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We would like to thank the reviewers for their invaluable help in this process. This document
includes our responses to the reviewer’s comments, including the changes made, followed by a marked-
up manuscript. We also note the contributions of an additional co-author (Tomás Sherwen), who has
been included in this revised manuscript. He created the chlorine field used in this work, and helped
revise the manuscript.
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Reply to anonymous review #1

Angharad C. Stell, Luke M. Western,
Tomás Sherwen, Matthew Rigby

November 2020

We would like to thank the reviewer for their helpful comments. In this document, we reply to
each comment, providing extra detail and outlining how we have updated the manuscript.

The main suggestion from both reviewers was to make greater use of observations. This is a
valid point, and we thought about this a lot before submitting this paper. We decided against going
down this route because we felt that the most effective way to combine model sensitivities (in this
case derived using Gaussian process emulation) with observations is through a full Bayesian inverse
analysis. This will require some additional methodological development (to effectively make use of the
Gaussian process) and much more involved consideration of model and prior uncertainties. We felt
that adding this material would make the paper long, less readable, and may take focus away from
the emulation method and the sensitivity analysis, which we feel are novel and important in their own
right. Therefore, we hope the reviewers will agree with our suggestion that a full inverse analysis would
best be presented in a follow-up paper, which is currently in preparation.

While the focus of this study is understanding model sensitivities, it would be useful to
include more comparisons to observations to demonstrate whether the model sensitivities
are reasonably realistic. In other words, if the model shows high sensitivity to a partic-
ular source or sink, are we confident that methane observations are really that sensitive
to that source or sink? This information is difficult to determine from Fig. 3. Per-
haps showing the model has reasonable skill in capturing interannual variability at a site
heavily influenced by biomass burning or by wetland emissions would help demonstrate
a realistic level of sensitivity to those sources.

Following on from our comment regarding the use of observations above, we argue that a detailed
comparison with observations would not change the main outcomes of this paper. The MOZART
model, run in a very similar configuration has already been extensively compared to other models
and observations in previous work (e.g. Patra et al., 2011, doi:10.5194/acp-11-12813-2011). Here, the
main focus is to present a method for exploring model input-output relationships and estimating the
relative importance of the uncertainty in the sources and sinks in driving hemispheric trends. The part
of the paper concerning method development does not rely on model accuracy, and the hemispheric
sensitivity analysis will only be weakly influenced by errors in site-specific mole fractions. On the latter
point, we also note that we chose to include only model grid cells that contain background NOAA
measurement stations. As such, none of the model data points which were used to estimate hemispheric
mole fractions are strongly influenced by nearby sources such as biomass burning or wetland emissions.

Again, we propose that a more detailed site-specific measurement comparison would be better
placed in a follow-up paper where an inverse analysis was performed to constrain the model using
atmospheric observations.

To make the point that a detailed comparison to observations has been performed previously, to line
117 we have added: “The MOZART model, run in a similar configuration, has been used previously
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in global methane studies and has been compared to other models and to observations (e.g. Patra et
al., 2011).”

The large number of 3D model simulations used to train and test the emulator is
itself a substantial effort and potentially a valuable resource. Could these simulations
provide additional information to support the analysis? For example, this study focuses
on just hemisphere or global averaged measures of methane, but the 3D model fields could
potentially take greater advantage of geographic differences.

We agree, there will be further information contained in site-to-site differences that we have not
explored here. The reason we did not introduce additional metrics, further than absolute global mean
mole fraction or δ13C-CH4, and their trends and inter-hemispheric gradients, was simply because it
would have made the sensitivity discussion more difficult to understand, but with diminishing returns
(i.e. the finer scale you go, the subtler the sensitivity information becomes). As mentioned in the
paper, using our method, it is trivial to emulate individual grid cells of the model in order to fully
utilise the 3D nature of the simulations. This is something that we aim to investigate further in our
future inversion paper.

We acknowledge that there may be useful features in our model ensemble that other researchers
wish to explore, and for that reason, we have made the processed training dataset available via OSF
(https://doi.org/10.17605/OSF.IO/Z435M). We would also be happy to share the raw MOZART out-
put if requested. This raw output has not been shared publicly as it is hundreds of gigabytes of data,
and reproducible following the steps in the paper.

Section 2.5: Please justify why the uncertainty in the invariant parameters is a good
estimate of the CTM error, and compare to the error you would get from the model-data
mismatch.

We agree that this uncertainty comparison has been left out and is useful to include. Line 292
(now line 309 in the revised paper), reads: “These values are slightly larger than the estimate of the
combined measurement and model representation uncertainty, which examines the limited temporal
and spatial resolution of the model (further details in the Supplement). Additionally, the invariant
parameter uncertainty is large compared to atmospheric methane trends (e.g. between 2000 and 2012,
the methane mole fraction and δ13C-CH4 changed by around 40 ppb and -0.1 ‰, respectively).”

The calculation of the measurement and model representation uncertainty is additionally added to
the Supplement, in a new section called ‘The measurement and model representation uncertainty’:

The calculation of the combined measurement and model representation uncertainty, from now on
referred to as the model-measurement discrepancy uncertainty for brevity, is detailed here. The model-
measurement discrepancy uncertainty is calculated by considering four elements that would cause the
model output to differ from the observations: the measurement uncertainty, the model representation
uncertainty, the different stations sampling in each month of the observations, and the different sample
times in the observations. To account for these differences, the standard deviation in 10 000 samples
from the uncertainty distributions of these four elements is calculated. The two MOZART simulations
in the training dataset closest to the methane mole fraction and δ13C-CH4 observations were chosen
as base simulations, around which these uncertainties are examined.

To account for the measurement uncertainty, a random value drawn from a normal distribution
with a mean of zero and the median standard deviation from the NOAA and INSTAAR datasets (1.7
ppb and 0.051 ‰ for the methane mole fraction and δ13C-CH4, respectively). This random value is
added to every 6-hourly output value in each grid cell of the base simulations, in each of the 10 000
samples.

To calculate the horizontal representation uncertainty, a higher spatial resolution (1.89° N × 2.50°
W) MOZART simulation with the mean emissions and losses in the training dataset was used. The
range of outputs over the high-resolution grid cells within a low-resolution grid cell was calculated.
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The vertical representation uncertainty is calculated by taking the range of the output in each low-
resolution grid cell and the grid cell above and below. For each of the 10 000 samples, a random value
drawn from a uniform distribution between minus half the range and plus half the range is added
to every 6-hourly output value in each grid cell of the base simulations for both the horizontal and
vertical representation uncertainty.

The model hemispheric time series includes all grid cells with measurement stations in every month,
regardless of whether there are observations for that station in that month. Therefore, the effect of
including different stations in the hemispheric mean is explored by bootstrap resampling. For each of
the 10 000 samples, 25 stations for the methane mole fraction and 10 stations for the δ13C-CH4 (the
number of stations included in this study) were chosen by sampling the stations with replacement.

The model hemispheric monthly time series includes all 6-hourly outputs at a station, but the
observation hemispheric time series includes only approximately four samples in a monthly mean. To
include the effect of having differently timed samples in the monthly output, four random time points
are chosen to contribute to each station’s monthly value in each of the 10 000 samples.

The hemispheric time series is then calculated, and the standard deviation in the 10 000 samples
of the hemispheric time series is used as the model-measurement discrepancy uncertainty. This uncer-
tainty has a median value of 5 ppb and 0.05 ‰ in the southern hemisphere, and 10 ppb and 0.08 ‰
in the northern hemisphere.”

We did not intend to suggest that this invariant parameter uncertainty was a better estimate than
those presented in previous studies. Instead, we propose that this is a type of uncertainty that can
be readily quantified by the type of model ensemble we have used here, but which has, to the best of
our knowledge, not been presented previously. The “true” model uncertainty will have components
related to the invariant parameter uncertainties, representation errors and systematic model transport
model errors, as stated in lines 240-244 (now lines 257-260 in the revised paper):

“This invariant parameter error does not include many other sources of error (e.g. model transport
uncertainties are not addressed), and higher-order “invariant parameter errors” (e.g. erroneous trends
or spatial distributions), so can be considered a lower bound of the total 3D CTM error.”

Since the initial conditions for the isotopic composition are listed as one of the im-
portant quantities to constrain, more detail is needed regarding how the initial conditions
are specified in the model simulations. Are observations used in any way to constrain
the initial state?

Following the reviewer’s helpful comments, we have decided to reduce the spin-up parameter range
so that the δ13C-CH4 sensitivity is not so strongly dominated by the spin-up parameters. This has
been done by roughly matching the 1996 initial conditions to observations.

We also agree that the initial conditions should be better described, and further detail has been
added in the revised version of the paper. The paragraph beginning line 160 (now line 166) has been
amended to:

“Three parameters were varied during the spin-up: the total source magnitude, the total source
δ13C-CH4 signature, and an overall imbalance between the source and sink. Table 2 gives the range of
these spin-up parameters. The range of the spin-up total source magnitude was derived by considering
the minimum and maximum of the sum of the sources in Table 2. The range of the total source
δ13C-CH4 signature is constrained to values where the resulting January 1996 initial condition field
has a global surface δ13C-CH4 approximately matching observations (-47.3±0.6 ‰). Similarly, the
range of the imbalance between the source and sink is constrained to values where the resulting
January 1996 initial condition field has a global surface methane mole fraction approximately matching
observations (1760±30 ppb). However, the January 1996 initial condition can go beyond these observed
ranges by varying the other two spin-up parameters. The range of initial condition values is larger
than that considered in previous methane modelling studies and it therefore may be an overestimate.
However, given that constraints are only typically provided based on surface observations, whereas the
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initial model fields are 3D, extending from the surface to the upper stratosphere, it is very difficult to
determine how uncertain the initial conditions truly are.”

We also noticed a discrepancy in our stated parameter ranges which has been corrected in the
revised paper. Lines 146-147 (now lines 148-151) have been replaced by:

“The ranges of possible source magnitudes were based on the ranges of compiled literature values
in Saunois et al., 2016. The minimum and maximum values from Saunois et al., 2016 have been
decreased and increased, respectively, by 10 % in this work as Saunois et al., 2016 does not include
the uncertainties in the compiled studies or outliers in their ranges. The ranges of possible δ13C-CH4

source signatures were the three standard deviation ranges in Schwietzke et al., 2016.”

Line 30: Please rephrase without parentheses

The parenthesis has been removed in the revised version of this paper.

Lines 58-62: Another reference relevant to this work is: Wild, O., Voulgarakis, A.,
O’Connor, F., Lamarque, J.-F., Ryan, E. M., and Lee, L.: Global sensitivity analysis of
chemistry–climate model budgets of tropospheric ozone and OH: exploring model diver-
sity, Atmos. Chem. Phys., 20, 4047–4058, https://doi.org/10.5194/acp-20-4047-2020,
2020

We thank the reviewer for reminding us of this important and relevant paper. This has been added
to our introductory section.

Line 134: Does this spin-up lead to a reasonable reproduction of surface observations
in the early portion of the time period?

We have constrained the spin-up parameters to more closely reproduce surface observations as
described above. However, as stated above, this range is still large, but we also do not know what
the “true” initial condition uncertainty is, given the need to specify a 3D delta-value field, which is
informed only be surface observations. In any case, as we note in line 379 (now line 409): “A wide
range of δ13C-CH4 initial condition values (Table 2) are examined in this work, however the importance
of the initial conditions applies to even small ranges. For example, if the δ13C-CH4 initial condition
is perturbed by 0.1 ‰ from the initial median parameter values, the output atmospheric δ13C-CH4

trend changes by 0.04 ‰, almost half the observed δ13C-CH4 trend during this period.”

Further, we note here that a future inverse modelling study should allow us to better constrain this
term, by allowing the early measurements to inform the initial conditions.

How was the number of simulations chosen? It might help to refer to the Supplemental
Figure S8 here.

Within the Supplement, we have added an introductory sentence to Sect. 5 to acknowledge a rule
of thumb:

“As a rule of thumb, ten times the number of parameters is a good number of training simulations
to train a Gaussian process (e.g. Loeppky et al., 2009). However, this is dependent on the model being
emulated and hence the accuracy of emulators trained with different numbers of simulations is tested
here.”

The following has been added after line 170 (now line 184) in the revised version of the paper:

“We chose 270 simulations as it was found to provide a balance between the accuracy of the
emulator and the computational expense of generating training simulations. This is further discussed
in the Supplement.”

Line 202: Please explain the difference between ~x and ~x∗
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~x∗ are the input parameters to be predicted and ~x are the input parameters of the training dataset.
This is already stated in lines 202 and 205 (now lines 219 and 222). Please let us know if we have
misunderstood the confusion here.

Line 277: What is the meaning of “arbitrary initial condition range”?

We hope that our response to the reviewer’s fourth point adequately explains this. In the revised
version of the paper we have added a reference back to this new paragraph. Additionally, “arbitrary”
was replaced by “large” for clarity.

Line 341: What is the “initial condition source del-13C”? Do you mean the initial
conditions for the del13C values of atmospheric methane? Or are you talking about an
emission source?

This, and throughout, has been changed to “spin-up source δ13C-CH4 signature” for consistency
with Table 2 and better clarity.

Lines 340-355: Isn’t the initial condition at least partially constrained by surface
observations?

This has been clarified in our response to the reviewer’s fourth point.

Line 360: It would be nice to know the sensitivity to the assumption of hemispheric
parity in OH

We agree that this is a potentially important factor that is not accounted for in this work. It
was omitted in our emulator design, as we made the decision early on not to include spatial source
or sink variations, focusing instead on magnitudes and temporal trends. However, some might argue
that it should have been included, perhaps along with modifications to some source distributions, and
potentially at the expense of some other terms. We accept this is a limitation of this work and it is
discussed in lines 280-285 (now lines 297-302):

“Ideally, the spatial distributions of the emissions and losses would also be parameterised, allowing
greater variation in the inter-hemispheric differences. However, only a limited number of parameters
can be included in the Gaussian process emulation method of this work. The more parameters, the
more 3D CTM simulations are required to train the emulator and the slower computation becomes.
Therefore, only up to about 30 parameters are typically included in a Gaussian process, whereas
methods such as adjoint models (e.g. Bousquet et al. (2011); Bergamaschi et al. (2013)) can include
thousands of parameters.”

We have also added the following sentence to line 361 (now line 385) to clarify this:

“However, had the uncertainty in the hemispheric distribution of OH been included in our analysis,
it would likely have explained a larger proportion of this sensitivity.”

Line 373: Do you mean the magnitude of the agricultural source or its trend?

We have clarified this to say “the agricultural source δ13C-CH4 signature”.

Line 414: Is this because the trends and hemispheric differences are themselves small
compared to the mean?

This sentence has been rewritten in the revised paper:

“Whilst these interactions are relatively unimportant in this sensitivity analysis, they must be con-
sidered in order to build an accurate emulator. For example, the 0.2 % and 0.7 % of the output variance
explained by parameter interactions for the global mean mole fraction and δ13C-CH4, respectively, is
equivalent to a standard deviation of 10 ppb and 0.09 ‰ in the output. This accounts for most of
the difference in performance of the Gaussian process and multiple linear regression, which does not
consider parameter interactions, in Sect. 3.4.”
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Fig. S8: Why does the plot have only 3 points?

This should have been clarified in the paper and the following text has been added to the figure
caption:

“There are only three points as each point requires a new Latin hypercube design in order to
properly sample the parameter space with a different number of simulations (i.e. an arbitrary sub-set
of the largest ensemble cannot be used for this purpose, as it would not be a true Latin hypercube). This
means that each point requires a new set of MOZART training simulations, which is computationally
expensive to repeat multiple times. However, this function is very unlikely to have multiple minima,
and so we think this figure is enough to act as a rough guide.”
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Reply to anonymous review #2

Angharad C. Stell, Luke M. Western,
Tomás Sherwen, Matthew Rigby

November 2020

We would like to thank the reviewer for their helpful comments. In this document, we reply to
each comment, providing extra detail and outlining how we have updated the manuscript.

My only major suggestion is that perhaps the observational dataset, currently just
used to show that the CTM simulations encompass realistic values, could be incorporated
into evaluation of the emulator simulations. For instance, looking at Fig. 4, the CTM
appears to underestimate the observed global mean δ13C-CH4 value considerably (panel b).
Could the emulator simulations be used to posit the drivers of the CTM underestimate? I
understand that it would be unreasonable to meaningfully look at millions of simulations
one-by-one, but perhaps the optimal values of the largest drivers of global mean δ13C-CH4

(from Fig. 7b) could be identified? I.e., which combinations of inputs are needed to close
in on the observed global mean δ13C-CH4? This could be done for all the observed metrics
shown in Fig. 4, if sorting through the emulator simulations to find observation-matching
values is feasible.

This is a very similar point to the major comment by Reviewer 1, and one to which we gave a great
deal of consideration before submitting the manuscript. As we wrote in our response to Reviewer 1:

We decided against going down this route because we felt that the most effective way to combine
model sensitivities (in this case derived using Gaussian process emulation) with observations is through
a full Bayesian inverse analysis. This will require some additional methodological development (to
effectively make use of the Gaussian process) and much more involved consideration of model and
prior uncertainties. We felt that adding this material would make the paper long, less readable, and
may take focus away from the emulation method and the sensitivity analysis, which we feel are novel
and important in their own right. Therefore, we hope the reviewers will agree with our suggestion that
a full inverse analysis would best be presented in a follow-up paper, which is currently in preparation.

To answer the more specific element of the reviewer’s comment regarding the principal cause of
disagreement with the observations, we note that the cause of the global mean δ13C-CH4 offset can
be considered qualitatively using the sensitivity analysis itself. The parameters that are responsible
for the largest proportion of the output variance are the δ13C-CH4 source signature of agriculture, the
magnitude of the Cl loss, and the magnitude of the freshwater source. It is these parameters that
the output is most sensitive to that are most likely to be adjusted to reach the optimal solution, for
example, in an inversion.

The reviewer also raises an interesting suggestion that the ensemble could be examined to find the
subset that best agrees with the data. We have indeed tried such approach, e.g. “history matching”
as referenced in line 443 (now line 476 in the revised paper), for example, by attempting to find
some subset of the parameter space that is consistent, within some uncertainty, of the observations.
However, we found that, given the high dimensionality, even with an efficient emulator, it was extremely
expensive to derive a statistically meaningful ensemble from a purely random exploration of the space.

8



Therefore, as we note in our response to Reviewer 1, we feel that the most promising approach will be
a Bayesian method, which can be explored more thoroughly in a follow-up paper.

While Gaussian process emulation has not been used for study of the methane budget
specifically (as far as I am aware), it was recently used to evaluate the CH4 lifetime
due to loss by OH. Please see and cite Wild et al., Global sensitivity analysis of chem-
istry–climate model budgets of tropospheric ozone and OH: exploring model diversity,
https://doi.org/10.5194/acp-20-4047-2020

We thank the reviewer for reminding of us of this important paper that should have been cited.
We have added this reference to the revised version of the paper.

L93: The authors allude here to the Gaussian process inputs being maintained in
their original spatial resolution. Does this mean all inputs are 2-D fields at 12x11.25
degrees resolution? Or are some 3-D? An explicit statement of exactly what is being fed
into the Gaussian process emulators would be helpful, particularly regarding the inputs’
dimensionality.

In terms of the input to MOZART, all input fields are interpolated to the model resolution of 12.00°
N × 11.25° W, with emissions (and the soil loss) being 2D, and the other losses being 3D.

In terms of the input to the Gaussian process, the inputs are scaling factors of these fields, i.e. the
input to the Gaussian process is 28 numbers (one for each parameter), but this will respond as if the
12.00° N × 11.25° W field had been scaled.

This has been clarified in the revised paper by adding to line 129 (now line 131):

“The model input fields are 2D for sources and the soil sink, and 3D for the remaining sinks.”

Additionally, the following has been added to line 201 (now line 218):

“In this work, the input parameters are the 28 scaling factors in Table 2, and the outputs are the
MOZART hemispheric average mole fraction and δ13C-CH4 values.”

Table 2: For the Trend values in the final column, the units are given as “%”. Since
trends are usually expressed as a rate, I would recommend noting the time period (I be-
lieve 2000-2012, based on my interpretation of the text) in the Table header information.

We agree, the revised version of the paper has both the time period (1996-2012) and the units as
% yr−1 in Table 2.

L195: I would hesitate to say that the loss of CH4 by OH is linear; the abundance/loss
of CH4 has a feedback on the abundance of OH (see, e.g., Holmes et al., JAMES,
https://doi.org/10.1002/2017MS001196). This would likely only influence results re-
garding large perturbations to CH4, so may not be relevant here, but it should probably
be noted.

We agree that the loss of CH4 by OH is non-linear, this is discussed in the paragraph starting line
322 (now line 341):

“The multiple linear regression accuracy can be improved by considering the non-linearity of the
mole fraction with respect to the OH loss. By using a log-transformed OH parameter to estimate
the mole fraction, the RMSE becomes 11 ppb (the complete residual distribution is shown in Fig.
6). Multiple linear regression using a log-transformed OH parameter still has a significantly larger
RMSE than the Gaussian process, implying that the remaining small non-linearities and parameter
interactions are important for predicting the output value. This finding suggests that inverse modelling
studies that have assumed linear and independent sensitivities between observations and source and
sink parameters may have under-estimated their posterior uncertainties.”
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The Gaussian process does not assume linearity, and the mean function in line 195 (now line 210)
could equally be set to zero and it would perform similarly well. We have added the following to the
revised paper to clarify this:

“A linear mean function does not stop the Gaussian process from being able to model non-linear
relationships.”

L360: It would be interesting to assess the role of altered spatial distributions of
OH, both in the horizontal (i.e., more NH OH as many global models simulate) and in
the vertical (i.e., what if there’s more OH in the free troposphere than anticipated by
Spivakovsky et al.?). It is understandable if this is beyond the scope of the current study
but would make a good future direction.

We do agree that this would indeed be interesting. However, as we have noted in our response
to Reviewer 1, it was not included in our emulator design, because we made the decision early on to
focus on uncertain magnitudes and trends in sources and sinks, rather than spatial distributions. We
have acknowledged as much in line 279 (now line 297) and have added another line to the revised
manuscript when discussing the sensitivity of the interhemispheric difference to the input parameters
(line 360, now line 385): “However, had the uncertainty in the hemispheric distribution of OH been
included in our analysis, it would likely have explained a larger proportion of this sensitivity.”

L380: “are a serious” should be “is a serious”

We agree, this has been changed in the revised version of the paper.

L388: I would be interested to see a bit more discussion regarding the freshwater
source of CH4. Some context regarding what is known about these emissions (that these
are distinct from wetlands, what we know about the mechanism (bacteria?), that they are
perhaps close in magnitude to wetlands emissions, etc.) would be helpful to the reader
without them having to refer back to Saunois et al. This is potentially a very interesting
finding, and some context could help raise awareness of this issue in the community.

The following sentence has been added after line 388 (now line 419) to address this:

“Freshwater bodies emit methane by bacteria breaking down organic matter in an anaerobic envi-
ronment, as in wetlands, and the freshwater emissions are potentially of similar magnitude to wetlands,
but more uncertain (as seen in Fig. 1).”

NB: both “fresh water” and “freshwater” are used in several locations; I suggest
maintaining consistency.

This is intentional as “fresh water” is a noun whereas “freshwater” is an adjective.
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Atmospheric methane source and sink sensitivity analysis using
Gaussian process emulation
Angharad C. Stell1, Luke M. Western1, Tomás Sherwen2, 3, and Matthew Rigby1
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Correspondence: Angharad C. Stell (a.stell@bristol.ac.uk), Matthew Rigby (matt.rigby@bristol.ac.uk)

Abstract. We present a method to efficiently approximate the response of atmospheric methane mole fraction and δ13C-CH4 to

changes in uncertain emission and loss parameters in a three-dimensional global chemical transport model. Our approach, based

on Gaussian process emulation, allows relationships between inputs and outputs in the model to be efficiently explored. The

presented emulator successfully reproduces the chemical transport model output with a root-mean-square error of 1.2 ppb and

0.06
:::
1.0

:::
ppb

::::
and

::::
0.05 ‰ for hemispheric methane mole fraction and δ13C-CH4, respectively, for 28 uncertain model inputs.5

The method is shown to outperform multiple linear regression, because it captures non-linear relationships between inputs

and outputs, as well as the interaction between model input parameters. The emulator was used to determine how sensitive

methane mole fraction and δ13C-CH4 are to the major source and sink components of the atmospheric budget, given current

estimates of their uncertainty. We find that our current knowledge of the methane budget, as inferred through hemispheric mole

fraction observations, is limited primarily by uncertainty in the global mean hydroxyl radical concentration and emissions from10

fresh water
::::::::
freshwater

:::::::::
emissions. Our work quantitatively determines the added value of measurements of δ13C-CH4, which

are sensitive to some uncertain parameters that mole fraction observations on their own are not. However, we demonstrate

the critical importance of constraining isotopic initial conditions and isotopic source signatures, small uncertainties in which

strongly influence long-term δ13C-CH4 trends, because of the long timescales over which transient perturbations propagate

through the atmosphere. Our results also demonstrate that the magnitude and trend of methane mole fraction and δ13C-CH415

can be strongly influenced by the combined uncertainty of more minor components of the atmospheric budget, which are often

fixed and assumed to be well-known in inverse modelling studies (e.g. emissions from termites, hydrates, and oceans). Overall,

our work provides an overview of the sensitivity of atmospheric observations to budget uncertainties and outlines a method

which could be employed to account for these uncertainties in future inverse modelling systems.

Copyright statement. TEXT20
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Figure 1. The magnitude of the different sources and sinks contributing to the methane budget, according to
:::::
derived

::::
from

:
the combined

ranges of bottom-up and top-down estimates (Saunois et al., 2016). The blue bars are sources of methane and the orange bars are sinks of

methane. The error bars represent the range of values used in this work, which are the minimum and maximum values given
::::::
detailed in

Saunois et al. (2016)
:::
Sect.

:::
2.2. The dashed black line shows the cut-off between the parameters that are varied in this work, and those that are

not (see Sect. 2.2 for more detail).

1 Introduction

Methane (CH4) is the second most important greenhouse gas in terms of anthropogenic radiative forcing of climate (Myhre

et al., 2013; Etminan et al., 2016). It has a wide range of sources and sinks, and the currently estimated magnitude of each

source and sink is shown in Fig. 1. However, the understanding of the atmospheric methane budget is incomplete. This lack of

understanding is demonstrated by a mismatch between bottom-up (inventory and process model-based) and top-down (atmo-25

spheric data-based) emissions estimates (Kirschke et al., 2013), and conflicting accounts of the drivers of recent changes in its

atmospheric budget; for example, recent studies have proposed that the plateau in methane concentrations in the early 2000s

and subsequent growth since 2007 (Rigby et al., 2008), could be driven by increased wetland emissions (Nisbet et al., 2016),

increased agricultural emissions (Schaefer et al., 2016), reduced biomass burning and increased fossil fuel sources (Worden

et al., 2017), or (non-statistically significant)
:::::
highly

::::::::
uncertain changes in hydroxyl radical (OH) concentrations (Rigby et al.,30

2017; Turner et al., 2017).

Top-down (atmospheric data-based) investigations of the global methane budget have primarily relied on atmospheric mea-

surements of mole fractions made at “background” sites, far from emission sources, (e.g. Houweling et al. (1999); Chen and Prinn (2006); Simpson et al. (2006); Rigby et al. (2008); Bousquet et al. (2011); Turner et al. (2017); Rigby et al. (2017); Naus et al. (2019))
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Houweling et al., 1999; Chen and Prinn, 2006; Simpson et al., 2006; Rigby et al., 2008; Bousquet et al., 2011; Rigby et al., 2017; Turner et al., 2017; Naus et al., 2019),
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and/or remotely sensed observations (e. g. Bergamaschi et al. (2013); Turner et al. (2016); Miller et al. (2019)).
::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Bergamaschi et al., 2013; Turner et al., 2016; Miller et al., 2019).

Measurements of the ratio of methane’s most abundant isotopologues, 12CH4 and 13CH4, have increasingly been used to pro-35

vide additional constraints on methane’s sources and sinks (e. g. Bergamaschi et al. (1998); Quay et al. (1999); Nisbet et al. (2016); Rice et al. (2016); Schaefer et al. (2016); Rigby et al. (2017); Turner et al. (2017); Worden et al. (2017); McNorton et al. (2018)).

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Bergamaschi et al., 1998; Quay et al., 1999; Nisbet et al., 2016; Rice et al., 2016; Schaefer et al., 2016; Rigby et al., 2017; Turner et al., 2017; Worden et al., 2017; McNorton et al., 2018).

The two isotopologues are emitted in different ratios from different sources (Whiticar and Schaefer, 2007; Schwietzke et al.,

2016), and are fractionated in the atmosphere by the isotopologues’ different rates of loss, with respect to the sinks (Saueressig

et al., 2001). These processes affect the ratio of 13CH4 to 12CH4 in the atmosphere, often described by δ13C-CH4 in parts per40

thousand (‰),

δ13C −CH4δ
13C-CH4

::::::::
=

(
(

13CH4
12CH4

)sample

(
13CH4
12CH4

)standard
−1
::

)
× 1000, (1)

where the standard is Pee Dee Belemnite (Coplen, 2011). This global mean δ13C-CH4 has decreased since the renewed methane

growth in 2007 (Nisbet et al., 2016; Schaefer et al., 2016).

Many studies aiming to identify the cause of observed changes in atmospheric methane have relied on one-dimensional or45

two-dimensional (1D or 2D) box models of the atmosphere (e. g. Nisbet et al. (2016); Rigby et al. (2017); Schaefer et al. (2016); Turner et al. (2017); Worden et al. (2017)).

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Nisbet et al., 2016; Rigby et al., 2017; Schaefer et al., 2016; Turner et al., 2017; Worden et al., 2017).

:
A 2D box model typ-

ically splits the atmosphere into a very small number of latitudinal and vertical boxes, within which zonal mean mole fractions

are calculated. These models are known to be limited by their lack of interannual variation in transport and low spatial reso-

lution. Naus et al. (2019) found that 2D box model parameters could be derived from a three-dimensional chemical transport50

model (3D CTM) to combat these limitations, although some bias remained. Global inversions using 3D CTMs have been car-

ried out (e. g. Bousquet et al. (2011); Bergamaschi et al. (2013); Rice et al. (2016); McNorton et al. (2018)).
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Bousquet et al., 2011; Bergamaschi et al., 2013; Rice et al., 2016; McNorton et al., 2018).

However, these studies often rely on assumptions of linearity, Gaussian probability distributions (which can be non-physical)
:
,

and frequently omit the exploration of some key parameters (e.g. by assuming fixed and known OH concentrations).

The problem of efficiently estimating the relationship between uncertain inputs and observable outputs of a complex model55

has been addressed in other fields using emulation. An emulator is a statistical approximation to a more complex model, often

using a Gaussian process (O’Hagan, 2006; Ebden, 2015). This technique has been applied to a large variety of scientific prob-

lems, for example: parameter optimisation in models describing galaxy formation (Vernon et al., 2010), influenza epidemics

(Farah et al., 2014), and the Greenland ice sheet (Chang et al., 2014); uncertainty quantification in models of biospheric carbon

flux (Kennedy et al., 2008), aerosol effective radiative forcing (Regayre et al., 2018), and concentrations of cloud conden-60

sation nuclei (Lee et al., 2012); and sensitivity analysis in aerosol models (Lee et al., 2011)
:::
and

:::::::::::::::
chemistry-climate

:::::::
models

:::::::::::::::
(Wild et al., 2020).

In this work, we outline a set of emulators, which simulate atmospheric methane based on the inputs to a 3D CTM. We limit

our investigation to the simulation of hemispheric monthly average mole fraction and δ13C-CH4, and therefore the emulators
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effectively serve as a more accurate 2D box model. However, as discussed in Sect. 2.3, we anticipate that it would be trivial to65

extend the technique to the simulation of model outputs at individual monitoring sites, or for remotely sensed observations.

To demonstrate the value of the approach, we use the emulators to carry out a sensitivity analysis of atmospheric observations

to the major uncertain components of the methane budget. One-at-a-time sensitivity tests (where only one input parameter is

perturbed at a time) are often used for complex models, due to the computational burden of the large number of simulations

required to carry out a full sensitivity analysis that allows for the possibility of interacting parameters. For example, this70

approach is effectively taken in previous methane inverse modelling studies, where sensitivities of observations to bulk regional

flux changes are calculated using finite differences (Fung et al., 1991; Hein et al., 1997; Chen and Prinn, 2006; McNorton et al.,

2018). A variance-based sensitivity analysis (Saltelli et al., 2000), where sensitivities are calculated using a large ensemble

(typically millions) of simulations, would be prohibitive with the computational burden of a 3D CTM. However, here we show

how a variance-based analysis can be performed using ∼ 102 3D CTM simulations, requiring only modest computational75

resources. Using a fast emulator, we are not only able to thoroughly sample the parameter space, but are also able to
:::
and

::::
also

quantify parameter interactions, both of which can be critical for an accurate sensitivity analysis of a complex model (Saltelli

and Annoni, 2010). Such a sensitivity analysis, which as far as we are aware has not yet been carried out for the sensitivity

of atmospheric methane to sources and sinks, will allow a better understanding of complex systems controlling atmospheric

abundance of methane and future prioritisation of research into its most important uncertain parameters.80

2 Methods

This section begins with the motivation for using emulation for sensitivity analysis (Sect. 2.1). Section 2.2 presents the 3D

chemical transport model (CTM), for which the emulator will act as a surrogate model, and its input parameters. Section 2.3

outlines how the model was used to produce the data required to train the emulator. Then, Sect. 2.4 details the mathematical

background to Gaussian process emulators, and their validation method is outlined in Sect. 2.5. Finally, Sect. 2.6 presents the85

sensitivity analysis method.

2.1 Approach

In order to make running ∼ 106 simulations for a variance-based sensitivity analysis feasible, emulators that are as computa-

tionally cheap as 2D box models were built. The emulators built in this work are a statistical approximation to the 3D CTM

output of hemispheric median monthly methane mole fraction and δ13C-CH4. These emulators are much less computationally90

expensive than the 3D CTM, with a single evaluation taking 40 ms to run on a single core of a 1.6 GHz Intel Core i5 CPU in a

laptop, compared to 4.5 hours on 12 cores of a 2.4 GHz Intel E5-2680 v4 Broadwell CPU in a supercomputer for the 3D CTM.

This computational expense reduction is possible while maintaining the spatial resolution in the emissions, loss fields, and

transport, as well as the interannual variability in transport lost in 2D box models. Additionally, this method does not assume

linear relationships between inputs and outputs nor non-interacting inputs, and allows a thorough exploration of the parameter95
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space and error quantification that is difficult to achieve for 3D CTMs. Perhaps the greatest drawback of the emulation method

in this work is the small number of parameters than can be included, which is further discussed in Sect. 3.1.

In this work, a Gaussian process, which is a type of non-parametric curve fitting, emulates the 3D CTM (further explained

in Sect. 2.4). There are other methods that could be used to create the emulators if the form of the function that maps model

inputs to outputs is known, for example, linear regression if the underlying function is linear. The Gaussian process achieves100

the same outcome but does not assume the underlying functional form, and it requires only one main assumption: the outputs

follow a multivariate Gaussian distribution. Figure 2 shows a simple example of a 1D Gaussian process emulator. The starting

point for a Gaussian process is a set of known simulator outputs (the blue points in Fig. 2), known as a training dataset. As long

as a training dataset exists, or can be generated, this emulation method can be applied to any simulator. The Gaussian process

predicts the simulator output at untested inputs by interpolating between the training dataset. The prediction of the simulator105

output (the black line in Fig. 2) is accompanied by an estimated uncertainty in the prediction (the grey shading) that varies

depending on how close the prediction input value is to a value
::
the

::::::
values in the training dataset. A prediction of the simulator

output (the orange point in Fig. 2) has an uncertainty (shown by the orange bar), which is large if the input value lies beyond

the training dataset. Large errors like this are avoided in this work by using a training dataset range that encompasses the full

parameter uncertainty range explored in our sensitivity analysis.110

The first step in this method is to decide on the range of possible input parameters to the simulator, and run simulations

sampled over these ranges to form a training dataset. A dataset of known model outputs that is independent to the training

dataset are
:
is
:
used to validate the emulators. Once the emulators are validated, they can be used for the sensitivity analysis.

2.2 The chemical transport model setup and input parameter ranges

2.2.1 The chemical transport model setup115

This section describes how the 3D CTM, which the emulators will approximate, is setup. The model used is the well-established

Model for Ozone and Related Chemical Tracers (MOZART) (Emmons et al., 2010), an offline, global 3D CTM.
:::
The

:::::::::
MOZART

::::::
model,

::::
run

::
in

::
a

::::::
similar

::::::::::::
configuration,

:::
has

:::::
been

::::
used

:::::::::
previously

::
in

::::::
global

:::::::
methane

:::::::
studies

:::
and

::::
has

::::
been

:::::::::
compared

::
to

:::::
other

::::::
models

:::
and

:::::::::::
observations

:::::::::::::::::::
(e.g. Patra et al., 2011).

:
In this work, 56 vertical model levels were used, spanning from the Earth’s

surface up to about 48 km. The model was run with a spatial resolution of 12.00° N × 11.25° W, and a time step of one hour,120

with data output on a 6-hourly basis, using MERRA reanalysis meteorological fields (Rienecker et al., 2011) from 1995 to

2012.

The MOZART input parameters that are explored in this work describe the methane sources and losses, in a similar way

to Ganesan et al. (2018). The sources we use as inputs to MOZART are: wetlands (Bloom et al., 2017), fresh water (see

Supplement), agriculture (Crippa et al., 2018), rice (Yan et al., 2009), waste (Crippa et al., 2018), fossil fuels (Crippa et al.,125

2018), biomass burning (van der Werf et al., 2010), volcanoes (Etiope and Milkov, 2004), termites (Fung et al., 1991), hydrates
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Figure 2. A simple 1D example of a Gaussian process (GP). The blue points represent known outputs of the simulator, and the black line is

the mean of the Gaussian process which interpolates between the known outputs. The Gaussian process estimated uncertainty in its prediction

is represented by the grey shading. The orange point is the Gaussian process prediction of an unknown simulator output and the orange bar

represents the uncertainty in the prediction.

(Fung et al., 1991), and oceans (Lambert and Schmidt, 1993; Houweling et al., 1999). The loss processes included in the

model are the reactions of methane with the hydroxyl radical (OH) (offline, using fields generated by Spivakovsky et al.

(2000)), tropospheric chlorine radicals (Cl) (Sherwen et al., 2016), net stratospheric loss (due to reaction with Cl and O(1D))

(Velders, 1995; Patra et al., 2011), and methanotrophic loss in soils (Murguia-Flores et al., 2018). The model input fields are130

summarised in Table 1.
:::
The

::::::
model

::::
input

:::::
fields

:::
are

:::
2D

:::
for

::::::
sources

::::
and

:::
the

:::
soil

::::
sink,

::::
and

:::
3D

:::
for

:::
the

::::::::
remaining

:::::
sinks.

:

The δ13C-CH4 observations are modelled by simulating both 12CH4 and 13CH4. The emissions of these two species are

determined by the literature source signatures (Sect. 2.2.2), and the loss differs between the isotopologues according to the

literature kinetic isotope effect (Sect. 2.2.2).

For each model simulation, MOZART was spun up using 30 years of repeating meteorology and sources and sinks (nomi-135

nally representative of the year 1995), starting from a steady state atmosphere. The model is then run for 1996-2012 with time

varying meteorology, emissions, and losses. To account for any transient signals during the first few years following spin-up

(further discussed in Sect. 3.5), only 2000-2012 was analysed. In each simulation, the fields in Table 1 provide the spatial and

temporal distribution of the emissions and losses. The total global magnitude of the fields are scaled by the range of values

discussed in Sect. 2.2.2 in order to investigate the sensitivity of the methane observations.140

6



Table 1. The emission and loss fields input to MOZART, their
::::::
literature

:::::::
sources,

::::
their temporal resolution,

::
and

:
the years covered by the

fieldsand their literature sources.

Source Reference Temporal Years

resolution

Wetlands Wetcharts
:::::::::
WetCHARTs

:
(Bloom et al., 2017) monthly 2001-2012

(1996 – 2000 are 2001 repeating)

Fresh water This work (see Supplement and annual climatology

available to download (Stell, 2020a))

Agriculture EDGAR 4.32 (Crippa et al., 2018) annual 1996-2012

Rice Yan et al. (2009) monthly 2000 repeating

Waste EDGAR 4.32 (Crippa et al., 2018) annual 1996-2012

Fossil fuel (includes biofuel) EDGAR 4.32 (Crippa et al., 2018) annual 1996-2012

Biomass burning GFED4s (van der Werf et al., 2010) monthly 1997-2012

(1996 is the mean of all years)

Volcanoes Etiope and Milkov (2004) annual climatology

Termites Fung et al. (1991) annual climatology

Hydrates Fung et al. (1991) annual climatology

Oceans Lambert and Schmidt (1993); annual climatology

Houweling et al. (1999)

Loss

OH Spivakovsky et al. (2000) monthly climatology

Stratosphere Velders (1995); Patra et al. (2011) monthly climatology

Cl Sherwen et al. (2016) monthly 2005 repeating

Soil Murguia-Flores et al. (2018) monthly 1996-2009

(2010-2012 is 2009 repeating)

Rice is considered separately to agriculture and wetlands. Biofuel is included in fossil fuel rather than biomass burning. Agricultural burning is included in biomass

burning rather than agriculture. The mean of the WetCHARTs ensemble is used for wetland emissions.

2.2.2 The chemical transport model input ranges

We test the sensitivity to five properties of input source and sink parameters: their source magnitudes, source δ13C-CH4

::::::::
signatures, loss magnitudes, temporal trend variation for the largest emissions or losses, and initial conditions. Several minor

terms in the methane budget (termites, hydrates, oceans, and loss kinetic isotope effects) were held constant, and so are not

included as inputs to the emulators, in order to simplify the analysis. The uncertainty that results from these minor terms being145

held constant is explored in Sect. 2.5. The range of possible values for the chosen parameters must be identified so that a set of

MOZART simulations over these ranges can be created, which forms the training dataset for the emulators.
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The ranges of possible source magnitudes were based on the ranges of compiled literature values in Saunois et al. (2016), and

the ranges .
::::
The

::::::::
minimum

:::
and

:::::::::
maximum

:::::
values

::::
from

::::::::::::::::::::::
Saunois et al. (2016) have

::::
been

::::::::
decreased

:::
and

:::::::::
increased,

::::::::::
respectively,

:::
by

::
10

::
%

::
in

::::
this

::::
work

::
as

::::::::::::::::::::::
Saunois et al. (2016) does

:::
not

::::::
include

:::
the

:::::::::::
uncertainties

::
in

:::
the

::::::::
compiled

::::::
studies

::
or

::::::
outliers

::
in

:::::
their

::::::
ranges.150

:::
The

::::::
ranges of possible δ13C-CH4 source signatures were the three standard deviation ranges in Schwietzke et al. (2016). The

ranges of source parameter values used in this work are given in Table 2.

The ranges of possible loss magnitudes were taken from Saunois et al. (2016) , and the
::::
based

:::
on

:::::::::::::::::::
Saunois et al. (2016) in

:::
the

::::
same

::::
way

::
as

:::
the

:::::::
sources.

:::::
These

:::::
ranges

:::
do

:::
not

::::::
include

::::
some

:::::
more

:::::
recent

::::::::
literature

::::::
values,

::
for

::::::::
example,

:::::::::::::::::::::::
Wang et al. (2019) suggests

:
a
:::::
much

::::::
smaller

::::
loss

::
of

:::::::
methane

:::
by

:::::::
reaction

::::
with

:::
Cl.

::::
The kinetic isotope effects were held constant at typical literature values155

(King et al., 1989; Tyler et al., 1994; Saueressig et al., 1995; Reeburgh et al., 1997; Crowley et al., 1999; Snover and Quay,

2000; Tyler et al., 2000; Saueressig et al., 2001) derived as outlined in the Supplement. The reaction rates of methane with

OH, Cl, and O(1D) were held constant at the values in Burkholder et al. (2015). While there is some uncertainty in these rate

constants, the sensitivity to this term will be similar to that of their respective loss magnitudes. The ranges of loss parameter

values used in this work are given in Table 2.160

The default temporal trends of the emissions and losses from 1996 to 2012 are set by the input fields in Table 1. The overall

inventory or process model trend for the five largest methane emissions or losses (OH, wetlands, fresh water, agriculture, and

fossil fuels) was allowed to vary by a linear trend of ±20 %
:::::
(±1.2

:::::::
% yr−1). For example, a trend parameter that reduces a

term by 20 % is applied as a 10 % increase in the first year, decreasing to no change in the middle of the time series, and then

decreasing to -10 % in the final year.165

Three parameters were varied during the spin-up: the total source magnitude, the total source δ13C-CH4 :::::::
signature, and an

overall imbalance between the source and sink. This setup was used to allow three degrees of freedom in the initial mole

fraction and
:::::
Table

:
2
:::::
gives

:::
the

:::::
range

::
of

::::
these

:::::::
spin-up

::::::::::
parameters.

:::
The

:::::
range

::
of

:::
the

:::::::
spin-up

::::
total

::::::
source

:::::::::
magnitude

:::
was

:::::::
derived

::
by

::::::::::
considering

:::
the

::::::::
minimum

:::
and

:::::::::
maximum

::
of

:::
the

::::
sum

::
of

:::
the

::::::
sources

::
in

:::::
Table

::
2.

::::
The

:::::
range

::
of

:::
the

::::
total

:::::
source

:
δ13C-CH4 field.

Table 2 gives
::::::::
signature

::
is

::::::::::
constrained

::
to

:::::
values

::::::
where

:::
the

::::::::
resulting

:::::::
January

::::
1996

:::::
initial

:::::::::
condition

::::
field

:::
has

::
a
:::::
global

:::::::
surface170

::::::::
δ13C-CH4:::::::::::::

approximately
::::::::
matching

::::::::::
observations

::::::
(-47.3

::
±

:::
0.6

::::
‰).

:::::::::
Similarly, the range of these

::
the

:::::::::
imbalance

::::::::
between

:::
the

:::::
source

::::
and

::::
sink

:
is
::::::::::

constrained
::
to
::::::
values

:::::
where

:::
the

::::::::
resulting

:::::::
January

::::
1996

::::::
initial

::::::::
condition

::::
field

:::
has

::
a

:::::
global

::::::
surface

::::::::
methane

::::
mole

:::::::
fraction

::::::::::::
approximately

::::::::
matching

:::::::::::
observations

::::::
(1760

::
±

:::
30

:::::
ppb).

::::::::
However,

:::
the

:::::::
January

:::::
1996

:::::
initial

::::::::
condition

::::
can

:::
go

::::::
beyond

::::
these

::::::::
observed

::::::
ranges

::
by

:::::::
varying

:::
the

:::::
other

:::
two

:
spin-up parameters.

:::
The

:::::
range

::
of

:::::
initial

::::::::
condition

::::::
values

::
is

:::::
larger

::::
than

:::
that

:::::::::
considered

::
in

:::::::
previous

::::::::
methane

::::::::
modelling

::::::
studies

:::
and

::
it
::::::::
therefore

::::
may

::
be

::
an

:::::::::::
overestimate.

::::::::
However,

:::::
given

::::
that

:::::::::
constraints175

::
are

:::::
only

:::::::
typically

::::::::
provided

:::::
based

::
on

:::::::
surface

:::::::::::
observations,

:::::::
whereas

:::
the

:::::
initial

:::::
model

:::::
fields

:::
are

::::
3D,

::::::::
extending

::::
from

:::
the

:::::::
surface

::
to

:::
the

::::::
upper

::::::::::
stratosphere,

::
it

::
is

::::
very

::::::
difficult

:::
to

::::::::
determine

::::
how

::::::::
uncertain

:::
the

:::::
initial

:::::::::
conditions

::::
truly

::::
are.
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Table 2. A table of the ranges of the 28 input parameters to MOZART that were varied in the training simulations, hence also in the emulators,

and in the sensitivity analysis. Where one value is given, the value is held constant for all
::::::
training simulations. Where two values are given,

they are the lower and upper limit, respectively.

Source Magnitude / Tg yr−1 Delta value / ‰
::::::::
1996-2012 Trend / %

:::
yr−1

:

Wetlands 136, 250 -63.3, -59.7 -20, 20
:::
-1.2,

:::
1.2

Fresh water 54, 198 -64.6, -59.8 -20, 20
:::
-1.2,

:::
1.2

Agriculture 86, 122 -75.2, -58.4 -20, 20
:::
-1.2,

:::
1.2

Rice 21, 40 -66.0, -58.2

Waste 46, 69 -57.7, -53.5

Fossil fuel (includes biofuel) 104, 162 -45.1, -38.4 -20, 20
:::
-1.2,

:::
1.2

Biomass burning 14, 29 -27.9, -16.5

Volcanoes 27, 62 -46.1, -41.9

Termites 9.6 -65.0

Hydrates 0 -62.2

Oceans 16 -57.9

Loss Magnitude / Tg yr−1 Kinetic isotope effect
::::::::
1996-2012 Trend / %

:::
yr−1

:

OH 414, 730 1.0039 -20, 20
:::
-1.2,

:::
1.2

Stratosphere 6, 55 1.0397

Cl 12, 41 1.0640

Soil 8, 52 1.0215

Spin-up Magnitude / Tg yr−1 Delta value / ‰

Spin-up source 495, 976 -59.5, -52.4
::::
-55.6,

::::
-53.6

:

Spin-up source minus loss 10, 65
::
6.1,

::::
45.8

:

The trend magnitudes are based on a percentage of the original field read into the model, so could equally be expressed as±2.0 Tg yr−1 for

wetlands,±1.5 Tg yr−1 for fresh water,±1.3 Tg yr−1 for agriculture,±1.3 Tg yr−1 for fossil fuels, and±6.2 Tg yr−1 for OH.

2.3 Creating the chemical transport model training and validation datasets

This section discusses the generation of the training and validation datasets, which is the most computationally expensive part

of the analysis, as repeated runs of the 3D CTM are required. The training and validation datasets were designed to give accurate180

emulators for the whole range of the parameter values in Table 2. Therefore, the sets of input parameters in the datasets should

be evenly spaced, so that every possible input parameter set is close to training data. Hence, each parameter described in Table

2 is assigned a uniform probability distribution over the range given. In order to sample from the distributions in a way that

effectively covers the input parameter space, a maximin Latin hypercube was used (McKay et al., 1979; Morris and Mitchell,

1995). A training dataset of 270 MOZART simulations was created and used to build the Gaussian process emulators.
:::
We

:::::
chose185
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:::
270

::::::::::
simulations

::
as

::
it

:::
was

::::::
found

::
to

::::::
provide

::
a
::::::
balance

::::::::
between

:::
the

:::::::
accuracy

::
of

:::
the

::::::::
emulator

::::
and

:::
the

::::::::::::
computational

:::::::
expense

::
of

::::::::
generating

:::::::
training

::::::::::
simulations.

::::
This

::
is
::::::
further

::::::::
discussed

::
in

:::
the

:::::::::::
Supplement. An independent maximin Latin hypercube design

of 90 MOZART simulations was created as a validation dataset, which was used to evaluate the emulators.

Although observations were not required for this study, for consistency with observed trends, we opted to calculate hemi-

spheric averages based on mole fractions and δ13C-CH4 at grid cells where baseline observations were made by the Global190

Monitoring Laboratory (GML) Carbon Cycle group(part of ,
::::
part

::
of

:::
the

:::
US

:
National Oceanic and Atmospheric Administra-

tion (NOAA) (Dlugokencky et al., 1994, 2017))
:
,
:
and the Institute of Arctic and Alpine Research (INSTAAR) (Miller et al.,

2002; White et al., 2018), respectively. Measurement stations that do not have approximately continuous records for the pe-

riod of interest (more than 9 out of 13 years) were discarded. We also discarded measurement sites that exhibited substantial

above-baseline variability in the model (likely an artefact of the coarse model resolution).195

The MOZART outputs are monthly time series describing the southern hemisphere mole fraction, the northern hemisphere

mole fraction, the southern hemisphere δ13C-CH4, and the northern hemisphere δ13C-CH4. These four 3D CTM outputs are

the quantities that the Gaussian processes emulate. However, it should be trivial to extend this to individual grid cells of the 3D

CTM in future work. This number of emulators is feasible as the same training dataset could be used, and the computational

burden of both building and running the emulator is far smaller than creating the 3D CTM training simulations.200

In order to explore sensitivities to quantities that are more often used (either implicitly or explicitly) to inform the global

methane budget, the hemispheric outputs are combined as a global mean, inter-hemispheric difference, and trend of the mole

fraction and δ13C-CH4. The global mean is defined as the temporal mean of the mean over the northern and southern hemi-

spheres for all months between 2000 and 2012. The inter-hemispheric difference is the temporal mean over the northern

hemisphere minus the southern hemisphere, averaged over all months between 2000 and 2012. The trend is defined as the205

global mean in December 2012 minus December 2000.

2.4 Gaussian process emulators

2.4.1 The basics of Gaussian process emulation

The Gaussian process is defined by two functions that vary depending on the input parameter values: the mean function and

the covariance function. It is sufficient to have a mean function of zero, though in this work, a multiple linear regression was210

chosen as the system is close to linear.
:
A
:::::
linear

:::::
mean

::::::::
function

::::
does

:::
not

::::
stop

:::
the

::::::::
Gaussian

:::::::
process

::::
from

:::::
being

::::
able

::
to

::::::
model

::::::::
non-linear

::::::::::::
relationships. The covariance function is a measure of the similarity of input sets, and as the distance between the

inputs increase, the value of the function decreases. In this work we use the squared exponential covariance function as there

are no discontinuities or sharp changes in the methane observations due to input parameter variation. The (i, j)th element of the
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covariance matrix (K
::
K) is given by215

ηij = σ2
f exp

(
−

m∑
k=1

(xk,i−xk,j)2

l2k

)
, (2)

where the maximum covariance is σ2
f , xk and xk′ are the values of the k

:
is
:::
the

:::::
value

:::
of

:::
the

:
kth input parameter, and lk is the

length scale parameter to be optimised during training.

::
In

:::
this

::::::
work,

:::
the

:::::
input

:::::::::
parameters

:::
are

:::
the

:::
28

:::::::
scaling

::::::
factors

::
in

:::::
Table

::
2,
::::

and
:::
the

:::::::
outputs

:::
are

:::
the

:::::::::
MOZART

:::::::::::
hemispheric

::::::
average

:::::
mole

::::::
fraction

::::
and

:::::::::
δ13C-CH4 ::::::

values. The prediction of an output value (y∗) at a set of input parameters (x∗) samples220

from the joint multivariate Gaussian distribution of the training data (y) and the predicted values, which follows y

y∗

∼N
m(x∗),

K(x,x) K(x,x∗)
K(x∗,x) K(x∗,x∗)

 , (3)

where m is the mean function and x is the training dataset inputs. This means that the expected value of y∗ is

E(y∗) =m(x∗)+KK(x∗,x)KK(x,x)−1y, (4)

and the uncertainty, in terms of variance, in the estimate is225

V (y∗) =KK(x∗,x∗)−KK(x∗,x)KK(x,x)−1KK(x,x∗). (5)

The Gaussian process emulation method is further described in Rasmussen and Williams (2006), and some simple tutorials are

available in O’Hagan (2006) and Ebden (2015).

2.4.2 Gaussian process emulation for time series outputs

Each MOZART output is a time series of 156 months (12 months for each of 13 years) of hemispheric median mole fraction230

or δ13C-CH4. These 156 monthly outputs are highly correlated in time, which can be exploited in the design of the emulator

covariance matrix to minimise information loss. There will also be correlations in space between the northern and southern

hemispheric outputs, but these correlations are not considered in this work. The chosen covariance matrix (Σ) is composed of

the Kronecker product of a temporal covariance matrix (Σt) and a parameter covariance matrix (Σx),

Σ=Σt⊗Σx. (6)235

The elements of Σt and Σx are described by ζij and ηij , respectively. The chosen temporal covariance is a first order autore-

gressive model (its value depends only on the previous month), and its (i, j)th element is

ζij =
ρ|ti−tj |

1− ρ2
, (7)
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where ρ is the autocorrelation parameter and t is the month. The chosen parameter covariance is a squared exponential, and its

(i, j)th element is given by Eq. 2.240

The emulator parameters (ρ in Eq. 7, σf and lk in Eq. 2) are optimised by maximising the log-likelihood function

log(L)∝−1

2
(y−m(x))TΣ−1(y−m(x))− 1

2
log(|Σ|). (8)

This log-likelihood function is maximised using a bounds constrained quasi-Newton method (Gay, 1990) started from 28

different random points, and the emulator with the maximum log-likelihood is chosen. This setup uses an adaptation of the R

package, Stilt (Olson et al., 2018).245

2.5 Validation of the emulators

It is important to check that the emulators are an accurate approximation of the 3D CTM before they are used. The validation

dataset is used to confirm this, because it contains inputs and known 3D CTM outputs that the emulator was not trained on.

The emulator predictions for the validation dataset inputs can be compared to the 3D CTM output, and these differences reveal

how accurate the approximation is. There are several graphical comparison methods presented in the Supplement, but the main250

focus is the absolute error in emulation. For the emulators to be useful, their error in emulating the CTM output must be much

smaller than a reasonable estimate of the other errors in the system.

The error in a complex model is difficult to calculate, and so is often ignored, expert judgement is used, or estimates of

model-data mismatch uncertainties are approximated(
:
, e.g. based on spatial or temporal variability in the model output in the

vicinity of observation points, e. g. Chen and Prinn (2006)).
::::::::::::::::::::::
(e.g. Chen and Prinn, 2006).

:
In this work, the uncertainty in the 3D255

CTM is approximated by the uncertainty due to the invariant parameters (as in Vernon et al. (2010))
::::::::::::::::::::
(as in Vernon et al., 2010).

The invariant parameters and their investigated ranges are given in Table 3. The uncertainty was calculated with a maximin

Latin hypercube design of 90 MOZART simulations, where variations were allowed only in those parameters held constant in

the emulator training dataset. This invariant parameter error does not include many other sources of error (e.g. model transport

uncertainties are not addressed), and higher-order “invariant parameter errors” (e.g. erroneous trends or spatial distributions),260

so can be considered a lower bound of the total 3D CTM error.

2.6 Calculation of sensitivity indices

The sensitivity analysis, using the validated emulators, identifies how sensitive the 3D CTM outputs are to changes in the

inputs. A variance-based sensitivity analysis requires ∼ 106 simulations, which would be unfeasible using the 3D CTM as the

model is so computationally expensive. By using an emulator, the only 3D CTM simulations required are those needed to train265

the emulators.
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Table 3. The ranges of the invariant parameters explored (from the literature as in Sect. 2.2.2), where the first number is the minimum and

the second number is the maximum. The 13CH4 A factor is the Arrhenuis pre-exponential factor, which is changed in the model to describe

uncertainty in the kinetic isotope effect with respect to the losses. The OH and 13CH4 A factor was also considered, but MOZART only

allows the rate constant to be input with two decimal places, and the OH and 13CH4 A factor is constant when given to two decimal places

over the range of kinetic isotope effects explored.

Term Magnitude / Tg yr−1 Delta value / ‰ 13CH4 A factor

Termites 5.0, 14.2 -66.7, -63.3

Hydrates 0.0, 0.9 -63.0, -61.4

Oceans 8.3, 23.7 -51.7, -44.1

Soil -24.0, -19.0

Tropospheric chlorine 6.66, 6.68 × 10−12 cm3 molecule−1 s−1

Stratosphere 0.958, 0.966 s−1

Methane loss by soil was input to the model as negative emissions, hence its isotopic fractionation is not characterised by an A factor.

In a variance-based sensitivity analysis, the model sensitivity is quantified using sensitivity indices. These indices measure

the proportion of the output variance caused by an input parameter being varied over its possible range (Saltelli et al., 2000). In

this work, two sensitivity indices are calculated: the first order and total effect indices. The first order sensitivity index reflects

the proportion of the variance in the output that can be attributed to a single parameter. This can be calculated as270

Sk =
V [E(y|xk)]

V (y)
, (9)

where V [E(y | xk)] is the variance in the expected value of the emulator output y given the value of parameter xk, and V (y)

is the variance in the emulator output caused by all parameters.

The total effect index is the proportion of the output variance that can be explained by a single parameter and its interactions

with other parameters. This can be calculated as275

STk
= 1− V [E(y|x∼k)]

V (y)
, (10)

where V [E(y|x∼k)] is the variance in y caused by all parameters except xk. A parameter’s interactions with all other parameters

can be calculated by subtracting the first order sensitivity index from the total sensitivity index. These sensitivity indices were

calculated using Monte-Carlo methods (Saltelli et al., 2000), and further details are given in the Supplement.

3 Results and discussion280

Here, we demonstrate the accuracy of the emulators and show how they can be applied to a sensitivity study of the global

methane budget. Section 3.1 compares the 3D chemical transport model (CTM) training dataset to the observations, in order
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to check that the observations lie within the envelope of the model output ensemble. Section 3.2 examines the size of the 3D

CTM invariant parameter error, which is compared to the emulator error in Sect. 3.3 in order to justify the use of emulation.

The Gaussian process emulation method is then shown to be warranted by comparison to a simpler multiple linear regression285

in Sect. 3.4. Having demonstrated the utility of the method, a sensitivity analysis is presented in Sect. 3.5.

3.1 Comparison of 3D chemical transport model training dataset to observations

The training dataset is compared to observations to check that the observations lie within the envelope of the MOZART output

ensemble. The MOZART simulations used to train the emulators are shown in Fig. 3. The outputs that are considered in the

sensitivity analysis (the temporal mean of the global mean, the temporal mean of the inter-hemispheric difference, and the trend290

in the global mean (Sect. 2.3) for the mole fraction and δ13C-CH4) are presented in Fig. 4. In these figures, the distribution of

the MOZART simulations (in orange) is compared to the NOAA and INSTAAR atmospheric observations presented in Rigby

et al. (2017) (in black) (derived from a slightly different subset of measurement stations to those used in this work).

These figures demonstrate the large range of methane mole fraction and δ13C-CH4 values covered by the training dataset.

This is caused by the large range of emissionand lossvalues considered, and also the somewhat arbitrary initial condition range.295

:
,
::::
loss,

:::
and

:::::
initial

:::::::::
condition

:::::
values

:::::
(Sect.

::::::
2.2.2).

:
Additionally, the figures show that the observations are within the MOZART

range for all outputs.

These figures also show that the range of MOZART inter-hemispheric difference values is small compared to the range

of global mean and trend values. Ideally, the spatial distributions of the emissions and losses would also be parameterised,

allowing greater variation in the inter-hemispheric differences. However, only a limited number of parameters can be in-300

cluded in the Gaussian process emulation method of this work. The more parameters, the more 3D CTM simulations are

required to train the emulator and the slower computation becomes. Therefore, only up to about 30 parameters are typically in-

cluded in a Gaussian process, whereas methods such as adjoint models (e.g. Bousquet et al. (2011); Bergamaschi et al. (2013))

:::::::::::::::::::::::::::::::::::::::::::
(e.g Bousquet et al., 2011; Bergamaschi et al., 2013) can include thousands of parameters.

3.2 The 3D chemical transport model invariant parameter error305

The MOZART invariant parameter error (Sect. 2.5), as far as we are aware, has not been considered in previous methane

modelling studies. This error was calculated as the standard deviation in the output of the set of simulations where parameters

not included in the emulator training dataset (fluxes from termites, hydrates
:
, and oceans, as well as isotopic fractionation by soil,

tropospheric Cl, and stratospheric losses) were perturbed within their uncertainty ranges (Table 3). Over the 13 year period of

our study, the mean invariant parameter uncertainty is about 10 ppb and 0.1 ‰ for the mole fraction and δ13C-CH4, respectively.310

These values are
:::::::
generally

::::::
slightly

:::::
larger

::::
than

:::
the

:::::::
estimate

::
of

:::
the

::::::::
combined

:::::::::::
measurement

::::
and

:::::
model

::::::::::::
representation

::::::::::
uncertainty,

:::::
which

::::::::
examines

:::
the

::::::
limited

::::::::
temporal

:::
and

::::::
spatial

::::::::
resolution

:::
of

:::
the

:::::
model

:::::::
(further

:::::
details

:::
in

:::
the

:::::::::::
Supplement).

:::::::::::
Additionally,

:::
the
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Figure 3. The MOZART training dataset (orange lines), the mean MOZART output (blue line), and the observations (black line) for each

of the four emulators: (a) the southern hemisphere mole fraction, (b) the northern hemisphere mole fraction, (c) the southern hemisphere

δ13C-CH4, and (d) the northern hemisphere δ13C-CH4. The observations are hemispheric averages based on NOAA and INSTAAR data

(derived from a slightly different subset of measurement stations to those used in this work) presented in Rigby et al. (2017).

:::::::
invariant

:::::::::
parameter

:::::::::
uncertainty

::
is
:
large compared to atmospheric methane trends (e.g. between 2000 and 2012, the methane

mole fraction and δ13C-CH4 changed by around 40 ppb and -0.1 ‰, respectively). Furthermore, these uncertainties are highly

correlated through the study period, and therefore effectively act as
:
a
:
substantial bias. The omission of this substantial source of315

error will likely be leading to an underestimation of uncertainties of emissions and losses derived in inverse modelling studies,

or may contribute to the misallocation of some emission or loss to particular processes.

3.3 Validation of the emulators

Before using the emulators, it is important to check that they reproduce the 3D CTM output well. A more complete analysis

can be found in the Supplement, which shows that the emulator is an unbiased representation of the 3D CTM. The emulator320

error was calculated by predicting the validation dataset (Sect. 2.3) and comparing the predictions to the MOZART output,

using the root-mean-square error (RMSE),

RMSE =

√√√√ n∑
i=1

(yem,i−ymzt,i)2

n
, (11)
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Figure 4. Histograms of the 270 3D CTM training simulations for six outputs: (a) mole fraction global mean, (b) δ13C-CH4 global mean, (c)

mole fraction inter-hemispheric difference, (d) δ13C-CH4 inter-hemispheric difference, (e) mole fraction trend, and (f) δ13C-CH4 trend. The

black line is the corresponding value for the NOAA and INSTAAR atmospheric observations (Sect. 2.3), which are hemispheric averages

(derived from a slightly different subset of measurement stations to those used in this work) presented in Rigby et al. (2017).

where yem is the emulator output, ymzt is the MOZART output, and n is the number of simulations being compared. The

RMSE was calculated to be about 1.2 ppb and 0.06
:::
1.0

:::
ppb

:::
and

::::
0.05

:
‰ for the mole fraction and δ13C-CH4, respectively. This325

emulator error is small when compared to the MOZART invariant parameter error (Sect. 2.5) in Fig. 5.

As the MOZART invariant parameter error is significantly larger than the emulator error, it is possible to use a less accurate

emulator that requires fewer training simulations. As making the training dataset is the longest step in the process, this would be

beneficial for more time-consuming higher resolution models. In the case of MOZART, we find that only around 90 simulations

may be required, which is further discussed in the Supplement.330

3.4 Comparison of multiple linear regression and the Gaussian process

Previous studies (e.g. McNorton et al. (2018))
:::::::::::::::::::::::
(e.g. McNorton et al., 2018) have assumed that for small changes in the source

and loss magnitudes, the relationship between methane sources and losses and atmospheric mole fraction and δ13C-CH4 is

linear and that the parameters do not interact (Sect. 3.5). If these two conditions are true, or close to true, then multiple linear

regression would be able to emulate the 3D CTM. Multiple linear regression might be preferred to a Gaussian process as335

it requires a smaller training dataset (hence fewer 3D CTM simulations) and is conceptually and computationally simpler.
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Figure 5. The MOZART error (blue line), emulator error (green line), and total error (MOZART and emulator errors added in quadrature)

(black line) for each of the four emulators: (a) the southern hemisphere mole fraction, (b) the northern hemisphere mole fraction, (c) the

southern hemisphere δ13C-CH4, and (d) the northern hemisphere δ13C-CH4.

Therefore, this section compares the performance of multiple linear regression and the Gaussian process as emulators of the

3D CTM.

The residuals for the global mean between the 3D CTM validation dataset and the predictions from the two methods (multiple

linear regression and the Gaussian process) are compared in Fig. 6. The Gaussian process residuals, with a RMSE of 1.0 ppb340

and 0.06
::
0.8

::::
ppb

:::
and

:::::
0.05 ‰, are much smaller than for multiple linear regression, which are 18 ppb and 0.17

:::
0.14

:
‰. In

comparison to the MOZART invariant parameter error (10 ppb and 0.1 ‰), the multiple linear regression residuals are large,

unlike the Gaussian process (Sect. 3.3). Therefore, the multiple linear regression struggles to emulate MOZART with the

required accuracy.

The multiple linear regression accuracy can be improved by considering the non-linearity of the mole fraction with respect to345

the OH loss. By using a log-transformed OH parameter to estimate the mole fraction, the RMSE becomes 11 ppb (the complete

residual distribution is shown in Fig. 6). Multiple linear regression using a log-transformed OH parameter still has a signifi-

cantly larger RMSE than the Gaussian process, implying that the remaining small non-linearities and parameter interactions

are important for predicting the output value. This finding suggests that inverse modelling studies that have assumed linear

and independent sensitivities between observations and source and sink parameters may have under-estimated their posterior350

uncertainties.
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Figure 6. The residuals for the global mean between the different emulation methods (in different colours) and the true MOZART output

for (a) methane mole fraction and (b) δ13C-CH4. Each emulator is built using a Gaussian process (GP) (grey) or multiple linear regression

(MLR) (orange). The mole fraction has an additional emulator: a multiple linear regression with log transformed
::::::::::::
log-transformed OH (blue).

3.5 Using the emulators for sensitivity analysis

3.5.1 First order sensitivity indices

In this section, we examine the sensitivity of the MOZART outputs to the input parameters describing methane sources and

sinks. This sensitivity is explored using the first order sensitivity indices (Eq. 9) in Fig. 7, which show the proportion of the355

variance of the MOZART output caused by varying each parameter.

The sensitivity of the global mean mole fraction is shown in Fig. 7a, and is dominated by the OH loss magnitude (73
::
72

:
%),

with considerable contributions from the freshwater (13 %) and wetlands (8 %) source magnitudes. These sensitivities follow

the absolute size of the uncertainty in the source and loss magnitudes seen in Fig. 1, and are therefore relatively unsurprising.

However, these results highlight the overwhelming importance of global mean OH concentration in determining the global360

methane mole fraction, and the major influence of freshwater emission uncertainties, which have largely been ignored in recent

global modelling studies.

Figure 7b shows the sensitivity of the global mean δ13C-CH4 to each input parameter. The parameters that this output is most

sensitive to are: the Cl sink magnitude (27 %), the agricultural source δ13C-CH4 (16
:::::::
signature

:::
(23 %), and the initial condition

source δ13C-CH4 ::
the

:::
Cl

::::
sink

:::::::::
magnitude

:::
(21

:::
%),

::::
and

:::
the

:::::::::
freshwater

:::::
source

:::::::::
magnitude

:
(16 %), with several

:
a
::::::
couple

::
of

:
other365

parameters contributing substantially: the freshwater
:::::::
wetlands

:
source magnitude (10 %) , the stratospheric loss magnitude

:
8

::
%)

::::
and

:::
the

:::::
fossil

::::
fuels

:::::::::
δ13C-CH4::::::::

signature (6 %), and the wetlands source magnitude (5 %). As the mole fraction and δ13C-

CH4 are most sensitive to different parameters, this means that the δ13C-CH4 could be a useful additional measurement for
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constraining the methane budget. However, two of the parameters that δ13C-CH4 is most sensitive to are δ13C-CH4-specific

(the agricultural
:::
and

:::::
fossil

:::
fuel

:
source δ13C-CH4 and the initial condition source δ13C-CH4 ::::::::

signatures), and so do not, on370

their own, add information about the magnitudes of the different methane sources and sinks. Unlike the global mean mole

fraction, the ordering of the parameters to which δ13C-CH4 is most sensitive does not simply follow the absolute magnitude

of uncertainty in the input parameters. The global mean δ13C-CH4 is most sensitive to the
::::::::::
agricultural

::::::
source

:::::::::
δ13C-CH4

::::::::
signature,

:::::
which

::::
has

:
a
:::::
large

:::::::::
uncertainty

:::::::::
compared

::
to

:::::
other

:::::
source

:::::::::
δ13C-CH4:::::::::

signatures.
::::::::::::

Additionally,
:::
this

::::::
source

:::::::::
δ13C-CH4

:::::::
signature

::
is
:::::::::::
substantially

::::
more

::::::::
negative

::::
than

::
the

:::::::::::
atmospheric

:::::::::
δ13C-CH4 ::

in
:::::::::
comparison

:::
to

::::
other

:::::::
sources,

::::
and

::
so

:::
this

:::::::::
parameter375

:::::
results

::
in

::
a
::::
large

::::::
output

:::::::
variance

::
in
:::
the

::::::
global

:::::
mean

:::::::::
δ13C-CH4.

::::
The

::::::
second

::::::
highest

:::::::::::
contribution

::
to

:::
the

::::::
output

:::::::
variance

::
is

:::
the

Cl loss magnitude, which has a small uncertainty in comparison to other parameters. However, this loss is highly fractionating,

so it has a large impact on the δ13C-CH4. The second highest contribution to the output variance is the agricultural source

δ13C-CH4, which
::::
third

::::::
highest

:::::::::::
contribution

::
is

::::
from

:::
the

::::::::::
freshwater

:::::
source

::::::::::
magnitude

::
as

::::
this

:::::
source

:
has a large uncertainty

compared to other
:::
and

::
its

:
source δ13C-CH4 signatures. Additionally, this source δ13C-CH4 signature is significantly

::::::::
signature380

:
is
:::::::::::
substantially

:
more negative than the atmospheric δ13C-CH4in comparison to other sources, and so this parameter results in

a large output variance in the .
:::::::::::
Interestingly,

::
in
::::

this
:::::::::::
investigation,

:
global mean δ13C-CH4 . The

:::
has

::::::
almost

:::
no

:::::::::
sensitivity

::
to

::
the

:::::::::
magnitude

:::
of

:::
the

:::
OH

:::::
sink.

:::
As

::
we

:::::
show

::
in
:::

the
:::::::::::

Supplement,
::::
this

::::::
finding

::
is

:::::::
because

:::
the

:::::::
transient

::::::::
response

::
of

:
global mean

δ13C-CH4 is also highly sensitive to the initial conditions due to the long response time of
::
to

:
a
::::::
change

::
in

:::
the

:::
OH

::::::::::::
concentration

::::::
exhibits

::
a
::::
sign

:::::::
change,

:::::
which

::::::::::::
coincidentally

::::
falls

::::::
almost

::::::
exactly

::
at
:::

the
::::::

centre
::
of

:::
the

::::::
period

:::
we

::::::::::
investigate.

:::::::::
Therefore,

:::::
while385

::
the

:::::::
change

::
in

::::
OH

:::::::::::
concentration

::
at
::::

the
::::::::
beginning

:::
of

:::
our

:::::::::
simulation

::::::
causes

::
a
:::::::::
significant

::::::
change

:::
in

:::::
global

:
δ13C-CH4 in the

atmosphere compared to the 17 years examined in this work (Tans, 1997)
:::::
during

:::
the

:::::
years

::::
2000

::::
and

::::
2012

:::::
(with

:::::::
opposite

::::::
signs),

::::
these

:::::::
changes

:::::::
roughly

:::::
cancel

::
in
:::
the

::::::::::
2000-2012

::::
mean.

The mole fraction inter-hemispheric difference (the temporal mean over the northern hemisphere minus the southern hemi-

sphere as in Sect. 2.3) is most sensitive to the freshwater (66
::
65 %), fossil fuel (15 %), and wetlands (8 %) source magnitudes,390

as shown in Fig. 7c. The sensitivity to these parameters is due to their large uncertainties and large differences in emissions

between the two hemispheres. The OH loss magnitude, which has the largest uncertainty of any parameter, has been assumed

to be close to equally distributed between the hemispheres (Patra et al., 2014), hence its low sensitivity with respect to this

output.
::::::::
However,

::::
had

:::
the

:::::::::
uncertainty

:::
in

:::
the

::::::::::
hemispheric

::::::::::
distribution

:::
of

:::
OH

:::::
been

::::::::
included

::
in

:::
our

::::::::
analysis,

::
it

:::::
would

::::::
likely

::::
have

::::::::
explained

:
a
:::::
larger

:::::::::
proportion

:::
of

:::
this

:::::::::
sensitivity.

:
The dominant role of freshwater emission uncertainty in determining the395

inter-hemispheric difference further highlights the need to better understand this part of the methane budget.

Figure 7d shows that the sensitivity of
::
the

:
δ13C-CH4 inter-hemispheric difference. The parameters that the δ13C-CH4 inter-

hemispheric difference is most sensitive to are: the initial condition source δ13C-CH4 (22 %), the Cl sink magnitude (18
:::
OH

:::
loss

:::::::::
magnitude

:::
(24

:
%), and the fossil fuel source δ13C-CH4 (12 %)

:::::::
signature

:::
(16

::::
%),

:::
and

:::
the

::
Cl

::::
sink

:::::::::
magnitude

:::
(11

:::
%). There

are also significant contributions from the stratospheric loss magnitude (11 %) , the OH
:::::::
wetlands

:::::
source

:::::::::
magnitude

::
(8
:::
%)

::::
and400

::
the

:::::::::::
stratospheric

:
loss magnitude (9 %), and the wetlands source magnitude (5 %)

:
8
:::
%). The parameters to which the δ13C-CH4

inter-hemispheric difference is most sensitive are similar to those that most strongly influence the global mean δ13C-CH4,
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but with a higher sensitivity to parameters with a large inter-hemispheric difference (e.g. fossil fuels).
:::
The

:::::::::
exception

::
is

:::
the

::::::::
sensitivity

::
to

:::
the

::::
OH

:::
loss

::::::::::
magnitude,

:::::
which

:::::::
strongly

:::::::
impacts

:::
the

::::::::::::::
inter-hemispheric

:::::::::
difference,

:::
but

:::
not

:::
the

::::::
global

:::::
mean

::::::
(which

:
is
:::::::::
somewhat

:::::::::::
coincidental,

::
as

::::::::
discussed

:::::
above

::::
and

::
in

:::
the

:::::::::::
Supplement).405

The trends
::::::::
sensitivity

::
of

:::
the

:::::
mole

:::::::
fraction

::::
trend

:
(the global mean in December 2012 minus December 2000 as in Sect. 2.3)

for the mole fraction and δ13C-CH4 are
:
is
:
shown in Fig. 7eand Fig. 7f, respectively. The trend sensitivities are each dominated

by single parameters: 58
:
.
:::
The

:::::::::
sensitivity

::
is

:::::::::
dominated

:::
by

:
a
:::::
single

:::::::::
parameter:

:::
61

:
% of the variance in the mole fraction trend

is caused by the uncertainty in the OH loss magnitude, and 71 % of the δ13C-CH4 variance due to variations in the initial

conditions. The OH loss trend (15
::
14 %), freshwater source magnitude (9 %), and wetlands source magnitude (6 %) contribute410

significantly to the mole fraction trend, and the agricultural
:::
also

:::::::::
contribute

:::::::::::
significantly.

:::
The

::::
OH

:::
loss

::::::::::
parameter’s

::::::::::
importance

::
for

:::
the

::::::
output

::::
mole

:::::::
fraction

:::::
value

:::::
stems

::::
from

:::
the

:::::
large

:::::::::
uncertainty

::
in

:::
the

::::
OH

::::
loss.

:::
The

:::::::::
δ13C-CH4::::

trend
:::::::::
sensitivity

::
is

:::::
shown

::
in
::::
Fig.

:::
7f.

:::
The

:::::
trend

:
is
:::::
most

:::::::
sensitive

::
to

:::
the

::::::::::
agricultural

:::::
source

:::::::::
δ13C-CH4::::::::

signature

:::
(21

:::
%),

:::
the

::::
OH

:::
loss

:::::::::
magnitude

::::
(19

:::
%),

:::
the

:::
Cl

:::
loss

:::::::::
magnitude

::::
(13

:::
%),

::::
and

:::
the

::::::
spin-up

:
source δ13C-CH4 :::::::

signature
:
(11 %)to

the
:
.
:::::
There

:::
are

::::::::
additional

::::::::::::
contributions

::::
from

:::
the

:::::
fossil

::::
fuel

::::::
source δ13C-CH4 trend

::::::::
signature

::
(6

:::
%)

:::
and

:::
the

:::::
fossil

::::
fuel

::::::
source415

::::::::
magnitude

:::
(6

::::
%).

:::::::::
Parameters

::::
that

::::
can

::::::
change

:::
the

:::::::::::
atmospheric

::::::
global

:::::
mean

:::::::::
δ13C-CH4::::

will
::::
also

:::::
affect

:::
the

:::::
trend

::::
(e.g.

::::
the

:::::::::
agricultural

::::::
source

:::::::::
δ13C-CH4::::

and
:::
the

:::
Cl

::::
loss

::::::::::
magnitude).

::::::::::::
Additionally,

:::
the

:::::
trend

::
is

::::::::
sensitive

::
to

:::
the

::::
OH

::::
loss

::::::::::
magnitude,

::::::
despite

:::
the

:::::
global

:::::
mean

::::::
being

:::::::::
insensitive

::
to

:::
this

:::::::::
parameter.

:::::
This

::::::::
sensitivity

:::
to

:::
OH

::
is
:::::::::
explained

::
by

:::
the

:::::
slow

::::
(and

:::::::::
somewhat

::::::::::::::
counter-intuitive)

::::
way

::::
that

:::::::
changes

::
in

:::
the

:::::::::
δ13C-CH4:::::::::

propagate
::::::
through

::::
the

::::::::::
atmosphere,

:::
and

::::
will

:::
be

:::::::::
dependent

::
on

:::
the

:::::
time

:::::
period

:::::::::::
investigated,

:::::
which

::
is

::::::::
explained

:::
in

:::::
detail

::
in

:::
the

::::::::::
Supplement. The OH loss parameter’s importance for the output mole420

fraction value stems from the large uncertainty in the OH loss. The δ13C-CH4 trend is highly
:::
also

:
sensitive to the initial

conditions
::::::
spin-up because of the slow response time in the atmospheric δ13C-CH4, meaning that the trend is strongly depen-

dent on its initial value (Tans, 1997). A wide range of
::::::
spin-up

::::::
source δ13C-CH4 initial condition

::::::::
signature values (Table 2) are

examined in this work, however the importance of the initial conditions
::::::
spin-up

:
applies to even small ranges. For example, if

the
::::::
spin-up

::::::
source δ13C-CH4 initial condition

:::::::
signature

:
is perturbed by 0.1 ‰ from the initial median parameter values, the425

output atmospheric δ13C-CH4 trend changes by 0.04 ‰, almost half the observed δ13C-CH4 trend during this period. There-

fore, constraining the initial conditions throughout the atmosphere are
:
is
:
a serious challenge if δ13C-CH4 observations are to

be used to estimate the recent changes in the methane budget.

These first order sensitivity indices demonstrate several key challenges in methane inverse modelling studies. Three parame-

ters that the mole fraction and δ13C-CH4 are highly sensitive to , are often not explored in methane modelling: the OH loss is of-430

ten assumed to be known (e.g. Schaefer et al. (2016); Worden et al. (2017))
::::::::::::::::::::::::::::::::::::::
(e.g. Schaefer et al., 2016; Worden et al., 2017), as

is the Cl loss (e.g. Nisbet et al. (2016); Rigby et al. (2017))
:::::::::::::::::::::::::::::::::::
(e.g. Nisbet et al., 2016; Rigby et al., 2017) or the Cl loss is left out

completely (e. g. Turner et al. (2017)); and this work is the first, as
::::::
omitted

:::::::::::::::::::::
(e.g. Turner et al., 2017).

:::::::::::
Furthermore,

:::::::::
freshwater

::::::::
emissions

::::
have

::::
not

::::
been

::::::::
included

::
as

:::
an

::::::::::
independent

::::::
source

:::
in

:::::
global

::::::::
methane

:::::::
studies,

::
as

:
far as we are aware, to include

freshwater emissions as an independent source. .
::::::::::

Freshwater
::::::
bodies

::::
emit

:::::::
methane

:::
by

:::::::
bacteria

:::::::
breaking

:::::
down

:::::::
organic

::::::
matter435
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::
in

::
an

::::::::
anaerobic

::::::::::::
environment,

::
as

::
in

::::::::
wetlands,

::::
and

:::
the

:::::::::
freshwater

::::::::
emissions

::::
are

:::::::::
potentially

::
of

::::::
similar

:::::::::
magnitude

::
to
:::::::::

wetlands,

:::
but

::::
more

::::::::
uncertain

:::
(as

::::
seen

:
in
::::
Fig.

:::
1). There has been increasing acknowledgement that OH and Cl could play important roles in

methane modelling (e.g. Rigby et al. (2017); Turner et al. (2017); Thanwerdas et al. (2019); Strode et al. (2020))
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Rigby et al., 2017; Turner et al., 2017; Thanwerdas et al., 2019; Strode et al., 2020),

but the role of freshwater methane emissions has not received the same level of attention. This lack of attention is presumably

the result of the freshwater source’s large uncertainty, but it is this large uncertainty that makes this source so important in con-440

straining the methane budget. The first order sensitivity indices also demonstrate that the atmospheric δ13C-CH4 is sensitive to

some parameters to which the mole fraction is relatively insensitive, so should provide additional complementary information.

However, δ13C-CH4 is also highly sensitive to the initial conditions and some source signatures (e.g. agriculture), which need

to be accounted for to realise the value for global scale studies using these isotopic measurements. Furthermore, these sources

of uncertainty need to be carefully considered in methane modelling studies that use δ13C-CH4, because erroneous assump-445

tions of well known initial conditions, source δ13C-CH4 ::::::::
signatures, or kinetic isotope effects could have substantial impacts

on top-down budget estimates.

3.5.2 Parameter interactions

The interaction between parameters is calculated by subtracting the first order sensitivity (Eq. 9) from the total effect of

each parameter (Eq. 10). The interaction of one particular parameter with all other parameters is the proportion of the output450

variance explained by changing that parameter alongside all other parameters, removing the proportion of the output variance

from changing that parameter independently of all other parameters. An example of interacting parameters is the OH loss

and any source for the global mean mole fraction: a lower OH concentration causes a greater mole fraction increase from an

increase in emissions.

The parameter interactions are shown in Fig. 8. These interactions are generally small, with the largest being 3 %. The455

interactions across all parameters account for 9
::
12 % of the output variance in the δ13C-CH4 inter-hemispheric difference, and

at most 1
:
2 % for the other five outputs. This means that we can essentially consider the effect of each parameter independently

in this sensitivity analysis. For this complex simulator, one-at-a-time sensitivity tests would produce a similar result, though

this will not necessarily be the case for other models (Saltelli and Annoni, 2010).

These interactions are small in terms of a sensitivity analysislooking for the parameters that cause the greatest proportion460

of the output variance. For example, parameter interactions account for 0.2 % and 0.9 % of global mean mole fraction

and δ13C-CH4 output variance, respectively. However, the parameter interactions
:::::
Whilst

:::::
these

::::::::::
interactions

:::
are

:::::::::
relatively

::::::::::
unimportant

::
in

::::
this

:::::::::
sensitivity

:::::::
analysis,

:::::
they must be considered in order to build an accurate emulator. For example, the

0.2 % and 0.9 % output variance
:::
0.7

::
%

::
of

:::
the

::::::
output

:::::::
variance

:::::::::
explained

::
by

:::::::::
parameter

::::::::::
interactions

:::
for

:::
the

:::::
global

:::::
mean

:::::
mole

::::::
fraction

::::
and

:::::::::
δ13C-CH4,

::::::::::
respectively,

:
is equivalent to a standard deviation of 10 ppb and 0.13

::::
0.09 ‰ in the output, which are465

large compared to the quantities that the emulator is trying to predict (e. g. inter-hemispheric difference or trends). These values
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(b) δ13
 C −CH4 global mean
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(c) CH4 inter-hemispheric difference
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(d) δ13
 C −CH4 inter-hemispheric difference
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(e) CH4 trend
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(f) δ13
 C −CH4 trend
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Figure 7. The orange bars show the first order sensitivity coefficients to the input parameters, with the error bars showing the uncertainty in

these indices (calculated using bootstrap resampling, see Supplement). Each panel is for one of six outputs: (a) mole fraction global mean,

(b) δ13C-CH4 global mean, (c) mole fraction inter-hemispheric difference, (d) δ13C-CH4 inter-hemispheric difference, (e) mole fraction

trend, and (f) δ13C-CH4 trend. The values given here are for the temporal mean of the time series. The input parameter codes are given by a

combination of a two character code giving the source or loss, (wetlands (we), fresh water (fw), agriculture (ag), rice (ri), waste (wa), fossil

fuels (ff), biomass burning (bb), volcanoes (vo), hydroxyl radical (OH), stratospheric (ST), Cl radical (Cl), soil (so), total source magnitude

(qm), total source δ13C-CH4 ::::::
signature

:
(qd), total loss imbalance (ql)) and another code giving the type of parameter, (source δ13C-CH4

:::::::
signature (sd), source magnitude (sm), loss magnitude (lm), temporal trend (t1), initial condition

:::::
spin-up

:
(ic

:
su)).

account .
::::
This

::::::::
accounts for most of the difference in performance of the Gaussian process and multiple linear regression, which

does not consider parameter interactions, in Sect. 3.4.

4 Conclusions

We have shown that Gaussian processes allow emulation of a global 3D chemical transport model (CTM) of atmospheric470

methane, producing a fast and accurate approximation of the response of methane mole fraction and δ13C-CH4 to changes

in model input parameters. In this work, 28 parameters were investigated, related to methane sources and sinks, based on

270 forward model simulations. However, we found that, compared to an estimate of model uncertainty, an accurate emulator

could be built for this system using fewer than 100 training runs. Our model uncertainty estimate, which we term "invariant

parameter error" was based on an ensemble of model runs in which several minor sources and sinks were perturbed within475
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(a) CH4 global mean
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(b) δ13
 C −CH4 global mean
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(c) CH4 inter-hemispheric difference
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(d) δ13
 C −CH4 inter-hemispheric difference

0

1

2

3

4

w
e
.s

d
fw

.s
d

a
g

.s
d

ri
.s

d
w

a
.s

d
ff

.s
d

b
b

.s
d

v
o
.s

d
w

e
.s

m
fw

.s
m

a
g

.s
m

ri
.s

m
w

a
.s

m
ff

.s
m

b
b

.s
m

v
o
.s

m
O

H
.l
m

S
T
.l
m

C
l.
lm

so
.l
m

w
e
.t

1
fw

.t
1

a
g

.t
1

ff
.t

1
O

H
.t

1
q

m
.s

u
q

d
.s

u
q

l.
su

(e) CH4 trend

0.0

0.5

1.0
w

e
.s

d
fw

.s
d

a
g

.s
d

ri
.s

d
w

a
.s

d
ff

.s
d

b
b

.s
d

v
o
.s

d
w

e
.s

m
fw

.s
m

a
g

.s
m

ri
.s

m
w

a
.s

m
ff

.s
m

b
b

.s
m

v
o
.s

m
O

H
.l
m

S
T
.l
m

C
l.
lm

so
.l
m

w
e
.t

1
fw

.t
1

a
g

.t
1

ff
.t

1
O

H
.t

1
q

m
.s

u
q

d
.s

u
q

l.
su

(f) δ13
 C −CH4 trend

0.00

0.25

0.50

0.75

1.00

w
e
.s

d
fw

.s
d

a
g

.s
d

ri
.s

d
w

a
.s

d
ff

.s
d

b
b

.s
d

v
o
.s

d
w

e
.s

m
fw

.s
m

a
g

.s
m

ri
.s

m
w

a
.s

m
ff

.s
m

b
b

.s
m

v
o
.s

m
O

H
.l
m

S
T
.l
m

C
l.
lm

so
.l
m

w
e
.t

1
fw

.t
1

a
g

.t
1

ff
.t

1
O

H
.t

1
q

m
.s

u
q

d
.s

u
q

l.
su

Input parameter

In
te

ra
ct

io
n
 t

e
rm

 /
 %

Figure 8. The orange bars show the interaction terms of the parameters with the error bars showing the uncertainty in these interactions

(calculated using bootstrap resampling, see Supplement). Each panel shows one output: (a) mole fraction global mean, (b) δ13C-CH4 global

mean, (c) mole fraction inter-hemispheric difference, (d) δ13C-CH4 inter-hemispheric difference, (e) mole fraction trend, and (f) δ13C-CH4

trend. The values given here are for the temporal
::::
mean

:
of the time series. The input parameter codes are given by a combination of a two

character code giving the source or loss, (wetlands (we), fresh water (fw), agriculture (ag), rice (ri), waste (wa), fossil fuels (ff), biomass

burning (bb), volcanoes (vo), hydroxyl radical (OH), stratospheric (ST), Cl radical (Cl), soil (so), total source magnitude (qm), total source

δ13C-CH4 :::::::
signature (qd), total loss imbalance (ql)) and another code giving the type of parameter, (source δ13C-CH4 :::::::

signature (sd), source

magnitude (sm), loss magnitude (lm), temporal trend (t1), initial condition
:::::
spin-up

:
(ic

:
su)).

their estimated uncertainty ranges, showing that they could, when considered together, lead to a substantial, and often ignored,

source of uncertainty in global methane modelling studies (with mean uncertainties in hemispheric methane
::::
mole

::::::
fraction

:
and

δ13C-CH4 between 2000 and 2012 of approximately 10 ppb and 0.1 ‰, respectively).

We show that a Gaussian process outperforms multiple linear regression in emulating the 3D CTM methane simulations:

the Gaussian process RMSE is small (1.0 ppb, 0.06
:::
0.8

::::
ppb,

::::
0.05 ‰) compared to the invariant parameter error, whereas the480

multiple linear regression error (18 ppb, 0.17
:::
0.14

:
‰) is larger. Therefore, the use of Gaussian process emulators does not

much reduce how precisely the model matches observations, but multiple linear regression could. The poor performance of the

multiple linear regression is primarily because of the parameter interactions and the non-linearity in the response of the mole

fraction to the OH loss.
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The speed of emulation allows many more 3D CTM outputs to be generated than would be possible running the CTM485

itself, allowing a wider range of possible analyses. In this work, a thorough sensitivity analysis was carried out, which required

millions of runs of the emulator. The sensitivity analysis demonstrated some of the issues with current
::::
issues

::::
that

:::
are

::::::
critical

::
to

:::::::
consider

:::
for

:::::
global methane modelling. The OH loss, Cl loss, and freshwater source are frequently held constant or not included

in methane modelling studies, but the mole fraction or δ13C-CH4 outputs are highly sensitive to these parameters. Our analysis

shows that δ13C-CH4 measurements provide somewhat independent constraints on the sources and sinks of methane, as they490

are sensitive to different model parameters. However, several of these parameters are δ13C-CH4-specific so do notprovide ,
:::
on

::::
their

::::
own,

:::::::
provide

::::
new information on the methane budgetalone. In particular, ,

:::
but

:::::
must

::
be

:::::::::::::
well-quantified

::
if δ13C-CH4 is

highly sensitive to its initial conditions , which must therefore be very well constrained so as not to bias modelled trends, even

over almost two decades
::::::::::
observations

:::
are

:::
to

::::::
provide

::::::
budget

::::::::::
constraints

::::
(e.g.

:::::::::
δ13C-CH4:::::

initial
:::::::::

conditions
:::

or
:::
the

::::::::::
agricultural

:::::
source

:::::::::
signature).495

Whilst we have focused here on a variance based
::::::::::::
variance-based

:
sensitivity analysis, we anticipate that there could be

multiple future applications of an accurate and fast emulator of 3D CTM simulations of atmospheric methane. This system

could allow for the calculation of input parameter values that are consistent with observations (history matching), or could

allow us to determine the set of parameter values that optimally
::::
most

::::::::
probably simulate observations (e.g. through Bayesian

optimisation
:::::::
inference). While in this work hemispheric emulators were created, it is also possible to emulate individual grid500

cells in the 3D CTM, which would provide a more accurate representation of the 3D CTM output. This number of emulators

is feasible as the same training dataset could be used, and the computational burden of both building and running the emulator

is far smaller than creating the 3D CTM training simulations. This allows new and flexible emulators to be built , and used for

novel applications, without the need to rerun the 3D CTM.

5 Code and data availability505

The code used to create the freshwater emissions field and the field itself are available at https://doi.org/10.17605/OSF.IO/Q9F8P

(Stell, 2020a). The code and datasets used to train the emulators and carry out the sensitivity analysis are available at

https://doi.org/10.17605/OSF.IO/Z435M (Stell, 2020b).
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