America (EPA/NEI99), Europe (EMEP), Canada 192 

(CAC), Mexico (BRAVO, (Kuhns et al., 2005)), and East Asia (Streets et al., 2006). Other NOx 193 

sources include biomass burning (GFED2 (Van der Werf et al., 2010)), lightning (Murray et al., 194 

2012), and soils (Wang et al., 1998). This model has been used previously to constrain NOx 195 

emissions (Cooper et al., 2017; Henze et al., 2009; Qu et al., 2017, 2019; Xu et al., 2013; Zhang 196 

et al., 2016). 197 

The GEOS-Chem adjoint (Henze et al., 2007, 2009) is used here to perform a 4D-Var 198 

data assimilation. The adjoint seeks to iteratively minimize a cost function generally defined by 199 

the difference between satellite retrieved and simulated columns (∆, from either Eq. (11) if using 200 

a simulation-based air mass factor or Eq. (16) if using the retrieval a priori-based air mass 201 

factor): 202 

 
𝐽 =

1

2
𝚫𝑻𝑺𝒐

−𝟏𝚫 +
1

2
𝛾𝑅(𝑬 − 𝑬𝒂)

𝑻𝑺𝑬
−𝟏(𝑬 − 𝑬𝒂) 

(24) 

where E and Ea are the a posteriori and a priori emissions, So and SE are the retrieval and a 203 

priori emission error covariance matrices, and γR is a regularization parameter that allows for 204 

weighting the cost function towards the retrieved columns or a priori emissions. Tests performed 205 

here required 20-30 iterations to minimize the cost function. 206 

 207 
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3.2 Experiment Outline 208 

In this study we perform 4D-Var data assimilation experiments to infer surface NOx 209 

emissions using synthetic NO2 observations. We use synthetic observations built from known 210 

emission inventories to provide a “truth” that can be used to evaluate the inversion results. To 211 

demonstrate how a priori profile information can propagate in an assimilation, we use either the 212 

model profile (∆m, Eq. (11)) or an a priori profile (∆a, Eq. (16)) in the cost function. A one-week 213 

spin-up window at the start of each adjoint iteration is used to allow NOx to reach steady state. 214 

Observation error covariances So are described as a relative error of 30% of the slant column 215 

density, plus an absolute error of 1015 molecules cm-2, which is representative of typical satellite 216 

retrieved NO2 column uncertainties (Boersma et al., 2007; Martin et al., 2002). We omit the a 217 

priori emissions constraint in the cost function (i.e. set γR=0) to isolate the impact of the 218 

observations. 219 

 220 

3.2.1 Synthetic observations 221 

Synthetic observations (Obs5) are created using a GEOS-Chem simulation where random 222 

Gaussian noise with a standard deviation of 5% is added to the anthropogenic NOx emissions. 223 

Additional tests using observations where noise with a standard deviation of 30% is added 224 

(Obs30) are also used. No additional noise is added to the individual observations to isolate the 225 

impact of AMF errors against additional sources of uncertainty. Figure 2 shows the standard (a 226 

priori) anthropogenic NOx emissions and the changes used to create the “true” emissions for the 227 

synthetic observations.  228 

For these tests, we use one observation per hour per 4°x5° grid box for a period of two 229 

weeks in July 2010. Observations consist of synthetic slant columns (Ωs,o) created by applying 230 

scattering weights to the synthetic vertical profiles using Eq. (6). Scattering weights are 231 

calculated using the LIDORT radiative transfer model (Spurr, 2002) by providing LIDORT with 232 

the observation conditions of OMI observations during July 2010, which are used to represent 233 

typical viewing conditions of low earth orbit satellite observations, and aerosol profiles from the 234 

GEOS-Chem base simulation. To represent typical conditions, these representative scattering 235 

weight profiles for each grid box are used to produce the synthetic slant columns. Tests 236 

performed for all 4°x5° grid boxes used here indicate that the mean relative difference between 237 

an air mass factor calculated using an average scattering weight profile and the average of air 238 
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mass factors using observation-specific scattering weight profiles is less than 4%.   239 

 240 

3.2.2 Shape Factors 241 

To test the impact of a priori profile information, seven different tests are performed 242 

using seven different NO2 profile shapes for AMF calculations: 243 

• Case SFM : The GEOS-Chem model simulated profile (nm), updated at each iteration 244 

of the adjoint run 245 

• Case SFprior: The a priori GEOS-Chem simulated profile, without updating. 246 

• Case SFn30: An a priori profile created by a GEOS-Chem simulation where global 247 

anthropogenic NOx emissions were perturbed with random Gaussian noise with a 248 

standard deviation of 30%. In cases where this results in negative emissions, a value 249 

of zero is used. 250 

• Case SFdiffem: An a priori profile created by a GEOS-Chem simulation where regional 251 

emission overwrites are turned off. 252 

• Case SFfiner: An a priori profile created by a GEOS-Chem simulation run at finer 253 

(2°x2.5°) resolution. 254 

• Case SFtrop: An a priori profile that assumes the NO2 profile shape is uniform from 255 

the surface to the tropopause (~200 hPa).  256 

• Case SFBL: An a priori profile that assumes the NO2 profile shape is uniform from the 257 

surface to the boundary layer (~800 hPa). 258 

 259 

An advantage of using scattering weights and the simulated shape factor in a 4D-Var framework 260 

is that it allows for the shape factor, and thus the AMF, to be updated at each iteration. When a 261 

priori profiles from an external source are used it is not possible for them to update during the 262 

inversion. The SFM and SFprior cases test the impact that iterative updates to the AMF have on a 263 

posteriori estimates. The additional cases test for the impact of using an averaging kernel based 264 

on a priori profile assumptions that are inconsistent with the model. In practice, averaging 265 

kernels and a priori profiles included in retrieval data sets are generally derived from chemical 266 

transport models that have different physical processes, emissions, or spatial resolutions. The 267 

SFn30 and SFdiffem tests are representative of inversions that use a priori profile information from 268 

a different chemical transport model with similar resolution but different emissions. The SFfiner 269 
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test represents an inversion that uses a priori profiles from a chemical transport model with a 270 

different horizontal resolution. The SFBL and SFtrop tests do not represent any modern retrieval 271 

algorithms, but are used as extreme examples of an a priori that assumes no spatial variability. 272 

The SFBL profile is representative of polluted regions as indicated by the typical urban profile in 273 

Fig. 1, while the SFtrop profile is representative of a typical rural profile. Table 2 provides global 274 

mean AMFs for these test cases, which range from 1.3-2.1, and the resulting global mean 275 

observed vertical columns, which range from 0.9-1.5 x 1015 molec/cm2. Global mean ‘observed’ 276 

vertical columns are 33% higher for SF2x25 than for SFM, and up to 66% higher for SFBL. Global 277 

mean ‘observed’ vertical columns for SFn30 and SFdiffem are similar to SFM, although individual 278 

observations may differ by up to 18% for SFn30 and 28% for SFdiffem. 279 

   280 

4. Results 281 

Figure 3 shows root mean square errors (RMSE) for the a posteriori emissions estimated 282 

by the 4D-Var assimilations of Obs5 synthetic observations. All tests successfully reduce the a 283 

priori emission error by an order of magnitude or more. The SFM has the lowest RMSE 284 

indicating that it can best estimate the “true” emissions. The next lowest RMSE is for the SFprior 285 

test, which uses the same initial model shape factor but does not update during the adjoint 286 

iterations, followed by the SFfiner, SFdiffem, SFn30, SFtrop, and SFBL tests.  287 

Figure 4 shows maps of the difference in RMSE between the SFM test and the other tests 288 

for Obs5 observations. The SFM test has a lower RMSE than the other tests in 65-72% grid boxes 289 

where the difference is nonzero. Again, the SFprior test is closest to the SFM test with a root mean 290 

square difference of 2.9x107 molec/cm2/s, followed by SFfiner (3.6x107 molec/cm2/s), SFn30 291 

(3.8x107 molec/cm2/s), SFdiffem (4.0x107 molec/cm2/s), SFtrop, (7.8x107 molec/cm2/s), and SFBL 292 

(9.0x107 molec/cm2/s). 293 

Table 3 summarizes additional error statistics focused on grid boxes with significant 294 

emission sources. Errors in a posteriori emission estimates are correlated with the “true” 295 

emissions in the SFtrop and SFn30 tests, and weakly correlated in the SFBL, SFprior, and SFdiffem 296 

tests, indicating that these tests are not well constraining the emissions. Differences between tests 297 

are more significant over polluted regions where AMF errors are more influential; For example, 298 

in the regions with the highest NOx emissions, RMSE values indicate SFM outperforms SFn30 by 299 

30% and SFtrop by >80%. Another sign of adjoint inversion quality is a low variance in errors. 300 
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While the posterior error is reduced relative to the a priori error in all tests, error standard 301 

deviations are 30% higher for SFn30 and 90% higher for SFtrop compared to SFM. The global 302 

maximum error for the SFtrop test is 30% higher than for the SFM test. All metrics indicate that 303 

the SFM test best represents the “true” emissions.  304 

Tests using Obs30 observations and the SFM and SFtrop shape factors were also performed. 305 

Despite the difference between a priori observed vertical columns using these shape factors as 306 

indicated by Table 2, these assimilations produced similar a posteriori results, with RMSE of 307 

2.9x108 molec/cm2/s for SFM and 2.8x108 molec/cm2/s for SFtrop. 308 

 309 

5. Discussion & Conclusions 310 

Accounting for the vertical profile dependence of satellite observations is essential to 311 

accurately interpret those observations. This work examines how the choice of shape factor 312 

affects differences between simulated and satellite-retrieved quantities in a data assimilation 313 

framework. Examination of the mathematical frameworks behind two common methods for 314 

comparing simulated and retrieved columns highlights how the method introduced by Palmer et 315 

al. (2001) facilitates separation of observation sensitivity (scattering weights) from the profile 316 

shape (shape factor) enabling the model-retrieval comparison to be independent of a priori 317 

profile assumptions.  318 

In these case studies, vertical representativeness errors were best reduced by using a 319 

shape factor that was consistent with the model simulation. This was especially true in polluted 320 

regions where the AMF errors dominate observation uncertainties, as deviations between the 321 

tests were largest in these regions. The further the shape factor deviated from the model state the 322 

larger the inversion errors became, as indicated by Fig. 5. The SFfiner test indicates that using a 323 

higher resolution model to generate a priori profiles does not provide an advantage in 324 

simulation-observation comparisons, as consistency between the simulation profile and the a 325 

priori shape factor is of greater importance. Comparing the SFM and SFprior tests shows that 326 

allowing for the shape factor to update during the iterative adjoint process further reduces the 327 

RMSE by 10%. However, even without allowing for shape factor updates, using a shape factor 328 

that is consistent with the initial model state produces a more accurate inversion result than using 329 

other assumed profile shapes.  330 

The case study presented here demonstrates that the shape factor source can have a strong 331 
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influence on adjoint inversion results. However, the magnitude of this influence can vary. 332 

Inversion tests performed using synthetic observations based on random 30% perturbations to 333 

emissions were insensitive to the AMF, despite large differences in a priori vertical column 334 

densities. In these tests, the cost function was more sensitive to the larger difference between the 335 

observed and simulated slant columns (i.e. Ωs,m - Ωs,o in Eq. (13) and (19)) than to the AMF. This 336 

indicates that while the  cost function is mathematically dependent on the AMF, the inversion is 337 

less sensitive to vertical representativeness errors in cases where emissions are poorly 338 

constrained, as is the case in recent adjoint inversion studies (e.g. Qu et al., 2017). However, 339 

choice of AMF will become increasingly important to adjoint inversions as emission inventories 340 

improve. Furthermore, omitting the a priori emissions constraint in the cost function and 341 

omitting noise in the observations in these tests to isolate the impact of the AMF effectively 342 

assumes poorly constrained a priori emissions and ideal observations. In practice, cost function 343 

sensitivity to AMF choice may be buffered when a priori emissions uncertainties and 344 

observational noise are considered. 345 

As it is beneficial for a consistent shape factor to be used when comparing satellite 346 

retrieved values to model simulated results, it will be useful for data products to provide the 347 

information required for this method to the user community. This is most straightforward when 348 

scattering weights (rather than averaging kernels) are provided alongside retrieved column data, 349 

as scattering weights and shape factors are independently calculated, however simulation-based 350 

air mass factors can be calculated using the averaging kernel and a priori-based air mass factor 351 

via Eq. 19. 352 

In summary, when comparing a model simulation to a satellite retrieved NO2 column in a 353 

data assimilation environment utilizing column differences, calculating the AMF using the 354 

simulated shape factor allows for better accuracy in inversion results. This demonstration can 355 

provide general guidance for other methods of interpreting satellite observations with models, as 356 

using the simulated shape factor assures consistency in the vertical representativeness between 357 

model and retrieval.  358 
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Figures: 543 

 544 

 545 

Figure 1: (Left) Shape factor profiles from a GEOS-Chem simulation for July 2010. Shown are a 546 

global average, and typical urban (Beijing), rural (Midwest USA), and remote (Tropical Pacific) 547 

profiles. (Middle) Typical OMI scattering weight profiles for varying surface reflectance and 548 

cloud height. (Right) Averaging kernels calculated using the same shape factors and scattering 549 

weights (“Clear Sky” surface reflectance is 0.01, “Cloudy” uses cloud height of 1 km). 550 
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 551 

 552 
Figure 2 (top) Anthropogenic NOx emissions for July 2010 used in GEOS-Chem. (bottom) Ratio 553 

of "true" emissions used to create Obs5 synthetic observations to a priori NOx emissions. 554 

 555 
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 556 
Figure 3: Global root mean square error (RMSE) values for 4D-Var estimates of NOx emissions 557 

for tests using various shape factors in AMF calculations. 558 

 559 
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 560 
Figure 4: Difference between root mean square error (RMSE) of adjoint tests for Obs5 synthetic 561 

observations. Root mean square differences between the a posteriori emissions estimates 562 

(molec/cm2/s) are inset. 563 

 564 
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 565 
Figure 5: Scatterplot of adjoint test results. X-axis represents the deviation of the shape factor 566 

from the model simulated shape factor (root mean square difference). Y-axis represents the a 567 

posteriori emissions error from the adjoint inversion. 568 

 569 

  570 



25 
 

Variable Palmer et 

al., 2001 

Eskes & 

Boersma, 

2003 

Boersma et al., 

2016 

Notation 

used here 

Air mass factor AMF M M M 

Slant Column ΩS S NS Ωs 

Vertical Column ΩV V NV Ωv 

Scattering Weight w(z) Cl ml W 

Shape Factor Sz(z)   S(z) 

Averaging Kernel  A A A 

Number density n(z) X xl n(z) 

Geometric AMF AMFG   MG 

Table 1: Lexicon comparing notation used in this paper to that used in previous studies. 571 

 572 

 573 

 574 

 575 

Test 

name 

Shape factor source Air Mass 

Factor 

(unitless) 

Synthetic observation (Obs5) vertical 

column density (x1015 molec/cm2) 

  Global Mean Global Mean  

(x1015 molec/cm2) 

Maximum 

difference from 

SFM (%) 

SFM Model 2.1 0.9 - 

SFn30 Model w/ 30% noise 2.1 0.9 19 

SFdiffem Model w/ different 

emissions 

2.1 0.9 28 

SFfiner Model at finer 

(2°x2.5°) resolution  

1.6 1.2 23 

SFtrop Uniform in 

troposphere 

1.8 1.0 57 

SFBL Uniform in boundary 

layer 

1.3 1.5 27 

Table 2: Global mean air mass factors and synthetic observation vertical column density for 576 

shape factors tested here.577 



26 
 

 578 

Test 

Name 

Shape 

Factor 

Source 

Correlation (r) 

of a posteriori 

error and “true” 

emissions 

a posteriori RMSE  

(x108 molec/cm2/s) 

Error standard deviation 

(x108 molec/cm2/s) 

Maximum 

error (x109 

molec/cm2/s) 

  if “true” 

emissions  

> 1010 

molec/cm2/s 

“true” 

emissions  

> 1010 

molec/cm2/s 

“true” 

emissions  

> 1011 

molec/cm2/s 

“true” 

emissions 

> 1010 

molec/cm2/s 

“true” 

emissions  

> 1011 

molec/cm2/s 

 

SFM Model 0.06* 1.8 3.0 1.8 2.9 1.6 

SFprior a priori 0.11 2.0 3.2 2.0 3.3 1.6 

SFn30 Model w/ 

30% noise 

0.26 2.1 3.9 2.1 3.8 1.8 

SFdiffem Model w/ 

different 

emissions 

0.13 2.0 3.6 2.0 3.7 1.9 

SFfiner Model at 

finer 

(2°x2.5°) 

resolution 

  

0.05* 2.1 3.2 2.1 3.2 1.8 

SFtrop Uniform in 

troposphere 

0.39 2.8 5.6 2.8 5.5 2.1 

SFBL Uniform in 

boundary 

layer 

0.17 2.8 4.6 2.8 4.6 1.9 

Table 3: Summary of error statistics for adjoint tests. Values marked * indicate that correlation is 579 
not statistically significant (p>0.05). For comparisons, mean “true” emissions for grid boxes with 580 
emissions>1010 molec/cm2/s is 4.9x1010, and mean “true” emissions for boxes with 581 
emissions>1011 molec/cm2/s is 1.6x1011 molec/cm2/s. 582 


