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Abstract. We present a method to efficiently approximate the response of atmospheric methane mole fraction and δ13C-CH4

to changes in uncertain emission and loss parameters in a three-dimensional global chemical transport model. Our approach,

based on Gaussian process emulation, allows relationships between inputs and outputs in the model to be efficiently explored.

The presented emulator successfully reproduces the chemical transport model output with a root-mean-square error of 1.2 ppb

and 0.06 ‰ for hemispheric methane mole fraction and δ13C-CH4, respectively, for 28 uncertain model inputs. The method5

is shown to outperform multiple linear regression, because it captures non-linear relationships between inputs and outputs,

as well as the interaction between model input parameters. The emulator was used to determine how sensitive methane mole

fraction and δ13C-CH4 are to the major source and sink components of the atmospheric budget, given current estimates of their

uncertainty. We find that our current knowledge of the methane budget, as inferred through hemispheric mole fraction obser-

vations, is limited primarily by uncertainty in the global mean hydroxyl radical concentration and emissions from fresh water.10

Our work quantitatively determines the added value of measurements of δ13C-CH4, which are sensitive to some uncertain pa-

rameters that mole fraction observations on their own are not. However, we demonstrate the critical importance of constraining

isotopic initial conditions and isotopic source signatures, small uncertainties in which strongly influence long-term δ13C-CH4

trends, because of the long timescales over which transient perturbations propagate through the atmosphere. Our results also

demonstrate that the magnitude and trend of methane mole fraction and δ13C-CH4 can be strongly influenced by the combined15

uncertainty of more minor components of the atmospheric budget, which are often fixed and assumed to be well-known in

inverse modelling studies (e.g. emissions from termites, hydrates, and oceans). Overall, our work provides an overview of the

sensitivity of atmospheric observations to budget uncertainties and outlines a method which could be employed to account for

these uncertainties in future inverse modelling systems.

1 Introduction

Methane (CH4) is the second most important greenhouse gas in terms of anthropogenic radiative forcing of climate (Myhre

et al., 2013; Etminan et al., 2016). It has a wide range of sources and sinks, and the currently estimated magnitude of each

1

20

School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
Correspondence: Angharad C. Stell (a.stell@bristol.ac.uk), Matthew Rigby (matt.rigby@bristol.ac.uk)

https://doi.org/10.5194/acp-2020-871
Preprint. Discussion started: 24 August 2020
c© Author(s) 2020. CC BY 4.0 License.



0

200

400

600

O
H

W
e
tl

a
n

d
s

F
o
ss

il 
fu

e
ls

F
re

sh
 w

a
te

r

A
g

ri
cu

lt
u

re

W
a
st

e

V
o
lc

a
n

o
e
s

S
tr

a
to

sp
h

e
re

R
ic

e

S
o
il

C
l

B
io

m
a
ss

 b
u

rn
in

g

O
ce

a
n

s

T
e
rm

it
e
s

H
y
d

ra
te

s

Input parameter

M
e
th

a
n
e
 e

m
is

si
o
n
 o

r 
lo

ss
 /

 T
g
 y

r−
1

Sink
Source

Figure 1. The magnitude of the different sources and sinks contributing to the methane budget, according to the combined ranges of bottom-

up and top-down estimates (Saunois et al., 2016). The blue bars are sources of methane and the orange bars are sinks of methane. The error

bars represent the range of values used in this work, which are the minimum and maximum values given in Saunois et al. (2016). The dashed

black line shows the cut-off between the parameters that are varied in this work, and those that are not (see Sect. 2.2 for more detail).

source and sink is shown in Fig. 1. However, the understanding of the atmospheric methane budget is incomplete. This lack of

understanding is demonstrated by a mismatch between bottom-up (inventory and process model-based) and top-down (atmo-25

spheric data-based) emissions estimates (Kirschke et al., 2013), and conflicting accounts of the drivers of recent changes in its

atmospheric budget; for example, recent studies have proposed that the plateau in methane concentrations in the early 2000s

and subsequent growth since 2007 (Rigby et al., 2008), could be driven by increased wetland emissions (Nisbet et al., 2016),

increased agricultural emissions (Schaefer et al., 2016), reduced biomass burning and increased fossil fuel sources (Worden

et al., 2017), or (non-statistically significant) changes in hydroxyl radical (OH) concentrations (Rigby et al., 2017; Turner et al.,30

2017).

Top-down (atmospheric data-based) investigations of the global methane budget have primarily relied on atmospheric mea-

surements of mole fractions made at “background” sites, far from emission sources, (e.g. Houweling et al. (1999); Chen and

Prinn (2006); Simpson et al. (2006); Rigby et al. (2008); Bousquet et al. (2011); Turner et al. (2017); Rigby et al. (2017);

Naus et al. (2019)), and/or remotely sensed observations (e.g. Bergamaschi et al. (2013); Turner et al. (2016); Miller et al.35

(2019)). Measurements of the ratio of methane’s most abundant isotopologues, 12CH4 and 13CH4, have increasingly been used

to provide additional constraints on methane’s sources and sinks (e.g. Bergamaschi et al. (1998); Quay et al. (1999); Nisbet

et al. (2016); Rice et al. (2016); Schaefer et al. (2016); Rigby et al. (2017); Turner et al. (2017); Worden et al. (2017); McNor-
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ton et al. (2018)). The two isotopologues are emitted in different ratios from different sources (Whiticar and Schaefer, 2007;

Schwietzke et al., 2016), and are fractionated in the atmosphere by the isotopologues’ different rates of loss, with respect to40

the sinks (Saueressig et al., 2001). These processes affect the ratio of 13CH4 to 12CH4 in the atmosphere, often described by

δ13C-CH4 in parts per thousand (‰),

δ13C −CH4 =

(
(

13CH4
12CH4

)sample

(
13CH4
12CH4

)standard

)
× 1000, (1)

where the standard is Pee Dee Belemnite (Coplen, 2011). This global mean δ13C-CH4 has decreased since the renewed methane

growth in 2007 (Nisbet et al., 2016; Schaefer et al., 2016).45

Many studies aiming to identify the cause of observed changes in atmospheric methane have relied on one-dimensional

or two-dimensional (1D or 2D) box models of the atmosphere (e.g. Nisbet et al. (2016); Rigby et al. (2017); Schaefer et al.

(2016); Turner et al. (2017); Worden et al. (2017)). A 2D box model typically splits the atmosphere into a very small number of

latitudinal and vertical boxes, within which zonal mean mole fractions are calculated. These models are known to be limited by

their lack of interannual variation in transport and low spatial resolution. Naus et al. (2019) found that 2D box model parameters50

could be derived from a three-dimensional chemical transport model (3D CTM) to combat these limitations, although some

bias remained. Global inversions using 3D CTMs have been carried out (e.g. Bousquet et al. (2011); Bergamaschi et al. (2013);

Rice et al. (2016); McNorton et al. (2018)). However, these studies often rely on assumptions of linearity, Gaussian probability

distributions (which can be non-physical) and frequently omit the exploration of some key parameters (e.g. by assuming fixed

and known OH concentrations).55

The problem of efficiently estimating the relationship between uncertain inputs and observable outputs of a complex model

has been addressed in other fields using emulation. An emulator is a statistical approximation to a more complex model, often

using a Gaussian process (O’Hagan, 2006; Ebden, 2015). This technique has been applied to a large variety of scientific prob-

lems, for example: parameter optimisation in models describing galaxy formation (Vernon et al., 2010), influenza epidemics

(Farah et al., 2014), and the Greenland ice sheet (Chang et al., 2014); uncertainty quantification in models of biospheric carbon60

flux (Kennedy et al., 2008), aerosol effective radiative forcing (Regayre et al., 2018), and concentrations of cloud condensation

nuclei (Lee et al., 2012); and sensitivity analysis in aerosol models (Lee et al., 2011).

In this work, we outline a set of emulators, which simulate atmospheric methane based on the inputs to a 3D CTM. We limit

our investigation to the simulation of hemispheric monthly average mole fraction and δ13C-CH4, and therefore the emulators

effectively serve as a more accurate 2D box model. However, as discussed in Sect. 2.3, we anticipate that it would be trivial to65

extend the technique to the simulation of model outputs at individual monitoring sites, or for remotely sensed observations.

To demonstrate the value of the approach, we use the emulators to carry out a sensitivity analysis of atmospheric observations

to the major uncertain components of the methane budget. One-at-a-time sensitivity tests (where only one input parameter is

perturbed at a time) are often used for complex models, due to the computational burden of the large number of simulations

3
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required to carry out a full sensitivity analysis that allows for the possibility of interacting parameters. For example, this70

approach is effectively taken in previous methane inverse modelling studies, where sensitivities of observations to bulk regional

flux changes are calculated using finite differences (Fung et al., 1991; Hein et al., 1997; Chen and Prinn, 2006; McNorton et al.,

2018). A variance-based sensitivity analysis (Saltelli et al., 2000), where sensitivities are calculated using a large ensemble

(typically millions) of simulations, would be prohibitive with the computational burden of a 3D CTM. However, here we show

how a variance-based analysis can be performed using ∼ 102 3D CTM simulations, requiring only modest computational75

resources. Using a fast emulator, we are not only able to thoroughly sample the parameter space, but are also able to quantify

parameter interactions, both of which can be critical for an accurate sensitivity analysis of a complex model (Saltelli and

Annoni, 2010). Such a sensitivity analysis, which as far as we are aware has not yet been carried out for the sensitivity of

atmospheric methane to sources and sinks, will allow a better understanding of complex systems controlling atmospheric

abundance of methane and future prioritisation of research into its most important uncertain parameters.80

2 Methods

This section begins with the motivation for using emulation for sensitivity analysis (Sect. 2.1). Section 2.2 presents the 3D

chemical transport model (CTM), for which the emulator will act as a surrogate model, and its input parameters. Section 2.3

outlines how the model was used to produce the data required to train the emulator. Then, Sect. 2.4 details the mathematical

background to Gaussian process emulators, and their validation method is outlined in Sect. 2.5. Finally, Sect. 2.6 presents the85

sensitivity analysis method.

2.1 Approach

In order to make running ∼ 106 simulations for a variance-based sensitivity analysis feasible, emulators that are as computa-

tionally cheap as 2D box models were built. The emulators built in this work are a statistical approximation to the 3D CTM

output of hemispheric median monthly methane mole fraction and δ13C-CH4. These emulators are much less computationally90

expensive than the 3D CTM, with a single evaluation taking 40 ms to run on a single core of a 1.6 GHz Intel Core i5 CPU in a

laptop, compared to 4.5 hours on 12 cores of a 2.4 GHz Intel E5-2680 v4 Broadwell CPU in a supercomputer for the 3D CTM.

This computational expense reduction is possible while maintaining the spatial resolution in the emissions, loss fields, and

transport, as well as the interannual variability in transport lost in 2D box models. Additionally, this method does not assume

linear relationships between inputs and outputs nor non-interacting inputs, and allows a thorough exploration of the parameter95

space and error quantification that is difficult to achieve for 3D CTMs. Perhaps the greatest drawback of the emulation method

in this work is the small number of parameters than can be included, which is further discussed in Sect. 3.1.

In this work, a Gaussian process, which is a type of non-parametric curve fitting, emulates the 3D CTM (further explained

in Sect. 2.4). There are other methods that could be used to create the emulators if the form of the function that maps model

inputs to outputs is known, for example, linear regression if the underlying function is linear. The Gaussian process achieves100

4
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Figure 2. A simple 1D example of a Gaussian process (GP). The blue points represent known outputs of the simulator, and the black line is

the mean of the Gaussian process which interpolates between the known outputs. The Gaussian process estimated uncertainty in its prediction

is represented by the grey shading. The orange point is the Gaussian process prediction of an unknown simulator output and the orange bar

represents the uncertainty in the prediction.

the same outcome but does not assume the underlying functional form, and it requires only one main assumption: the outputs

follow a multivariate Gaussian distribution. Figure 2 shows a simple example of a 1D Gaussian process emulator. The starting

point for a Gaussian process is a set of known simulator outputs (the blue points in Fig. 2), known as a training dataset. As long

as a training dataset exists, or can be generated, this emulation method can be applied to any simulator. The Gaussian process

predicts the simulator output at untested inputs by interpolating between the training dataset. The prediction of the simulator105

output (the black line in Fig. 2) is accompanied by an estimated uncertainty in the prediction (the grey shading) that varies

depending on how close the prediction input value is to a value in the training dataset. A prediction of the simulator output (the

orange point in Fig. 2) has an uncertainty (shown by the orange bar), which is large if the input value lies beyond the training

dataset. Large errors like this are avoided in this work by using a training dataset range that encompasses the full parameter

uncertainty range explored in our sensitivity analysis.110

The first step in this method is to decide on the range of possible input parameters to the simulator, and run simulations

sampled over these ranges to form a training dataset. A dataset of known model outputs that is independent to the training

dataset are used to validate the emulators. Once the emulators are validated, they can be used for the sensitivity analysis.

5
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2.2 The chemical transport model setup and input parameter ranges

2.2.1 The chemical transport model setup115

This section describes how the 3D CTM, which the emulators will approximate, is setup. The model used is the well-established

Model for Ozone and Related Chemical Tracers (MOZART) (Emmons et al., 2010), an offline, global 3D CTM. In this work,

56 vertical model levels were used, spanning from the Earth’s surface up to about 48 km. The model was run with a spatial

resolution of 12.00 ° N× 11.25 ° W, and a time step of one hour, with data output on a 6-hourly basis, using MERRA reanalysis

meteorological fields (Rienecker et al., 2011) from 1995 to 2012.120

The MOZART input parameters that are explored in this work describe the methane sources and losses, in a similar way

to Ganesan et al. (2018). The sources we use as inputs to MOZART are: wetlands (Bloom et al., 2017), fresh water (see

Supplement), agriculture (Crippa et al., 2018), rice (Yan et al., 2009), waste (Crippa et al., 2018), fossil fuels (Crippa et al.,

2018), biomass burning (van der Werf et al., 2010), volcanoes (Etiope and Milkov, 2004), termites (Fung et al., 1991), hydrates

(Fung et al., 1991), and oceans (Lambert and Schmidt, 1993; Houweling et al., 1999). The loss processes included in the125

model are the reactions of methane with the hydroxyl radical (OH) (offline, using fields generated by Spivakovsky et al.

(2000)), tropospheric chlorine radicals (Cl) (Sherwen et al., 2016), net stratospheric loss (due to reaction with Cl and O(1D))

(Velders, 1995; Patra et al., 2011), and methanotrophic loss in soils (Murguia-Flores et al., 2018). The model input fields are

summarised in Table 1.

The δ13C-CH4 observations are modelled by simulating both 12CH4 and 13CH4. The emissions of these two species are130

determined by the literature source signatures (Sect. 2.2.2), and the loss differs between the isotopologues according to the

literature kinetic isotope effect (Sect. 2.2.2).

For each model simulation, MOZART was spun up using 30 years of repeating meteorology and sources and sinks (nomi-

nally representative of the year 1995), starting from a steady state atmosphere. The model is then run for 1996-2012 with time

varying meteorology, emissions, and losses. To account for any transient signals during the first few years following spin-up135

(further discussed in Sect. 3.5), only 2000-2012 was analysed. In each simulation, the fields in Table 1 provide the spatial and

temporal distribution of the emissions and losses. The total global magnitude of the fields are scaled by the range of values

discussed in Sect. 2.2.2 in order to investigate the sensitivity of the methane observations.

2.2.2 The chemical transport model input ranges

We test the sensitivity to five properties of input source and sink parameters: their source magnitudes, source δ13C-CH4,140

loss magnitudes, temporal trend variation for the largest emissions or losses, and initial conditions. Several minor terms in

the methane budget (termites, hydrates, oceans, and loss kinetic isotope effects) were held constant, and so are not included

as inputs to the emulators, in order to simplify the analysis. The uncertainty that results from these minor terms being held

6
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Table 1. The emission and loss fields input to MOZART, their temporal resolution, the years covered by the fields and their literature sources.

Source Reference Temporal Years

resolution

Wetlands Wetcharts (Bloom et al., 2017) monthly 2001-2012

(1996 – 2000 are 2001 repeating)

Fresh water This work (see Supplement and annual climatology

available to download (Stell, 2020a))

Agriculture EDGAR 4.32 (Crippa et al., 2018) annual 1996-2012

Rice Yan et al. (2009) monthly 2000 repeating

Waste EDGAR 4.32 (Crippa et al., 2018) annual 1996-2012

Fossil fuel (includes biofuel) EDGAR 4.32 (Crippa et al., 2018) annual 1996-2012

Biomass burning GFED4s (van der Werf et al., 2010) monthly 1997-2012

(1996 is the mean of all years)

Volcanoes Etiope and Milkov (2004) annual climatology

Termites Fung et al. (1991) annual climatology

Hydrates Fung et al. (1991) annual climatology

Oceans Lambert and Schmidt (1993); annual climatology

Houweling et al. (1999)

Loss

OH Spivakovsky et al. (2000) monthly climatology

Stratosphere Velders (1995); Patra et al. (2011) monthly climatology

Cl Sherwen et al. (2016) monthly 2005 repeating

Soil Murguia-Flores et al. (2018) monthly 1996-2009

(2010-2012 is 2009 repeating)

Rice is considered separately to agriculture and wetlands. Biofuel is included in fossil fuel rather than biomass burning. Agricultural burning is included in

biomass burning rather than agriculture.The mean of the WetCharts ensemble is used for wetland emissions.

constant is explored in Sect. 2.5. The range of possible values for the chosen parameters must be identified so that a set of

MOZART simulations over these ranges can be created, which forms the training dataset for the emulators.145

The ranges of possible source magnitudes were based on the ranges of compiled literature values in Saunois et al. (2016),

and the ranges of possible δ13C-CH4 source signatures were the three standard deviation ranges in Schwietzke et al. (2016).

The ranges of source parameter values used in this work are given in Table 2.

The ranges of possible loss magnitudes were taken from Saunois et al. (2016), and the kinetic isotope effects were held

constant at typical literature values (King et al., 1989; Tyler et al., 1994; Saueressig et al., 1995; Reeburgh et al., 1997; Crowley150

7
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et al., 1999; Snover and Quay, 2000; Tyler et al., 2000; Saueressig et al., 2001) derived as outlined in the Supplement. The

reaction rates of methane with OH, Cl, and O(1D) were held constant at the values in Burkholder et al. (2015). While there is

some uncertainty in these rate constants, the sensitivity to this term will be similar to that of their respective loss magnitudes.

The ranges of loss parameter values used in this work are given in Table 2.

The default temporal trends of the emissions and losses from 1996 to 2012 are set by the input fields in Table 1. The overall155

inventory or process model trend for the five largest methane emissions or losses (OH, wetlands, fresh water, agriculture, and

fossil fuels) was allowed to vary by a linear trend of ±20 %. For example, a trend parameter that reduces a term by 20 % is

applied as a 10 % increase in the first year, decreasing to no change in the middle of the time series, and then decreasing to -10

% in the final year.

Three parameters were varied during the spin-up: the total source magnitude, the total source δ13C-CH4, and an overall160

imbalance between the source and sink. This setup was used to allow three degrees of freedom in the initial mole fraction and

δ13C-CH4 field. Table 2 gives the range of these spin-up parameters.

2.3 Creating the chemical transport model training and validation datasets

This section discusses the generation of the training and validation datasets, which is the most computationally expensive

part of the analysis, as repeated runs of the 3D CTM are required. The training and validation datasets were designed to give165

accurate emulators for the whole range of the parameter values in Table 2. Therefore, the sets of input parameters in the datasets

should be evenly spaced, so that every possible input parameter set is close to training data. Hence, each parameter described

in Table 2 is assigned a uniform probability distribution over the range given. In order to sample from the distributions in a

way that effectively covers the input parameter space, a maximin Latin hypercube was used (McKay et al., 1979; Morris and

Mitchell, 1995). A training dataset of 270 MOZART simulations was created and used to build the Gaussian process emulators.170

An independent maximin Latin hypercube design of 90 MOZART simulations was created as a validation dataset, which was

used to evaluate the emulators.

Although observations were not required for this study, for consistency with observed trends, we opted to calculate hemi-

spheric averages based on mole fractions and δ13C-CH4 at grid cells where baseline observations were made by the Global

Monitoring Laboratory (GML) Carbon Cycle group (part of National Oceanic and Atmospheric Administration (NOAA) (Dlu-175

gokencky et al., 1994, 2017)) and the Institute of Arctic and Alpine Research (INSTAAR) (Miller et al., 2002; White et al.,

2018), respectively. Measurement stations that do not have approximately continuous records for the period of interest (more

than 9 out of 13 years) were discarded. We also discarded measurement sites that exhibited substantial above-baseline variabil-

ity in the model (likely an artefact of the coarse model resolution).

The MOZART outputs are monthly time series describing the southern hemisphere mole fraction, the northern hemisphere180

mole fraction, the southern hemisphere δ13C-CH4, and the northern hemisphere δ13C-CH4. These four 3D CTM outputs are

8
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Table 2. A table of the ranges of the 28 input parameters to MOZART that were varied in the training simulations, hence also in the emulators,

and in the sensitivity analysis. Where one value is given, the value is held constant for all simulations. Where two values are given, they are

the lower and upper limit, respectively.

Source Magnitude / Tg yr−1 Delta value / ‰ Trend / %

Wetlands 136, 250 -63.3, -59.7 -20, 20

Fresh water 54, 198 -64.6, -59.8 -20, 20

Agriculture 86, 122 -75.2, -58.4 -20, 20

Rice 21, 40 -66.0, -58.2

Waste 46, 69 -57.7, -53.5

Fossil fuel (includes biofuel) 104, 162 -45.1, -38.4 -20, 20

Biomass burning 14, 29 -27.9, -16.5

Volcanoes 27, 62 -46.1, -41.9

Termites 9.6 -65.0

Hydrates 0 -62.2

Oceans 16 -57.9

Loss Magnitude / Tg yr−1 Kinetic isotope effect Trend / %

OH 414, 730 1.0039 -20, 20

Stratosphere 6, 55 1.0397

Cl 12, 41 1.0640

Soil 8, 52 1.0215

Spin-up Magnitude / Tg yr−1 Delta value / ‰

Spin-up source 495, 976 -59.5, -52.4

Spin-up source minus loss 10, 65

the quantities that the Gaussian processes emulate. However, it should be trivial to extend this to individual grid cells of the 3D

CTM in future work. This number of emulators is feasible as the same training dataset could be used, and the computational

burden of both building and running the emulator is far smaller than creating the 3D CTM training simulations.

In order to explore sensitivities to quantities that are more often used (either implicitly or explicitly) to inform the global185

methane budget, the hemispheric outputs are combined as a global mean, inter-hemispheric difference, and trend of the mole

fraction and δ13C-CH4. The global mean is defined as the temporal mean of the mean over the northern and southern hemi-

spheres for all months between 2000 and 2012. The inter-hemispheric difference is the temporal mean over the northern

hemisphere minus the southern hemisphere, averaged over all months between 2000 and 2012. The trend is defined as the

global mean in December 2012 minus December 2000.190
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2.4 Gaussian process emulators

2.4.1 The basics of Gaussian process emulation

The Gaussian process is defined by two functions that vary depending on the input parameter values: the mean function and the

covariance function. It is sufficient to have a mean function of zero, though in this work, a multiple linear regression was chosen

as the system is close to linear. The covariance function is a measure of the similarity of input sets, and as the distance between195

the inputs increase, the value of the function decreases. In this work we use the squared exponential covariance function as

there are no discontinuities or sharp changes in the methane observations due to input parameter variation. The (i, j)th element

of the covariance matrix (K) is given by

ηij = σ2
f exp

(
−

m∑

k=1

(xk,i−xk,j)2

l2k

)
, (2)

where the maximum covariance is σ2
f , xk and xk

′ are the values of the kth input parameter, and lk is the length scale parameter200

to be optimised during training.

The prediction of an output value (y∗) at a set of input parameters (x∗) samples from the joint multivariate Gaussian

distribution of the training data (y) and the predicted values, which follows

 y

y∗


∼N


m(x∗),


K(x,x) K(x,x∗)
K(x∗,x) K(x∗,x∗)




 , (3)

where m is the mean function and x is the training dataset inputs. This means that the expected value of y∗ is205

E(y∗) =m(x∗) +K(x∗,x)K(x,x)−1y, (4)

and the uncertainty, in terms of variance, in the estimate is

V (y∗) =K(x∗,x∗)−K(x∗,x)K(x,x)−1K(x,x∗). (5)

The Gaussian process emulation method is further described in Rasmussen and Williams (2006), and some simple tutorials are

available in O’Hagan (2006) and Ebden (2015).210

2.4.2 Gaussian process emulation for time series outputs

Each MOZART output is a time series of 156 months (12 months for each of 13 years) of hemispheric median mole fraction

or δ13C-CH4. These 156 monthly outputs are highly correlated in time, which can be exploited in the design of the emulator

covariance matrix to minimise information loss. There will also be correlations in space between the northern and southern

10
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hemispheric outputs, but these correlations are not considered in this work. The chosen covariance matrix (Σ) is composed of215

the Kronecker product of a temporal covariance matrix (Σt) and a parameter covariance matrix (Σx),

Σ = Σt⊗Σx. (6)

The elements of Σt and Σx are described by ζij and ηij , respectively. The chosen temporal covariance is a first order autore-

gressive model (its value depends only on the previous month), and its (i, j)th element is

ζij =
ρ|ti−tj |

1− ρ2
, (7)220

where ρ is the autocorrelation parameter and t is the month. The chosen parameter covariance is a squared exponential, and its

(i, j)th element is given by Eq. 2.

The emulator parameters (ρ in Eq. 7, σf and lk in Eq. 2) are optimised by maximising the log-likelihood function

log(L)∝−1
2
(y−m(x))TΣ−1(y−m(x))− 1

2
log(|Σ|). (8)

This log-likelihood function is maximised using a bounds constrained quasi-Newton method (Gay, 1990) started from 28225

different random points, and the emulator with the maximum log-likelihood is chosen. This setup uses an adaptation of the R

package, Stilt (Olson et al., 2018).

2.5 Validation of the emulators

It is important to check that the emulators are an accurate approximation of the 3D CTM before they are used. The validation

dataset is used to confirm this, because it contains inputs and known 3D CTM outputs that the emulator was not trained on.230

The emulator predictions for the validation dataset inputs can be compared to the 3D CTM output, and these differences reveal

how accurate the approximation is. There are several graphical comparison methods presented in the Supplement, but the main

focus is the absolute error in emulation. For the emulators to be useful, their error in emulating the CTM output must be much

smaller than a reasonable estimate of the other errors in the system.

The error in a complex model is difficult to calculate, and so is often ignored, expert judgement is used, or estimates of235

model-data mismatch uncertainties are approximated (e.g. based on spatial or temporal variability in the model output in the

vicinity of observation points, e.g. Chen and Prinn (2006)). In this work, the uncertainty in the 3D CTM is approximated by the

uncertainty due to the invariant parameters (as in Vernon et al. (2010)). The invariant parameters and their investigated ranges

are given in Table 3. The uncertainty was calculated with a maximin Latin hypercube design of 90 MOZART simulations,

where variations were allowed only in those parameters held constant in the emulator training dataset. This invariant parameter240

error does not include many other sources of error (e.g. model transport uncertainties are not addressed), and higher-order

“invariant parameter errors” (e.g. erroneous trends or spatial distributions), so can be considered a lower bound of the total 3D

CTM error.
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Table 3. The ranges of the invariant parameters explored (from the literature as in Sect. 2.2.2), where the first number is the minimum and

the second number is the maximum. The 13CH4 A factor is the Arrhenuis pre-exponential factor, which is changed in the model to describe

uncertainty in the kinetic isotope effect with respect to the losses. The OH and 13CH4 A factor was also considered, but MOZART only

allows the rate constant to be input with two decimal places, and the OH and 13CH4 A factor is constant when given to two decimal places

over the range of kinetic isotope effects explored.

Term Magnitude / Tg yr−1 Delta value / ‰ 13CH4 A factor

Termites 5.0, 14.2 -66.7, -63.3

Hydrates 0.0, 0.9 -63.0, -61.4

Oceans 8.3, 23.7 -51.7, -44.1

Soil -24.0, -19.0

Tropospheric chlorine 6.66, 6.68 × 10−12 cm3 molecule−1 s−1

Stratosphere 0.958, 0.966 s−1

Methane loss by soil was input to the model as negative emissions, hence its isotopic fractionation is not characterised by an A factor.

2.6 Calculation of sensitivity indices

The sensitivity analysis, using the validated emulators, identifies how sensitive the 3D CTM outputs are to changes in the245

inputs. A variance-based sensitivity analysis requires ∼ 106 simulations, which would be unfeasible using the 3D CTM as the

model is so computationally expensive. By using an emulator, the only 3D CTM simulations required are those needed to train

the emulators.

In a variance-based sensitivity analysis, the model sensitivity is quantified using sensitivity indices. These indices measure

the proportion of the output variance caused by an input parameter being varied over its possible range (Saltelli et al., 2000). In250

this work, two sensitivity indices are calculated: the first order and total effect indices. The first order sensitivity index reflects

the proportion of the variance in the output that can be attributed to a single parameter. This can be calculated as

Sk =
V [E(y|xk)]

V (y)
, (9)

where V [E(y | xk)] is the variance in the expected value of the emulator output y given the value of parameter xk, and V (y)

is the variance in the emulator output caused by all parameters.255

The total effect index is the proportion of the output variance that can be explained by a single parameter and its interactions

with other parameters. This can be calculated as

STk
= 1− V [E(y|x∼k)]

V (y)
, (10)

where V [E(y|x∼k)] is the variance in y caused by all parameters except xk. A parameter’s interactions with all other parameters

can be calculated by subtracting the first order sensitivity index from the total sensitivity index. These sensitivity indices were260

calculated using Monte-Carlo methods (Saltelli et al., 2000), and further details are given in the Supplement.
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3 Results and discussion

Here, we demonstrate the accuracy of the emulators and show how they can be applied to a sensitivity study of the global

methane budget. Section 3.1 compares the 3D chemical transport model (CTM) training dataset to the observations, in order

to check that the observations lie within the envelope of the model output ensemble. Section 3.2 examines the size of the 3D265

CTM invariant parameter error, which is compared to the emulator error in Sect. 3.3 in order to justify the use of emulation.

The Gaussian process emulation method is then shown to be warranted by comparison to a simpler multiple linear regression

in Sect. 3.4. Having demonstrated the utility of the method, a sensitivity analysis is presented in Sect. 3.5.

3.1 Comparison of 3D chemical transport model training dataset to observations

The training dataset is compared to observations to check that the observations lie within the envelope of the MOZART output270

ensemble. The MOZART simulations used to train the emulators are shown in Fig. 3. The outputs that are considered in the

sensitivity analysis (the temporal mean of the global mean, the temporal mean of the inter-hemispheric difference, and the trend

in the global mean (Sect. 2.3) for the mole fraction and δ13C-CH4) are presented in Fig. 4. In these figures, the distribution of

the MOZART simulations (in orange) is compared to the NOAA and INSTAAR atmospheric observations presented in Rigby

et al. (2017) (in black) (derived from a slightly different subset of measurement stations to those used in this work).275

These figures demonstrate the large range of methane mole fraction and δ13C-CH4 values covered by the training dataset.

This is caused by the large range of emission and loss values considered, and also the somewhat arbitrary initial condition

range. Additionally, the figures show that the observations are within the MOZART range for all outputs.

These figures also show that the range of MOZART inter-hemispheric difference values is small compared to the range

of global mean and trend values. Ideally, the spatial distributions of the emissions and losses would also be parameterised,280

allowing greater variation in the inter-hemispheric differences. However, only a limited number of parameters can be included

in the Gaussian process emulation method of this work. The more parameters, the more 3D CTM simulations are required to

train the emulator and the slower computation becomes. Therefore, only up to about 30 parameters are typically included in a

Gaussian process, whereas methods such as adjoint models (e.g. Bousquet et al. (2011); Bergamaschi et al. (2013)) can include

thousands of parameters.285

3.2 The 3D chemical transport model invariant parameter error

The MOZART invariant parameter error (Sect. 2.5), as far as we are aware, has not been considered in previous methane

modelling studies. This error was calculated as the standard deviation in the output of the set of simulations where parameters
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Figure 3. The MOZART training dataset (orange lines), the mean MOZART output (blue line), and the observations (black line) for each

of the four emulators: (a) the southern hemisphere mole fraction, (b) the northern hemisphere mole fraction, (c) the southern hemisphere

δ13C-CH4, and (d) the northern hemisphere δ13C-CH4. The observations are hemispheric averages based on NOAA and INSTAAR data

(derived from a slightly different subset of measurement stations to those used in this work) presented in Rigby et al. (2017).

not included in the emulator training dataset (fluxes from termites, hydrates and oceans, as well as isotopic fractionation by

soil, tropospheric Cl, and stratospheric losses) were perturbed within their uncertainty ranges (Table 3). Over the 13 year290

period of our study, the mean invariant parameter uncertainty is about 10 ppb and 0.1 ‰ for the mole fraction and δ13C-

CH4, respectively. These values are large compared to atmospheric methane trends (e.g. between 2000 and 2012, the methane

mole fraction and δ13C-CH4 changed by around 40 ppb and -0.1 ‰, respectively). Furthermore, these uncertainties are highly

correlated through the study period, and therefore effectively act as substantial bias. The omission of this substantial source of

error will likely be leading to an underestimation of uncertainties of emissions and losses derived in inverse modelling studies,295

or may contribute to the misallocation of some emission or loss to particular processes.

3.3 Validation of the emulators

Before using the emulators, it is important to check that they reproduce the 3D CTM output well. A more complete analysis

can be found in the Supplement, which shows that the emulator is an unbiased representation of the 3D CTM. The emulator

error was calculated by predicting the validation dataset (Sect. 2.3) and comparing the predictions to the MOZART output,300
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Figure 4. Histograms of the 270 3D CTM training simulations for six outputs: (a) mole fraction global mean, (b) δ13C-CH4 global mean, (c)

mole fraction inter-hemispheric difference, (d) δ13C-CH4 inter-hemispheric difference, (e) mole fraction trend, and (f) δ13C-CH4 trend. The

black line is the corresponding value for the NOAA and INSTAAR atmospheric observations (Sect. 2.3), which are hemispheric averages

(derived from a slightly different subset of measurement stations to those used in this work) presented in Rigby et al. (2017).

using the root-mean-square error (RMSE),

RMSE =

√√√√
n∑

i=1

(yem,i−ymzt,i)2

n
, (11)

where yem is the emulator output, ymzt is the MOZART output, and n is the number of simulations being compared. The

RMSE was calculated to be about 1.2 ppb and 0.06 ‰ for the mole fraction and δ13C-CH4, respectively. This emulator error

is small when compared to the MOZART invariant parameter error (Sect. 2.5) in Fig. 5.305

As the MOZART invariant parameter error is significantly larger than the emulator error, it is possible to use a less accurate

emulator that requires fewer training simulations. As making the training dataset is the longest step in the process, this would be

beneficial for more time-consuming higher resolution models. In the case of MOZART, we find that only around 90 simulations

may be required, which is further discussed in the Supplement.

3.4 Comparison of multiple linear regression and the Gaussian process310

Previous studies (e.g. McNorton et al. (2018)) have assumed that for small changes in the source and loss magnitudes, the

relationship between methane sources and losses and atmospheric mole fraction and δ13C-CH4 is linear and that the parameters
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Figure 5. The MOZART error (blue line), emulator error (green line), and total error (MOZART and emulator errors added in quadrature)

(black line) for each of the four emulators: (a) the southern hemisphere mole fraction, (b) the northern hemisphere mole fraction, (c) the

southern hemisphere δ13C-CH4, and (d) the northern hemisphere δ13C-CH4.

do not interact (Sect. 3.5). If these two conditions are true, or close to true, then multiple linear regression would be able to

emulate the 3D CTM. Multiple linear regression might be preferred to a Gaussian process as it requires a smaller training

dataset (hence fewer 3D CTM simulations) and is conceptually and computationally simpler. Therefore, this section compares315

the performance of multiple linear regression and the Gaussian process as emulators of the 3D CTM.

The residuals for the global mean between the 3D CTM validation dataset and the predictions from the two methods (multiple

linear regression and the Gaussian process) are compared in Fig. 6. The Gaussian process residuals, with a RMSE of 1.0 ppb

and 0.06 ‰, are much smaller than for multiple linear regression, which are 18 ppb and 0.17 ‰. In comparison to the MOZART

invariant parameter error (10 ppb and 0.1 ‰), the multiple linear regression residuals are large, unlike the Gaussian process320

(Sect. 3.3). Therefore, the multiple linear regression struggles to emulate MOZART with the required accuracy.

The multiple linear regression accuracy can be improved by considering the non-linearity of the mole fraction with respect to

the OH loss. By using a log-transformed OH parameter to estimate the mole fraction, the RMSE becomes 11 ppb (the complete

residual distribution is shown in Fig. 6). Multiple linear regression using a log-transformed OH parameter still has a signifi-

cantly larger RMSE than the Gaussian process, implying that the remaining small non-linearities and parameter interactions325

are important for predicting the output value. This finding suggests that inverse modelling studies that have assumed linear
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Figure 6. The residuals for the global mean between the different emulation methods (in different colours) and the true MOZART output

for (a) methane mole fraction and (b) δ13C-CH4. Each emulator is built using a Gaussian process (GP) (grey) or multiple linear regression

(MLR) (orange). The mole fraction has an additional emulator: a multiple linear regression with log transformed OH (blue).

and independent sensitivities between observations and source and sink parameters may have under-estimated their posterior

uncertainties.

3.5 Using the emulators for sensitivity analysis

3.5.1 First order sensitivity indices330

In this section, we examine the sensitivity of the MOZART outputs to the input parameters describing methane sources and

sinks. This sensitivity is explored using the first order sensitivity indices (Eq. 9) in Fig. 7, which show the proportion of the

variance of the MOZART output caused by varying each parameter.

The sensitivity of the global mean mole fraction is shown in Fig. 7a, and is dominated by the OH loss magnitude (73 %),

with considerable contributions from the freshwater (13 %) and wetlands (8 %) source magnitudes. These sensitivities follow335

the absolute size of the uncertainty in the source and loss magnitudes seen in Fig. 1, and are therefore relatively unsurprising.

However, these results highlight the overwhelming importance of global mean OH concentration in determining the global

methane mole fraction, and the major influence of freshwater emission uncertainties, which have largely been ignored in recent

global modelling studies.

Figure 7b shows the sensitivity of the global mean δ13C-CH4 to each input parameter. The parameters that this output is most340

sensitive to are: the Cl sink magnitude (27 %), the agricultural source δ13C-CH4 (16 %), and the initial condition source δ13C-

CH4 (16 %), with several other parameters contributing substantially: the freshwater source magnitude (10 %), the stratospheric
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loss magnitude (6 %), and the wetlands source magnitude (5 %). As the mole fraction and δ13C-CH4 are most sensitive to

different parameters, this means that the δ13C-CH4 could be a useful additional measurement for constraining the methane

budget. However, two of the parameters that δ13C-CH4 is most sensitive to are δ13C-CH4-specific (the agricultural source345

δ13C-CH4 and the initial condition source δ13C-CH4), and so do not, on their own, add information about the magnitudes

of the different methane sources and sinks. Unlike the global mean mole fraction, the ordering of the parameters to which

δ13C-CH4 is most sensitive does not simply follow the absolute magnitude of uncertainty in the input parameters. The global

mean δ13C-CH4 is most sensitive to the Cl loss magnitude, which has a small uncertainty in comparison to other parameters.

However, this loss is highly fractionating, so it has a large impact on the δ13C-CH4. The second highest contribution to350

the output variance is the agricultural source δ13C-CH4, which has a large uncertainty compared to other source δ13C-CH4

signatures. Additionally, this source δ13C-CH4 signature is significantly more negative than the atmospheric δ13C-CH4 in

comparison to other sources, and so this parameter results in a large output variance in the global mean δ13C-CH4. The global

mean δ13C-CH4 is also highly sensitive to the initial conditions due to the long response time of δ13C-CH4 in the atmosphere

compared to the 17 years examined in this work (Tans, 1997).355

The mole fraction inter-hemispheric difference (the temporal mean over the northern hemisphere minus the southern hemi-

sphere as in Sect. 2.3) is most sensitive to the freshwater (66 %), fossil fuel (15 %), and wetlands (8 %) source magnitudes,

as shown in Fig. 7c. The sensitivity to these parameters is due to their large uncertainties and large differences in emissions

between the two hemispheres. The OH loss magnitude, which has the largest uncertainty of any parameter, has been assumed

to be close to equally distributed between the hemispheres (Patra et al., 2014), hence its low sensitivity with respect to this360

output. The dominant role of freshwater emission uncertainty in determining the inter-hemispheric difference further highlights

the need to better understand this part of the methane budget.

Figure 7d shows that the sensitivity of δ13C-CH4 inter-hemispheric difference. The parameters that the δ13C-CH4 inter-

hemispheric difference is most sensitive to are: the initial condition source δ13C-CH4 (22 %), the Cl sink magnitude (18 %),

and the fossil fuel source δ13C-CH4 (12 %). There are also significant contributions from the stratospheric loss magnitude365

(11 %), the OH loss magnitude (9 %), and the wetlands source magnitude (5 %). The parameters to which the δ13C-CH4

inter-hemispheric difference is most sensitive are similar to those that most strongly influence the global mean δ13C-CH4, but

with a higher sensitivity to parameters with a large inter-hemispheric difference (e.g. fossil fuels).

The trends (the global mean in December 2012 minus December 2000 as in Sect. 2.3) for the mole fraction and δ13C-CH4

are shown in Fig. 7e and Fig. 7f, respectively. The trend sensitivities are each dominated by single parameters: 58 % of the370

variance in the mole fraction trend is caused by the uncertainty in the OH loss magnitude, and 71 % of the δ13C-CH4 variance

due to variations in the initial conditions. The OH loss trend (15 %), freshwater source magnitude (9 %), and wetlands source

magnitude (6 %) contribute significantly to the mole fraction trend, and the agricultural source δ13C-CH4 (11 %) to the δ13C-

CH4 trend. The OH loss parameter’s importance for the output mole fraction value stems from the large uncertainty in the OH

loss. The δ13C-CH4 trend is highly sensitive to the initial conditions because of the slow response time in the atmospheric δ13C-375
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CH4, meaning that the trend is strongly dependent on its initial value (Tans, 1997). A wide range of δ13C-CH4 initial condition

values (Table 2) are examined in this work, however the importance of the initial conditions applies to even small ranges.

For example, if the δ13C-CH4 initial condition is perturbed by 0.1 ‰ from the initial median parameter values, the output

atmospheric δ13C-CH4 trend changes by 0.04 ‰, almost half the observed δ13C-CH4 trend during this period. Therefore,

constraining the initial conditions throughout the atmosphere are a serious challenge if δ13C-CH4 observations are to be used380

to estimate the recent changes in the methane budget.

These first order sensitivity indices demonstrate several key challenges in methane inverse modelling studies. Three param-

eters that the mole fraction and δ13C-CH4 are highly sensitive to, are often not explored in methane modelling: the OH loss is

often assumed to be known (e.g. Schaefer et al. (2016); Worden et al. (2017)), as is the Cl loss (e.g. Nisbet et al. (2016); Rigby

et al. (2017)) or the Cl loss is left out completely (e.g. Turner et al. (2017)); and this work is the first, as far as we are aware,385

to include freshwater emissions as an independent source. There has been increasing acknowledgement that OH and Cl could

play important roles in methane modelling (e.g. Rigby et al. (2017); Turner et al. (2017); Thanwerdas et al. (2019); Strode

et al. (2020)), but the role of freshwater methane emissions has not received the same level of attention. This lack of attention is

presumably the result of the freshwater source’s large uncertainty, but it is this large uncertainty that makes this source so im-

portant in constraining the methane budget. The first order sensitivity indices also demonstrate that the atmospheric δ13C-CH4390

is sensitive to some parameters to which the mole fraction is relatively insensitive, so should provide additional complementary

information. However, δ13C-CH4 is also highly sensitive to the initial conditions and some source signatures (e.g. agriculture),

which need to be accounted for to realise the value for global scale studies using these isotopic measurements. Furthermore,

these sources of uncertainty need to be carefully considered in methane modelling studies that use δ13C-CH4, because erro-

neous assumptions of well known initial conditions, source δ13C-CH4, or kinetic isotope effects could have substantial impacts395

on top-down budget estimates.

3.5.2 Parameter interactions

The interaction between parameters is calculated by subtracting the first order sensitivity (Eq. 9) from the total effect of

each parameter (Eq. 10). The interaction of one particular parameter with all other parameters is the proportion of the output

variance explained by changing that parameter alongside all other parameters, removing the proportion of the output variance400

from changing that parameter independently of all other parameters. An example of interacting parameters is the OH loss

and any source for the global mean mole fraction: a lower OH concentration causes a greater mole fraction increase from an

increase in emissions.

The parameter interactions are shown in Fig. 8. These interactions are generally small, with the largest being 3 %. The

interactions across all parameters account for 9 % of the output variance in the δ13C-CH4 inter-hemispheric difference, and at405

most 1 % for the other five outputs. This means that we can essentially consider the effect of each parameter independently in
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(c) CH4 inter-hemispheric difference
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(d) δ13
 C −CH4 inter-hemispheric difference
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(e) CH4 trend
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Figure 7. The orange bars show the first order sensitivity coefficients to the input parameters, with the error bars showing the uncertainty in

these indices (calculated using bootstrap resampling, see Supplement). Each panel is for one of six outputs: (a) mole fraction global mean,

(b) δ13C-CH4 global mean, (c) mole fraction inter-hemispheric difference, (d) δ13C-CH4 inter-hemispheric difference, (e) mole fraction

trend, and (f) δ13C-CH4 trend. The values given here are for the temporal mean of the time series. The input parameter codes are given by a

combination of a two character code giving the source or loss, (wetlands (we), fresh water (fw), agriculture (ag), rice (ri), waste (wa), fossil

fuels (ff), biomass burning (bb), volcanoes (vo), hydroxyl radical (OH), stratospheric (ST), Cl radical (Cl), soil (so), total source magnitude

(qm), total source δ13C-CH4 (qd), total loss imbalance (ql)) and another code giving the type of parameter, (source δ13C-CH4 (sd), source

magnitude (sm), loss magnitude (lm), temporal trend (t1), initial condition (ic)).

this sensitivity analysis. For this complex simulator, one-at-a-time sensitivity tests would produce a similar result, though this

will not necessarily be the case for other models (Saltelli and Annoni, 2010).

These interactions are small in terms of a sensitivity analysis looking for the parameters that cause the greatest proportion

of the output variance. For example, parameter interactions account for 0.2 % and 0.9 % of global mean mole fraction and410

δ13C-CH4 output variance, respectively. However, the parameter interactions must be considered in order to build an accurate

emulator. For example, the 0.2 % and 0.9 % output variance is equivalent to a standard deviation of 10 ppb and 0.13 ‰ in the

output, which are large compared to the quantities that the emulator is trying to predict (e.g. inter-hemispheric difference or

trends). These values account for most of the difference in performance of the Gaussian process and multiple linear regression,

which does not consider parameter interactions, in Sect. 3.4.415
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Figure 8. The orange bars show the interaction terms of the parameters with the error bars showing the uncertainty in these interactions

(calculated using bootstrap resampling, see Supplement). Each panel shows one output: (a) mole fraction global mean, (b) δ13C-CH4 global

mean, (c) mole fraction inter-hemispheric difference, (d) δ13C-CH4 inter-hemispheric difference, (e) mole fraction trend, and (f) δ13C-CH4

trend. The values given here are for the temporal of the time series. The input parameter codes are given by a combination of a two character

code giving the source or loss, (wetlands (we), fresh water (fw), agriculture (ag), rice (ri), waste (wa), fossil fuels (ff), biomass burning (bb),

volcanoes (vo), hydroxyl radical (OH), stratospheric (ST), Cl radical (Cl), soil (so), total source magnitude (qm), total source δ13C-CH4 (qd),

total loss imbalance (ql)) and another code giving the type of parameter, (source δ13C-CH4 (sd), source magnitude (sm), loss magnitude (lm),

temporal trend (t1), initial condition (ic)).

4 Conclusions

We have shown that Gaussian processes allow emulation of a global 3D chemical transport model (CTM) of atmospheric

methane, producing a fast and accurate approximation of the response of methane mole fraction and δ13C-CH4 to changes

in model input parameters. In this work, 28 parameters were investigated, related to methane sources and sinks, based on

270 forward model simulations. However, we found that, compared to an estimate of model uncertainty, an accurate emulator420

could be built for this system using fewer than 100 training runs. Our model uncertainty estimate, which we term "invariant

parameter error" was based on an ensemble of model runs in which several minor sources and sinks were perturbed within

their estimated uncertainty ranges, showing that they could, when considered together, lead to a substantial, and often ignored,

source of uncertainty in global methane modelling studies (with mean uncertainties in hemispheric methane and δ13C-CH4

between 2000 and 2012 of approximately 10 ppb and 0.1 ‰, respectively).425
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We show that a Gaussian process outperforms multiple linear regression in emulating the 3D CTM methane simulations:

the Gaussian process RMSE is small (1.0 ppb, 0.06 ‰) compared to the invariant parameter error, whereas the multiple linear

regression error (18 ppb, 0.17 ‰) is larger. Therefore, the use of Gaussian process emulators does not much reduce how

precisely the model matches observations, but multiple linear regression could. The poor performance of the multiple linear

regression is primarily because of the parameter interactions and the non-linearity in the response of the mole fraction to the430

OH loss.

The speed of emulation allows many more 3D CTM outputs to be generated than would be possible running the CTM it-

self, allowing a wider range of possible analyses. In this work, a thorough sensitivity analysis was carried out, which required

millions of runs of the emulator. The sensitivity analysis demonstrated some of the issues with current methane modelling.

The OH loss, Cl loss, and freshwater source are frequently held constant or not included in methane modelling studies, but the435

mole fraction or δ13C-CH4 outputs are highly sensitive to these parameters. Our analysis shows that δ13C-CH4 measurements

provide somewhat independent constraints on the sources and sinks of methane, as they are sensitive to different model param-

eters. However, several of these parameters are δ13C-CH4-specific so do not provide information on the methane budget alone.

In particular, δ13C-CH4 is highly sensitive to its initial conditions, which must therefore be very well constrained so as not to

bias modelled trends, even over almost two decades.440

Whilst we have focused here on a variance based sensitivity analysis, we anticipate that there could be multiple future

applications of an accurate and fast emulator of 3D CTM simulations of atmospheric methane. This system could allow for the

calculation of input parameter values that are consistent with observations (history matching), or could allow us to determine

the set of parameter values that optimally simulate observations (e.g. through Bayesian optimisation). While in this work

hemispheric emulators were created, it is also possible to emulate individual grid cells in the 3D CTM, which would provide a445

more accurate representation of the 3D CTM output. This number of emulators is feasible as the same training dataset could be

used, and the computational burden of both building and running the emulator is far smaller than creating the 3D CTM training

simulations. This allows new and flexible emulators to be built, and used for novel applications, without the need to rerun the

3D CTM.

5 Code and data availability450

The code used to create the freshwater emissions field and the field itself are available at https://doi.org/10.17605/OSF.IO/Q9F8P

(Stell, 2020a). The code and datasets used to train the emulators and carry out the sensitivity analysis are available at

https://doi.org/10.17605/OSF.IO/Z435M (Stell, 2020b).
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