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Abstract. We present a method to efficiently approximate the
response of atmospheric-methane mole fraction and δ13C–
CH4 to changes in uncertain emission and loss parameters
in a three-dimensional global chemical transport model. Our
approach, based on Gaussian process emulation, allows rela-5

tionships between inputs and outputs in the model to be effi-
ciently explored. The presented emulator successfully repro-
duces the chemical transport model output with a root-mean-
square error of 1.0 ppb and 0.05 ‰ for hemispheric-methane
mole fraction and δ13C–CH4, respectively, for 28 uncertain10

model inputs. The method is shown to outperform multiple
linear regression because it captures non-linear relationships
between inputs and outputs as well as the interaction between
model input parameters. The emulator was used to deter-
mine how sensitive methane mole fraction and δ13C–CH415

are to the major source and sink components of the atmo-
spheric budget given current estimates of their uncertainty.
We find that our current knowledge of the methane budget, as
inferred through hemispheric mole fraction observations, is
limited primarily by uncertainty in the global mean hydroxyl20

radical concentration and freshwater emissions. Our work
quantitatively determines the added value of measurements
of δ13C–CH4, which are sensitive to some uncertain param-
eters to which mole fraction observations on their own are
not. However, we demonstrate the critical importance of con-25

straining isotopic initial conditions and isotopic source signa-
tures, small uncertainties in which strongly influence long-
term δ13C–CH4 trends, becauseCE2 of the long timescales
over which transient perturbations propagate through the at-
mosphere. Our results also demonstrate that the magnitude30

and trend of methane mole fraction and δ13C–CH4 can be

strongly influenced by the combined uncertainty in more mi-
nor components of the atmospheric budget, which are often
fixed and assumed to be well-known in inverse-modelling
studies (e.g. emissions from termites, hydrates, and oceans). 35

Overall, our work provides an overview of the sensitivity
of atmospheric observations to budget uncertainties and out-
lines a method which could be employed to account for these
uncertainties in future inverse-modelling systems.

1 Introduction 40

Methane (CH4) is the second-most important greenhouse
gas in terms of anthropogenic radiative forcing of climate
(Myhre et al., 2013; Etminan et al., 2016). It has a wide range
of sources and sinks, and the currently estimated magnitude
of each source and sink is shown in Fig. 1. However, the 45

understanding of the atmospheric-methane budget is incom-
plete. This lack of understanding is demonstrated by a mis-
match between bottom-up (inventory- and process-model-
based) and top-down (atmospheric-data-based) emissions es-
timates (Kirschke et al., 2013) and conflicting accounts of the 50

drivers of recent changes in its atmospheric budget; for exam-
ple, recent studies have proposed that the plateau in methane
concentrations in the early 2000s and subsequent growth
since 2007 (Rigby et al., 2008) could be driven by increased
wetland emissions (Nisbet et al., 2016), increased agricul- 55

tural emissions (Schaefer et al., 2016), reduced biomass
burning and increased fossil fuel sources (Worden et al.,
2017), or highly uncertain changes in hydroxyl radical (OH)
concentrations (Rigby et al., 2017; Turner et al., 2017).
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2 A. C. Stell et al.: Methane budget sensitivity using Gaussian process emulation

Figure 1. The magnitude of the different sources and sinks contributing to the methane budget, derived from the ranges of bottom-up
estimates (Saunois et al., 2016). The blue bars are sources of methane, and the orange bars are sinks of methane. The error bars represent the
range of values used in this work, which are detailed in Sect. 2.2. The dashed black line shows the cut-off between the parameters that are
varied in this work and those that are not (see Sect. 2.2 for more detail).

Top-down (atmospheric-data-based) investigations of the
global methane budget have primarily relied on atmospheric
measurements of mole fractions made at “background” sites,
far from emission sources (e.g. Houweling et al., 1999; Chen
and Prinn, 2006; Simpson et al., 2006; Rigby et al., 2008;5

Bousquet et al., 2011; Rigby et al., 2017; Turner et al., 2017;
Naus et al., 2019), and/or remotely sensed observations (e.g.
Bergamaschi et al., 2013; Turner et al., 2016; Miller et al.,
2019). Measurements of the ratio of methane’s most abun-
dant isotopologues, 12CH4 and 13CH4, have increasingly10

been used to provide additional constraints on methane’s
sources and sinks (e.g. Bergamaschi et al., 1998; Quay et al.,
1999; Nisbet et al., 2016; Rice et al., 2016; Schaefer et al.,
2016; Rigby et al., 2017; Turner et al., 2017; Worden et al.,
2017; McNorton et al., 2018). The two isotopologues are15

emitted in different ratios from different sources (Whiticar
and Schaefer, 2007; Schwietzke et al., 2016) and are fraction-
ated in the atmosphere by the isotopologues’ different rates
of loss with respect to the sinks (Saueressig et al., 2001).
These processes affect the ratio of 13CH4 to 12CH4 in the20

atmosphere, often described by δ13C–CH4 in parts per thou-

sand (‰),

δ13C–CH4 =


(

13CH4
12CH4

)
sample(

13CH4
12CH4

)
standard

− 1

× 1000, (1)

where the standard is Pee Dee Belemnite (Coplen, 2011).
This global mean δ13C–CH4 has decreased since the renewed 25

methane growth in 2007 (Nisbet et al., 2016; Schaefer et al.,
2016).

Many studies aiming to identify the cause of observed
changes in atmospheric methane have relied on one-
dimensional or two-dimensional (1D or 2D) box models of 30

the atmosphere (e.g. Nisbet et al., 2016; Rigby et al., 2017;
Schaefer et al., 2016; Turner et al., 2017; Worden et al.,
2017). A 2D box model typically splits the atmosphere into
a very small number of latitudinal and vertical boxes, within
which zonal mean mole fractions are calculated. These mod- 35

els are known to be limited by their lack of interannual varia-
tion in transport and low spatial resolution. Naus et al. (2019)
found that 2D box model parameters could be derived from
a three-dimensional chemical transport model (3D CTM)
to combat these limitations, although some bias remained. 40
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A. C. Stell et al.: Methane budget sensitivity using Gaussian process emulation 3

Global inversions using 3D CTMs have been carried out (e.g.
Bousquet et al., 2011; Bergamaschi et al., 2013; Rice et al.,
2016; McNorton et al., 2018). However, these studies often
rely on assumptions of linearity and Gaussian probability dis-
tributions (which can be non-physical) and frequently omit5

the exploration of some key parameters (e.g. by assuming
fixed and known OH concentrations).

The problem of efficiently estimating the relationship be-
tween uncertain inputs and observable outputs of a com-
plex model has been addressed in other fields using emu-10

lation. An emulator is a statistical approximation to a more
complex model, often using a Gaussian process (O’Hagan,
2006; Ebden, 2015). This technique has been applied to a
large variety of scientific problems, for example parameter
optimisation in models describing galaxy formation (Ver-15

non et al., 2010), influenza epidemics (Farah et al., 2014),
and the Greenland ice sheet (Chang et al., 2014); uncertainty
quantification in models of biospheric carbon flux (Kennedy
et al., 2008), aerosol effective radiative forcing (Regayre
et al., 2018), and concentrations of cloud condensation nuclei20

(Lee et al., 2012); and sensitivity analysis in aerosol models
(Lee et al., 2011) and chemistry–climate models (Wild et al.,
2020).

In this work, we outline a set of emulators, which simu-
late atmospheric methane based on the inputs to a 3D CTM.25

We limit our investigation to the simulation of hemispheric
monthly average mole fraction and δ13C–CH4, and therefore
the emulators effectively serve as a more accurate 2D box
model. However, as discussed in Sect. 2.3, we anticipate that
it would be trivial to extend the technique to the simulation of30

model outputs at individual monitoring sites or for remotely
sensed observations.

To demonstrate the value of the approach, we use the em-
ulators to carry out a sensitivity analysis of atmospheric ob-
servations to the major uncertain components of the methane35

budget. One-at-a-time sensitivity tests (where only one input
parameter is perturbed at a time) are often used for complex
models due to the computational burden of the large number
of simulations required to carry out a full sensitivity analy-
sis that allows for the possibility of interacting parameters.40

For example, this approach is effectively taken in previous
methane inverse-modelling studies, where sensitivities of ob-
servations to bulk regional flux changes are calculated us-
ing finite differences (Fung et al., 1991; Hein et al., 1997;
Chen and Prinn, 2006; McNorton et al., 2018). A variance-45

based sensitivity analysis (Saltelli et al., 2000), where sensi-
tivities are calculated using a large ensemble (typically mil-
lions) of simulations, would be prohibitive with the compu-
tational burden of a 3D CTM. However, here we show how
a variance-based analysis can be performed using ∼ 102 3D50

CTM simulations, requiring only modest computational re-
sources. Using a fast emulator, we are able to thoroughly
sample the parameter space and also quantify parameter in-
teractions, both of which can be critical for an accurate sen-
sitivity analysis of a complex model (Saltelli and Annoni,55

2010). Such a sensitivity analysis, which as far as we are
aware has not yet been carried out for the sensitivity of at-
mospheric methane to sources and sinks, will allow a better
understanding of complex systems controlling atmospheric
abundance of methane and future prioritisation of research 60

into its most important uncertain parameters.

2 Methods

This section begins with the motivation for using emulation
for sensitivity analysis (Sect. 2.1). Section 2.2 presents the
3D chemical transport model (CTM), for which the emula- 65

tor will act as a surrogate model, and its input parameters.
Section 2.3 outlines how the model was used to produce the
data required to train the emulator. Then, Sect. 2.4 details
the mathematical background to Gaussian process emulators,
and their validation method is outlined in Sect. 2.5. Finally, 70

Sect. 2.6 presents the sensitivity analysis method.

2.1 Approach

In order to make running ∼ 106 simulations for a variance-
based sensitivity analysis feasible, emulators that are as com-
putationally cheap as 2D box models were built. The emula- 75

tors built in this work are a statistical approximation to the
3D CTM output of hemispheric median monthly methane
mole fraction and δ13C–CH4. These emulators are much less
computationally expensive than the 3D CTM, with a single
evaluation taking 40 ms to run on a single core of a 1.6 GHz 80

Intel Core i5 CPU in a laptop, compared to 4.5 h on 12 cores
of a 2.4 GHz Intel E5-2680 v4 Broadwell CPU in a super-
computer for the 3D CTM. This computational expense re-
duction is possible while maintaining the spatial resolution
in the emissions, loss fields, and transport as well as the in- 85

terannual variability in transport lost in 2D box models. Ad-
ditionally, this method assumes neither linear relationships
between inputs and outputs nor non-interacting inputs, and
it allows a thorough exploration of the parameter space and
error quantification that is difficult to achieve for 3D CTMs. 90

Perhaps the greatest drawback of the emulation method in
this work is the small number of parameters that can be in-
cluded, which is further discussed in Sect. 3.1.

In this work, a Gaussian process, which is a type of non-
parametric curve fitting, emulates the 3D CTM (further ex- 95

plained in Sect. 2.4). There are other methods that could be
used to create the emulators if the form of the function that
maps model inputs to outputs is known, for example, linear
regression if the underlying function is linear. The Gaussian
process achieves the same outcome but does not assume the 100

underlying functional form, and it requires only one main
assumption: the outputs follow a multivariate Gaussian dis-
tribution. Figure 2 shows a simple example of a 1D Gaus-
sian process emulator. The starting point for a Gaussian pro-
cess is a set of known simulator outputs (the blue points in 105
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4 A. C. Stell et al.: Methane budget sensitivity using Gaussian process emulation

Figure 2. A simple 1D example of a Gaussian process (GP). The
blue points represent known outputs of the simulator, and the black
line is the mean of the Gaussian process which interpolates between
the known outputs. The Gaussian-process-estimated uncertainty in
its prediction is represented by the grey shading. The orange point
is the Gaussian process prediction of an unknown simulator output
and the orange bar represent the uncertainty in the prediction.

Fig. 2), known as a training dataset. As long as a training
dataset exists or can be generated, this emulation method can
be applied to any simulator. The Gaussian process predicts
the simulator output at untested inputs by interpolating be-
tween the training dataset. The prediction of the simulator5

output (the black line in Fig. 2) is accompanied by an esti-
mated uncertainty in the prediction (the grey shading) that
varies depending on how close the prediction input value is
to the values in the training dataset. A prediction of the sim-
ulator output (the orange point in Fig. 2) has an uncertainty10

(shown by the orange bar), which is large if the input value
lies beyond the training dataset. Large errors like this are
avoided in this work by using a training dataset range that
encompasses the full parameter uncertainty range explored
in our sensitivity analysis.15

The first step in this method is to decide on the range of
possible input parameters to the simulator and run simula-
tions sampled over these ranges to form a training dataset.
A dataset of known model outputs that is independent of the
training dataset is used to validate the emulators. Once the20

emulators are validated, they can be used for the sensitivity
analysis.

2.2 The chemical transport model set-up and input
parameter ranges

2.2.1 The chemical transport model set-up 25

This section describes how the 3D CTM, which the emula-
tors will approximate, is set up. The model used is the well-
established Model for Ozone and Related Chemical Trac-
ers (MOZART) (Emmons et al., 2010), an offline global
3D CTM. The MOZART model, run in a similar config- 30

uration, has been used previously in global methane stud-
ies and has been compared to other models and observa-
tions (e.g. Patra et al., 2011). In this work, 56 vertical model
levels were used, spanning from the Earth’s surface up to
about 48 km. The model was run with a spatial resolution of 35

12.00◦ N× 11.25◦W and a time step of 1 h, with data output
on a 6-hourly basis using MERRA reanalysis meteorological
fields (Rienecker et al., 2011) from 1995 to 2012.

The MOZART input parameters that are explored in this
work describe the methane sources and losses in a similar 40

way to Ganesan et al. (2018). The sources we use as inputs
to MOZART are wetlands (Bloom et al., 2017), fresh water
(see Supplement), agriculture (Crippa et al., 2018), rice (Yan
et al., 2009), waste (Crippa et al., 2018), fossil fuels (Crippa
et al., 2018), biomass burning (van der Werf et al., 2010), 45

volcanoes (Etiope and Milkov, 2004), termites (Fung et al.,
1991), hydrates (Fung et al., 1991), and oceans (Lambert and
Schmidt, 1993; Houweling et al., 1999). The loss processes
included in the model are the reactions of methane with the
hydroxyl radical (OH) (offline, using fields generated by Spi- 50

vakovsky et al., 2000), tropospheric chlorine radicals (Cl)
(Sherwen et al., 2016), net stratospheric loss (due to reaction
with Cl and O(1D)) (Velders, 1995; Patra et al., 2011), and
methanotrophic loss in soils (Murguia-Flores et al., 2018).
The model input fields are summarised in Table 1. The model 55

input fields are 2D for sources and the soil sink and 3D for
the remaining sinks.

The δ13C–CH4 observations are modelled by simulat-
ing both 12CH4 and 13CH4. The emissions of these two
species are determined by the literature source signatures 60

(Sect. 2.2.2), and the loss differs between the isotopologues
according to the literature kinetic isotope effect (Sect. 2.2.2).

For each model simulation, MOZART was spun up us-
ing 30 years of repeating meteorology and sources and sinks
(nominally representative of the year 1995), starting from a 65

steady-state atmosphere. The model is then run for 1996–
2012 with time-varying meteorology, emissions, and losses.
To account for any transient signals during the first few years
following spin-up (further discussed in Sect. 3.5), only 2000–
2012 was analysed. In each simulation, the fields in Table 1 70

provide the spatial and temporal distribution of the emissions
and losses. The total global magnitude of the fields are scaled
by the range of values discussed in Sect. 2.2.2 in order to in-
vestigate the sensitivity of the methane observations.
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A. C. Stell et al.: Methane budget sensitivity using Gaussian process emulation 5

Table 1. The emission and loss field input to MOZART, their literature sources, their temporal resolution, and the years covered by the fields.

Source Reference Temporal Years
resolution

Wetlands WetCHARTs (Bloom et al., 2017) Monthly 2001–2012
(1996–2000 are 2001 repeatingCE3 )

Fresh water This work (see Supplement and Annual Climatology
available to downloadCE4 : Stell, 2020a)

Agriculture EDGAR 4.32 (Crippa et al., 2018) Annual 1996–2012
Rice Yan et al. (2009) Monthly 2000 repeating

Waste EDGAR 4.32 (Crippa et al., 2018) Annual 1996–2012

Fossil fuel (includes biofuel) EDGAR 4.32 (Crippa et al., 2018) Annual 1996–2012

Biomass burning GFED4s (van der Werf et al., 2010) Monthly 1997–2012
(1996 is the mean of all years)

Volcanoes Etiope and Milkov (2004) Annual Climatology

Termites Fung et al. (1991) Annual Climatology

Hydrates Fung et al. (1991) Annual Climatology

Oceans Lambert and Schmidt (1993); Annual Climatology
Houweling et al. (1999)

Loss

OH Spivakovsky et al. (2000) Monthly Climatology

Stratosphere Velders (1995); Patra et al. (2011) Monthly Climatology

Cl Sherwen et al. (2016) Monthly 2005 repeating

Soil Murguia-Flores et al. (2018) Monthly 1996–2009
(2010–2012 is 2009 repeating)

Rice is considered separately to agriculture and wetlands. Biofuel is included in fossil fuel rather than biomass burning. Agricultural burning is included in biomass
burning rather than agriculture. The mean of the WetCHARTs ensemble is used for wetland emissions.

2.2.2 The chemical transport model input ranges

We test the sensitivity to five properties of input source and
sink parameters: their source magnitudes, source δ13C–CH4
signatures, loss magnitudes, temporal trend variation for the
largest emissions or losses, and initial conditions. Several mi-5

nor terms in the methane budget (termites, hydrates, oceans,
and loss kinetic isotope effects) were held constant, and so
are not included as inputs to the emulators, in order to sim-
plify the analysis. The uncertainty that results from these mi-
nor terms being held constant is explored in Sect. 2.5. The10

range of possible values for the chosen parameters must be
identified so that a set of MOZART simulations over these
ranges can be created, which forms the training dataset for
the emulators.

The ranges of possible source magnitudes were based on15

the ranges of compiled literature values in Saunois et al.
(2016). The minimum and maximum values from Saunois
et al. (2016) have been decreased and increased, respectively,
by 10 % in this work as Saunois et al. (2016) do not include

the uncertainties in the compiled studies or outliers in their 20

ranges. The ranges of possible δ13C–CH4 source signatures
were the 3-standard-deviation ranges in Schwietzke et al.
(2016). The ranges of source parameter values used in this
work are given in Table 2.

The ranges of possible loss magnitudes were based on 25

Saunois et al. (2016) in the same way as the sources. These
ranges do not include some more recent literature values; for
example, Wang et al. (2019) suggest a much smaller loss of
methane by reaction with Cl. The kinetic isotope effects were
held constant at typical literature values (King et al., 1989; 30

Tyler et al., 1994; Saueressig et al., 1995; Reeburgh et al.,
1997; Crowley et al., 1999; Snover and Quay, 2000; Tyler
et al., 2000; Saueressig et al., 2001) derived as outlined in
the Supplement. The reaction rates of methane with OH, Cl,
and O(1D) were held constant at the values in Burkholder 35

et al. (2015). While there is some uncertainty in these rate
constants, the sensitivity to this term will be similar to that of
their respective loss magnitudes. The ranges of loss parame-
ter values used in this work are given in Table 2.

https://doi.org/10.5194/acp-21-1-2021 Atmos. Chem. Phys., 21, 1–21, 2021



6 A. C. Stell et al.: Methane budget sensitivity using Gaussian process emulation

The default temporal trends of the emissions and losses
from 1996 to 2012 are set by the input fields in Table 1.
The overall inventory or process model trend for the five
largest methane emissions or losses (OH, wetlands, fresh wa-
ter, agriculture, and fossil fuels) was allowed to vary by a5

linear trend of ± 20 % (± 1.2 % yr−1). For example, a trend
parameter that reduces a term by 20 % is applied as a 10 %
increase in the first year, decreasing to no change in the mid-
dle of the time series, and then decreasing to −10 % in the
final year.10

Three parameters were varied during the spin-up: the total
source magnitude, the total source δ13C–CH4 signature, and
an overall imbalance between the source and sink. Table 2
gives the range of these spin-up parameters. The range of
the spin-up total source magnitude was derived by consider-15

ing the minimum and maximum of the sum of the sources in
Table 2. The range of the total source δ13C–CH4 signature
is constrained to values where the resulting January 1996
initial-condition field has a global surface δ13C–CH4 ap-
proximately matching observations (−47.3± 0.6 ‰). Simi-20

larly, the range of the imbalance between the source and sink
is constrained to values where the resulting January 1996
initial-condition field has a global surface methane mole frac-
tion approximately matching observations (1760± 30 ppb).
However, the January 1996 initial condition can go beyond25

these observed ranges by varying the other two spin-up pa-
rameters. The range of initial-condition values is larger than
that considered in previous methane-modelling studies, and it
therefore may be an overestimate. However, given that con-
straints are only typically provided based on surface obser-30

vations, whereas the initial model fields are 3D, extending
from the surface to the upper stratosphere, it is very difficult
to determine how uncertain the initial conditions truly are.

2.3 Creating the chemical transport model training
and validation datasets35

This section discusses the generation of the training and vali-
dation datasets, which is the most computationally expensive
part of the analysis as repeated runs of the 3D CTM are re-
quired. The training and validation datasets were designed to
give accurate emulators for the whole range of the parame-40

ter values in Table 2. Therefore, the sets of input parameters
in the datasets should be evenly spaced so that every possi-
ble input parameter set is close to training data. Hence, each
parameter described in Table 2 is assigned a uniform prob-
ability distribution over the range given. In order to sample45

from the distributions in a way that effectively covers the in-
put parameter space, a maximin Latin hypercube was used
(McKay et al., 1979; Morris and Mitchell, 1995). A training
dataset of 270 MOZART simulations was created and used
to build the Gaussian process emulators. We chose 270 sim-50

ulations as it was found to provide a balance between the
accuracy of the emulator and the computational expense of
generating training simulations. This is further discussed in

the Supplement. An independent maximin Latin hypercube
design of 90 MOZART simulations was created as a valida- 55

tion dataset, which was used to evaluate the emulators.
Although observations were not required for this study,

for consistency with observed trends, we opted to calculate
hemispheric averages based on mole fractions and δ13C–
CH4 at grid cells where baseline observations were made 60

by the Global Monitoring Laboratory (GML) Carbon Cy-
cle group, part of the US National Oceanic and Atmospheric
Administration (NOAA) (Dlugokencky et al., 1994, 2017),
and the Institute of Arctic and Alpine Research (INSTAAR)
(Miller et al., 2002; White et al., 2018), respectively. Mea- 65

surement stations that do not have approximately continuous
records for the period of interest (more than 9 out of 13 years)
were discarded. We also discarded measurement sites that
exhibited substantial above-baseline variability in the model
(likely an artefact of the coarse model resolution). 70

The MOZART outputs are monthly time series describ-
ing the Southern Hemisphere mole fraction, the Northern
Hemisphere mole fraction, the Southern Hemisphere δ13C–
CH4, and the Northern Hemisphere δ13C–CH4. These four
3D CTM outputs are the quantities that the Gaussian pro- 75

cesses emulate. However, it should be trivial to extend this
to individual grid cells of the 3D CTM in future work. This
number of emulators is feasible as the same training dataset
could be used, and the computational burden of both building
and running the emulator is far smaller than creating the 3D 80

CTM training simulations.
In order to explore sensitivities to quantities that are more

often used (either implicitly or explicitly) to inform the
global methane budget, the hemispheric outputs are com-
bined as a global mean, inter-hemispheric difference, and 85

trend of the mole fraction and δ13C–CH4. The global mean is
defined as the temporal mean of the mean over the northern
and southern hemispheres for all months between 2000 and
2012. The inter-hemispheric difference is the temporal mean
over the Northern Hemisphere minus the Southern Hemi- 90

sphere, averaged over all months between 2000 and 2012.
The trend is defined as the global mean in December 2012
minus December 2000.

2.4 Gaussian process emulators

2.4.1 The basics of Gaussian process emulation 95

The Gaussian process is defined by two functions that vary
depending on the input parameter values: the mean function
and the covariance function. It is sufficient to have a mean
function of 0, though in this work, a multiple linear regres-
sion was chosen as the system is close to linear. A linear 100

mean function does not stop the Gaussian process from being
able to model non-linear relationships. The covariance func-
tion is a measure of the similarity of input sets, and as the
distance between the inputs increase, the value of the func-
tion decreases. In this work we use the squared exponential 105
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Table 2. A table of the ranges of the 28 input parameters to MOZART that were varied in the training simulations, hence also in the emulators,
and in the sensitivity analysis. Where one value is given, the value is held constant for all training simulations. Where two values are given,
they are the lower and upper limit, respectively.

Source Magnitude Delta value 1996–2012 trend
(Tg yr−1) (‰) (% yr−1)

Wetlands 136, 250 −63.3, −59.7 −1.2, 1.2
Fresh water 54, 198 −64.6, −59.8 −1.2, 1.2
Agriculture 86, 122 −75.2, −58.4 −1.2, 1.2
Rice 21, 40 −66.0, −58.2
Waste 46, 69 −57.7, −53.5
Fossil fuel (includes biofuel) 104, 162 −45.1, −38.4 −1.2, 1.2
Biomass burning 14, 29 −27.9, −16.5
Volcanoes 27, 62 −46.1, −41.9
Termites 9.6 −65.0
Hydrates 0 −62.2
Oceans 16 −57.9

Loss Magnitude Kinetic isotope 1996–2012 Trend
(Tg yr−1) effect (% yr−1)

OH 414, 730 1.0039 −1.2, 1.2
Stratosphere 6, 55 1.0397
Cl 12, 41 1.0640
Soil 8, 52 1.0215

Spin-up Magnitude Delta value
(Tg yr−1) (‰)

Spin-up source 495, 976 −55.6, −53.6
Spin-up source minus loss 6.1, 45.8

The trend magnitudes are based on a percentage of the original field read into the model, so they could equally
be expressed as ± 2.0 Tg yr−1 for wetlands, ± 1.5 Tg yr−1 for fresh water, ± 1.3 Tg yr−1 for agriculture,
± 1.3 Tg yr−1 for fossil fuels, and ± 6.2 Tg yr−1 for OH.

covariance function as there are no discontinuities or sharp
changes in the methane observations due to input parame-
ter variation. The (i,j )th element of the covariance matrix
(K)TS4 is given by

ηij = σ
2
f exp

(
−

m∑
k=1

(xk,i − xk,j )
2

l2k

)
, (2)5

where the maximum covariance is σ 2
f , xk is the value of the

kth input parameter, and lk is the length-scale parameter to
be optimised during training.

In this work, the input parameters are the 28 scaling factors
in Table 2, and the outputs are the MOZART hemispheric av-10

erage mole fraction and δ13C–CH4 values. The prediction of
an output value (y∗) at a set of input parameters (x∗) sam-
ples from the joint multivariate Gaussian distribution of the
training data (y) and the predicted values, which follows[
y

y∗

]
∼N

(
m(x∗),

[
K(x,x) K(x,x∗)
K(x∗,x) K(x∗,x∗)

])
, (3)15

where m is the mean function, and x is the training dataset
inputs. This means that the expected value of y∗ is

E(y∗)=m(x∗)+K(x∗,x)K(x,x)−1y, (4)

and the uncertainty, in terms of variance, in the estimate is

V (y∗)=K(x∗,x∗)−K(x∗,x)K(x,x)−1K(x,x∗). (5) 20

The Gaussian process emulation method is further described
in Rasmussen and Williams (2006), and some simple tutori-
als are available in O’Hagan (2006) and Ebden (2015).

2.4.2 Gaussian process emulation for time series
outputs 25

Each MOZART output is a time series of 156 months (12
months for each of 13 years) of hemispheric median mole
fraction or δ13C–CH4. These 156 monthly outputs are highly
correlated in time, which can be exploited in the design of
the emulator covariance matrix to minimise information loss. 30

There will also be correlations in space between the northern-
and southern-hemispheric outputs, but these correlations are
not considered in this work. The chosen covariance matrix
(6) is composed of the Kronecker product of a temporal
covariance matrix (6t ) and a parameter covariance matrix 35

(6x),

6 =6t ⊗6x . (6)

https://doi.org/10.5194/acp-21-1-2021 Atmos. Chem. Phys., 21, 1–21, 2021
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The elements of 6t and 6x are described by ζij and ηij ,
respectively. The chosen temporal covariance is a first-order
autoregressive model (its value depends only on the previous
month), and its (i,j )th element is

ζij =
ρ|ti−tj |

1− ρ2 , (7)5

where ρ is the autocorrelation parameter, and t is the month.
The chosen parameter covariance is a squared exponential,
and its (i,j )th element is given by Eq. (2).

The emulator parameters (ρ in Eq. 7, σf and lk in Eq. 2)
are optimised by maximising the log-likelihood function10

log(L)∝−
1
2
(y−m(x))T6−1(y−m(x))−

1
2

log(|6|). (8)

This log-likelihood function is maximised using a bounds-
constrainedCE5 quasi-Newton method (Gay, 1990) started
from 28 different random points, and the emulator with the
maximum log-likelihood is chosen. This set-up uses an adap-15

tation of the R package Stilt (Olson et al., 2018).

2.5 Validation of the emulators

It is important to check that the emulators are an accurate
approximation of the 3D CTM before they are used. The val-
idation dataset is used to confirm this because it contains20

inputs and known 3D CTM outputs that the emulator was
not trained on. The emulator predictions for the validation
dataset inputs can be compared to the 3D CTM output, and
these differences reveal how accurate the approximation is.
There are several graphical comparison methods presented25

in the Supplement, but the main focus is the absolute error
in emulation. For the emulators to be useful, their error in
emulating the CTM output must be much smaller than a rea-
sonable estimate of the other errors in the system.

The error in a complex model is difficult to calculate, and30

so it is often ignored; expert judgement is used; or estimates
of model–data mismatch uncertainties are approximated, e.g.
based on spatial or temporal variability in the model output
in the vicinity of observation points (e.g. Chen and Prinn,
2006). In this work, the uncertainty in the 3D CTM is ap-35

proximated by the uncertainty due to the invariant param-
eters (as in Vernon et al., 2010). The invariant parameters
and their investigated ranges are given in Table 3. The uncer-
tainty was calculated with a maximin Latin hypercube design
of 90 MOZART simulations, where variations were allowed40

only in those parameters held constant in the emulator train-
ing dataset. This invariant parameter error does not include
many other sources of error (e.g. model transport uncertain-
ties are not addressed) and higher-order “invariant parameter
errors” (e.g. erroneous trends or spatial distributions), so it45

can be considered a lower bound of the total 3D CTM error.

2.6 Calculation of sensitivity indices

The sensitivity analysis, using the validated emulators, iden-
tifies how sensitive the 3D CTM outputs are to changes in the
inputs. A variance-based sensitivity analysis requires ∼ 106

50

simulations, which would be unfeasible using the 3D CTM
as the model is so computationally expensive. By using an
emulator, the only 3D CTM simulations required are those
needed to train the emulators.

In a variance-based sensitivity analysis, the model sensi- 55

tivity is quantified using sensitivity indices. These indices
measure the proportion of the output variance caused by an
input parameter being varied over its possible range (Saltelli
et al., 2000). In this work, two sensitivity indices are calcu-
lated: the first-order and total effect indices. The first-order 60

sensitivity index reflects the proportion of the variance in the
output that can be attributed to a single parameter. This can
be calculated as

Sk =
V [E(y|xk)]

V (y)
, (9)

where V [E(y|xk)] is the variance in the expected value of 65

the emulator output y given the value of parameter xk , and
V (y) is the variance in the emulator output caused by all pa-
rameters.

The total effect index is the proportion of the output vari-
ance that can be explained by a single parameter and its in- 70

teractions with other parameters. This can be calculated as

STk = 1−
V [E(y|x∼k)]

V (y)
, (10)

where V [E(y|x∼k)] is the variance in y caused by all pa-
rameters except xk . A parameter’s interactions with all other
parameters can be calculated by subtracting the first-order 75

sensitivity index from the total sensitivity index. These sen-
sitivity indices were calculated using Monte Carlo methods
(Saltelli et al., 2000), and further details are given in the Sup-
plement.

3 Results and discussion 80

Here, we demonstrate the accuracy of the emulators and
show how they can be applied to a sensitivity study of the
global methane budget. Section 3.1 compares the 3D chem-
ical transport model (CTM) training dataset to the observa-
tions in order to check that the observations lie within the 85

envelope of the model output ensemble. Section 3.2 exam-
ines the size of the 3D CTM invariant parameter error, which
is compared to the emulator error in Sect. 3.3 in order to
justify the use of emulation. The Gaussian process emula-
tion method is then shown to be warranted by comparison 90

to a simpler multiple linear regression in Sect. 3.4. Having
demonstrated the utility of the method, a sensitivity analysis
is presented in Sect. 3.5.
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Table 3. The ranges of the invariant parameters explored (from the literature as in Sect. 2.2.2), where the first number is the minimum, and
the second number is the maximum. The 13CH4 A factor is the Arrhenius pre-exponential factor, which is changed in the model to describe
uncertainty in the kinetic isotope effect with respect to the losses. The OH and 13CH4 A factor was also considered, but MOZART only
allows the rate constant to be input with two decimal places, and the OH and 13CH4 A factor is constant when given to two decimal places
over the range of kinetic isotope effects explored.

Term Magnitude (Tg yr−1) Delta value (‰) 13CH4 A factor

Termites 5.0, 14.2 −66.7, −63.3
Hydrates 0.0, 0.9 −63.0, −61.4
Oceans 8.3, 23.7 −51.7, −44.1
Soil −24.0, −19.0
Tropospheric chlorine 6.66, 6.68× 10−12 cm3 molec.−1 s−1

Stratosphere 0.958, 0.966 s−1

Methane loss by soil was input to the model as negative emissions; hence its isotopic fractionation is not characterised by an A factor.

3.1 Comparison of 3D chemical transport model
training dataset to observations

The training dataset is compared to observations to check
that the observations lie within the envelope of the MOZART
output ensemble. The MOZART simulations used to train5

the emulators are shown in Fig. 3. The outputs that are con-
sidered in the sensitivity analysis (the temporal mean of the
global mean, the temporal mean of the inter-hemispheric dif-
ference, and the trend in the global mean (Sect. 2.3) for the
mole fraction and δ13C–CH4) are presented in Fig. 4. In these10

figures, the distribution of the MOZART simulations (in or-
ange) is compared to the NOAA and INSTAAR atmospheric
observations presented in Rigby et al. (2017) (in black) (de-
rived from a slightly different subset of measurement stations
to those used in this work).15

These figures demonstrate the large range of methane
mole fraction and δ13C–CH4 values covered by the training
dataset. This is caused by the large range of emission, loss,
and initial-condition values (Sect. 2.2.2). Additionally, the
figures show that the observations are within the MOZART20

range for all outputs.
These figures also show that the range of MOZART inter-

hemispheric-difference values is small compared to the range
of global mean and trend values. Ideally, the spatial distri-
butions of the emissions and losses would also be param-25

eterised, allowing greater variation in the inter-hemispheric
differences. However, only a limited number of parameters
can be included in the Gaussian process emulation method
of this work. The more parameters, the more 3D CTM simu-
lations are required to train the emulator and the slower com-30

putation becomes. Therefore, only up to about 30 parameters
are typically included in a Gaussian process, whereas meth-
ods such as adjoint models (e.g. Bousquet et al., 2011; Berga-
maschi et al., 2013) can include thousands of parameters.

3.2 The 3D chemical transport model invariant 35

parameter error

The MOZART invariant parameter error (Sect. 2.5), as far as
we are aware, has not been considered in previous methane-
modelling studies. This error was calculated as the standard
deviation in the output of the set of simulations where pa- 40

rameters not included in the emulator training dataset (fluxes
from termites, hydrates, and oceans as well as isotopic frac-
tionation by soil, tropospheric Cl, and stratospheric losses)
were perturbed within their uncertainty ranges (Table 3).
Over the 13-year period of our study, the mean invariant pa- 45

rameter uncertainty is about 10 ppb and 0.1 ‰ for the mole
fraction and δ13C–CH4, respectively. These values are gen-
erally slightly larger than the estimate of the combined mea-
surement and model representation uncertainty, which exam-
ines the limited temporal and spatial resolution of the model 50

(further details in the Supplement). Additionally, the invari-
ant parameter uncertainty is large compared to atmospheric-
methane trends (e.g. between 2000 and 2012, the methane
mole fraction and δ13C–CH4 changed by around 40 ppb and
−0.1 ‰, respectively). Furthermore, these uncertainties are 55

highly correlated through the study period and therefore ef-
fectively act as a substantial bias. The omission of this sub-
stantial source of error will likely be leading to an underes-
timation of uncertainties in emissions and losses derived in
inverse-modelling studies or may contribute to the misallo- 60

cation of some emission or loss to particular processes.

3.3 Validation of the emulators

Before using the emulators, it is important to check that
they reproduce the 3D CTM output well. A more complete
analysis can be found in the Supplement, which shows that 65

the emulator is an unbiased representation of the 3D CTM.
The emulator error was calculated by predicting the valida-
tion dataset (Sect. 2.3) and comparing the predictions to the

https://doi.org/10.5194/acp-21-1-2021 Atmos. Chem. Phys., 21, 1–21, 2021



10 A. C. Stell et al.: Methane budget sensitivity using Gaussian process emulation

Figure 3. The MOZART training dataset (orange lines), the mean MOZART output (blue line), and the observations (black line) for each
of the four emulators: (a) the Southern Hemisphere mole fraction, (b) the Northern Hemisphere mole fraction, (c) the Southern Hemisphere
δ13C–CH4, and (d) the Northern Hemisphere δ13C–CH4. The observations are hemispheric averages based on NOAA and INSTAAR data
(derived from a slightly different subset of measurement stations to those used in this work) presented in Rigby et al. (2017).

MOZART output using the root-mean-square error (RMSE),

RMSE=

√√√√ n∑
i=1

(yem,i − ymzt,i)
2

n
, (11)

where yem is the emulator output, ymzt is the MOZART out-
put, and n is the number of simulations being compared. The
RMSE was calculated to be about 1.0 ppb and 0.05 ‰ for5

the mole fraction and δ13C–CH4, respectively. This emula-
tor error is small when compared to the MOZART invariant
parameter error (Sect. 2.5) in Fig. 5.

As the MOZART invariant parameter error is significantly
larger than the emulator error, it is possible to use a less ac-10

curate emulator that requires fewer training simulations. As
making the training dataset is the longest step in the process,
this would be beneficial for more time-consuming higher-
resolution models. In the case of MOZART, we find that only
around 90 simulations may be required, which is further dis-15

cussed in the Supplement.

3.4 Comparison of multiple linear regression and the
Gaussian process

Previous studies (e.g. McNorton et al., 2018) have assumed
that for small changes in the source and loss magnitudes, the 20

relationship between methane sources and losses and atmo-
spheric mole fraction and δ13C–CH4 is linear and that the
parameters do not interact (Sect. 3.5). If these two condi-
tions are true or close to true, then multiple linear regres-
sion would be able to emulate the 3D CTM. Multiple linear 25

regression might be preferred to a Gaussian process as it re-
quires a smaller training dataset (hence fewer 3D CTM sim-
ulations) and is conceptually and computationally simpler.
Therefore, this section compares the performance of multi-
ple linear regression and the Gaussian process as emulators 30

of the 3D CTM.
The residuals for the global mean between the 3D CTM

validation dataset and the predictions from the two meth-
ods (multiple linear regression and the Gaussian process) are

Atmos. Chem. Phys., 21, 1–21, 2021 https://doi.org/10.5194/acp-21-1-2021



A. C. Stell et al.: Methane budget sensitivity using Gaussian process emulation 11

Figure 4. Histograms of the 270 3D CTM training simulations for six outputs: (a) mole fraction global mean, (b) δ13C–CH4 global mean,
(c) mole fraction inter-hemispheric difference, (d) δ13C–CH4 inter-hemispheric difference, (e) mole fraction trend, and (f) δ13C–CH4 trend.
The black line is the corresponding value for the NOAA and INSTAAR atmospheric observations (Sect. 2.3), which are hemispheric averages
(derived from a slightly different subset of measurement stations to those used in this work) presented in Rigby et al. (2017).

compared in Fig. 6. The Gaussian process residuals, with an
RMSE of 0.8 ppb and 0.05 ‰, are much smaller than for mul-
tiple linear regression, for which they are 18 ppb and 0.14 ‰.
In comparison to the MOZART invariant parameter error
(10 ppb and 0.1 ‰), the multiple linear regression residuals5

are large, unlike the Gaussian process (Sect. 3.3). Therefore,
the multiple linear regression struggles to emulate MOZART
with the required accuracy.

The multiple linear regression accuracy can be improved
by considering the non-linearity of the mole fraction with re-10

spect to the OH loss. By using a log-transformed OH param-
eter to estimate the mole fraction, the RMSE becomes 11 ppb
(the complete residual distribution is shown in Fig. 6). Mul-
tiple linear regression using a log-transformed OH parameter
still has a significantly larger RMSE than the Gaussian pro-15

cess, implying that the remaining small non-linearities and
parameter interactions are important for predicting the out-
put value. This finding suggests that inverse-modelling stud-
ies that have assumed linear and independent sensitivities be-

tween observations and source and sink parameters may have 20

underestimated their posterior uncertainties.

3.5 Using the emulators for sensitivity analysis

3.5.1 First-order sensitivity indices

In this section, we examine the sensitivity of the MOZART
outputs to the input parameters describing methane sources 25

and sinks. This sensitivity is explored using the first-order
sensitivity indices (Eq. 9) in Fig. 7, which show the propor-
tion of the variance of the MOZART output caused by vary-
ing each parameter.

The sensitivity of the global mean mole fraction is shown 30

in Fig. 7a and is dominated by the OH loss magnitude (72 %),
with considerable contributions from the freshwater (13 %)
and wetlands (8 %) source magnitudes. These sensitivities
follow the absolute size of the uncertainty in the source and
loss magnitudes seen in Fig. 1 and are therefore relatively un- 35

surprising. However, these results highlight the overwhelm-
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Figure 5. The MOZART error (blue line), emulator error (green line), and total error (MOZART and emulator errors added in quadrature)
(black line) for each of the four emulators: (a) the Southern Hemisphere mole fraction, (b) the Northern Hemisphere mole fraction, (c) the
Southern Hemisphere δ13C–CH4, and (d) the Northern Hemisphere δ13C–CH4.

ing importance of global mean OH concentration in deter-
mining the global methane mole fraction and the major influ-
ence of freshwater emission uncertainties, which have largely
been ignored in recent global modelling studies.

Figure 7b shows the sensitivity of the global mean δ13C–5

CH4 to each input parameter. The parameters that this out-
put is most sensitive to are the agricultural source δ13C–
CH4 signature (23 %), the Cl sink magnitude (21 %), and the
freshwater source magnitude (16 %), with a couple of other
parameters contributing substantially: the wetlands source10

magnitude (8 %) and the fossil fuels δ13C–CH4 signature
(6 %). As the mole fraction and δ13C–CH4 are most sensi-
tive to different parameters, this means that the δ13C–CH4
could be a useful additional measurement for constraining
the methane budget. However, two of the parameters that15

δ13C–CH4 is most sensitive to are δ13C–CH4-specific (the
agricultural and fossil fuel source δ13C–CH4 signatures) and
so do not, on their own, add information about the mag-
nitudes of the different methane sources and sinks. Unlike
the global mean mole fraction, the ordering of the param-20

eters to which δ13C–CH4 is most sensitive does not sim-
ply follow the absolute magnitude of uncertainty in the in-
put parameters. The global mean δ13C–CH4 is most sensitive
to the agricultural source δ13C–CH4 signature, which has a
large uncertainty compared to other source δ13C–CH4 signa- 25

tures. Additionally, this source δ13C–CH4 signature is sub-
stantially more negative than the atmospheric δ13C–CH4 in
comparison to other sources, and so this parameter results in
a large output variance in the global mean δ13C–CH4. The
second-highest contribution to the output variance is the Cl 30

loss magnitude, which has a small uncertainty in comparison
to other parameters. However, this loss is highly fractionat-
ing, so it has a large impact on the δ13C–CH4. The third-
highest contribution is from the freshwater source magnitude
as this source has a large uncertainty, and its source δ13C– 35

CH4 signature is substantially more negative than the atmo-
spheric δ13C–CH4. Interestingly, in this investigation, global
mean δ13C–CH4 has almost no sensitivity to the magnitude
of the OH sink. As we show in the Supplement, this finding
is because the transient response of global mean δ13C–CH4 40
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Figure 6. The residuals for the global mean between the different emulation methods (in different colours) and the true MOZART output
for (a) methane mole fraction and (b) δ13C–CH4. Each emulator is built using a Gaussian process (GP) (grey) or multiple linear regression
(MLR) (orange). The mole fraction has an additional emulator: a multiple linear regression with log-transformed OH (blue).

to a change in the OH concentration exhibits a sign change,
which coincidentally falls almost exactly at the centre of the
period we investigate. Therefore, while the change in OH
concentration at the beginning of our simulation causes a sig-
nificant change in global δ13C–CH4 during the years 20005

and 2012 (with opposite signs), these changes roughly can-
cel in the 2000–2012 mean.

The mole fraction inter-hemispheric difference (the tem-
poral mean over the Northern Hemisphere minus the South-
ern Hemisphere as in Sect. 2.3) is most sensitive to the fresh-10

water (65 %), fossil fuel (15 %), and wetlands (8 %) source
magnitudes, as shown in Fig. 7c. The sensitivity to these pa-
rameters is due to their large uncertainties and large differ-
ences in emissions between the two hemispheres. The OH
loss magnitude, which has the largest uncertainty in any pa-15

rameter, has been assumed to be close to equally distributed
between the hemispheres (Patra et al., 2014), hence its low
sensitivity with respect to this output. However, had the un-
certainty in the hemispheric distribution of OH been included
in our analysis, it would likely have explained a larger pro-20

portion of this sensitivity. The dominant role of freshwater
emission uncertainty in determining the inter-hemispheric
difference further highlights the need to better understand
this part of the methane budget.

Figure 7d shows the sensitivity of the δ13C–CH4 inter-25

hemispheric difference. The parameters that the δ13C–CH4
inter-hemispheric difference is most sensitive to are the OH

loss magnitude (24 %), the fossil fuel source δ13C–CH4 sig-
nature (16 %), and the Cl sink magnitude (11 %). There are
also significant contributions from the wetlands source mag- 30

nitude (8 %) and the stratospheric loss magnitude (8 %). The
parameters to which the δ13C–CH4 inter-hemispheric differ-
ence is most sensitive are similar to those that most strongly
influence the global mean δ13C–CH4 but with a higher sen-
sitivity to parameters with a large inter-hemispheric differ- 35

ence (e.g. fossil fuels). The exception is the sensitivity to
the OH loss magnitude, which strongly impacts the inter-
hemispheric difference but not the global mean (which is
somewhat coincidental, as discussed above and in the Sup-
plement). 40

The sensitivity of the mole fraction trend (the global mean
in December 2012 minus December 2000 as in Sect. 2.3) is
shown in Fig. 7e. The sensitivity is dominated by a single pa-
rameter: 61 % of the variance is caused by the uncertainty in
the OH loss magnitude. The OH loss trend (14 %), freshwa- 45

ter source magnitude (9 %), and wetlands source magnitude
(6 %) also contribute significantly. The OH loss parameter’s
importance for the output mole fraction value stems from the
large uncertainty in the OH loss.

The δ13C–CH4 trend sensitivity is shown in Fig. 7f. The 50

trend is most sensitive to the agricultural source δ13C–CH4
signature (21 %), the OH loss magnitude (19 %), the Cl loss
magnitude (13 %), and the spin-up source δ13C–CH4 signa-
ture (11 %). There are additional contributions from the fos-
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Figure 7. The orange bars show the first-order sensitivity coefficients to the input parameters, with the error bars showing the uncertainty in
these indices (calculated using bootstrap resampling; see Supplement). Each panel is for one of six outputs: (a) mole fraction global mean,
(b) δ13C–CH4 global mean, (c) mole fraction inter-hemispheric difference, (d) δ13C–CH4 inter-hemispheric difference, (e) mole fraction
trend, and (f) δ13C–CH4 trend. The values given here are for the temporal mean of the time series. The input parameter codes are given by a
combination of a two-character code giving the source or loss (wetlands, we; fresh water, fw; agriculture, ag; rice, ri; waste, wa; fossil fuels,
ff; biomass burning, bb; volcanoes, vo; hydroxyl radical, OH; stratospheric, ST; Cl radical, Cl; soil, so; total source magnitude, qm; total
source δ13C–CH4 signature, qd; total loss imbalance, ql) and another code giving the type of parameter (source δ13C–CH4 signature, sd;
source magnitude, sm; loss magnitude, lm; temporal trend, t1; spin-up, su).

sil fuel source δ13C–CH4 signature (6 %) and the fossil fuel
source magnitude (6 %). Parameters that can change the at-
mospheric global mean δ13C–CH4 will also affect the trend
(e.g. the agricultural source δ13C–CH4 and the Cl loss mag-
nitude). Additionally, the trend is sensitive to the OH loss5

magnitude, despite the global mean being insensitive to this
parameter. This sensitivity to OH is explained by the slow
(and somewhat counter-intuitive) way that changes in the
δ13C–CH4 propagate through the atmosphere and will be de-
pendent on the time period investigated, which is explained10

in detail in the Supplement. The δ13C–CH4 trend is also sen-

sitive to the spin-up because of the slow response time in the
atmospheric δ13C–CH4, meaning that the trend is strongly
dependent on its initial value (Tans, 1997). A wide range
of spin-up source δ13C–CH4 signature values (Table 2) are 15

examined in this work; however the importance of the spin-
up applies to even small ranges. For example, if the spin-
up source δ13C–CH4 signature is perturbed by 0.1 ‰ from
the initial median parameter values, the output atmospheric-
δ13C–CH4 trend changes by 0.04 ‰, almost half the ob- 20

served δ13C–CH4 trend during this period. Therefore, con-
straining the initial conditions throughout the atmosphere is
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Figure 8. The orange bars show the interaction terms of the parameters, with the error bars showing the uncertainty in these interactions
(calculated using bootstrap resampling; see Supplement). Each panel shows one output: (a) mole fraction global mean, (b) δ13C–CH4 global
mean, (c) mole fraction inter-hemispheric difference, (d) δ13C–CH4 inter-hemispheric difference, (e) mole fraction trend, and (f) δ13C–CH4
trend. The values given here are for the temporal mean of the time series. The input parameter codes are given by a combination of a two-
character code giving the source or loss (wetlands, we; fresh water, fw; agriculture, ag; rice, ri; waste, wa; fossil fuels, ff; biomass burning,
bb; volcanoes, vo; hydroxyl radical, OH; stratospheric, ST; Cl radical, Cl; soil, so; total source magnitude, qm; total source δ13C–CH4
signature, qd; total loss imbalance, ql) and another code giving the type of parameter (source δ13C–CH4 signature, sd; source magnitude,
sm; loss magnitude, lm; temporal trend, t1; spin-up, su).

a serious challenge if δ13C–CH4 observations are to be used
to estimate the recent changes in the methane budget.

These first-order sensitivity indices demonstrate several
key challenges in methane inverse-modelling studies. Three
parameters that the mole fraction and δ13C–CH4 are highly5

sensitive to are often not explored in methane modelling: the
OH loss is often assumed to be known (e.g. Schaefer et al.,
2016; Worden et al., 2017), as is the Cl loss (e.g. Nisbet
et al., 2016; Rigby et al., 2017), or the Cl loss is omitted
(e.g. Turner et al., 2017). Furthermore, freshwater emissions10

have not been included as an independent source in global

methane studies as far as we are aware. Freshwater bodies
emit methane by bacteria breaking down organic matter in
an anaerobic environment, as in wetlands, and the freshwater
emissions are potentially of similar magnitude to wetlands 15

but more uncertain (as seen in Fig. 1). There has been in-
creasing acknowledgement that OH and Cl could play im-
portant roles in methane modelling (e.g. Rigby et al., 2017;
Turner et al., 2017; Thanwerdas et al., 2019; Strode et al.,
2020), but the role of freshwater methane emissions has not 20

received the same level of attention. This lack of attention
is presumably the result of the freshwater source’s large
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uncertainty, but it is this large uncertainty that makes this
source so important in constraining the methane budget. The
first-order sensitivity indices also demonstrate that the atmo-
spheric δ13C–CH4 is sensitive to some parameters to which
the mole fraction is relatively insensitive, so it should provide5

additional complementary information. However, δ13C–CH4
is also highly sensitive to the initial conditions and some
source signatures (e.g. agriculture), which need to be ac-
counted for to realise the value for global-scale studies us-
ing these isotopic measurements. Furthermore, these sources10

of uncertainty need to be carefully considered in methane-
modelling studies that use δ13C–CH4 because erroneous as-
sumptions of well-known initial conditions, source δ13C–
CH4 signatures, or kinetic isotope effects could have sub-
stantial impacts on top-down budget estimates.15

3.5.2 Parameter interactions

The interaction between parameters is calculated by subtract-
ing the first-order sensitivity (Eq. 9) from the total effect of
each parameter (Eq. 10). The interaction of one particular
parameter with all other parameters is the proportion of the20

output variance explained by changing that parameter along-
side all other parameters, removing the proportion of the out-
put variance from changing that parameter independently of
all other parameters. An example of interacting parameters is
the OH loss and any source for the global mean mole frac-25

tion: a lower OH concentration causes a greater mole fraction
increase from an increase in emissions.

The parameter interactions are shown in Fig. 8. These in-
teractions are generally small, with the largest being 3 %.
The interactions across all parameters account for 12 % of30

the output variance in the δ13C–CH4 inter-hemispheric dif-
ference and at most 2 % for the other five outputs. This means
that we can essentially consider the effect of each parame-
ter independently in this sensitivity analysis. For this com-
plex simulator, one-at-a-time sensitivity tests would produce35

a similar result, though this will not necessarily be the case
for other models (Saltelli and Annoni, 2010).

Whilst these interactions are relatively unimportant in this
sensitivity analysis, they must be considered in order to build
an accurate emulator. For example, the 0.2 % and 0.7 % of40

the output variance explained by parameter interactions for
the global mean mole fraction and δ13C–CH4, respectively,
are equivalent to a standard deviation of 10 ppb and 0.09 ‰
in the output. This accounts for most of the difference in
performance of the Gaussian process and multiple linear re-45

gression, which does not consider parameter interactions, in
Sect. 3.4.

4 Conclusions

We have shown that Gaussian processes allow emulation
of a global 3D chemical transport model (CTM) of atmo-50

spheric methane, producing a fast and accurate approxima-
tion of the response of methane mole fraction and δ13C–CH4
to changes in model input parameters. In this work, 28 pa-
rameters were investigated, related to methane sources and
sinks, based on 270 forward model simulations. However, we 55

found that, compared to an estimate of model uncertainty,
an accurate emulator could be built for this system using
fewer than 100 training runs. Our model uncertainty esti-
mate, which we term “invariant parameter error”, was based
on an ensemble of model runs in which several minor sources 60

and sinks were perturbed within their estimated uncertainty
ranges, showing that they could, when considered together,
lead to a substantial, and often ignored, source of uncertainty
in global methane-modelling studies (with mean uncertain-
ties in hemispheric-methane mole fraction and δ13C–CH4 65

between 2000 and 2012 of approximately 10 ppb and 0.1 ‰,
respectively).

We show that a Gaussian process outperforms multiple lin-
ear regression in emulating the 3D CTM methane simula-
tions: the Gaussian process RMSE is small (0.8 ppb, 0.05 ‰) 70

compared to the invariant parameter error, whereas the multi-
ple linear regression error (18 ppb, 0.14 ‰) is larger. There-
fore, the use of Gaussian process emulators does not much
reduce how precisely the model matches observations, but
multiple linear regression could. The poor performance of 75

the multiple linear regression is primarily because of the pa-
rameter interactions and the non-linearity in the response of
the mole fraction to the OH loss.

The speed of emulation allows many more 3D CTM out-
puts to be generated than would be possible running the CTM 80

itself, allowing a wider range of possible analyses. In this
work, a thorough sensitivity analysis was carried out, which
required millions of runs of the emulator. The sensitivity
analysis demonstrated some issues that are critical to con-
sider for global methane modelling. The OH loss, Cl loss, 85

and freshwater source are frequently held constant or not in-
cluded in methane-modelling studies, but the mole fraction
or δ13C–CH4 outputs are highly sensitive to these parame-
ters. Our analysis shows that δ13C–CH4 measurements pro-
vide somewhat independent constraints on the sources and 90

sinks of methane as they are sensitive to different model pa-
rameters. However, several of these parameters are δ13C–
CH4-specific, so they do not, on their own, provide new in-
formation on the methane budget but must be well-quantified
if δ13C–CH4 observations are to provide budget constraints 95

(e.g. δ13C–CH4 initial conditions or the agricultural source
signature).

Whilst we have focused here on a variance-based sensitiv-
ity analysis, we anticipate that there could be multiple future
applications of an accurate and fast emulator of 3D CTM 100

simulations of atmospheric methane. This system could al-
low for the calculation of input parameter values that are con-
sistent with observations (history matching) or could allow
us to determine the set of parameter values that most proba-
bly simulate observations (e.g. through Bayesian inference). 105
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While in this work hemispheric emulators were created, it
is also possible to emulate individual grid cells in the 3D
CTM, which would provide a more accurate representation
of the 3D CTM output. This number of emulators is feasible
as the same training dataset could be used, and the compu-5

tational burden of both building and running the emulator is
far smaller than creating the 3D CTM training simulations.
This allows new and flexible emulators to be built and used
for novel applications without the need to rerun the 3D CTM.

Code and data availability. The code used to create the freshwater10

emissions field and the field itself are available at https://doi.org/
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2020b).15

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/acp-21-1-2021-supplement.TS7

Author contributions. ACS, LMW, and MR contributed to the con-
ception and development of the project. TS created the Cl field used
in this work. ACS wrote the code and performed the calculations.20

All authors contributed to the manuscript.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. Angharad C. Stell was funded under a Natu-
ral Environment Research Council (NERC) studentship through the25

Great Western 4+ Doctoral Training Partnership. Luke M. West-
ern and Matthew Rigby were funded by the NERC Methane
Observations and Yearly Assessments (MOYA) highlight topic
(NE/N016548/1) and NERC grant NE/M014851/1. Model simula-
tions were carried out using the University of Bristol BlueCrystal30

high-performance computing system, and analysis was carried out
using hardware funded under NERC grant NE/L013088/1.

Financial support. This research has been supported by the Nat-
ural Environment Research Council (grant nos. NE/N016548/1,
NE/M014851/1, and NE/L013088/1).TS835

Review statement. This paper was edited by Bryan N. Duncan and
reviewed by two anonymous referees.

References

Bergamaschi, P., Brenninkmeijer, C. A. M., Hahn, M., Röck-
mann, T., Scharffe, D. H., Crutzen, P. J., Elansky, N. F.,40

Belikov, I. B., Trivett, N. B. A., and Worthy, D. E. J.:
Isotope analysis based source identification for atmospheric
CH4 and CO sampled across Russia using the Trans-
Siberian railroad, J. Geophys. Res.-Atmos., 103, 8227–8235,
https://doi.org/10.1029/97JD03738, 1998. 45

Bergamaschi, P., Houweling, S., Segers, A., Krol, M., Franken-
berg, C., Scheepmaker, R. A., Dlugokencky, E., Wofsy, S. C.,
Kort, E. A., Sweeney, C., Schuck, T., Brenninkmeijer, C.,
Chen, H., Beck, V., and Gerbig, C.: Atmospheric CH4 in
the first decade of the 21st century: Inverse modeling anal- 50

ysis using SCIAMACHY satellite retrievals and NOAA sur-
face measurements, J. Geophys. Res.-Atmos., 118, 7350–7369,
https://doi.org/10.1002/jgrd.50480, 2013.

Bloom, A. A., Bowman, K. W., Lee, M., Turner, A. J., Schroeder,
R., Worden, J. R., Weidner, R., McDonald, K. C., and Ja- 55

cob, D. J.: A global wetland methane emissions and un-
certainty dataset for atmospheric chemical transport models
(WetCHARTs version 1.0), Geosci. Model Dev., 10, 2141–2156,
https://doi.org/10.5194/gmd-10-2141-2017, 2017.

Bousquet, P., Ringeval, B., Pison, I., Dlugokencky, E. J., Brunke, E.- 60

G., Carouge, C., Chevallier, F., Fortems-Cheiney, A., Franken-
berg, C., Hauglustaine, D. A., Krummel, P. B., Langenfelds, R.
L., Ramonet, M., Schmidt, M., Steele, L. P., Szopa, S., Yver,
C., Viovy, N., and Ciais, P.: Source attribution of the changes in
atmospheric methane for 2006–2008, Atmos. Chem. Phys., 11, 65

3689–3700, https://doi.org/10.5194/acp-11-3689-2011, 2011.
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie,

R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth,
D. M., and Wine, P. H.: Chemical Kinetics and Photochem-
ical Data for Use in Atmospheric Studies, Evaluation Num- 70

ber 18, Tech. Rep. 10, Jet Propulsion Laboratory, Pasadena,
https://doi.org/10.1002/kin.550171010, 2015.

Chang, W., Applegate, P. J., Haran, M., and Keller, K.: Proba-
bilistic calibration of a Greenland Ice Sheet model using spa-
tially resolved synthetic observations: toward projections of ice 75

mass loss with uncertainties, Geosci. Model Dev., 7, 1933–1943,
https://doi.org/10.5194/gmd-7-1933-2014, 2014.

Chen, Y.-H. and Prinn, R. G.: Estimation of atmospheric methane
emissions between 1996 and 2001 using a three-dimensional
global chemical transport model, J. Geophys. Res.-Atmos., 111, 80

https://doi.org/10.1029/2005JD006058, 2006. TS9

Coplen, T. B.: Guidelines and recommended terms for ex-
pression of stable-isotope-ratio and gas-ratio measure-
ment results, Rapid Commun. Mass Sp., 25, 2538–2560,
https://doi.org/10.1002/rcm.5129, 2011. 85

Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener,
F., van Aardenne, J. A., Monni, S., Doering, U., Olivier,
J. G. J., Pagliari, V., and Janssens-Maenhout, G.: Grid-
ded emissions of air pollutants for the period 1970–2012
within EDGAR v4.3.2, Earth Syst. Sci. Data, 10, 1987–2013, 90

https://doi.org/10.5194/essd-10-1987-2018, 2018.
Crowley, J., Saueressig, G., Bergamaschi, P., Fischer, H., and Har-

ris, G.: Carbon kinetic isotope effect in the reaction CH4+Cl: a
relative rate study using FTIR spectroscopy, Chem. Phys. Lett.,
303, 268–274, https://doi.org/10.1016/S0009-2614(99)00243-2, 95

1999.
Dlugokencky, E., Lang, P., Crotwell, A., Mund, J., Crotwell,

M., and Thoning, K.: Atmospheric Methane Dry Air Mole
Fractions from the NOAA ESRL Carbon Cycle Cooperative

Pl
ea

se
no

te
th

e
re

m
ar

ks
at

th
e

en
d

of
th

e
m

an
us

cr
ip

t.

https://doi.org/10.5194/acp-21-1-2021 Atmos. Chem. Phys., 21, 1–21, 2021

https://doi.org/10.17605/OSF.IO/Q9F8P
https://doi.org/10.17605/OSF.IO/Q9F8P
https://doi.org/10.17605/OSF.IO/Q9F8P
https://doi.org/10.17605/OSF.IO/Z435M
https://doi.org/10.5194/acp-21-1-2021-supplement
https://doi.org/10.1029/97JD03738
https://doi.org/10.1002/jgrd.50480
https://doi.org/10.5194/gmd-10-2141-2017
https://doi.org/10.5194/acp-11-3689-2011
https://doi.org/10.1002/kin.550171010
https://doi.org/10.5194/gmd-7-1933-2014
https://doi.org/10.1029/2005JD006058
https://doi.org/10.1002/rcm.5129
https://doi.org/10.5194/essd-10-1987-2018
https://doi.org/10.1016/S0009-2614(99)00243-2


18 A. C. Stell et al.: Methane budget sensitivity using Gaussian process emulation

Global Air Sampling Network, 1983-2016, Version: 2017-07-28,
available at: ftp://aftp.cmdl.noaa.gov/data/trace_gases/ch4/flask/
surface/, 2017. TS10

Dlugokencky, E. J., Steele, L. P., Lang, P. M., and Masarie,
K. A.: The growth rate and distribution of atmo-5

spheric methane, J. Geophys. Res., 99, 17021–17043,
https://doi.org/10.1029/94jd01245, 1994.

Ebden, M.: Gaussian Processes: A Quick Introduction,
arXiv:1505.02965v2 [math.ST], 2015.

Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfis-10

ter, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison,
D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer,
C., Baughcum, S. L., and Kloster, S.: Description and eval-
uation of the Model for Ozone and Related chemical Trac-
ers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67,15

https://doi.org/10.5194/gmd-3-43-2010, 2010.
Etiope, G. and Milkov, A. V.: A new estimate of global methane

flux from onshore and shallow submarine mud volcanoes
to the atmosphere, Environmental Geology, 46, 997–1002,
https://doi.org/10.1007/s00254-004-1085-1, 2004.20

Etminan, M., Myhre, G., Highwood, E. J., and Shine, K. P.: Radia-
tive forcing of carbon dioxide, methane, and nitrous oxide: A sig-
nificant revision of the methane radiative forcing, Geophys. Res.
Lett., 43, 12614–12623, https://doi.org/10.1002/2016GL071930,
2016.25

Farah, M., Birrell, P., Conti, S., and Angelis, D. D.: Bayesian
Emulation and Calibration of a Dynamic Epidemic Model
for A/H1N1 Influenza, J. Am. Stat. Assoc., 109, 1398–1411,
https://doi.org/10.1080/01621459.2014.934453, 2014.

Fung, I., John, J., Lerner, J., Matthews, E., Prather, M., Steele,30

L. P., and Fraser, P. J.: Three-dimensional model synthesis of
the global methane cycle, J. Geophys. Res., 96, 13033–13065,
https://doi.org/10.1029/91JD01247, 1991.

Ganesan, A. L., Stell, A. C., Gedney, N., Comyn-Platt, E.,
Hayman, G., Rigby, M., Poulter, B., and Hornibrook, E.:35

Spatially Resolved Isotopic Source Signatures of Wetland
Methane Emissions, Geophys. Res. Lett., 45, 3737–3745,
https://doi.org/10.1002/2018GL077536, 2018.

Gay, D. M.: Usage Summary for Selected Optimization Routines
(PORT Mathematical Subroutine Library, Optimization chapter),40

Tech. Rep. 153, AT&T Bell Laboratories, Murray Hill, NJ 07974,
1990.

Hein, R., Crutzen, P. J., and Heimann, M.: An inverse mod-
eling approach to investigate the global atmospheric
methane cycle, Global Biogeochem. Cy., 11, 43–76,45

https://doi.org/10.1029/96GB03043, 1997.
Houweling, S., Kaminski, T., Dentener, F., Lelieveld,

J., and Heimann, M.: Inverse modeling of methane
sources and sinks using the adjoint of a global trans-
port model, J. Geophys. Res.-Atmos., 104, 26137–26160,50

https://doi.org/10.1029/1999JD900428, 1999.
Kennedy, M., Anderson, C., O’Hagan, A., Lomas, M., Woodward,

I., and Gosling, J. P.: Quantifying uncertainty in the biospheric
carbon flux for England and Wales, J. R. Stat. Soc., 171, 109–
135, 2008.55

King, S. L., Quay, P. D., and Lansdown, J. M.: The 13C/ 12C ki-
netic isotope effect for soil oxidation of methane at ambient at-
mospheric concentrations, J. Geophys. Res., 94, 18273–18277,
https://doi.org/10.1029/JD094iD15p18273, 1989.

Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., 60

Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R.,
Bruhwiler, L., Cameron-Smith, P., Castaldi, S., Chevallier, F.,
Feng, L., Fraser, A., Heimann, M., Hodson, E. L., Houweling,
S., Josse, B., Fraser, P. J., Krummel, P. B., Lamarque, J.-F., Lan-
genfelds, R. L., Le Quéré, C., Naik, V., O’Doherty, S., Palmer, 65

P. I., Pison, I., Plummer, D., Poulter, B., Prinn, R. G., Rigby, M.,
Ringeval, B., Santini, M., Schmidt, M., Shindell, D. T., Simp-
son, I. J., Spahni, R., Steele, L. P., Strode, S. A., Sudo, K.,
Szopa, S., van der Werf, G. R., Voulgarakis, A., van Weele,
M., Weiss, R. F., Williams, J. E., and Zeng, G.: Three decades 70

of global methane sources and sinks, Nat. Geosci., 6, 813–823,
https://doi.org/10.1038/ngeo1955, 2013.

Lambert, G. and Schmidt, S.: Reevaluation of the oceanic flux of
methane: Uncertainties and long term variations, Chemosphere,
26, 579–589, https://doi.org/10.1016/0045-6535(93)90443-9, 75

1993.
Lee, L. A., Carslaw, K. S., Pringle, K. J., Mann, G. W., and

Spracklen, D. V.: Emulation of a complex global aerosol model
to quantify sensitivity to uncertain parameters, Atmos. Chem.
Phys., 11, 12253–12273, https://doi.org/10.5194/acp-11-12253- 80

2011, 2011.
Lee, L. A., Carslaw, K. S., Pringle, K. J., and Mann, G. W.:

Mapping the uncertainty in global CCN using emulation, At-
mos. Chem. Phys., 12, 9739–9751, https://doi.org/10.5194/acp-
12-9739-2012, 2012. 85

McKay, M. D., Beckman, R. J., and Conover, W. J.: A Compari-
son of Three Methods for Selecting Values of Input Variables in
the Analysis of Output From a Computer Code, Technometrics,
21, 239–245, https://doi.org/10.1080/00401706.2000.10485979,
1979. 90

McNorton, J., Wilson, C., Gloor, M., Parker, R. J., Boesch,
H., Feng, W., Hossaini, R., and Chipperfield, M. P.: Attribu-
tion of recent increases in atmospheric methane through 3-
D inverse modelling, Atmos. Chem. Phys., 18, 18149–18168,
https://doi.org/10.5194/acp-18-18149-2018, 2018. 95

Miller, J. B., Mack, K. A., Dissly, R., White, J. W., Dlugo-
kencky, E. J., and Tans, P. P.: Development of analytical meth-
ods and measurements of 13C/12C in atmospheric CH4 from the
NOAA Climate Monitoring and Diagnostics Laboratory Global
Air Sampling Network, J. Geophys. Res.-Atmos., 107, 4178, 100

https://doi.org/10.1029/2001JD000630, 2002.
Miller, S. M., Michalak, A. M., Detmers, R. G., Hasekamp, O. P.,

Bruhwiler, L. M. P., and Schwietzke, S.: China’s coal mine
methane regulations have not curbed growing emissions, Nat.
Commun., 10, 303, https://doi.org/10.1038/s41467-018-07891- 105

7, 2019.
Morris, M. D. and Mitchell, T. J.: Exploratory designs for

computational experiments, J. Stat. Plan. Infer., 43, 381–402,
https://doi.org/10.1016/0378-3758(94)00035-T, 1995.

Murguia-Flores, F., Arndt, S., Ganesan, A. L., Murray-Tortarolo, 110

G., and Hornibrook, E. R. C.: Soil Methanotrophy Model (MeMo
v1.0): a process-based model to quantify global uptake of atmo-
spheric methane by soil, Geosci. Model Dev., 11, 2009–2032,
https://doi.org/10.5194/gmd-11-2009-2018, 2018.

Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, 115

J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Men-
doza, B., Nakajima, T., Robock, A., Stephens, G., Take-
mura, T., and Zhang, H.: Anthropogenic and Natural Radia-

Atmos. Chem. Phys., 21, 1–21, 2021 https://doi.org/10.5194/acp-21-1-2021

ftp://aftp.cmdl.noaa.gov/data/trace_gases/ch4/flask/surface/
ftp://aftp.cmdl.noaa.gov/data/trace_gases/ch4/flask/surface/
ftp://aftp.cmdl.noaa.gov/data/trace_gases/ch4/flask/surface/
https://doi.org/10.1029/94jd01245
https://doi.org/10.5194/gmd-3-43-2010
https://doi.org/10.1007/s00254-004-1085-1
https://doi.org/10.1002/2016GL071930
https://doi.org/10.1080/01621459.2014.934453
https://doi.org/10.1029/91JD01247
https://doi.org/10.1002/2018GL077536
https://doi.org/10.1029/96GB03043
https://doi.org/10.1029/1999JD900428
https://doi.org/10.1029/JD094iD15p18273
https://doi.org/10.1038/ngeo1955
https://doi.org/10.1016/0045-6535(93)90443-9
https://doi.org/10.5194/acp-11-12253-2011
https://doi.org/10.5194/acp-11-12253-2011
https://doi.org/10.5194/acp-11-12253-2011
https://doi.org/10.5194/acp-12-9739-2012
https://doi.org/10.5194/acp-12-9739-2012
https://doi.org/10.5194/acp-12-9739-2012
https://doi.org/10.1080/00401706.2000.10485979
https://doi.org/10.5194/acp-18-18149-2018
https://doi.org/10.1029/2001JD000630
https://doi.org/10.1038/s41467-018-07891-7
https://doi.org/10.1038/s41467-018-07891-7
https://doi.org/10.1038/s41467-018-07891-7
https://doi.org/10.1016/0378-3758(94)00035-T
https://doi.org/10.5194/gmd-11-2009-2018


A. C. Stell et al.: Methane budget sensitivity using Gaussian process emulation 19

tive Forcing, in: Climate Change 2013: The Physical Sci-
ence Basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Cli-
mate Change, edited by: Stocker, T., Qin, D., Plattner, G.-
K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y.,5

Bex, V., and Midgley, P., Cambridge University Press, Cam-
bridge, United Kingdom and New York, NY, USA, 659–740,
https://doi.org/10.1017/CBO9781107415324.018, 2013.

Naus, S., Montzka, S. A., Pandey, S., Basu, S., Dlugokencky,
E. J., and Krol, M.: Constraints and biases in a tropospheric10

two-box model of OH, Atmos. Chem. Phys., 19, 407–424,
https://doi.org/10.5194/acp-19-407-2019, 2019.

Nisbet, E. G., Dlugokencky, E. J., Manning, M. R., Lowry, D.,
Fisher, R. E., France, J. L., Michel, S. E., Miller, J. B., White,
J. W., Vaughn, B., Bousquet, P., Pyle, J. A., Warwick, N. J.,15

Cain, M., Brownlow, R., Zazzeri, G., Lanoisellé, M., Manning,
A. C., Gloor, E., Worthy, D. E., Brunke, E. G., Labuschagne, C.,
Wolff, E. W., and Ganesan, A. L.: Rising atmospheric methane:
2007–2014 growth and isotopic shift, Global Biogeochem. Cy.,
30, 1356–1370, https://doi.org/10.1002/2016GB005406, 2016.20

O’Hagan, A.: Bayesian analysis of computer code outputs: A tuto-
rial, Reliability Engineering and System Safety, 91, 1290–1300,
https://doi.org/10.1016/j.ress.2005.11.025, 2006.

Olson, R., Ruckert, K. L., Chang, W., Keller, K., Haran, M., and An,
S. I.: Stilt: Easy emulation of time series AR(1) computer model25

output in multidimensional parameter space, The R Journal, 10,
209–225, https://doi.org/10.32614/RJ-2018-049, 2018.

Patra, P. K., Houweling, S., Krol, M., Bousquet, P., Belikov, D.,
Bergmann, D., Bian, H., Cameron-Smith, P., Chipperfield, M. P.,
Corbin, K., Fortems-Cheiney, A., Fraser, A., Gloor, E., Hess, P.,30

Ito, A., Kawa, S. R., Law, R. M., Loh, Z., Maksyutov, S., Meng,
L., Palmer, P. I., Prinn, R. G., Rigby, M., Saito, R., and Wilson,
C.: TransCom model simulations of CH4 and related species:
linking transport, surface flux and chemical loss with CH4 vari-
ability in the troposphere and lower stratosphere, Atmos. Chem.35

Phys., 11, 12813–12837, https://doi.org/10.5194/acp-11-12813-
2011, 2011.

Patra, P. K., Krol, M. C., Montzka, S. A., Arnold, T., Atlas, E. L.,
Lintner, B. R., Stephens, B. B., Xiang, B., Elkins, J. W., Fraser,
P. J., Ghosh, A., Hintsa, E. J., Hurst, D. F., Ishijima, K., Krum-40

mel, P. B., Miller, B. R., Miyazaki, K., Moore, F. L., Mühle, J.,
O’Doherty, S., Prinn, R. G., Steele, L. P., Takigawa, M., Wang,
H. J., Weiss, R. F., Wofsy, S. C., and Young, D.: Observational
evidence for interhemispheric hydroxyl-radical parity, Nature,
513, 219–223, https://doi.org/10.1038/nature13721, 2014.45

Quay, P., Stutsman, J., Wilbur, D., Snover, A., Dlugokencky,
E., and Brown, T.: The isotopic composition of atmo-
spheric methane, Global Biogeochem. Cy., 13, 445–461,
https://doi.org/10.1029/1998GB900006, 1999.

Rasmussen, C. and Williams, K.: Gaussian Processes for Machine50

Learning, The MIT Press, Cambridge, Massachusetts, 2006.
TS11

Reeburgh, W. S., Hirsch, A. I., Sansone, F. J., Popp, B. N., and
Rust, T. M.: Carbon kinetic isotope effect accompanying micro-
bial oxidation of methane in boreal forest soils, Geochim. Cos-55

mochim. Ac., 61, 4761–4767, https://doi.org/10.1016/S0016-
7037(97)00277-9, 1997.

Regayre, L. A., Johnson, J. S., Yoshioka, M., Pringle, K. J., Sex-
ton, D. M. H., Booth, B. B. B., Lee, L. A., Bellouin, N., and

Carslaw, K. S.: Aerosol and physical atmosphere model parame- 60

ters are both important sources of uncertainty in aerosol ERF, At-
mos. Chem. Phys., 18, 9975–10006, https://doi.org/10.5194/acp-
18-9975-2018, 2018.

Rice, A. L., Butenhoff, C. L., Teama, D. G., Röger, F. H., Khalil,
M. A. K., and Rasmussen, R. A.: Atmospheric methane iso- 65

topic record favors fossil sources flat in 1980s and 1990s with
recent increase, P. Natl. Acad. Sci. USA, 113, 10791–10796,
https://doi.org/10.1073/pnas.1522923113, 2016.

Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeis-
ter, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, 70

L., Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A.,
da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R.,
Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Re-
ichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and
Woollen, J.: MERRA : NASA’s Modern-Era Retrospective Anal- 75

ysis for Research and Applications, J. Climate, 24, 3624–3648,
https://doi.org/10.1175/JCLI-D-11-00015.1, 2011.

Rigby, M., Prinn, R. G., Fraser, P. J., Simmonds, P. G., Lan-
genfelds, R. L., Huang, J., Cunnold, D. M., Steele, L. P.,
Krummel, P. B., Weiss, R. F., O’Doherty, S., Salameh, P. K., 80

Wang, H. J., Harth, C. M., Mühle, J., and Porter, L. W.: Re-
newed growth of atmospheric methane, Geophys. Res. Lett., 35,
L22805, https://doi.org/10.1029/2008GL036037, 2008.

Rigby, M., Montzka, S. A., Prinn, R. G., White, J. W. C., Young,
D., O’Doherty, S., Lunt, M. F., Ganesan, A. L., Manning, A. J., 85

Simmonds, P. G., Salameh, P. K., Harth, C. M., Mühle, J.,
Weiss, R. F., Fraser, P. J., Steele, L. P., Krummel, P. B., Mc-
Culloch, A., and Park, S.: Role of atmospheric oxidation in re-
cent methane growth, P. Natl. Acad. Sci. USA, 114, 5373–5377,
https://doi.org/10.1073/pnas.1616426114, 2017. 90

Saltelli, A. and Annoni, P.: How to avoid a perfunctory sen-
sitivity analysis, Environ. Modell. Softw., 25, 1508–1517,
https://doi.org/10.1016/j.envsoft.2010.04.012, 2010.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J.,
Gatelli, D., Saisana, M., and Tarantola, S.: Global Sensitiv- 95

ity Analysis: The Primer, Wiley, Chichester, United Kingdom,
https://doi.org/10.1111/j.1751-5823.2008.00062_17.x, 2000.

Saueressig, G., Bergamaschi, P., Crowley, J. N., Fischer, H., and
Harris, G. W.: Carbon kinetic isotope effect in the reaction
of CH4 with Cl atoms, Geophys. Res. Lett., 22, 1225–1228, 100

https://doi.org/10.1029/95GL00881, 1995.
Saueressig, G., Crowley, J. N., Bergamaschi, P., Brühl, C.,

Brenninkmeijer, C. A. M., and Fischer, H.: Carbon 13 and
D kinetic isotope effects in the reactions of CH 4 with
O( 1 D ) and OH: New laboratory measurements and 105

their implications for the isotopic composition of strato-
spheric methane, J. Geophys. Res.-Atmos., 106, 23127–23138,
https://doi.org/10.1029/2000JD000120, 2001.

Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P.,
Canadell, J. G., Dlugokencky, E. J., Etiope, G., Bastviken, D., 110

Houweling, S., Janssens-Maenhout, G., Tubiello, F. N., Castaldi,
S., Jackson, R. B., Alexe, M., Arora, V. K., Beerling, D. J., Berga-
maschi, P., Blake, D. R., Brailsford, G., Brovkin, V., Bruhwiler,
L., Crevoisier, C., Crill, P., Covey, K., Curry, C., Frankenberg, C.,
Gedney, N., Höglund-Isaksson, L., Ishizawa, M., Ito, A., Joos, F., 115

Kim, H.-S., Kleinen, T., Krummel, P., Lamarque, J.-F., Langen-
felds, R., Locatelli, R., Machida, T., Maksyutov, S., McDonald,
K. C., Marshall, J., Melton, J. R., Morino, I., Naik, V., O’Doherty,

Pl
ea

se
no

te
th

e
re

m
ar

ks
at

th
e

en
d

of
th

e
m

an
us

cr
ip

t.

https://doi.org/10.5194/acp-21-1-2021 Atmos. Chem. Phys., 21, 1–21, 2021

https://doi.org/10.1017/CBO9781107415324.018
https://doi.org/10.5194/acp-19-407-2019
https://doi.org/10.1002/2016GB005406
https://doi.org/10.1016/j.ress.2005.11.025
https://doi.org/10.32614/RJ-2018-049
https://doi.org/10.5194/acp-11-12813-2011
https://doi.org/10.5194/acp-11-12813-2011
https://doi.org/10.5194/acp-11-12813-2011
https://doi.org/10.1038/nature13721
https://doi.org/10.1029/1998GB900006
https://doi.org/10.1016/S0016-7037(97)00277-9
https://doi.org/10.1016/S0016-7037(97)00277-9
https://doi.org/10.1016/S0016-7037(97)00277-9
https://doi.org/10.5194/acp-18-9975-2018
https://doi.org/10.5194/acp-18-9975-2018
https://doi.org/10.5194/acp-18-9975-2018
https://doi.org/10.1073/pnas.1522923113
https://doi.org/10.1175/JCLI-D-11-00015.1
https://doi.org/10.1029/2008GL036037
https://doi.org/10.1073/pnas.1616426114
https://doi.org/10.1016/j.envsoft.2010.04.012
https://doi.org/10.1111/j.1751-5823.2008.00062_17.x
https://doi.org/10.1029/95GL00881
https://doi.org/10.1029/2000JD000120


20 A. C. Stell et al.: Methane budget sensitivity using Gaussian process emulation

S., Parmentier, F.-J. W., Patra, P. K., Peng, C., Peng, S., Peters,
G. P., Pison, I., Prigent, C., Prinn, R., Ramonet, M., Riley, W.
J., Saito, M., Santini, M., Schroeder, R., Simpson, I. J., Spahni,
R., Steele, P., Takizawa, A., Thornton, B. F., Tian, H., Tohjima,
Y., Viovy, N., Voulgarakis, A., van Weele, M., van der Werf, G.5

R., Weiss, R., Wiedinmyer, C., Wilton, D. J., Wiltshire, A., Wor-
thy, D., Wunch, D., Xu, X., Yoshida, Y., Zhang, B., Zhang, Z.,
and Zhu, Q.: The global methane budget 2000–2012, Earth Syst.
Sci. Data, 8, 697–751, https://doi.org/10.5194/essd-8-697-2016,
2016.10

Schaefer, H., Fletcher, S. E. M., Veidt, C., Lassey, K. R., Brailsford,
G. W., Bromley, T. M., Dlugokencky, E. J., Michel, S. E., Miller,
J. B., Levin, I., Lowe, D. C., Martin, R. J., Vaughn, B. H., and
White, J. W. C.: A 21st-century shift from fossil-fuel to biogenic
methane emissions indicated by 13CH4, Science, 352, 80–84,15

https://doi.org/10.1126/science.aad2705, 2016.
Schwietzke, S., Sherwood, O. A., Bruhwiler, L. M. P., Miller,

J. B., Etiope, G., Dlugokencky, E. J., White, J. W. C., Pieter,
P. T., Michel, S. E., Arling, V. A., Vaughn, B. H., and
James, W.: Upward revision of global fossil fuel methane20

emissions based on isotope database, Nature, 538, 88–91,
https://doi.org/10.1038/nature19797, 2016.

Sherwen, T., Schmidt, J. A., Evans, M. J., Carpenter, L. J., Groß-
mann, K., Eastham, S. D., Jacob, D. J., Dix, B., Koenig, T. K.,
Sinreich, R., Ortega, I., Volkamer, R., Saiz-Lopez, A., Prados-25

Roman, C., Mahajan, A. S., and Ordóñez, C.: Global impacts
of tropospheric halogens (Cl, Br, I) on oxidants and composi-
tion in GEOS-Chem, Atmos. Chem. Phys., 16, 12239–12271,
https://doi.org/10.5194/acp-16-12239-2016, 2016.

Simpson, I. J., Rowland, F. S., Meinardi, S., and Blake, D. R.: In-30

fluence of biomass burning during recent fluctuations in the slow
growth of global tropospheric methane, Geophys. Res. Lett., 33,
L22808, https://doi.org/10.1029/2006GL027330, 2006.

Snover, A. K. and Quay, P. D.: Hydrogen and carbon
kinetic isotope effects during soil uptake of atmo-35

spheric methane, Global Biogeochem. Cy., 14, 25–39,
https://doi.org/10.1029/1999GB900089, 2000.

Spivakovsky, C. M., Logan, J. A., Montzka, S. A., Balkan-
ski, Y. J., Foreman-Fowler, M., Jones, D. B. A., Horowitz,
L. W., Fusco, A. C., Brenninkmeijer, C. A. M., Prather,40

M. J., Wofsy, S. C., and McElroy, M. B.: Three-dimensional
climatological distribution of tropospheric OH: Update
and evaluation, J. Geophys. Res.-Atmos., 105, 8931–8980,
https://doi.org/10.1029/1999JD901006, 2000.

Stell, A. C.: Global methane freshwater emission map for45

atmospheric modelling, available at: https://osf.io/q9f8p/,
https://doi.org/10.17605/OSF.IO/Q9F8P, 2020a.TS12

Stell, A. C.: Atmospheric methane source and sink sensitivity analy-
sis using Gaussian process emulation, available at: https://osf.io/
z435m/, https://doi.org/10.17605/OSF.IO/Z435M, 2020b.TS1350

Strode, S. A., Wang, J. S., Manyin, M., Duncan, B., Hossaini, R.,
Keller, C. A., Michel, S. E., and White, J. W. C.: Strong sensitiv-
ity of the isotopic composition of methane to the plausible range
of tropospheric chlorine, Atmos. Chem. Phys., 20, 8405–8419,
https://doi.org/10.5194/acp-20-8405-2020, 2020.55

Tans, P. P.: A note on isotopic ratios and the global atmo-
spheric methane budget, Global Biogeochem. Cy., 11, 77–81,
https://doi.org/10.1029/96GB03940, 1997.

Thanwerdas, J., Saunois, M., Berchet, A., Pison, I., Hauglustaine,
D., Ramonet, M., Crevoisier, C., Baier, B., Sweeney, C., and 60

Bousquet, P.: Impact of atomic chlorine on the modelling of total
methane and its 13C : 12C isotopic ratio at global scale, Atmos.
Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-
2019-925, 2019.

Turner, A. J., Jacob, D. J., Benmergui, J., Wofsy, S. C., Maasakkers, 65

J. D., Butz, A., Hasekamp, O., and Biraud, S. C.: A large increase
in U.S. methane emissions over the past decade inferred from
satellite data and surface observations, Geophys. Res. Lett., 43,
2218–2224, https://doi.org/10.1002/2016GL067987, 2016.

Turner, A. J., Frankenberg, C., Wennberg, P. O., and Jacob, D. J.: 70

Ambiguity in the causes for decadal trends in atmospheric
methane and hydroxyl, P. Natl. Acad. Sci. USA, 114, 5367–5372,
https://doi.org/10.1073/pnas.1616020114, 2017.

Tyler, S. C., Crill, P. M., and Brailsford, G. W.: 13C/12C
Fractionation of methane during oxidation in a temperate 75

forested soil, Geochim. Cosmochim. Ac., 58, 1625–1633,
https://doi.org/10.1016/0016-7037(94)90564-9, 1994.

Tyler, S. C., Ajie, H. O., Rice, A. L., and Cicerone, R. J.: Exper-
imentally determined kinetic isotope effects in the reaction of
CH4 with Cl: Implications for atmospheric CH4, Geophys. Res. 80

Lett., 27, 1715–1718, https://doi.org/10.1029/1999GL011168,
2000.

van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G.
J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S.,
Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the 85

contribution of deforestation, savanna, forest, agricultural, and
peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707–11735,
https://doi.org/10.5194/acp-10-11707-2010, 2010.

Velders, G. J. M.: Description of the RIVM 2-dimensional strato-
sphere model, Tech. Rep., Rijksinstituut voor Volksgezondheid 90

en Milieu (RIVM), Bilthoven, Netherlands, 1995.TS14

Vernon, I., Goldstein, M., and Bower, R. G.: Galaxy Formation: a
Bayesian Uncertainty Analysis, Bayesian Analysis, 5, 619–669,
https://doi.org/10.1214/10-BA524, 2010.

Wang, X., Jacob, D. J., Eastham, S. D., Sulprizio, M. P., Zhu, 95

L., Chen, Q., Alexander, B., Sherwen, T., Evans, M. J., Lee,
B. H., Haskins, J. D., Lopez-Hilfiker, F. D., Thornton, J. A.,
Huey, G. L., and Liao, H.: The role of chlorine in global
tropospheric chemistry, Atmos. Chem. Phys., 19, 3981–4003,
https://doi.org/10.5194/acp-19-3981-2019, 2019. 100

White, J., Vaughn, B., and Michel, S.: Stable Isotopic Composition
of Atmospheric Methane (13C) from the NOAA ESRL Carbon
Cycle Cooperative Global Air Sampling Network, 1998-2016,
Version: 2018-01-31, available at: ftp://aftp.cmdl.noaa.gov/data/
trace_gases/ch4c13/flask/, 2018. TS15 105

Whiticar, M. and Schaefer, H.: Constraining past global tro-
pospheric methane budgets with carbon and hydrogen iso-
tope ratios in ice, Philos. T. Roy. Soc. A, 365, 1793–1828,
https://doi.org/10.1098/rsta.2007.2048, 2007.

Wild, O., Voulgarakis, A., O’Connor, F., Lamarque, J.-F., Ryan, 110

E. M., and Lee, L.: Global sensitivity analysis of chemistry–
climate model budgets of tropospheric ozone and OH: ex-
ploring model diversity, Atmos. Chem. Phys., 20, 4047–4058,
https://doi.org/10.5194/acp-20-4047-2020, 2020.

Worden, J. R., Bloom, A. A., Pandey, S., Jiang, Z., Worden, H. M., 115

Walker, T. W., Houweling, S., and Röckmann, T.: Reduced
biomass burning emissions reconcile conflicting estimates of the

Pl
ea

se
no

te
th

e
re

m
ar

ks
at

th
e

en
d

of
th

e
m

an
us

cr
ip

t.

Atmos. Chem. Phys., 21, 1–21, 2021 https://doi.org/10.5194/acp-21-1-2021

https://doi.org/10.5194/essd-8-697-2016
https://doi.org/10.1126/science.aad2705
https://doi.org/10.1038/nature19797
https://doi.org/10.5194/acp-16-12239-2016
https://doi.org/10.1029/2006GL027330
https://doi.org/10.1029/1999GB900089
https://doi.org/10.1029/1999JD901006
https://osf.io/q9f8p/
https://doi.org/10.17605/OSF.IO/Q9F8P
https://osf.io/z435m/
https://osf.io/z435m/
https://osf.io/z435m/
https://doi.org/10.17605/OSF.IO/Z435M
https://doi.org/10.5194/acp-20-8405-2020
https://doi.org/10.1029/96GB03940
https://doi.org/10.5194/acp-2019-925
https://doi.org/10.5194/acp-2019-925
https://doi.org/10.5194/acp-2019-925
https://doi.org/10.1002/2016GL067987
https://doi.org/10.1073/pnas.1616020114
https://doi.org/10.1016/0016-7037(94)90564-9
https://doi.org/10.1029/1999GL011168
https://doi.org/10.5194/acp-10-11707-2010
https://doi.org/10.1214/10-BA524
https://doi.org/10.5194/acp-19-3981-2019
ftp://aftp.cmdl.noaa.gov/data/trace_gases/ch4c13/flask/
ftp://aftp.cmdl.noaa.gov/data/trace_gases/ch4c13/flask/
ftp://aftp.cmdl.noaa.gov/data/trace_gases/ch4c13/flask/
https://doi.org/10.1098/rsta.2007.2048
https://doi.org/10.5194/acp-20-4047-2020


A. C. Stell et al.: Methane budget sensitivity using Gaussian process emulation 21

post-2006 atmospheric methane budget, Nat. Commun., 8, 2227,
https://doi.org/10.1038/s41467-017-02246-0, 2017.

Yan, X., Akiyama, H., Yagi, K., and Akimoto, H.: Global
estimations of the inventory and mitigation potential
of methane emissions from rice cultivation conducted5

using the 2006 Intergovernmental Panel on Climate
Change Guidelines, Global Biogeochem. Cy., 23, GB2002,
https://doi.org/10.1029/2008GB003299, 2009.

https://doi.org/10.5194/acp-21-1-2021 Atmos. Chem. Phys., 21, 1–21, 2021

https://doi.org/10.1038/s41467-017-02246-0
https://doi.org/10.1029/2008GB003299


Remarks from the language copy-editor

CE1 Internal: Please note the changes to the title.
CE2 Does “because” refer to “ small uncertainties in which strongly influence long-term δ13C–CH4 trends”?
CE3 What does “2001 repeating” (and similar instances in this table) mean?
CE4 Do you mean Stell, 2020a, is available to download?
CE5 Please confirm.

Remarks from the typesetter

TS1 Please provide country.
TS2 Please provide country.
TS3 Please provide country.
TS4 Please check throughout the text that all vectors are denoted by bold italics and matrices by bold roman.
TS5 Please add last access date.
TS6 Please add last access date.
TS7 Please send a new supplement as a *.pdf without the title, authors, correspondence author, etc. as we will generate a
supplement title page during publication (with a citation including the DOI), which will contain this information.
TS8 Please note that the funding information has been added to this paper. Please check if it is correct. Please also double-
check your acknowledgements to see whether repeated information can be removed or changed accordingly. Thanks.
TS9 Please add page range or article number.
TS10 Please add last access date.
TS11 Please add total pages.
TS12 Please add last access date.
TS13 Please add last access date.
TS14 Please add total pages.
TS15 Please add last access date.


	Abstract
	Introduction
	Methods
	Approach
	The chemical transport model set-up and input parameter ranges
	The chemical transport model set-up
	The chemical transport model input ranges

	Creating the chemical transport model training and validation datasets
	Gaussian process emulators
	The basics of Gaussian process emulation
	Gaussian process emulation for time series outputs

	Validation of the emulators
	Calculation of sensitivity indices

	Results and discussion
	Comparison of 3D chemical transport model training dataset to observations
	The 3D chemical transport model invariant parameter error
	Validation of the emulators
	Comparison of multiple linear regression and the Gaussian process
	Using the emulators for sensitivity analysis
	First-order sensitivity indices
	Parameter interactions


	Conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

