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We would like to thank the reviewer for their helpful comments. In this document, we
reply to each comment, providing extra detail and outlining how we have updated the
manuscript.

The main suggestion from both reviewers was to make greater use of observations.
This is a valid point, and we thought about this a lot before submitting this paper. We
decided against going down this route because we felt that the most effective way to
combine model sensitivities (in this case derived using Gaussian process emulation)
with observations is through a full Bayesian inverse analysis. This will require some
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additional methodological development (to effectively make use of the Gaussian pro-
cess) and much more involved consideration of model and prior uncertainties. We felt
that adding this material would make the paper long, less readable, and may take focus
away from the emulation method and the sensitivity analysis, which we feel are novel
and important in their own right. Therefore, we hope the reviewers will agree with our
suggestion that a full inverse analysis would best be presented in a follow-up paper,
which is currently in preparation.

While the focus of this study is understanding model sensitivities, it would be
useful to include more comparisons to observations to demonstrate whether the
model sensitivities are reasonably realistic. In other words, if the model shows
high sensitivity to a particular source or sink, are we confident that methane ob-
servations are really that sensitive to that source or sink? This information is
difficult to determine from Fig. 3. Perhaps showing the model has reasonable
skill in capturing interannual variability at a site heavily influenced by biomass
burning or by wetland emissions would help demonstrate a realistic level of sen-
sitivity to those sources.

Following on from our comment regarding the use of observations above, we argue
that a detailed comparison with observations would not change the main outcomes of
this paper. The MOZART model, run in a very similar configuration has already been
extensively compared to other models and observations in previous work (e.g. Patra
et al., 2011, doi:10.5194/acp-11-12813-2011). Here, the main focus is to present a
method for exploring model input-output relationships and estimating the relative im-
portance of the uncertainty in the sources and sinks in driving hemispheric trends. The
part of the paper concerning method development does not rely on model accuracy,
and the hemispheric sensitivity analysis will only be weakly influenced by errors in site-
specific mole fractions. On the latter point, we also note that we chose to include only
model grid cells that contain background NOAA measurement stations. As such, none
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of the model data points which were used to estimate hemispheric mole fractions are
strongly influenced by nearby sources such as biomass burning or wetland emissions.

Again, we propose that a more detailed site-specific measurement comparison would
be better placed in a follow-up paper where an inverse analysis was performed to
constrain the model using atmospheric observations.

To make the point that a detailed comparison to observations has been performed pre-
viously, to line 117 we have added: “The MOZART model, run in a similar configuration,
has been used previously in global methane studies and has been compared to other
models and to observations (e.g. Patra et al., 2011).”

The large number of 3D model simulations used to train and test the emulator
is itself a substantial effort and potentially a valuable resource. Could these
simulations provide additional information to support the analysis? For example,
this study focuses on just hemisphere or global averaged measures of methane,
but the 3D model fields could potentially take greater advantage of geographic
differences.

We agree, there will be further information contained in site-to-site differences that
we have not explored here. The reason we did not introduce additional metrics, fur-
ther than absolute global mean mole fraction or δ13C-CH4, and their trends and inter-
hemispheric gradients, was simply because it would have made the sensitivity discus-
sion more difficult to understand, but with diminishing returns (i.e. the finer scale you
go, the subtler the sensitivity information becomes). As mentioned in the paper, using
our method, it is trivial to emulate individual grid cells of the model in order to fully
utilise the 3D nature of the simulations. This is something that we aim to investigate
further in our future inversion paper.

We acknowledge that there may be useful features in our model ensemble that other
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researchers wish to explore, and for that reason, we have made the processed training
dataset available via OSF (https://doi.org/10.17605/OSF.IO/Z435M). We would also be
happy to share the raw MOZART output if requested. This raw output has not been
shared publicly as it is hundreds of gigabytes of data, and reproducible following the
steps in the paper.

Section 2.5: Please justify why the uncertainty in the invariant parameters is a
good estimate of the CTM error, and compare to the error you would get from the
model-data mismatch.

We agree that this uncertainty comparison has been left out and is useful to include.
Line 292 (now line 309 in the revised paper), reads: “These values are slightly larger
than the estimate of the combined measurement and model representation uncertainty,
which examines the limited temporal and spatial resolution of the model (further details
in the Supplement). Additionally, the invariant parameter uncertainty is large compared
to atmospheric methane trends (e.g. between 2000 and 2012, the methane mole frac-
tion and δ13C-CH4 changed by around 40 ppb and -0.1 ‰ respectively).”

The calculation of the measurement and model representation uncertainty is addition-
ally added to the Supplement, in a new section called ‘The measurement and model
representation uncertainty’:

The calculation of the combined measurement and model representation uncertainty,
from now on referred to as the model-measurement discrepancy uncertainty for brevity,
is detailed here. The model-measurement discrepancy uncertainty is calculated by
considering four elements that would cause the model output to differ from the ob-
servations: the measurement uncertainty, the model representation uncertainty, the
different stations sampling in each month of the observations, and the different sample
times in the observations. To account for these differences, the standard deviation in
10 000 samples from the uncertainty distributions of these four elements is calculated.
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The two MOZART simulations in the training dataset closest to the methane mole frac-
tion and δ13C-CH4 observations were chosen as base simulations, around which these
uncertainties are examined.

To account for the measurement uncertainty, a random value drawn from a normal
distribution with a mean of zero and the median standard deviation from the NOAA and
INSTAAR datasets (1.7 ppb and 0.051 ‰ for the methane mole fraction and δ13C-CH4,
respectively). This random value is added to every 6-hourly output value in each grid
cell of the base simulations, in each of the 10 000 samples.

To calculate the horizontal representation uncertainty, a higher spatial resolution (1.89◦

N × 2.50◦ W) MOZART simulation with the mean emissions and losses in the training
dataset was used. The range of outputs over the high-resolution grid cells within a low-
resolution grid cell was calculated. The vertical representation uncertainty is calculated
by taking the range of the output in each low-resolution grid cell and the grid cell above
and below. For each of the 10 000 samples, a random value drawn from a uniform
distribution between minus half the range and plus half the range is added to every
6-hourly output value in each grid cell of the base simulations for both the horizontal
and vertical representation uncertainty.

The model hemispheric time series includes all grid cells with measurement stations
in every month, regardless of whether there are observations for that station in that
month. Therefore, the effect of including different stations in the hemispheric mean
is explored by bootstrap resampling. For each of the 10 000 samples, 25 stations for
the methane mole fraction and 10 stations for the δ13C-CH4 (the number of stations
included in this study) were chosen by sampling the stations with replacement.

The model hemispheric monthly time series includes all 6-hourly outputs at a station,
but the observation hemispheric time series includes only approximately four samples
in a monthly mean. To include the effect of having differently timed samples in the
monthly output, four random time points are chosen to contribute to each station’s
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monthly value in each of the 10 000 samples.

The hemispheric time series is then calculated, and the standard deviation in the
10 000 samples of the hemispheric time series is used as the model-measurement
discrepancy uncertainty. This uncertainty has a median value of 5 ppb and 0.05 ‰ in
the southern hemisphere, and 10 ppb and 0.08 ‰ in the northern hemisphere.”

We did not intend to suggest that this invariant parameter uncertainty was a better
estimate than those presented in previous studies. Instead, we propose that this is
a type of uncertainty that can be readily quantified by the type of model ensemble
we have used here, but which has, to the best of our knowledge, not been presented
previously. The “true” model uncertainty will have components related to the invariant
parameter uncertainties, representation errors and systematic model transport model
errors, as stated in lines 240-244 (now lines 257-260 in the revised paper):

“This invariant parameter error does not include many other sources of error (e.g.
model transport uncertainties are not addressed), and higher-order “invariant parame-
ter errors” (e.g. erroneous trends or spatial distributions), so can be considered a lower
bound of the total 3D CTM error.”

Since the initial conditions for the isotopic composition are listed as one of the
important quantities to constrain, more detail is needed regarding how the initial
conditions are specified in the model simulations. Are observations used in any
way to constrain the initial state?

Following the reviewer’s helpful comments, we have decided to reduce the spin-up
parameter range so that the δ13C-CH4 sensitivity is not so strongly dominated by the
spin-up parameters. This has been done by roughly matching the 1996 initial condi-
tions to observations.

We also agree that the initial conditions should be better described, and further detail
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has been added in the revised version of the paper. The paragraph beginning line 160
(now line 166) has been amended to:

“Three parameters were varied during the spin-up: the total source magnitude, the to-
tal source δ13C-CH4 signature, and an overall imbalance between the source and sink.
Table 2 gives the range of these spin-up parameters. The range of the spin-up total
source magnitude was derived by considering the minimum and maximum of the sum
of the sources in Table 2. The range of the total source δ13C-CH4 signature is con-
strained to values where the resulting January 1996 initial condition field has a global
surface δ13C-CH4 approximately matching observations (-47.3±0.6 ‰. Similarly, the
range of the imbalance between the source and sink is constrained to values where
the resulting January 1996 initial condition field has a global surface methane mole
fraction approximately matching observations (1760±30 ppb). However, the January
1996 initial condition can go beyond these observed ranges by varying the other two
spin-up parameters. The range of initial condition values is larger than that considered
in previous methane modelling studies and it therefore may be an overestimate. How-
ever, given that constraints are only typically provided based on surface observations,
whereas the initial model fields are 3D, extending from the surface to the upper strato-
sphere, it is very difficult to determine how uncertain the initial conditions truly are.”

We also noticed a discrepancy in our stated parameter ranges which has been cor-
rected in the revised paper. Lines 146-147 (now lines 148-151) have been replaced
by:

“The ranges of possible source magnitudes were based on the ranges of compiled
literature values in Saunois et al., 2016. The minimum and maximum values from
Saunois et al., 2016 have been decreased and increased, respectively, by 10 % in this
work as Saunois et al., 2016 does not include the uncertainties in the compiled studies
or outliers in their ranges. The ranges of possible δ13C-CH4 source signatures were
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the three standard deviation ranges in Schwietzke et al., 2016.”

Line 30: Please rephrase without parentheses

The parenthesis has been removed in the revised version of this paper.

Lines 58-62: Another reference relevant to this work is: Wild, O., Voulgar-
akis, A., O’Connor, F., Lamarque, J.-F., Ryan, E. M., and Lee, L.: Global sen-
sitivity analysis of chemistry–climate model budgets of tropospheric ozone
and OH: exploring model diversity, Atmos. Chem. Phys., 20, 4047–4058,
https://doi.org/10.5194/acp-20-4047-2020, 2020

We thank the reviewer for reminding us of this important and relevant paper. This has
been added to our introductory section.

Line 134: Does this spin-up lead to a reasonable reproduction of surface obser-
vations in the early portion of the time period?

We have constrained the spin-up parameters to more closely reproduce surface ob-
servations as described above. However, as stated above, this range is still large, but
we also do not know what the “true” initial condition uncertainty is, given the need to
specify a 3D delta-value field, which is informed only be surface observations. In any
case, as we note in line 379 (now line 409): “A wide range of δ13C-CH4 initial condition
values (Table 2) are examined in this work, however the importance of the initial con-
ditions applies to even small ranges. For example, if the δ13C-CH4 initial condition is
perturbed by 0.1 ‰ from the initial median parameter values, the output atmospheric
δ13C-CH4 trend changes by 0.04 ‰ almost half the observed δ13C-CH4 trend during
this period.”

Further, we note here that a future inverse modelling study should allow us to better
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constrain this term, by allowing the early measurements to inform the initial conditions.

How was the number of simulations chosen? It might help to refer to the Sup-
plemental Figure S8 here.

Within the Supplement, we have added an introductory sentence to Sect. 5 to acknowl-
edge a rule of thumb:

“As a rule of thumb, ten times the number of parameters is a good number of training
simulations to train a Gaussian process (e.g. Loeppky et al., 2009). However, this is
dependent on the model being emulated and hence the accuracy of emulators trained
with different numbers of simulations is tested here.”

The following has been added after line 170 (now line 184) in the revised version of the
paper:

“We chose 270 simulations as it was found to provide a balance between the accuracy
of the emulator and the computational expense of generating training simulations. This
is further discussed in the Supplement.”

Line 202: Please explain the difference between ~x and ~x∗

~x∗ are the input parameters to be predicted and ~x are the input parameters of the
training dataset. This is already stated in lines 202 and 205 (now lines 219 and 222).
Please let us know if we have misunderstood the confusion here.

Line 277: What is the meaning of “arbitrary initial condition range”?

We hope that our response to the reviewer’s fourth point adequately explains this. In
the revised version of the paper we have added a reference back to this new paragraph.
Additionally, “arbitrary” was replaced by “large” for clarity.

C9

Line 341: What is the “initial condition source del-13C”? Do you mean the initial
conditions for the del13C values of atmospheric methane? Or are you talking
about an emission source?

This, and throughout, has been changed to “spin-up source δ13C-CH4 signature” for
consistency with Table 2 and better clarity.

Lines 340-355: Isn’t the initial condition at least partially constrained by surface
observations?

This has been clarified in our response to the reviewer’s fourth point.

Line 360: It would be nice to know the sensitivity to the assumption of hemi-
spheric parity in OH

We agree that this is a potentially important factor that is not accounted for in this
work. It was omitted in our emulator design, as we made the decision early on not to
include spatial source or sink variations, focusing instead on magnitudes and temporal
trends. However, some might argue that it should have been included, perhaps along
with modifications to some source distributions, and potentially at the expense of some
other terms. We accept this is a limitation of this work and it is discussed in lines
280-285 (now lines 297-302):

“Ideally, the spatial distributions of the emissions and losses would also be parame-
terised, allowing greater variation in the inter-hemispheric differences. However, only
a limited number of parameters can be included in the Gaussian process emulation
method of this work. The more parameters, the more 3D CTM simulations are required
to train the emulator and the slower computation becomes. Therefore, only up to about
30 parameters are typically included in a Gaussian process, whereas methods such
as adjoint models (e.g. Bousquet et al. (2011); Bergamaschi et al. (2013)) can include
thousands of parameters.”
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We have also added the following sentence to line 361 (now line 385) to clarify this:

“However, had the uncertainty in the hemispheric distribution of OH been included in
our analysis, it would likely have explained a larger proportion of this sensitivity.”

Line 373: Do you mean the magnitude of the agricultural source or its trend?

We have clarified this to say “the agricultural source δ13C-CH4 signature”.

Line 414: Is this because the trends and hemispheric differences are themselves
small compared to the mean?

This sentence has been rewritten in the revised paper:

“Whilst these interactions are relatively unimportant in this sensitivity analysis, they
must be considered in order to build an accurate emulator. For example, the 0.2 % and
0.7 % of the output variance explained by parameter interactions for the global mean
mole fraction and δ13C-CH4, respectively, is equivalent to a standard deviation of 10
ppb and 0.09 ‰ in the output. This accounts for most of the difference in performance
of the Gaussian process and multiple linear regression, which does not consider pa-
rameter interactions, in Sect. 3.4.”

Fig. S8: Why does the plot have only 3 points?

This should have been clarified in the paper and the following text has been added to
the figure caption:

“There are only three points as each point requires a new Latin hypercube design in
order to properly sample the parameter space with a different number of simulations
(i.e. an arbitrary sub-set of the largest ensemble cannot be used for this purpose, as it
would not be a true Latin hypercube). This means that each point requires a new set
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of MOZART training simulations, which is computationally expensive to repeat multiple
times. However, this function is very unlikely to have multiple minima, and so we think
this figure is enough to act as a rough guide.”

Interactive comment on Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-871,
2020.
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