On the relationship between tropospheric CO and CO$_2$ during KORUS-AQ and its role in constraining anthropogenic CO$_2$

Wenfu Tang1,2*, Benjamin Gaubert2, Louisa Emmons2, Yonghoon Choi3,4, Joshua P. DiGangi3, Glenn S. Diskin1, Xiaomei Xu5, Cenlin He6, Helen Worden2, Simone Tilmes2, Rebecca Buchholz2, Hannah S. Halliday3,7 and Avelino F. Arellano1

1Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
2Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
3NASA Langley Research Center, Hampton, VA, USA
4Science Systems and Applications, Inc., Hampton, VA, USA
5Department of Earth System Science, University of California, Irvine, CA, USA
6Research Applications Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
7Now at US Environmental Protection Agency, Research Triangle Park, Durham, NC, USA

Corresponding author: Avelino Arellano (afarellano@email.arizona.edu)
Abstract

While the complementarity of CO data in monitoring CO$_2$ from fossil-fuel combustion (ffCO$_2$) is widely known, a rigorous demonstration of its use in reducing uncertainties on top-down regional ffCO$_2$ emissions is still warranted. Here, we report a case study investigating the regional covariation of observed and modeled abundances of CO, CO$_2$, and ffCO$_2$ and demonstrating its implication to joint CO:CO$_2$ inversions. We use data from a recent aircraft field campaign (KORUS-AQ) conducted over Korea and neighboring regions on May 2016 for this case study. We use the Community Atmosphere Model with Chemistry (CAM-Chem) to simulate CO, CO$_2$, ffCO$_2$ and associated source tags, using a posteriori fluxes from global CO$_2$ flux inversions and CO emissions independently calibrated against CO data. Among other model-data comparisons, CAM-Chem simulations show an underestimation in CO$_2$ (1 ppm), CO (24 ppb) and ffCO$_2$ (1 ppm) against aircraft measurements. These are all within the range of model and data uncertainties. Although the overall observed enhancement ratio, ΔCO/ΔCO$_2$ (~13.3±0.21 ppb/ppm), is well captured by CAM-Chem (~13.8±0.23 ppb/ppm), we find an overestimation (29 ppb/ppm) for air samples between 2 to 3 km, where East Asian influence is substantial (35%). The contribution of ffCO$_2$ from Korea and Japan is smaller (30%) and localized below 3 km, suggesting that regional ffCO$_2$ and background and non-ffCO$_2$ cannot be neglected in interpreting observed enhancements in this region. These spatial variations translate in the joint CO:CO$_2$ inversion to increases in a posteriori ffCO$_2$ estimates from East Asia (27%±24%) and Korea and Japan (9%±17%). This is consistent (albeit larger in 1-sigma uncertainty) with our estimate using 14CO$_2$ data (27%±9% and 10%±3%, respectively). In contrast, the inversion using only CO$_2$ data shows a decrease by ~5%±27% in East Asia and ~6%±19% in Korea and Japan. Our results show that inversions using both CO$_2$ and CO can be an effective approach in constraining ffCO$_2$ when the regional variations of CO and CO$_2$ relationships are appropriately accounted for. Although this further points to the potential of augmenting current observing system of CO$_2$ with CO for global inverse analyses of ffCO$_2$ from different regions of the globe, we highlight the need to verify the spatiotemporal distribution of the covariation of CO with CO$_2$ in both regional and global models. We caution its use for constraining local ffCO$_2$, unless the spatiotemporal a priori flux distribution and surface processes are reasonably represented, as they may confound the analysis. These have important implications on inversion studies using columnar data from satellite observations, especially for regions lacking necessary verification measurements.
1. Introduction

Reducing the uncertainty on top-down estimates of carbon dioxide emissions from fossil fuel combustion (fCO$_2$) continues to be a challenge. This is due to the dearth of accurate CO$_2$ measurements, including 14CO$_2$-derived fCO$_2$ measurements, with sufficient spatiotemporal coverage necessary to resolve variations in combustion and fuel-use patterns, along with difficulty in teasing out small anthropogenic signature from the large natural sources and sinks dominating the carbon cycle, and the uncertainties in modeling atmospheric transport (e.g., NRC, 2010; Ciais et al. 2014). This challenge remains despite the addition of aircraft and satellite measurements of CO$_2$ abundance in recent years (e.g., Hungershofer et al. 2010; Chevallier et al., 2014; Houweling et al., 2015). Understandably, global atmospheric CO$_2$ inversions are sharply focused on quantifying land and ocean biospheric sources and sinks because of the significantly larger uncertainties in a priori biospheric fluxes of CO$_2$ and transport models than global fCO$_2$ emissions, together with the reality that current global carbon observing systems have been mostly designed to provide constraints on biospheric fluxes (e.g., Gurney et al., 2003, 2004; Peylin et al., 2013; Schuh et al., 2019). In light of this, global fCO$_2$ emissions are typically not constrained in these inversions, although their importance has long been pointed out, often in the context of terrestrial and oceanic CO$_2$ flux inversions (e.g., Gurney et al., 2005; Peylin et al., 2011; Saeki and Patra, 2017; Gaubert et al., 2019). As discussed in Andres et al. (2012), the uncertainty in current global bottom-up fossil fuel CO$_2$ (fCO$_2$) emission inventories is about 10% globally and ranges from a few percent to greater than 50% regionally (or nationally). Combustion activity and efficiency and fuel-use mixtures are still poorly characterized particularly in rapidly developing nations. This is because of the paucity of detailed information on energy use, combustion practices, and pollution control strategies in these regions (e.g., Quillecaille et al., 2018; Andres et al., 2016; Hogue et al., 2016). Most recently, Basu et al. (2020) reported that even at national level, fCO$_2$ emission inventories in the United States are significantly underestimated by 2 to 3-sigma uncertainties. While significant efforts on improving bottom-up fCO$_2$ emission inventories through detailed accounting on other sources of information have been made (e.g., Gurney et al. 2009; Rayner et al., 2010; Asefi-Najafabady et al., 2014), the lack of finer scale measurements to verify these inventories remains to be addressed. Recent reports have recognized this limitation and recommend augmenting the current observing system with systems that can help identify dynamical, physical, and chemical signatures of fCO$_2$ at regional scales (e.g., Ciais et al., 2015).

Observational constraints on fCO$_2$ from radioactive tracer 14C have largely been established. Measurements of 14C of CO$_2$ are able to separate the fossil and biogenic contributions in observed CO$_2$ and serve as useful tracer of fCO$_2$ emissions from different regions (e.g., Levin et al., 2003, 2008; Turnbull et al., 2006, 2009, 2011, 2015; Graven et al., 2009, 2018; Miller et al. 2012; Basu et al., 2016; Niu et al., 2016; Berhanu et al., 2017; Nathan et al., 2018; Basu et al., 2020). Fossil C is 14C free due to the much shorter half-life of 14C (5,700 years) than the age of the fossil (106 years). Measurements of radiocarbon content (14C) of atmospheric CO$_2$ may sensitively indicate fossil fuel CO$_2$ (delta value of -1000 ‰) additions to the air sample, showing 14C is lower than contemporary background (clean air) Δ^{14}C values. While extremely useful, such measurements have only been made routinely in few locations around the world (e.g., Turnbull et al., 2007 at some Global Atmospheric Watch (GAW) sites; Berhanu et al., 2017 in Switzerland) or occasionally at specific region during field measurement campaigns (e.g., Turnbull et al., 2012 during INFLUX: Indianapolis Flux Experiment). These are still limited in providing sufficient top-down constraints on fCO$_2$ emissions at a regional to global scale, especially emissions from poorly
observed developing regions of the world. The utility of these measurements in constraining ffCO₂, in the context of deploying a potential network of these measurements within a joint inversion framework, have recently been assessed, albeit only through observing system simulations experiments or OSSEs (e.g., Basu et al., 2016; Nathan et al. 2018; Wu et al., 2018; Wang et al., 2018). The recent study by Basu et al. (2020) using real Δ¹⁴CO₂ from NOAA sites in the United States, however, shows very promising results on ffCO₂ emission constraints at national level. A consistent finding among these studies is that, while there is strong potential to reduce national ffCO₂ uncertainties (1% on yearly basis to 5-10% on monthly basis), such atmospheric-based approach to estimate emissions also requires careful consideration of errors in transport, systematic bias and accuracy of measurements, and characterization of background CO₂.

It is particularly appealing to consider synergies between CO₂ and ffCO₂ and air quality monitoring (AQ) observations (e.g., CO, NO₂), since in an environment where combustion activities are dominant, these species being monitored regularly often share the same dominant source category. Both are co-emitted during carbonaceous-fuel (fossil fuel-FF or biofuel-BF) generation, combustion, and distribution processes. In particular, CO is produced when combustion is incomplete; otherwise carbon in the fuel is oxidized to CO₂ at equilibrium levels of CO. And so, observing the relative abundance of ffCO₂, CO₂, and CO in this environment should provide useful synergistic information on their associated combustion-related emissions. This is the case for CO, for which larger number of observations are available from ground network, airborne, and satellite-derived measurements. Such datasets have been utilized in the past to provide additional constraints on combustion-related emission patterns in urban regions and biomass burning activities at local to global scales. They have been extended to provide insights on ffCO₂ or fire CO₂ (e.g., Suntharalingam et al., 2004; Palmer et al. 2006; Wang et al., 2010; Turnbull et al., 2011; Brioude et al., 2013; Lopez et al., 2013; Silva et al., 2013; Konovalov et al., 2014; Lindenmaier et al. 2014; Ammoura et al., 2016; Bowman et al., 2017; Super, 2018; Nathan et al., 2018; Boschetti et al., 2018 among others), as well as to identify and characterize air masses (e.g., Halliday et al. 2019). These studies used CO as an indirect tracer of combustion through a variety of ways: data analysis, model-data comparison, modeling, or inversions at different scales and region depending on their application. ffCO₂ emissions in bottom-up emission inventories are calculated using information on combustion activity, emission factor, and combustion efficiency (CE). A typical indicator of combustion efficiency is the ratio of measured CO₂ to (CO + CO₂). Differences in CE across different source sectors (e.g., power plant: high CE, domestic heating: low CE, flaming fire: high CE, smoldering fire: low CE) can be distinguished with atmospheric measurements of CO and CO₂. In particular, derived CO:CO₂ enhancement ratios near a source region are used to verify bulk CO:CO₂ emission ratios from these inventories. Hourly ffCO₂ emission profile from traffic are also deduced from measurements of CO (e.g., Vogel et al., 2010; Super, 2018). Because of its medium-length lifetime (1 to 2 months), CO is also a useful tracer of pollution (incl. ffCO₂) transport. Tracking urban plumes using CO can help enhance horizontal and vertical transport signatures of ffCO₂ plumes, which may be difficult with CO₂ measurements alone due to its longer lifetime and the influence of a large biospheric signal.

From a spatiotemporal sampling standpoint, these CO datasets are strongly complementary, especially in the absence or lack of CO₂ and ¹⁴CO₂ measurements. In addition, identifiable physico-chemical constraints from CO on anthropogenic CO₂ emissions and their transformations can also be exploited (i.e., oxidation of reduced carbon to CO₂, Suntharalingam et al., 2005; Nassar et al., 2010; Wang et al., 2020). In fact, the recent study by Wang et al. (2020) highlighted the
impact of accounting for the chemical production of CO$_2$ on estimates of global carbon sinks. Yet, unlike 14CO$_2$, these types of information from CO are generally confounded by: a) sharp differences in their associated sinks (through chemical transformation) downwind of its source; and hence differences in lifetimes and background concentrations across space and time; b) biogenic sources even within an urban environment; and c) variations in the effectiveness of pollution control strategies for CO between sectors within an urban region. Note that many of these confounding factors become more dominant at finer scales of the study region. Hence, constraints on fFCO$_2$ emissions from CO data has to be exploited at appropriate scales. The joint inversion of CO and CO$_2$ by Palmer et al. (2006), for example, clearly shows that estimates of anthropogenic CO$_2$ can be very sensitive to assumptions of the relationship between CO and CO$_2$, which can then also influence the accuracy of biospheric flux estimates. Due to these factors, its use in constraining regional to global fFCO$_2$ emissions remains to be limited, despite its complementarity and the availability of a large number of its measurements. In our view, it is critical to first understand and better characterize the observed and modeled relationship between CO and CO$_2$ abundance before incorporating such information at appropriate scales in systems directed towards improving our capability to attribute the sources of fFCO$_2$.

1.1 Objectives

The main goals of this study are to assess the relationship between CO and CO$_2$ that can be inferred from observations and a climate-chemistry model and demonstrate its implications to joint CO:CO$_2$ inversion. Here, we take advantage of 14CO$_2$, CO$_2$, and CO measurements during a recent field campaign conducted over Korea on May 1-June 10, 2016. This study is a continuation of our work on evaluating the Copernicus Atmosphere Monitoring Service (CAMS) CO and CO$_2$ high resolution forecast and analysis products during Korea-United States Air Quality (KORUS-AQ) field campaign (Tang et al., 2018). This also serves as a complementary study to our recent work on quantifying the source contributions of CO over Seoul during KORUS-AQ using regional tags or tracers in the Community Atmosphere Model with Chemistry or CAM-chem (Tang et al., 2019a), and to the study by Halliday et al. (2019) on characterizing air masses using short-term CO:CO$_2$ ratios during the same field campaign.

The specific objectives of this study are three-fold: 1) We introduce and evaluate a single-model analysis framework for multi-species analysis and inversions; 2) We examine the modeled and observed spatial distribution of the inferred relationship between CO, fFCO$_2$ and CO$_2$; and 3) We demonstrate the role of CO in refining observational constraints in regional fFCO$_2$ emissions through Bayesian synthesis inversions. This framework is directed towards simulating the abundance of CO and CO$_2$ in CAM-chem, based on observationally constrained surface fluxes for CO$_2$ from global flux inversions and a ‘best emission scenario’ for CO from our previous work. In addition, we added a capability in CAM-Chem to tag the regional sources of fFCO and fFCO$_2$, which we could not do in our previous study using the CAMS operational forecasting system. These tags enable us to assess the relationship of regional fFCO$_2$ and CO$_2$ which would not be possible in this type of model using observations of fFCO$_2$ and CO$_2$ alone. We note that the system approach we are suggesting in this work is similar to previous global studies of these species, particularly with Palmer et al. (2006), which also considered aircraft measurements from a field campaign conducted in 2001 over similar (albeit larger) region (TRACE-P: TRAnsport and Chemical Evolution over the Pacific, Jacob et al., 2003). We view this work to be complementary to their study by updating the state of CO:CO$_2$ ratios in this region after 15 years. We emphasize...
that our focus, however, is to characterize these ratios in the context of refining ffCO₂ constraints, and not purely in optimizing global flux inversions. The main difference in modeling framework between this work and previous studies is the use of \textit{a posteriori} fluxes (and emissions), rather than \textit{a priori} fluxes in simulating the abundance. Also, while Halliday et al. (2019) and Tang et al. (2018) have already presented such characterization of CO₂:CO₂ ratios during KORUS-AQ, this study is unique in a way that we use the tagged ffCO₂ component of this system to attribute the contributions of regional ffCO₂ on these ratios.

This paper is structured as follows. In Section 2, we describe the model and datasets used in this study. In Section 3, we evaluate the modeled CO, CO₂, and ffCO₂ during KORUS-AQ. We characterize the spatial distribution of CO and CO₂ relationships and its implication to CO₂ inversion in Sections 4 and 5, respectively. We present the discussion and general implications of this study in Section 6 and our conclusions in Section 7.

2. Methods and data description

2.1 CESM/CAM-Chem

The Community Earth System Model version 2 (CESM2) includes atmosphere, land, ocean, land ice, sea ice, and river components, all of which are connected by a coupler (Danabasoglu et al., 2020). CAM-chem is the atmospheric chemistry component of CESM, coupled with the land model (Lamarque et al., 2012). In CESM2, CAM-chem includes a significantly updated tropospheric chemistry mechanism (MOZART-T1), coupled to a VBS (volatility basis set) scheme for the formation of Secondary Organic Aerosols (SOA), allowing to simulate explicitly the tropospheric and stratospheric composition (Emmons et al., 2020; Tilmes et al., 2019).

2.1.1. CO₂ fluxes and CO emissions

The default CAM-chem configuration for greenhouse gases (CO₂ and CH₄) simulations are carried out by prescribing mixing ratios of these species at the model surface layer, following the CMIP6 protocol (Meinshausen et al., 2017). The CO₂ mixing ratios at the surface layer are based on zonally averaged observed CO₂ from NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network (Dlugokencky et al., 2015). In this study, however, we simulate atmospheric CO₂ explicitly with an ensemble of external CO₂ fluxes. Specifically, we use the \textit{a posteriori} fluxes from CAMS Greenhouse Gases (GHG) flux inversion (CAMSv17r1; Chevallier et al., 2005, 2010, 2013, 2018), CarbonTracker 2017 (CT2017; Peters et al., 2007, with updates documented at http://carbontracker.noaa.gov), and CarbonTracker Europe 2018 (CTE2018; van der Laan-Luijx et al., 2017). CarbonTracker is a global modeling system of CO₂ developed by NOAA with a nested grid on North America (Peters et al., 2007, with updates documented at http://carbontracker.noaa.gov). CarbonTracker Europe is developed based on CarbonTracker (van der Laan-Luijx et al., 2017). Both CT2017 and CTE2018 provide fluxes of fossil fuel, fire, land, and ocean components, which we use for our tagging of regional sources of ffCO₂. CAMSv17r1 is produced by the inversion system called PyVAR (Chevallier, 2018). We regridded all these CO₂ fluxes to match our CAM-chem resolution (0.95°×1.25°). Details of the fluxes are listed in Table 1 (and Table S1). Technical details for simulating atmospheric CO₂ explicitly with external CO₂ fluxes in CAM-chem are included in the supplementary material (Text S1). The term “CAM-chem CO₂”, “simulated CO₂” and “modeled CO₂” in this study stand for the atmospheric CO₂ simulated...
with the aforementioned method rather than the atmospheric CO$_2$ prescribed in CAM-chem by default, unless stated otherwise. To simulate CO in CAM-chem, we use the Fire INventory from NCAR (FINN; Wiedinmyer et al., 2011) for biomass burning CO (as well as other related species such as NMVOCs) emissions, and the Hemispheric Transport of Air Pollution version 2 inventory (HTAPv2; Janssens-Maenhout et al., 2015) for anthropogenic CO (as well as other related species such as NMVOCs) emissions. In our previous evaluation of CO (Tang et al., 2019a), we calibrated these HTAPv2 emissions by doubling its associated CO and VOC emissions in East Asia and Korea to match the CO data in the region. The CT2017 CO$_2$ fluxes and CO emissions are shown in Figure 2 while the other 3 CO$_2$ fluxes and the ensemble standard deviation are shown in Figure S1.

2.1.2 Implementation

We run four CAM-chem simulations with simulated CO$_2$ as well as full chemistry (e.g., CO, O$_3$) for the year 2016, using four sets of CO$_2$ fluxes as described in Table S1 (including CT2017 3-hourly fluxes, CT2017 monthly fluxes, CTE2018 fluxes, and CAMS fluxes). We run CAM-chem with the model meteorological fields nudged towards Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2, Gelaro et al., 2017). The CAM-chem CO$_2$ is initialized with CT2017 mole fraction fields on January 1st, 2016, while other variables in CAM-chem (e.g., CO) are initialized with results from previous CAM-chem simulations. The associated global budgets for our CO and CO$_2$ simulations are presented in Table S2. We also show in the supplementary material (Figure S2) the corresponding global CO$_2$ abundance for each flux product that we used and the concentration fields from CT2017. This is intended to ensure that: a) CAM-chem reasonably reproduces the CT2017 CO$_2$ fields when using CT2017 fluxes; b) appropriate accounting of each tag is carried out; and c) mass is conserved. Overall, our simulation results produce CO$_2$ fields comparable to current CO$_2$ analyses while carbon is reasonably accounted for. Differences in CO$_2$ mass is ~0.001% of initial burden which may be attributed to a cutoff of model top at ~2 hPa. In most of our analysis, we will use CAM-chem with CT3h fluxes as our base simulation. Comparisons of simulated CO$_2$ between other fluxes are only intended to show the total spread and not necessarily to draw conclusions on emissions or performance of these fluxes since these fluxes vary in spatiotemporal resolution.

2.1.3 Tagging ffCO$_2$ and CO

As previously noted, we developed a capability in CAM-chem to tag different source regions and/or emission types for ffCO$_2$ in addition to the existing CO tagging mechanism. This tagging approach is further described in Appendix A. We run one tagged simulation for May to June 2016 (the KORUS-AQ campaign period) using the same model configuration but only with CO$_2$ fluxes and CO emissions from the tagged regions defined in Figure 1. Note that for this particular simulation, we use CT2017 3-hourly fluxes for CO$_2$ (CT3h) and a relatively well performing CO emission scenario from Tang et al. (2019a) which is based on HTAPv2 for anthropogenic CO emissions. We tag ffCO$_2$ from 11 regions in East Asia (shown in Figure 1) with one additional tag that accounts for fossil fuel emissions from the rest of the world (ROW), to complete the ffCO$_2$ budget in CAM-chem. The CO$_2$ and CO tags are initialized with zero fields on Jan 1, 2016, so that only the emissions in 2016 are accounted when analyzing the relationships between ffCO$_2$ tags, CO and CO$_2$. Note that this Eulerian tagging method will be used to account for the relative contribution of different source regions to modeled CO$_2$. This is similar, in principle, to forward
and backward Lagrangian trajectory models of air parcels like FLEXible PARticle dispersion model (FLEXPART, Stohl et al. 2009) used in Turnbull et al. (2011).

2.2 Observational datasets

While we focus our analysis on KORUS-AQ measurements, we also use other datasets to assess the overall consistency of simulated CO and CO2 (incl. their relationships) during this period. Please see the supplementary material (Table S3) for more information.

2.2.1 Aircraft measurements of CO, CO2, and ffCO2 during KORUS-AQ

The Korea United States Air Quality (KORUS-AQ) field campaign was conducted over South Korea and its surrounding waters from May to June 2016 (Al-Saadi et al., 2014; https://www-air.larc.nasa.gov/missions/korus-aq/). The flight tracks are shown in Figure 1. The Atmospheric Vertical Observations of CO2 in the Earth's Troposphere (AVOCET; Vay et al., 2011) and Differential Absorption CO Measurement (DACOM; Sachse et al., 1987, 1991) were onboard the NASA DC-8 aircraft to measure CO2 and CO, respectively. AVOCET uses a modified LI-COR 6252 instrument with time response of 1 second, precision and accuracy of 0.25 ppm (Vay et al. 2003). The DACOM instrument has a time response of 1 second, precision of 0.4 ppb and accuracy of 2%. These instruments were calibrated in flight during the campaign with standards from NOAA ESRL traceable to WMO CO2_X2007 (Zhao & Tans, 2006) and CO_X2014A (NOAA, 2020).

In addition, 46 radiocarbon (14CO2) samples have also been collected onboard the NASA DC-8 aircraft during KORUS-AQ campaign with WAS (Whole Air Sampler team at UCI) flask samples and measured at W.M. Keck Carbon Cycle Accelerator Mass Spectrometer lab at UC, Irvine. ffCO2 calculation from 14C of CO2 followed the approach by Turnbull et al. (2011), Miller et al. (2012), and Lehman et al. (2013). In particular, we use Eq. 1 of Turnbull et al. (2011) to derive CO2ff (using their notation) with a background value of ∆14CO2 (or ∆Dg in their notation) of 15‰.

This value is adopted based on ∆14CO2 data in Point Barrow, AK (13.9±1.5‰) and Niwot Ridge, CO (NWR, ~15 ‰) during the same May-June 2016 period corresponding to the KORUS-AQ campaign. This choice follows in the same manner to the discussion in Turnbull et al. (2011) on representative background values. As they pointed out, the high-altitude clean air sites, like NWR, appear to be representative of Northern Hemisphere midlatitude background and similar to Jungfraujoch, Switzerland which was also previously used in other studies to represent the background. They also pointed out that differences on the choice of background values do not significantly affect their results since these differences are smaller than the enhancements in their study region (Tae-Ahn Peninsula, Korea-TAP, Shangdianzi, China - SDZ), which is similar to our study region. In fact, we find that ∆14CO2 during the campaign are always lower than 15‰. For the correction of the other effects, such as heterotrophic respiration and biomass burning (see 2nd term of Eq 1 in Turnbull et al., 2011, bias β in Eq 4 of Turnbull et al., 2009), we use -0.5 ppm corresponding to their estimate of this correction for summer months. We also follow a similar reasoning regarding the relatively small (with some that are not quantifiable in North Korea nuclear facility) 14C influence on emissions of ffCO2 from nuclear powerplant activities in Korea, since all the powerplant sites are using pressurized water reactor (https://www.world-nuclear.org/information-library/country-profiles/countries-o-s/south-korea.aspx). In the same
manner, the 1-sigma uncertainties in ffCO$_2$ and Δ14CO$_2$ are estimated to be 1 ppm and ±1.8‰, respectively.

2.2.2 Satellite-derived measurements of CO and CO$_2$

To provide a broader spatial context, we use retrievals of CO$_2$ column-averaged dry-air mole fraction (XCO$_2$) from the NASA Orbiting Carbon Observatory-2 (OCO-2), version 8, level 2 (L2) Lite product with the recommended quality flag (i.e., xco2 quality flag equals to 0) (Boesch et al., 2011; Osterman et al., 2017; O’Dell et al., 2018). The uncertainty of XCO$_2$ retrievals is about 1-2 ppm (Wunch et al., 2017). For CO, we use total column retrievals (XCO) of the Measurements Of Pollution In The Troposphere onboard Terra, version 7, Level 2, multispectral (thermal infrared/near infrared; TIR/NIR) (MOP02J, L2, V7) with the recommended quality flag (i.e.: cloud mask from MOPITT and Moderate Resolution Imaging Spectroradiometer agree on clear for Cloud Description; sum of Retrieval Anomaly Diagnostics equals to 0; solar zenith angle is less than 80) (Worden et al., 2010; Deeter et al., 2017). The model equivalent is calculated by first interpolating the model profile to the location of the satellite retrieval and applying the associated a priori profile and averaging kernel.

3. Comparison of modeled and observed CO, CO$_2$, and ffCO$_2$

A comprehensive summary of our comparison against KORUS-AQ (and other types of observing platforms) is presented in Table 2 (and Table S4). Overall, these simulations show relatively good agreement. The error statistics are comparable with state-of-the-art CO$_2$ and CO model simulations. The CO$_2$ simulations, in particular, closely matches with CT2017 mole fractions. The bias in modeled CO$_2$ against observations are also within the range of biases in other models. For example, the bias in CAM-cham against TCCON Saga site (Shiomi et al., 2017) range from -0.6 to -1.5 ppm, which is within the error range of OCO-2 MIP CO$_2$ (Crowell et al. 2019) for the same period. We emphasize here that the statistics of such comparisons (including error statistics like bias, root-mean-squared-error, and correlation) are estimated for instantaneous data points during the KORUS-AQ period (May to June 2016) or only for a single year in 2016 (in the case of NOAA and TCCON comparisons, see Figure S3 and S4). This period corresponds mostly to the peak in global average CO$_2$ in 2016 (Figure S2). Error comparison with other models should be limited to this specific month and year.

As shown in Figure 2, the mean spatial covariation of major sources of CO$_2$ and CO in the region (Beijing, Shanghai, Guangzhou, Seoul, Tokyo) for this period are broadly similar. However, they are more pronounced in observed XCO$_2$ than XCO. We attribute this to relatively lower sensitivity of MOPITT retrievals near the surface and differences in the source magnitudes between large cities in East Asia and Korea and Japan. While the overall correlation (R=0.46-0.68) and bias (~0.5 to 0.8 ppm) between modeled and observed XCO$_2$ are relatively moderate, the modeled XCO$_2$ is slightly underestimated in source regions (e.g., Beijing, Tokyo, Seoul) and overestimated in the Yellow Sea and northern latitudes. The modeled XCO, on the other hand, appears to be overestimated across the East Asian domain (i.e., R=0.76, bias~6.4 ppb) with higher variability (27 ppb) than observed (19 ppb). This is most likely due to the previous scaling (doubling) of anthropogenic CO and VOC HTAPv2 emissions in East Asia and Korea, as well as possible overestimation of fires in the region from FINN. Observed “background” of XCO$_2$ (401.75 ppm) and XCO (80.01 ppb) are slightly overestimated (402.94 ppm) and underestimated (79.50 ppb) by...
CAM-chem. “Background” is broadly defined here as 5th percentile across the domain for the May 2016 period. On the other hand, the 95th percentile of observed XCO$_2$ (408 ppm) and XCO (137 ppb), broadly representing “polluted” conditions, are underestimated (407 ppm) and overestimated (156 ppb) by CAM-Chem suggesting variations in overall bias between “background” and “polluted” conditions in this region.

3.1 Comparison against KORUS-AQ CO and CO$_2$ measurements

Similar to Tang et al. (2018), we organized these aircraft measurements into five flight groups to facilitate a more detailed comparison of the spatial distribution of CO and CO$_2$ in the region. These groups represent variations in sampling of air mass characteristics during the campaign (see Figure 3f). In particular, the Seoul flight group represents air samples over Seoul, which is characterized to have a dominant signature from anthropogenic combustion processes, while Taehwa represents air samples that may have both biospheric (nearby forest) and anthropogenic (Seoul metropolitan) influence. The flights over the West Sea were designed to capture China pollution outflows by conducting only on days when a China outflow is expected to be present. The Seoul–Jeju flight group represents air samples over local power plants, transported air from the West Sea, and over nearby croplands, while the Seoul–Busan flight group represents air samples over forest, rural, and Busan urban regions.

We show in Figures 3 and 4 the average horizontal and vertical distribution of observed and modeled CO and CO$_2$ for different flight groups. The overall statistics, which are calculated across all data points within a flight group, are also summarized in Table 2. For comparison with CAM-Chem CO$_2$, we also show the model equivalent CO$_2$ from the mole fractions reported in CT2017 system, which uses a different transport model (TM5). It is evident from these comparisons, that while the spatial gradients in observed CO$_2$ are relatively captured by CAM-chem (albeit also showing lower variability than observed), there appears to be a low negative bias (i.e., model minus obs) in nearby source regions (Seoul and its west coast), and over West Sea. The range of observed CO$_2$ values across flight groups, altitude, and KORUS-AQ period starts from a low of 408 ppm (Taehwa) to a high 415 ppm (Seoul) with the standard deviation ranging from 4 ppm (Seoul-Busan) to 13 ppm (Seoul). The model equivalents are slightly lower and less variable: 408 ppm (Taehwa) to 412 (Seoul) with standard deviation between 3.5 ppm (West Sea) and 10.5 ppm (Seoul). Such a slight underestimation is shown to occur in the lowermost layer of the observed CO$_2$ vertical profiles (Figure 4) where the median bias and interquartile range (IQR) across flight groups is -2.7±4.6 ppm. Yet over the southern coast of Korean peninsula, as well as the transect from Seoul to Busan, there is a positive bias. A slight overestimation can also be seen in the air aloft (Taehwa, Seoul-Busan, and Seoul-Jeju), where the median bias and IQR is 0.6±0.6 ppm.

Above 3 km, the 5th percentile of CO$_2$ data (All flights) is 403.5 ppm, while its model equivalent is 405.1 ppm. Such underestimation and overestimation are consistent with our comparison against OCO-2 XCO$_2$ indicating variations on the influence of local and regional “pollution” (underestimation) and “background” (slight overestimation) on these biases. Differences between CAM-chem and CT2017 CO$_2$ are small except in below 2 km. The median difference in bias between CAM-chem and CT2017 across flight groups and altitude is -0.1±0.6 ppm, where much of the variability comes from West Sea. Since both systems use the same flux distribution (CT3h), we mostly attribute this difference to the coarser resolution (3° x 2°) of the CT2017 mole fraction fields that we obtained from Carbon Tracker, which may not be able to better represent local variations in CO$_2$. It is quite possible that these differences are due to differences in boundary layer
representation due to coarser vertical resolution and/or different treatment of boundary layer processes between TM5 and CAM-chem. The overall bias in CAM-chem (-1 ppm) is also comparable (albeit opposite in sign) to the bias in CAMS forecast and analysis system (0.8 to 2.2 ppm) that we reported in Tang et al. (2018). This system is based on the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) combined with modules for atmosphere composition (Flemming et al., 2017, Agusti-Panareda et al., 2017), biospheric CO₂ fluxes from terrestrial vegetation (Boussetta et al., 2013), four-dimensional variational data assimilation (Inness et al., 2019), and biogenic flux adjustment (Agusti-Panareda et al., 2016). Note that the CO₂ fluxes in this system are different from GHG CAMSv17r1 (Chevallier, 2018), which we used as one of a posteriori CO₂ fluxes in model. Unlike in CAM-chem, where we see an underestimation of CO₂ in the boundary layer, the positive bias in CAMS is systematic across the vertical profiles for all flight groups, except over West Sea (see Figure 4 of Tang et al. 2018).

In contrast to our comparison with MOPITT XCO across East Asian domain, the modeled CO over Korea during KORUS-AQ is generally underestimated (model minus obs: -20 to -35 ppb), except over the west of Seoul and southern Korea. The range of observed CO values across flight groups, altitude and KORUS-AQ period starts from a low of 163 ppb (Taehwa) to a high of 266 ppb (Seoul) with the standard deviation ranging from 64 ppb (Seoul-Busan) to 143 ppb (West Sea). The model equivalents are lower and less variable: 143 ppb (Taehwa) to 237 (Seoul) with standard deviation between 62 ppb (Seoul-Busan) and 133 ppm (Seoul). This is reflected in the CO vertical profiles, where across most of flight groups (except Seoul-Busan) the modeled CO is underestimated below 2 km (median bias and IQR across flight groups is -41 ±24 ppb) and above 3 km (-12 ±13 ppb). The only overestimation in modeled CO (median bias of +3 ppb), which is also reflected in the higher variability of the bias (IQR=84 ppb), can be found at 2-3 km aloft over Seoul (80 ppb), West Sea (67 ppb) and at 4-5 km over Seoul-Jeju (32 ppb). Above 3 km, the 5th percentile in observed and modeled CO are 97 and 86 ppb, respectively. Below 3 km, similar negative bias of ~12 ppb (420 ppb versus 432 ppb) can be found. This suggests an underestimation of CO in “background” conditions by CAM-chem across the vertical profile in the KORUS-AQ sampling domain. The regional influence at 2-3 km, on the other hand, is overestimated, as is also reflected in MOPITT XCO, which we attributed to an overestimation of “polluted” conditions in the model. The overall negative (and systematic) bias in CO is attributed to an underestimation of secondary and background CO or an overestimation of OH, since we still see an underestimation despite previous scaling of East Asia’s and Korea’s anthropogenic CO and VOC emissions. We expect that anthropogenic sources of CO in this region is already overestimated. This systematic bias has been reported in Tang et al. (2019a), which implies considering optimizing secondary CO and indirectly constraining CO loss due to OH together with primary CO emissions (Gaubert et al., 2020). Relative to CAMS CO, the overall mean bias against KORUS-AQ in CAM-chem (-24 ppb) is also comparable to CAMS (-20 to -25 ppb). Note that the CAMS system assimilates MOPITT XCO among other datasets into their forecasting system.

The correlations between CO2 and CO errors (bias) are relatively moderate across all flight groups. These error correlations range from 0.36 over Seoul to 0.57 over West Sea, and 0.40 over All flights. These are lower than CAMS CO and CO2 forecasts and analysis (i.e., 0.64-0.90 over Seoul, 0.80-0.82 over West Sea, and 0.49-0.61 overall). Since CO2 and CO simulations share a common transport in CAM-chem, lower error correlation in CAM-chem can be due to larger inconsistencies in representing CO2 and CO sources and sinks in this model. And since both CO and CO2
simulations are consistently underestimating surface concentrations while the same set of simulations underestimate and overestimate concentrations aloft, respectively, this suggests that biases in regional sources and sinks are inconsistent between CO and CO$_2$. Although this inconsistency is expected by design since we used emissions and fluxes from different inventories and analysis system to highlight variations and potential errors in effective emission ratios, this also implies the need for accounting for these errors within a multi-species optimization approach.

3.2 Comparison against KORUS-AQ 14CO$_2$-derived ffCO$_2$ measurements

Figure 5 shows the horizontal (5a), vertical (5c), and temporal distributions (5d) of 14CO$_2$ measurements during the campaign. Sample IDs are indicated in the sample location along with approximate time stamps for a group of samples. We compare these with model ffCO$_2$, which is calculated as the sum of ffCO$_2$ abundance from the 12 tagged ffCO$_2$ emissions. We note that the model ffCO$_2$ is not exactly the same as ffCO$_2$ derived from the 14CO$_2$ measurements because of our assumption of initial condition (accounting for emissions from January 1, 2016). As described in section 2, ffCO$_2$ is derived from 14CO$_2$ using a Δ^{14}CO$_2$ background value representative of the entire KORUS-AQ campaign period. Since these airborne measurements are taken close to the fossil fuel emission sources, and hence the variations in the ffCO$_2$ (accumulated since Jan 1, 2016) are expected to mostly capture the spatial and temporal variations of regional ffCO$_2$ derived from 14CO$_2$ measurements. We expect that the tagged ffCO$_2$ outside of this region is small and can be lumped as an offset in ffCO$_2$ initial condition. Figure 5b also shows a scatter plot of ffCO$_2$ derived from the 14CO$_2$ measurements and modeled ffCO$_2$ from CAM-chem. We note that there is a lack of variability in the model for low ffCO$_2$ samples (model standard deviation of 8.6 ppm), as shown by points clustering around 9 ppm by the model, in contrast to 1 to 12 ppm by the data (obs standard deviation of 13.2 ppm). This may be related to the relative coarse model resolution (0.9° × 1.25°).

Despite the lack of variability in the model and the limited 14CO$_2$ samples, the overall correlation between ffCO$_2$ derived from 14CO$_2$ measurements and modeled ffCO$_2$ tags is moderate (R=0.51). We identified five (5) data points where derived ffCO$_2$ is significantly high (or low) relative to their model equivalents (i.e., $>$90th percentile of the variance of residual). These points are marked as red (orange) points in Figure 5b. Without these five data points, derived ffCO$_2$ and modeled ffCO$_2$ have a better correlation of 0.82 (R2=0.67), which is significant at >99% confidence interval.

Note that the average 14CO$_2$ values for this campaign period (May 2016), excluding these 5 points, is 13.2±9.5 ppm, while the 10th and 90th percentiles are in the order of 4.3 and 26.1 ppm, respectively. This is relatively consistent (albeit higher) with the values from Turnbull et al. (2011) at Tae-Ahn Peninsula (NOAA/TAP is west coast of Seoul), where the average CO$_2$ they reported is 8.5±8.6 ppm and 0.4 and 23.2 ppm for 10th and 90th percentile across a different period (~2005-2010). The recent study by Lee et al. (2020) at Anmyeon-do (NOAA/KMA-GAW/AMY is 24 km away from TAP) reports a mean value of 9.7±7.9 ppm (with a range between -0.05 to 32.7 ppm) for the more recent period from May 2014 to May 2016. The value of ffCO$_2$ derived from interpolated values of NOAA/KMA-GAW/AMY CO$_2$ (417 ppm) and Δ^{14}CO$_2$ (-15‰) fitted curves (https://www.esrl.noaa.gov/gmd/dv/iaadv) is roughly around 11.8 ppm using the same assumptions of Δ^{14}CO$_2$ in the region. We find a relatively higher value during KORUS-AQ as there are more polluted air masses sampled over Seoul and West Sea during the campaign. These relatively higher values imply a slight increase in derived ffCO$_2$ in this region. This is reflected in the trend of the
fitted curves for CO₂ (increasing) and Δ^{14}CO₂ (decreasing) at AMY and consistent with the analysis by Lee et al. (2020).

The regional contributions to modeled ffCO₂ are superimposed in the bar plots of Figure 5d. The observed and modeled CO₂ and CO corresponding to the same air samples are also shown in Figure 5d to show the relationship between CO₂, CO, and ffCO₂. While we will discuss this in more detail in the next two sections, we introduce these tags to point out that the main contributors to the modeled ffCO₂ during the campaign are the nearby source regions in East Asia and Korea. ffCO₂ ROW has relatively flat contribution across all samples. Including an offset of 1 ppm to account for errors in initial condition, the model exhibits a low bias of 1 ppm compared to derived ffCO₂. Note that ffCO₂ only accounts a small fraction of observed CO₂, even near large source regions like Seoul. We also note that the 2 sample points over Seoul, where the modeled ffCO₂ is significantly overestimated, correspond to large overestimation in CO when East Asia has relatively moderate contribution and overestimation in CO₂ when Korea’s contribution is expected to be dominant. On the other hand, the 3 sample points over the west of Seoul and West Sea, where modeled ffCO₂ is significantly underestimated, correspond to an underestimation of CO and CO₂ regardless of the main source contributor. Again, this variation is consistent with the variation in bias in “polluted” conditions of modeled CO and CO₂ in East Asia described earlier. We attribute these differences to the following: (1) errors in initial condition of ffCO₂; (2) CO₂ (and CO) FF/BF emissions used in this study may be underestimated (overestimated) over East Asia and Korea; and (3) the vertical mixing may be overestimated by CAM-chem. We will further investigate these differences in section 5, where we conducted an inversion using derived ffCO₂.

4. Observed and modeled relationships of CO and CO₂

In this section, we present a closer look at the variations in CO:CO₂ correlation (R_{CO,CO₂}) and enhancement ratios (ΔCO/ΔCO₂) across flight groups and along vertical profiles. These ratios represent the change of CO abundance per unit change in CO₂ relative to their corresponding background values (i.e., enhancement or excess). Here, enhancement ratios refer to the slopes derived from a bivariate linear regression of CO and CO₂ data points rather than the estimates of the ratio of enhancements based on a priori knowledge of their background (e.g., Yokelson et al., 2013; Hedelius et al., 2018). The results in our model evaluation against KORUS-AQ measurements indicate that at near surface and near polluted conditions, both CO and CO₂ are underestimated suggesting a possible underestimation of common local processes, while aloft, CO₂ is slightly overestimated, and CO is underestimated suggesting a more dominant “background” influence. Here, we will assess if variations in R_{CO,CO₂} and ΔCO/ΔCO₂ also reflect this finding. We have broken down the statistics in Table 2, with regards to modeled and observed correlation between CO and CO₂ and their associated error correlations, into 6 (1-km) vertical layers for each flight group. We also derived the corresponding vertical profile of ΔCO/ΔCO₂ using two regression approaches: 1) ordinary least squares (OLS) regression approach with CO₂ as our predictor since it is more stable than CO, and 2) reduced major axis regression (RMA) at 95% confidence to account for errors in both CO and CO₂. The enhancement ratios in Table 2 correspond to regression slopes using RMA. We will refer to CAM-chem simulations with CT3h fluxes as the model equivalents for all our analyses.
4.1 Correlation and error correlation

Figure 6 shows the vertical profiles of the CO:CO$_2$ statistics for each flight group during the campaign. Although we only plotted statistically significant correlation and error correlation, statistics using less than 30 data points are not considered in this analysis. It is important to note here that these statistics are only indicative of covariations in CO and CO$_2$. We focus our analysis on the relative differences between observed and modeled statistics. This only serves as another piece of information on the variability in CO and CO$_2$ relationship in the region.

Below 2 km, the modeled CO:CO$_2$ correlation (R_{CO,CO_2}^{mod}) is systematically lower than observed (R_{CO,CO_2}^{obs}) except at 1 km in Seoul-Jeju and Seoul-Busan. The average R_{CO,CO_2}^{obs} values across flight groups is 0.67±0.02 whereas the average R_{CO,CO_2}^{obs} is 0.47±0.16. Aloft, it is the opposite (i.e., modeled correlation is higher than observed) except in Taehwa, where they appear to be diverging along the upper layer of the vertical profile. The average R_{CO,CO_2}^{obs} value across flight groups in these vertical levels is 0.47±0.22, whereas the average R_{CO,CO_2}^{obs} is 0.55±0.32. This pattern of lower modeled correlation at the surface but higher aloft is clearly seen in West Sea, where we see the highest R_{CO,CO_2}^{obs} (0.95) against the lowest R_{CO,CO_2}^{mod} (0.11) among flight groups. The low R_{CO,CO_2}^{mod} relative to R_{CO,CO_2}^{obs} at the surface supports previous discussion that the model does not capture the observed variability in both CO and CO$_2$ data. Near the surface, a high R_{CO,CO_2} in both model and observations can be associated with well-correlated sources and sinks since CO, CO$_2$, and ffCO$_2$ share the same model transport representation. A low R_{CO,CO_2}^{mod} but high R_{CO,CO_2}^{obs} on the other hand, can be associated with lack of variability in the model. Similar underestimation of boundary layer R_{CO,CO_2}^{mod} (albeit notably smaller) can be found in Seoul (0.57 vs 0.79) and Taehwa (0.41 vs 0.61). Coarser spatiotemporal representation of associated sources and sinks and boundary layer processes can influence these values. In Tang et al. (2018), for example, we find that the 9-km resolution forecast/analysis of CAMS with 137 vertical levels (FC9s) led to significantly closer correlation to R_{CO,CO_2} than its free running 16-km resolution (FC16s), except over West Sea where both FC16s and FC9s, like in CAM-chem, failed to capture the high R_{CO,CO_2}^{obs}.

On the other hand, above 2-3 km, R_{CO,CO_2}^{mod} is higher than R_{CO,CO_2}^{obs} indicating that the modeled air masses are more influenced by relatively less-aged plumes transported into the region. As we will discussed in later section, the influence of emissions to CO and CO$_2$ over Korea are significantly limited to the boundary layer and hence, the vertical profiles of these correlations exhibit a strong contrast on local and regional influences in the sampling region. During TRACE-P (2001), the R_{CO,CO_2}^{obs} coefficients reported by Palmer et al. (2006) using GEOS-Chem is mostly greater than 0.7 varying only within 5-10%. They observed lower R_{CO,CO_2}^{obs} aloft which they attribute to a larger influence of aged air masses from Asia. While noting that the flights during TRACE-P is farther downwind (and has a larger coverage) than KORUS-AQ flights, we see a similar pattern (albeit lower in magnitude) to R_{CO,CO_2}^{obs} during KORUS-AQ. The lower magnitudes are due to higher background values (and more variable) in KORUS-AQ than TRACE-P, following the same reasoning by Palmer et al. (2006) for relatively polluted TRACE-P samples located >30 degrees north. These differences highlight the importance of vertical information in effectively differentiating local and regional influences (and associated errors in transport versus emissions),
especially within an inverse modeling framework (e.g., Stephens et al., 2007, Schuh et al., 2019, Arellano et al., 2006, Jiang et al., 2015).

Vertical profiles of the error correlation between CO and CO₂ (\(err_{R_{CO,CO_2}}\)) provide a complementary perspective in examining biases in the model and in quantifying model-data error covariances used in inverse modeling algorithms. A high \(err_{R_{CO,CO_2}}\) corresponds to a higher correlation between the errors in CO and CO₂, while a low \(err_{R_{CO,CO_2}}\) indicates the presence of model misrepresentation of processes on either CO₂ or CO that are not related to the other (i.e., different sources and sinks). Although the overall \(err_{R_{CO,CO_2}}\) values in CAM-chem is smaller than we previously reported for CAMS, the \(err_{R_{CO,CO_2}}\) values in CAMS are also lower compared to \(R_{CO,CO_2}^{obs}\). We note that \(err_{R_{CO,CO_2}}\) values in both CAM-Chem (0.57) and CAMS (0.82) are highest over West Sea among flight groups, regardless of resolution in the case of CAMS. Furthermore, over West Sea, the \(err_{R_{CO,CO_2}}\) in CAM-chem near the surface (0.5 km) lies in the middle of its \(R_{CO,CO_2}^{obs}\) and \(R_{CO,CO_2}^{mod}\). Values of \(err_{R_{CO,CO_2}}\) that are closer towards \(R_{CO,CO_2}^{obs}\) are interpreted to reflect errors in CO and CO₂ processes that are related (i.e., common sources and sinks). This indicates that East Asian sources are clearly the dominant influence on \(err_{R_{CO,CO_2}}\) for these samples; more than their associated sinks during transport, since over Yellow Sea, CO and CO₂ do not share a common major sink. Differences between modeled and observed correlation can be associated with coarser representation of related processes. On the other hand, over Seoul, CAM-chem \(err_{R_{CO,CO_2}}\) (0.36) is smaller than CAMS (0.64). The value in CAMS is the second highest among flight groups, while the value in CAM-chem is the lowest. The \(err_{R_{CO,CO_2}}\) over Seoul (0.35) in CAM-chem near the surface (0.5 km) is lower than both \(R_{CO,CO_2}^{obs}\) and \(R_{CO,CO_2}^{mod}\). Model misrepresentation of unrelated processes may also be influencing these values (e.g., secondary CO, non-fício). We note that the pattern in \(err_{R_{CO,CO_2}}\) along the overall vertical profile is consistent (albeit lower in magnitude) with \(R_{CO,CO_2}^{obs}\) (except at 4-5 km where it follows \(R_{CO,CO_2}^{mod}\)). Patterns in other flight groups cannot be compared due to incomplete statistically significant data points.

4.2 Enhancement ratios

Vertical profiles of modeled and observed \(ΔCO/ΔCO_2\) are also shown in Figure 6. Like in previous section, please note that data points in the profile which are not statistically significant in correlation and having less than 30 points are not considered in this analysis to avoid misinterpretation of results. Also, estimates of slopes derived from both OLS and RMA regression are plotted in Figure 6 to show the difference due to the choice of regression algorithm. Although both slope estimates follow the same pattern along the vertical profile, the slopes from OLS is systematically lower by 50%. The OLS algorithm is useful in understanding patterns rather than in comparing magnitudes with other studies. In OLS, \(ΔCO/ΔCO_2\) can be expressed as the product of \(R_{CO,CO_2}\) and the ratio of the respective standard deviations (\(σ_{CO}/σ_{CO_2}\)). As such, the difference between OLS \(ΔCO/ΔCO_2\) and \(R_{CO,CO_2}\) profiles correspond to \(σ_{CO}/σ_{CO_2}\), for which such quantity can be better represented in RMA regression.

Overall, the observed and modeled RMA \(ΔCO/ΔCO_2\) across all altitudes are very similar, with values of 13.30±0.21 ppb/ppm (~1.3%) and 13.80±0.23 ppb/ppm (~1.4%), respectively (see scatter plot in Figure S6). Higher values of \(ΔCO/ΔCO_2\) correspond to air masses that are characterized (in a bulk average sense) as less efficient (i.e., high CO is associated with low temperature and less...
efficient combustion). However, it should be noted that as Halliday et al. (2019) pointed out, these values when viewed as bulk efficiency, are limited only to bulk emission ratio interpretation since these regressions are subject to transport and mixing processes as well. Values that are derived from short-term covariations of CO and CO$_2$ are more useful for air mass characterization since these ratios are non-stationary in both space and time. Variations across flight groups – here representing non-stationarity in horizontal space – (Seoul: 9.1, West Sea: 28.2, Taehwa: 15.3, Seoul-Busan: 15.9, and Seoul-Jeju: 10.4 ppb/ppm) are also captured well by the model (Seoul: 12.6, West Sea: 33.7, Taehwa: 16.6, Seoul-Busan: 10.7, and Seoul-Jeju: 11.5. ppb/ppm). The overall observed value of 13.30 ppb/ppm reflects the influence of relatively more efficient air masses from Korea (flight groups other than West Sea) and less efficient air masses from China (West Sea flight group) (see Figure S6 as well). The variability across flight groups within Korea (Seoul and Seoul-Jeju versus Seoul-Busan and Taehwa) is likely due to a mixture of source influences across these locations (i.e., biogenic CO sources and biospheric influence on CO$_2$ over Taehwa and Seoul-Busan). These model values are comparable (albeit closer to observed values) to values from the best simulation of CAMS (FC9s) in Tang et al. (2018).

Similar to the correlation profiles, the modeled ΔCO/ΔCO$_2$ show larger differences against observed ΔCO/ΔCO$_2$ along the vertical profile. The observed values in All flights are 5.9, 11.8, 11.2, 10.8, 2.8, and 6.7 ppb/ppm for layers from 0.5 to 5.5 km at 1 km interval, respectively. This variability with height was also pointed out by Halliday et al. (2019). Higher values can be seen especially at 1.5-3.5 km. The differences between modeled and observed ΔCO/ΔCO$_2$ are also more pronounced above 3 km (see All flights). It is interesting to note as well that the modeled values at the surface from RMA regression in West Sea (21.6) and Seoul (11.2) are similar to observed values (23 ppb/ppm for West Sea and 8 ppb/ppm for Seoul). Again, this suggests that the differences in R_{CO,CO_2} found in West Sea are mostly due to misrepresentation of related processes rather than unrelated processes. This is reflected in the lower slope from OLS that matches with low R_{CO,CO_2}. The slopes from RMA are associated more to $\sigma_{CO}/\sigma_{CO_2}$ which indicate more of a signature from sources and sinks than transport-related processes in R_{CO,CO_2}. This can be shown in the overestimation of modeled ΔCO/ΔCO$_2$ at 2-3 km by 40 ppb/ppm in West Sea and 29 ppb/ppm in All flights. This suggest an overestimation of emission ratio from regional sources (i.e., East Asia). This is also reflected in the larger overestimation in CO (67 ppb and 80 ppb) at this level over Seoul and West Sea (8 ppb in All flight) and only slight overestimation in CO$_2$ (0.4 to 1.2 ppm) consistent with our earlier discussion on biases.

Relative to other ΔCO/ΔCO$_2$ values reported in this region, the observed ΔCO/ΔCO$_2$ during KORUS-AQ shows a similar bulk combustion efficiency contrast between South Korea and China (i.e., 9 ppb/ppm in Seoul against 28 ppb/ppm in West Sea). During this campaign, the observed ΔCO/ΔCO$_2$ from the ARIAs campaign over China (Benish et al., 2020) is also larger than 20 ppb/ppm. Fifteen years prior to KORUS-AQ and ARIAs, ΔCO/ΔCO$_2$ from northern China during TRACE-P in 2001 was observed to be largely higher (50-100 ppb/ppm) than over Japan (~12-17 ppb/ppm) (Suntharalingam et al., 2004). A similar contrast (albeit weaker than TRACE-P) was also reported by Turnbull et al. (2011) in terms of CO:CO$_2$ff ratios over Shangdianzi, China (~47 ppb/ppm) and South Korea (13 ppb/ppm) during winter 2009/2010. This is consistent with the downward change in ΔCO/ΔCO$_2$ near Beijing from 34-42 ppb/ppm in 2005-2007 to 22 ppb/ppm in 2008 (Wang et al., 2010) and derived ΔCO/ΔCO$_2$ from GOSAT/ACOS and MOPITT retrievals over Seoul (~7-9 ± 0.5 ppb/ppm) and Beijing (~43 ±6 ppb/ppm) in 2010 (Silva et al., 2013). As
we have previously noted, we expect that as combustion activities become more efficient in China, this contrast will decrease in recent years. Unfortunately, there are very limited measurements (even in TCCON AMY, Goo et al., 2017, and NOAA/KMA-GAW/AMY sites) that we can use to investigate these possible changes. The recent study by Lee et al. (2020) reports similar values (ΔCO/ΔffCO₂) derived from NOAA/KMA-GAW/AMY site for air masses coming from the Asian continent (29-36 ppb/ppm) and Korea (8±2 ppb/ppm) during May 2014 to August 2016. Another recent study by Xia et al. (2020) also reports a mean ΔCO/ΔCO₂ of 21.6 ppb/ppm over Jingdezhen (JDZ) site in central China during the winter months of 2018 to 2019. Together with ffCO₂ data (section 3.2), there appears to be a decrease in this contrast relative to TRACE-P, possibly due to improved efficiency in both China and Korea energy and road transportation sectors. Activities, like biofuel and biomass burning, which have lower combustion efficiency, may still influence the higher ratios in China (e.g., Chen et al. 2017). However, this possibility needs to be verified with correlative measurements having sufficient spatiotemporal coverage of the region. As has been suggested in past studies (e.g., Turnbull et al. 2006; Vardag et al. 2015; Super, 2018; Halliday et al. 2019), these comparisons across flight groups, sampling locations, altitude, and time highlight the importance of accounting and properly accounting for the spatiotemporal variability of ΔCO/ΔCO₂ when estimating ffCO₂ emissions since differences in ΔCO/ΔCO₂ have confounding factors and cannot be directly attributed to discrepancies in emissions unless investigated appropriately.

4.3 Local and regional contributions

We use the tagged ffCO and ffCO₂ simulations to further elucidate the contributions of local and regional influences on inferred relationships of CO, CO₂, and ffCO₂ during the campaign. We show in Figure 7 the spatial distribution of modeled CO₂, CO, and ffCO₂ including the associated distribution of ffCO₂ tags at three representative vertical levels (model surface, 800 hPa or ~2 km, 500 hPa or ~5 km above sea level). We also show in Figure S7 a zoom-in version with a side-by-side comparison of CO₂ and CO and their associated tags at the surface and also across the mean vertical profile. The moderately strong relationship between surface CO₂ and ffCO₂ (0.82), which is evident over areas of fossil fuel and biofuel combustion, is also found in the relationship between surface CO₂ and CO (0.84). However, there is a high CO₂ signature over Seoul and EA-S that is not very apparent in CO, as has been noted in our OCO-2 and MOPITT qualitative assessment. High CO₂ signatures in the model are associated with mostly ffCO₂ (EA-M, EA-N) and fire (EA-S) emissions. Unlike CO₂ and ffCO₂, the similarity between CO₂ and CO is degraded at higher altitudes (0.66-0.68) due to regional and background influences in CO since ffCO₂ aloft is not affected by its surface sinks. Note that East Asian and ROW ffCO₂ also account for the majority of ffCO₂ at these levels, clearly indicating regional influences on the air aloft during the campaign. This is evident as well from the associated flight curtails of these tags relative to modeled CO₂ shown in Figure S8 (All group) and Figure S9 (West Sea group).

To quantify the contribution of local and regional influences of ffCO₂ to observed ΔCO/ΔCO₂, we decompose the modeled ΔCO/ΔCO₂ into four basis functions. The observed CO₂ can be represented as the sum of ffCO₂ abundances (or response functions) from Korea and Japan (hereinafter Kor+Jap), East Asia, and ROW ffCO₂ sources (or basis functions), along with other contributions (non-ffCO₂ and background), termed here as “Background+non-ffCO₂” (see Appendix A). We can then regress each response function to the observed CO and CO₂ following...
the approach used by Cheng et al. (2018) in decomposing the contributions of tagged CH$_2$O to
$\Delta O_3/\Delta CH_2O$. That is,

$$\frac{\Delta CO}{\Delta CO_2}_{\text{obs}} \approx \sum_{i=1}^{4} \left(\frac{\text{cov}(\text{basis}_i, CO_{\text{obs}})}{\text{var}(CO_{\text{obs}})} \right)$$

Eq. (1)

where basis$_i$ corresponds to ffCO$_{Kor+Jap}$, ffCO$_{East\,Asia}$, ffCO$_{ROW}$ or bg + nonffCO$_2$.

This “Background+non-ffCO$_2$” is calculated as the difference between CO$_{\text{obs}}$ and the sum of
ffCO$_{opt}$. To ensure that ffCO$_2$ closely matches with derived ffCO$_2$ measurements (section 3),
the tagged ffCO$_2$ abundances were optimized through a Bayesian synthesis inversion, which we
will describe in the next section. An alternative to tagged simulations is the backward trajectory
analysis using FLEXPART (Stohl et al. 2009), STILT (Lin et al., 2003), or HYSPLIT (Draxler et
al., 1997). This has been used in past studies for a similar analysis (Turnbull et al., 2011; Vardag
et al. 2015; Xia et al., 2020).

Here, we regress each response function with the CO and CO$_2$ data for each flight group and for
each group of vertical bins (<1.5 km, 1.5-3.0 km, and >3.0 km), in order to examine the ffCO$_2$
contributions to the enhancement ratios discussed in previous section. These contributions are
shown in Figure 8, together with the slope estimates from observations of CO and CO$_2$ using OLS
regression. It is clear from this result that the influence of “Background+non-ffCO$_2$” dominates
across the vertical levels, even near the surface and polluted conditions in Seoul. This can be seen
across all flight groups, where the median contributions for each bin are ~74% for <1.5 km, ~47%
for 1.5-3 km, and ~81% for >3 km. We also find that ffCO$_2$ contributions in the West Sea flight
group at 1.5-3 km and >3 km bins are dominated by ffCO$_2$ from East Asia (~67% for 1.5-3.0 km,
~131% for >3 km), with the “Background+non-ffCO$_2$” contributing 90% at the surface and
negatively (~52%) on the air aloft. The dominance of “Background+non-ffCO$_2$” suggests that the
low R_{CO,CO_2}^{mod} relative to R_{CO,CO_2}^{obs}, yet consistent $\Delta CO/\Delta CO_2$ at the surface of the West Sea flight
group, can be attributed to possible inability of the model to represent spatiotemporally finer
variations in both non-ffCO$_2$ and background transport from East Asia, rather than inconsistency
in ffCO$_2$ emission ratio for this region. However, it is clear that the air just above 2 km is
characterized to be a low efficient airmass (high $\Delta CO/\Delta CO_2$), having higher R_{CO,CO_2}^{mod} than R_{CO,CO_2}^{obs}
yet consistent err$R_{CO,CO_2}^{obs} R_{CO,CO_2}^{obs}$, and very high East Asian influence. These conditions clearly
indicate an overestimation of emission ratio in East Asia. While we are aware that ffCO$_2$ and CO
emissions used in this study are taken from different emission inventories which may have caused
this overestimation, this highlights a regional inconsistency between inventories.

The contribution of ffCO$_2$ from Kor+Jap is relatively small, even at the surface (<1.5 km) in Seoul
(29%), Seoul-Jeju (20%), Taehwa (15%), and Seoul-Busan (13%). Its contribution can also be
seen at 1.5-3 km in Seoul-Busan (27%) and Taehwa (15%). Above 3 km, this influence is very
minimal, even in Seoul-Busan (0.8%) and Taehwa (2%). In contrast, the contribution of ffCO$_2$
from East Asia is relatively high, even at the surface in Korea (Seoul: 12%, Seoul-Busan: 21%).
Above 1.5 km, the East Asian influence over these flight groups are significant (35% for 1.5-
3.0 km, 20% for >3 km) relative to Kor+Jap. These results strongly suggest that while regional
influence can be inferred, it is critical to understand the vertical structure of these response
functions and recognize the large influence of regional emissions and background on the local
environment. The long-range transport of pollution into the region is known to be present. Simpson
et al. (2020) also found a larger contribution of CO from long-range transport in the Seoul Metropolitan Area than CO from combustion over Seoul. The signal-to-noise for fCO$_2$ abundance is very low compared to the biospheric fluxes, model transport errors, and source estimation methods (Schuh et al., 2019; Crowell et al., 2019). Accurately estimating fCO$_2$ emissions at local- to-regional scales requires sufficient data coverage and precision, especially within the boundary layer. The statistics that we have presented also points to reducing representativeness and aggregation errors through the use of higher resolution models, which are expected to be able to capture the local scale variations. Although CAM-chem at current resolution (0.9 deg x 1 deg) is able to represent the regional-scale transport, the presence of confounding factors in the boundary layer limits our ability to improve the signal-to-noise and our ability to exploit all datasets given that associated errors are sensitive to sampling characteristics. These have been highlighted in current studies of potential fCO$_2$ network (Wang et al., 2017; 2018). Furthermore, exploiting the finer spatiotemporal scale signatures of fCO$_2$ on CO$_2$ data, which can serve as valuable observational constraint (e.g., Shiga et al., 2014; Liu et al., 2017), cannot be exploited at coarser resolution. Variations across the vertical has implications as well on inversions using columnar data from satellite retrievals of XCO$_2$.

5. **Joint CO:CO$_2$ inversions**

We saw from the results discussed above that there are spatial variations in CO$_2$ (and CO) attributable to East Asian underestimation (overestimation) and overestimation (underestimation) of “background” conditions. It is more complicated, however, to attribute a Korean underestimation (overestimation) as competing local processes are present. As we have demonstrated, using information on CO$_2$ and CO relationship provides more context to this problem in lieu of fCO$_2$ data. To demonstrate the potential of CO data in refining estimates of regional fCO$_2$ emissions, we conducted three sets of Bayesian synthesis inversions following what we learned from our model evaluation and analysis of CO, CO$_2$ and fCO$_2$ and their associated relationships (section 3 and 4). We conducted two single-species experiments: 1) using fCO$_2$ data, and 2) using CO$_2$ data, as well as, one joint inversion using both CO$_2$ and CO data. These inversion experiments are designed simply to quantify the broader role of CO in refining regional scale fCO$_2$ signatures, which is expected to complement the current yet relatively sparse fCO$_2$ observing system and the national networks proposed (e.g., Basu et al., 2016; Wang et al., 2018). We revisit the Bayesian synthesis inversion algorithm used in one of the first studies of joint regional CO:CO$_2$ inversion with aircraft data from TRACE-P and GEOS-Chem by Palmer et al. (2006). A recent study by Boschetti et al. (2018) used a similar method using IAGOS CO, CO$_2$ and CH$_4$ data (Petzold et al., 2015) and STILT to conduct OSSEs for global multi-species inversions. This approach has also been used in the past for single atmospheric constituent inversions (e.g., Enting, 2002; Baker et al., 2006; Wang et al., 2018). This approach begins with the assumption of a linear relationship between observation and model, i.e.,

$$y = Kx + e_y,$$ \(Eq. (2)\)

where y is a vector of observations (in our case: fCO$_2$, CO, and/or CO$_2$), x is a vector of time averaged source strengths (or basis functions, which in our case is mainly fCO$_2$ Kor+Jap, fCO$_2$ East Asia and fCO$_2$ ROW), K is a matrix of contribution (or response functions) calculated from our tagged simulations, and e_y is a vector of errors associated to both K and y. Assuming Gaussian unbiased error statistics on both e_y and the error e_x on the *a priori* source strengths having average
values represented as a vector \(\mathbf{x}_a \), the solution to this Bayesian problem is the maximum a posteriori (MAP) solution:

\[
\mathbf{x} = (\mathbf{K}^T \mathbf{S}_e^{-1} \mathbf{K} + \mathbf{S}_a^{-1})^{-1} (\mathbf{K}^T \mathbf{S}_e^{-1} \mathbf{y} + \mathbf{S}_a^{-1} \mathbf{x}_a), \quad \mathbf{S} = (\mathbf{K}^T \mathbf{S}_e^{-1} \mathbf{K} + \mathbf{S}_a^{-1})^{-1}
\]

Eq. (3)

where \(\mathbf{x} \) and \(\mathbf{S} \) are a posteriori mean and error covariance estimates, respectively. \(\mathbf{S}_e \) and \(\mathbf{S}_a \) are the expected observation \(\langle \mathbf{e}_x \mathbf{e}_x^T \rangle \) and a priori source \(\langle \mathbf{e}_x \mathbf{e}_x^T \rangle \) error covariance matrices, respectively. Superscript \(^t\) denotes transpose, \(^{-1}\) the inverse of a matrix and \(\langle ... \rangle \) is an expectation operator. These notations follow Rodgers (2000). Note that this approach suffers from wrong assumptions/misspecification of the error covariances, especially \(\mathbf{S}_e \), which includes not only instrument/retrieval noise but more importantly errors in \(\mathbf{K} \) when translating emissions to abundance (i.e., transport and vertical mixing errors in the tagged simulations). Here, we take a similar approach by Palmer et al. (2006) and Wang et al. (2017), where we estimate \(\mathbf{S}_e \) from the error statistics we obtained in previous section. That is, \(\mathbf{S}_e \) are assumed to be diagonal matrices with the elements corresponding to \(\langle \mathbf{e}_y \mathbf{e}_y^T \rangle \) error variances in CO and \(\mathbf{S}_e \) are relative quantities represented as fractions of the data magnitude. We also inflate these fractions to account for representativeness errors. In the case of joint CO:CO\(_2\) inversion, we augment the observation vector such that \(\mathbf{y} = [\mathbf{y}^{\text{CO}_2}, \mathbf{y}^{\text{CO}}]^T \). We also use the error correlation between CO and CO\(_2\) discussed in previous section. That is, \(\mathbf{S}_e \) can be expressed as:

\[
\mathbf{S}_e = \begin{bmatrix} I_{n_y} \langle \mathbf{e}_y^{\text{CO}_2} \mathbf{e}_y^{\text{CO}_2} \rangle & I_{n_y} \langle \mathbf{e}_y^{\text{CO}_2} \rangle \langle \mathbf{e}_y^{\text{CO}} \rangle \\ I_{n_y} \langle \mathbf{e}_y^{\text{CO}_2} \rangle \langle \mathbf{e}_y^{\text{CO}} \rangle & I_{n_y} \langle \mathbf{e}_y^{\text{CO}} \rangle \langle \mathbf{e}_y^{\text{CO}} \rangle \end{bmatrix}
\]

Eq. (4)

where \(I_{n_y} \) is an identity matrix with \(n_y \) diagonal elements corresponding to the number of data points for each species. Here, we use a much lower \(\text{errR}_{\text{CO:CO}_2} \) of 0.33. Notice that in Palmer et al. (2006), they used \(\text{R}_{\text{CO:CO}_2} \) (0.7) on \(\mathbf{S}_e \), which is much higher than the model-dependent \(\text{errR}_{\text{CO:CO}_2} \) from this study. A similar error correlation of 0.7 was also used by Boschetti et al. (2018). While we recognize that from a purist perspective, \(\mathbf{S}_e \) should only account errors in the data, we also need to account for model errors (in observation space) as the assumption of perfect \(\mathbf{K} \) is obviously not valid. We use the more conservative \(\text{errR}_{\text{CO:CO}_2} \) to represent the correlation component of \(\mathbf{S}_e \) assuming that these model errors are more reflected in correlation than the variance structure of \(\mathbf{S}_e \). However, we still use the errors on the data to represent the error variance component of \(\mathbf{S}_e \) but with added inflation to account for representativeness errors (which is also model-dependent). Albeit clearly simplified, this is along the same line as the more rigorous representation of these errors discussed in Wang et al. (2017, 2018) and Basu et al. (2016). We also filter the data with points having the residual (model-obs) variance that is a factor of 1.25 (for \(\text{fCO}_2 \) data) or 2.0 (for \(\text{CO}_2 \) and \(\text{CO} \) data) greater than the overall residual standard deviation. More importantly, we only use data below 3 km for localization purposes (see previous section). The effective number of data points for each observation vector that are used in a particular inversion are as follows: \(n_{\text{fCO}_2}^{\text{CO}_2} = 41 \), \(n_{\text{y}^{\text{CO}_2}} = 4,716 \), and \(n_{\text{y}^{\text{CO}}} = 4,716 \). Notice that exactly the same set of \(\text{CO}_2 \) data points in \(\text{CO}_2 \) inversion is used for the joint \(\text{CO}:\text{CO}_2 \) inversion to facilitate comparison between inversions. Our emphasis for these inversions is to show the role of \(\text{CO} \) in refining our...
estimates of ffCO₂ emissions rather than accurately estimating biospheric sources and sinks. For the same reason that we use a posteriori CO₂ fluxes rather than the a priori CAM-chem fluxes.

For single-species inversion using ffCO₂ data, we added another basis that we call ‘ffCO₂ Offset’. This is a constant term (1 ppm) that is intended to account for a potential bias in ffCO₂ due to our assumption of ffCO₂ initial condition. We replace the basis “ffCO₂ Offset” for the single-species inversion using CO₂ data with the residual between modeled CO₂ and modeled ffCO₂ and call it “Background+non-ffCO₂” as noted in section 4.3. This represents the larger non-ffCO₂ component of CO₂ (see Eq. A.1). Both single-species inversions will have m=4 basis functions that will be optimized using Eq. 3. For joint inversion, there will be m=8 basis functions corresponding to CO₂ and CO basis (i.e., xₐ = [xₐCO₂ xₐCO]ᵀ). The 4x4 Sₐ matrix for single species ffCO₂ inversion is assumed to be diagonal with eₓ = d ∙ xₐ and d = [0.3, 0.3, 0.1, 0.5]ᵀ to account for heteroskedasticity in these errors. We assumed that error in ffCO₂ ROW is the smallest while the “ffCO₂ Offset” is largest. However, as we mentioned before, the ¹⁴CO₂-derived ffCO₂ is representative of the regional ffCO₂ (not global) and specific to the assumptions of Δ¹⁴CO₂. We have seen from section 4.3 as well that ffCO₂ ROW has negligible contributions to ΔCO/ΔCO₂ in the region. We expect that the errors in ffCO₂ ROW and “ffCO₂ Offset” to be largely correlated. Accordingly, the 8x8 Sₐ matrix for the joint CO:CO₂ inversion is constructed as follows:

\[Sₐ = s ∙ Cₐ ∙ s, \]
\[\text{where } s = \begin{bmatrix} I₄(eˣ_{CO₂})² & 0 \\ 0 & I₄(eˣ_{CO₂})² \end{bmatrix}, \]
\[\text{and } Cₐ = \begin{bmatrix} I₄ & I₄c \\ I₄c & I₄ \end{bmatrix}. \]
Eq. (5)

We assumed no correlation across basis functions within a particular species. However, the source error correlation across species is specified as c = [-0.5, -0.5, -0.1, 0.0]ᵀ. We also assumed that the source error correlation across species is higher near the source region (i.e., East Asia and Kor+Jap) and smaller to negligible for the more “diffused” sources from ROW and “Background+non-ffCO₂”. At the source, CO is mostly negatively correlated with CO₂ (i.e., higher combustion efficiency is associated with low CO₂). It should be noted that while this vector is critical in transferring information from CO (or CO₂) data to the other species (Palmer et al., 2006, Boschetti et al. 2018), there is little information on quantifying this correlation. In fact, it is very difficult to accurately specify the elements of Cₐ since these statistics cannot be derived from measurements. There are only few direct measurements of CO₂ fluxes (and CO emissions) to quantify their associated errors. One way to estimate Cₐ is to have an ensemble of CO and CO₂ sources, where we can compute its statistics following a similar approach by Wang et al. (2018). For this study, however, we follow a simpler approach using similar critical values of these correlations suggested in Palmer et al. (2006). This is more conservative than the correlation used by Boschetti et al. (2018) of 0.7. We note that in our setup, a posteriori estimates are not that sensitive to the correlation values in Sₐ than in Sₑ. We also specify the error variances while accounting for heteroskedasticity as: eₓ_{CO₂} = d_{CO₂} ∙ xₐ_{CO₂} where d_{CO₂} = [0.3, 0.3, 0.1, 0.05]ᵀ and eₓ_{CO} = d_{CO} ∙ xₐ_{CO} where d_{CO} = [0.5, 0.5, 0.1, 0.05]ᵀ. These error variances are typically prescribed to be larger than reported 1-sigma uncertainties in order to include potential errors that are unaccounted for. We assumed that errors in ffCO emissions are larger in East Asia, and Kor+Jap than in ROW while the “Background+non-ffCO” is smallest based on their associated variability.
5.1 Inversion results

We present in Figure 9 the results of the three sets of inversions. We show the change in a posteriori estimate relative to a priori (represented here as scaling factors) of ffCO₂ basis including “ffCO₂ Offset” or “Background+non-ffCO₂” (depending on the dataset used in the inversion). The error bars correspond to the square root of the diagonal elements of \mathbf{S} for a posteriori or \mathbf{S}_a for a priori estimates. The error for a priori “Background+non-ffCO₂” is not shown. For ffCO₂ inversion, we find that ffCO₂ East Asia and ffCO₂ Kor+Jap need to be increased by ~27% ±9% and ~10% ±3%, respectively. At the same time, ffCO₂ ROW needs to be slightly decreased (albeit with higher uncertainty) by 14% ±9%. This results to a reduction in bias (model-obs) against ffCO₂ derived measurements (including “ffCO₂ Offset”) from -1 ppm to -0.01 ppm. The error reduction in ffCO₂ estimates (1 - \hat{e}_x/e_x), where \hat{e}_x is the a posteriori error, is largest in ffCO₂ Kor+Jap (91%) followed by ffCO₂ East Asia (71%), “ffCO₂ Offset” (62%), and ffCO₂ ROW (8%), suggesting that East Asia and Kor+Jap are reasonably resolved by the measurements. Again, it is important to note that we do not expect 14CO₂-derived ffCO₂ measurements to resolve ffCO₂ ROW. The error reductions in East Asia and Kor+Jap are comparable to the uncertainty reduction (UR) values reported in Wang et al. (2018) for OSSEs using a potential ffCO₂ network in Europe. The increases in East Asia and Kor+Jap are also expected based on our evaluation of modeled CO₂ and ffCO₂ (section 3) and our analysis of CO and CO₂ relationships (section 4) of apparent underestimation of CO₂, and ffCO₂ below 3 km. Although such increase is reasonable and within range of the uncertainties in regional ffCO₂ emissions (Andres et al., 2012), the equivalent reduction of the bias in terms of CO₂ abundance remains small, even with the contribution of “ffCO₂ Offset”. This is consistent with the relatively low contribution of ffCO₂ from these source regions discussed in section 4.3.

We find reasonable consistency in scaling factors that are within the range of their associated uncertainties when CO₂ and CO across the campaign are used instead of ffCO₂ data. In particular, emissions of ffCO₂ from East Asia and Kor+Jap need to be increased by ~27% ±24% and (9% ±17%). However, the scaling factor for ffCO₂ from ROW only suggests a smaller decrease (6%±10%) in ffCO₂ emissions compared to ffCO₂ inversion. The “Background+non-ffCO₂” appears to only have a very small decrease (0.7% ±0.3%). Reduction in the error estimates are lower (although still significant) in East Asia (20%) and Kor+Jap (42%). On the other hand, there is very little error reduction in ROW (0.4%) but higher error reduction in “Background+non-ffCO₂” (94%) indicating that the estimate of ffCO₂ from ROW is not resolved using either CO, CO₂ or ffCO₂ measurements. This is expected as the source error correlation for this basis function is smaller and that the contribution of ffCO₂ ROW is already very small to begin with. On the other hand, the error reduction in “Background+non-ffCO₂” is mostly constrained by CO₂ data given that we assumed zero source error correlation across species. However, unlike the joint inversion, we find larger differences in ffCO₂ mean estimates when CO₂ measurements across the campaign are used. Our results show a decrease in both ffCO₂ East Asia (5% ±27%) and Kor+Jap (6% ±19%) and practically no changes in ffCO₂ ROW (0% ±10%) and “Background+non-ffCO₂” (0% ±0.3%). The error reduction is slightly smaller than the reduction from joint inversion for East Asia (9%) and Kor+Jap (38%), while similar error reduction can be observed for ROW (0.1%) and “Background CO₂” (94%), again suggesting that ffCO₂ ROW is not resolved neither by CO₂ nor CO measurements as well.
6. Discussion and general implications

These results imply that inversion using CO and CO\textsubscript{2} data is able to match the regional ffCO\textsubscript{2} emission estimates for East Asia and Kor+Jap from ffCO\textsubscript{2} inversion, whereas using CO\textsubscript{2} data alone is not sufficient even with a much larger number of data points compared to ffCO\textsubscript{2} data. This is seen in the estimates of the mean of ffCO\textsubscript{2} East Asia and Kor+Jap, where CO pulls this estimate in the same direction as the ones using ffCO\textsubscript{2} data. This adjustment is mostly due to the addition of model-data error correlation across species (S\textsubscript{e}) than source error correlation across species (S\textsubscript{a}).

A suggested decrease of CO emissions in East Asia and Kor+Jap, along with an increase in “Background+non-ffCO” sources resulted to increases in East Asia and Kor+Jap ffCO\textsubscript{2} emissions. Note that our \textit{a priori} HTAPv2 CO and VOC emissions were doubled for East Asia and Korea to begin with. The slight negative bias in CO at the surface and larger positive bias at 2-3 km, especially over Seoul and West Sea, is consistent with the adjustments in CO, indicating that bias in CO is mostly from underestimation of secondary CO and possibly ffCO ROW (e.g., India). The dominance of S\textsubscript{e} on our results for ffCO\textsubscript{2} is in contrast to Boschetti et al. (2018). This may be due to our approach of localizing our data to below 3 km and aggregating to a smaller number of basis functions. Nevertheless, \textit{a posteriori} estimates in ffCO\textsubscript{2} sources using ffCO\textsubscript{2} and CO with CO\textsubscript{2} data are statistically significantly indistinguishable from a two-tailed t-test at 99\% confidence interval. This is not the case between \textit{a posteriori} estimates in ffCO\textsubscript{2} sources using ffCO\textsubscript{2} and CO\textsubscript{2} data. We recognize that this is only a proof-of-concept to demonstrate the complementary information in CO data on ffCO\textsubscript{2} at regional scales (even with conservative use of error correlation estimates). These results are consistent with our analysis of covariation between CO, CO\textsubscript{2}, and ffCO\textsubscript{2} during the campaign, where the regional difference between air masses from China and Korea is clearly evident. Vertical profiles of these covariations (both correlation and enhancement ratio) reveal this regional contrast.

However, the modeled local covariations are confounded by misrepresentation of local and transport-related processes. Such type of errors can skew the results and have to be addressed (e.g., Wu et al., 2018). Our analysis approach was designed to account for these confounding factors (albeit sub-optimally) by specifying relatively conservative (larger) error covariances and only using data below 3 km to mimic the sampling distribution of derived ffCO\textsubscript{2} measurements, which is used in this study as our basis of comparison. We are aware that this is still sub-optimal but detailed refinements to this approach is beyond the scope of this study. We highlight some of these limitations in Figure 10, where we show vertical profiles of ffCO\textsubscript{2} contributions from East Asia, Kor+Jap and ROW emissions, including the overall bias in CO\textsubscript{2} relative to DC-8 CO\textsubscript{2} data. While there is an apparent increase in boundary layer ffCO\textsubscript{2} over the West Sea (~1.25 ppm) from the same increase in \textit{a posteriori} scaling factor relative to \textit{a priori} emissions from East Asia, this increase only translates to a decrease of ~0.9 ppm in the CO\textsubscript{2} bias for this flight group as a result of all ffCO\textsubscript{2} adjustments since there is competing effect between a slight increase in ffCO\textsubscript{2} Kor+Jap and a decrease in ffCO\textsubscript{2} ROW. In addition, the use of a single scaling factor for a broad basis function results to a degradation of CO\textsubscript{2} aloft, suggesting that non-ffCO\textsubscript{2} and background CO\textsubscript{2} needs to be adjusted accordingly by region (not globally) since they are dominant aloft. This sensitivity between ffCO\textsubscript{2} and non-ffCO\textsubscript{2} estimates has been pointed out in previous studies (e.g., Palmer et al., 2006; Basu et al., 2016; 2020). An added complication to these inversions is the accounting of CO\textsubscript{2} chemical production (Wang et al. 2020) that may also be reflected in the “Background+non-ffCO\textsubscript{2}”. The aggregation error (Kaminski et al., 2001) confounding our results also needs to be addressed, perhaps by adding regional basis functions for non-ffCO\textsubscript{2} and...
background CO\textsubscript{2} within a multi-scale (or multi-tiered) hierarchical inversion framework (e.g., Cusworth et al., 2020). An ensemble approach using a larger ensemble size from different flux inversions (e.g., Global Carbon Project, OCO-2 MIP) may offer opportunities to better quantify the a priori error covariances of non-ffCO\textsubscript{2} and background CO\textsubscript{2}. We also recognize that by design this is a simplistic study focused on CO data as potential constraints on regional ffCO\textsubscript{2}. A more realistic scenario would be to show its impact on top of current observational constraints for CO\textsubscript{2} (e.g., XCO\textsubscript{2} satellite retrievals and derived ffCO\textsubscript{2} measurements). Augmenting the flux vector in CO\textsubscript{2} flux inversions with CO and ffCO\textsubscript{2} sources may also offer opportunities to understand its impact on biospheric flux estimates (Basu et al., 2016, 2020; Wang et al., 2020).

There have been several studies using information on local enhancement (\(\Delta CO\)) that can be derived from \(\Delta CO/\Delta CO_2\) to constrain ffCO\textsubscript{2} emissions (Super, 2018). This approach employs assumptions on the spatiotemporal distribution of emission ratios between CO and ffCO\textsubscript{2} using mass balance. We emphasize here that CO may not be the most appropriate data unless the stationarity assumption for these \(\Delta CO/\Delta CO_2\) are valid and temporal changes in CO\textsubscript{2} are reasonably characterized (e.g., Nassar et al. 2013; Liu et al., 2017). This has been indicated for example in Super (2018) and Nathan et al. (2018). As has been highlighted in this study, the use of regression approach in deriving these relationships are confounded by mixing and transport-related processes making it difficult to attribute the changes in the slopes to emission ratios alone, especially when analyzing downwind measurements. For this purpose, we suggest a ‘model calibration’ approach where ffCO\textsubscript{2} emissions are adjusted based on CO\textsubscript{2} and CO tags and derived \(\Delta CO/\Delta CO_2\) at a spatiotemporal scale that is representative of the best possible change in combustion efficiency. In particular, changes in ffCO\textsubscript{2} emissions due to changes in CE (through improved technology, pollution abatement, changes in fuel mixture, process changes, or even decommissioning of a power plant) do not manifest at local spatiotemporal scale. Ratios derived at finer scale can be noisy and non-stationary. Changes in emissions due to changes in CE is usually detectable at a far longer spatiotemporal scale. Long-term satellite retrievals of CO and other proxies of fossil fuel combustion signatures (e.g., NO\textsubscript{X}) at decadal timescale (Tang et al., 2019b; Zheng et al. 2018) may be useful to detect trends on the changes of ffCO\textsubscript{2} emissions (Yin et al., 2019).

7. Conclusions

In this study, we highlight the spatial variability of tropospheric CO and CO\textsubscript{2} relationships and its implication in constraining CO\textsubscript{2} from fossil fuel combustion. We use the KORUS-AQ field campaign as our case study. This campaign, which was aimed to study air quality in South Korea, was conducted on May to June 2016. Incidentally, it also coincided with the peak in global CO\textsubscript{2} concentration for this particular year. We use a single-model (CAM-chem) analysis framework, where the a priori CO\textsubscript{2} fluxes in the model are taken from a posteriori fluxes of recent global flux inversions (e.g., Carbon Tracker – CT2017). We also use CO emissions that were calibrated with CO data (albeit in an ad-hoc manner) from our previous CAM-chem CO analysis. The availability of \(^{14}\text{CO}_2\), CO, and CO\textsubscript{2} vertical profiles from NASA DC-8 offers an opportunity to assess the fidelity of this framework in simulating CO and CO\textsubscript{2} abundances from the best possible and observationally constrained fluxes and emissions. More importantly, this framework enables us to facilitate a better understanding of the variability in observed and modeled relationships between the abundances of these species. Our analysis is directed towards investigating the covariation of CO, CO\textsubscript{2}, and ffCO\textsubscript{2}, which can then be made useful in refining our estimates of regional ffCO\textsubscript{2} emissions.
We evaluated CAM-chem CO and CO₂ simulations from a variety of observing system perspectives, while focusing on key diagnostics relative to KORUS-AQ measurements and previous model and data analysis for this particular period and region. Our results show that the spatiotemporal distribution of CAM-chem CO and CO₂ simulated abundances (and their associated correlations and enhancement ratios) are reasonably consistent (and within the range of uncertainties) with KORUS-AQ CO and CO₂ data, CAMS high resolution forecast/analysis of CO and CO₂, and CT2017 mole fractions for CO₂ -- both of which used different transport models at different resolution. In particular, we find that: 1) The overall biases against DC-8 CO₂ and CO measurements in CAM-chem using CT2017 fluxes are -1.0 ppm and -24 ppb, respectively, while the CAMS FC9s is biased by about 0.7 ppm in CO₂ and -17 ppb in CO. The CT2017 CO₂ mole fraction is biased by -1.2 ppm; 2) The overall correlation \(R_{\text{CO},\text{CO₂}}\) and enhancement ratio \(\Delta\text{CO}/\Delta\text{CO₂}\) between CO and CO₂ are as follows: DC-8: 0.67 and 13.3±0.21 ppb/ppm, CAM-chem: 0.55 and 13.8±0.23 ppb/ppm, and CAMS FC9s -- 0.65 and 12.5 ppb/ppm. The error correlation \(errR_{\text{CO},\text{CO₂}}\) in CAM-chem (0.40) is also comparable to CAMS FC9s (0.49); 3) The overall bias in CAM-chem \(\text{ffCO₂}\) against \(^{13}\text{CO₂}\) data is -1 ppm, which is close to 1-sigma uncertainty of the data (1 ppm). We also note that the modeled CO and CO₂ correlation and enhancement ratios vary differently relative to DC-8, suggesting possible misrepresentation of related sources and sinks in CAM-chem. In particular, we find a significantly lower (higher) correlation near the surface (aloft) over West Sea relative to DC-8, whereas its enhancement ratio is comparable near the surface but larger aloft. We attribute this difference to coarser representation of boundary layer processes (low correlation) and overestimation of regional emission ratio aloft (high enhancement ratio).

We also investigated the contribution of regional \(\text{ffCO₂}\) to observed \(\Delta\text{CO}/\Delta\text{CO₂}\) using tagged \(\text{ffCO₂}\) simulations. We find that, even near the surface in Seoul, there is a significant contribution of background and non-\(\text{ffCO₂}\) that cannot be neglected. Its median contribution across flight groups is 74% below 1.5 km, 47% between 1.5 and 3 km and 81% > 3 km. \(\text{ffCO₂}\) from East Asia also contributes significantly, with median contributions ranging from 10% below 1.5 km, 35% between 1.5 and 3 km, and 20% >3 km. Its higher contribution is especially evident over the West Sea air samples, which are representative of Chinese pollution outflows. These variations in contributions affect the design and interpretation of joint CO:CO₂ inversions. We find, for example, that in order to effectively constrain \(\text{ffCO₂}\) emissions from Ko+Jap and East Asia, we have to localize our inversion to data points below 3 km. Else, the larger impact of “Background+non-\(\text{ffCO₂}\)” can obscure the response from \(\text{ffCO₂}\) emissions. We conducted three sets of inversions to demonstrate the impact of CO data in refining estimates of regional \(\text{ffCO₂}\) emissions. While recognizing the simplicity of our joint Bayesian synthesis inversion (which follows Palmer et al., 2006), we find that \(\text{ffCO₂}\) from East Asia and Ko+Jap need to be increased by 27%±24% and 9%±17%, respectively. This is very consistent (albeit with larger uncertainty) with results from an inversion using derived \(\text{ffCO₂}\) data only (East Asia: 27%±9% and Ko+Jap: 10%±3%). In contrast, inversion using only CO data results to a decrease in both East Asia (-5%±27%) and Ko+Jap (-6%±19%) reflecting the difficulty to differentiate the response of background+non-\(\text{ffCO₂}\) and regional \(\text{ffCO₂}\) using CO₂ profiles alone.

Although these results are promising, we emphasize that this is only proof-of-concept which needs to be refined with more rigorous and realistic inverse modeling experiments for different observing systems. This is especially the case for global inversion systems that take into account the appropriate scales inherent in these types of information and goes beyond the use of traditional
error covariance estimation. CO, in particular, is useful in constraining ffCO_2 at regional scales since this scale is commensurate to its lifetime of 1 to 2 months. It becomes problematic at local scales due to its inherent confounding factors and inability of global chemical transport models to capture its variability at these scales. While this study focuses on a specific region, we highlight in this work the importance of rigorously verifying the relationships and sensitivities derived from regional and global models to any joint inverse analyses. It is especially important to verify consistencies across species. Careful consideration of associated errors on the vertical distribution of these sensitivities and assumptions of stationarity is warranted, especially for future joint analyses using satellite columnar retrievals of these species, which lack vertical information and may not necessarily be collocated in both space and time.
Acknowledgments

This study is supported by NNX16AE16G, NNX17AG39G and NNH18ZDA001N. We also thank the CESM and CAM-chem team for technical support, including Stephanie Wuerth for sharing her CAM/DART code modifications. The CESM project is supported primarily by the National Science Foundation (NSF). This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the NSF under Cooperative Agreement No. 1852977. Computing and data storage resources, including the Cheyenne supercomputer (doi:10.5065/D6RX99HX), were provided by the Computational and Information Systems Laboratory (CISL) at NCAR. We especially acknowledge the scientific and product teams in CarbonTracker, CarbonTracker-Europe, and CAMS GHG inversion for the CO₂ flux products that they have kindly provided. CarbonTracker CT2017 results provided by NOAA ESRL, Boulder, Colorado, USA from the website at http://carbontracker.noaa.gov. We also thank the teams involved in HTAP and FINN for CO emission inventories. We acknowledge the following teams for their great effort in taking CO₂ and CO measurements and providing them publicly: KORUS-AQ for DC-8 measurements, TCCON for XCO and XCO₂, NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network for the surface air flask sampling data, MOPITT and OCO-2 for XCO and XCO₂ retrievals, respectively. We thank Dr. Donald Blake’s research group from the University of California, Irvine for collecting the airborne flask samples. The NCAR MOPITT project is supported by the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) Program. We specially thank Dr. Frédéric Chevallier and Dr. Britton Stephens for their insightful comments on improving this manuscript. All the fluxes and emissions, and observational data are available online.

Code and datasets

CESM2.0 is a publicly released version of the Community Earth System Model and freely available online (at www.cesm.ucar.edu, last access: 14 August 2020). The Korea-United States Air Quality Field Study (KORUS-AQ) dataset is available at https://doi.org/10.5067/Suborbital/KORUSAQ/DATA01. MOPITT data is available at https://www2.acom.ucar.edu/mopitt while the Orbiting Carbon Observatory-2 XCO₂ is available at https://disc.gsfc.nasa.gov/datasets/OCO2_L2_Lite_FP_9r/summary. The Total Carbon Column Observing Network (TCCON) and NOAA datasets can be downloaded at https://tccondata.org and (https://www.esrl.noaa.gov/gmd/ccgg/flask.php), respectively.
Appendix A. Tagging ffCO₂ and ffCO in CAM-chem

The abundance of tropospheric CO₂ at any given space (s) and time (t) can be decomposed into contributions from different processes. That is,

\[CO_2(s, t) = CO_2^{bg}(s, t) + \left(CO_2^{bf}(s, t) + CO_2^{bb}(s, t) + CO_2^{cem}(s, t) + CO_2^{res}(s, t) + CO_2^{hem}(s, t) \right) - \left(CO_2^{ln}(s, t) + CO_2^{ocn}(s, t) + CO_2^{st}(s, t) \right) \]

(A.1)

where \(bg \) denotes background, \(ffbf, bb, cem, res \) and \(chem \) are CO₂ sources from fossil fuel/biofuel combustion, biomass burning, cement production, biospheric respiration, and chemical production processes, while \(lnd, ocn, st \) are CO₂ sinks due to biospheric (photosynthetic) uptake, ocean-tropospheric, and tropospheric-stratospheric exchange, respectively. Our notation of non-ffCO₂ corresponds to other sources that are not \(ffbf \).

Similarly,

\[CO(s, t) = CO^{bg}(s, t) + \left(CO^{bf}(s, t) + CO^{bb}(s, t) + CO^{oxid}(s, t) \right) - \left(CO^{OH}(s, t) + CO^{dep}(s, t) \right) \]

(A.2)

where \(oxid, OH \) and \(dep \) denote secondary CO due to VOC oxidation, CO sinks due to its reaction with OH radical and dry deposition, respectively.

We have developed tagging capabilities in CAM-chem for both CO and CO₂ sources by prescribing their associated sinks. Tagging CO has been developed in the past by treating CO from a particular basis function as tracers. That is, we solve the continuity equation for every tagged CO in the same way as the default CO variable in the model but making sure that each tagged CO does not interact with model chemistry (i.e., by treating it as a passive tracer). This mechanism is mentioned in Emmons et al. (2012) and previously used in Bayesian synthesis inversion studies (e.g., Arellano and Hess, 2006) and chemical budget studies (Gaubert et al., 2016). A similar approach is also used by Fisher et al. (2017) with GEOS-Chemv9 model. This tagging capability is further illustrated in Eq. A.3 for a particular tag CO (iitag).

\[\frac{\partial [X]^{itag}}{\partial t} = \left[\frac{\partial [X]^{itag}}{\partial t} \right]_{\text{transport}} + \left[\frac{\partial [X]^{itag}}{\partial t} \right]_{\text{sources}} - \left[\frac{\partial [X]^{itag}}{\partial t} \right]_{\text{sinks}} \]

(A.3)

The temporal evolution of a tracer \([X]^{itag} \) for each grid cell in the model is calculated using the same continuity equation for species \([X] \). As expressed in Eq A.2, this includes the background dynamics represented here as transport term (dynamics and physics incl. advection, diffusion, mixing, convection, and CO flux convergence and divergence), all sources (emissions and chemical production), and all sinks (CO+OH reaction, and deposition). These tags or basis can be either disaggregated sectoral components and/or regional source components of CO depending on the problem to be addressed. Here, we use ffCO₂ emitted from a few regions around Korea as our
basis. All these regions are defined in Figure 1. The response of this basis or the contribution of this source region to overall abundance in CO is estimated by integrating Eq. A.3. Hence, the simulated $[CO]^{itag}$ for example corresponds to $[CO]$ mixing ratio for a given mass of CO emitted to the atmosphere by this $itag$ region. The CO tags added in CAM-chem consists of the following edits to the code: (1) The CO tags are defined in the chemical preprocessor (variable names are arbitrary defined as “CO01”, “CO02”…); (2) emission files for the tags of emissions from specific regions are prepared and defined in the namelist; (3) chemical production of CO for CO tags of chemical sources are defined by adding related chemical reactions in chemical preprocessor; (4) the OH chemical loss is defined in the chemical preprocessor, OH is not affected by the oxidation of tags; (5) dry deposition for the CO tags is applied in the same way as for the default CO variable. Detailed evaluation and validation of CAM-chem CO tags can be found in Tang et al. (2019a) and https://wiki.ucar.edu/display/camchem/.

We apply a similar approach in tagging ffCO$_2$ (Eq. A.1 and Eq. A.3). However, we do not account for chemical production in the source term nor deposition in the sink term. The sink of each ffCO$_2$ tags is derived from the negative surface flux f_{CO2}^{itag}, which we define as the product of the negative surface flux of CO$_2$ (f_{CO2}) at a given time and the ratio of the associated CO$_2$ mixing ratio of the tag ($[CO_2]^{itag}_{srf}$) at the surface and the modeled CO$_2$ mixing ratio $[CO_2]_{srf}$ at the surface; i.e.,

$$f_{CO2}^{itag} = f_{CO2} \cdot \left(\frac{[CO_2]^{itag}_{srf}}{[CO_2]_{srf}} \right)$$ \hspace{1cm} (A.4)

In this manner, the sink of model CO$_2$ can be disaggregated into the sum of the sinks for all tags. This ensures that the relative abundance of the tagged CO$_2$ to the total CO$_2$ is conserved. Other sources of CO$_2$ (chemical oxidation) is treated as part of the “Background+non-ffCO$_2$” in the same manner as the secondary CO within “Background+non-ffCO”. Edits to the model include: 1) The CO$_2$ tags are defined in the chemical preprocessor similarly as “CO2_online” (named “CO2_onilne_anthro”, “CO2_online_fire”, “CO2_online01”, “CO2_online02”, …); (2) positive flux (source) files for the tags from specific regions are prepared and defined in the namelist; (4) sinks of all tags are defined using Eq. A.4. The routines, mo_srf_emissions.F90 and chemistry.F90 codes of the CESM chemistry routines are modified for this development. The modified CAM-chem source codes and chemical preprocessor are accessible through Github (See data availability for details).
References

Kaminski, T., Rayner, P.J., Heimann, M. and Enting, I.G.: On aggregation errors in atmospheric

Liu, Y., Gruber, N. and Brunner, D.: Spatiotemporal patterns of the fossil-fuel CO\(_2\) signal in central

Moore, J. K., Lindsay, K., Doney, S. C., Long, M. C., and Misumi, K.: Marine ecosystem dynamics and biogeochemical cycling in the Community Earth System Model [CESM1 (BGC)]: Comparison of the 1990s with the 2090s under the RCP4.5 and RCP8.5 scenarios, *Journal of Climate*, 26(23), 9291-9312, 2013.

Suntharalingam, P., Randerson, J.T., Krakauer, N., Logan, J.A. and Jacob, D.J.: Influence of reduced carbon emissions and oxidation on the distribution of atmospheric CO$_2$: 38/53

van der Laan-Luijkx, I. T., van der Velde, I. R., van der Veen, E., Tsuruta, A., Stanislaw ska, K.,

Figure 1. Map of the study domain including: land cover (colored map), definition of tag (basis) regions (blue rectangles), location of four East Asia sites from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network (colored dots), location of East Asia TCCON sites (colored rhombus), and the DC-8 aircraft flight tracks during KORUS-AQ (black lines).
Figure 2. Spatial distribution of a priori mean CO$_2$ fluxes from CT3h (top left), CAM-Chem CO emissions (top, right), OCO-2 XCO$_2$ (middle left) and MOPITT XCO composites (middle right) for the entire KORUS-AQ campaign period. Also shown is the spatial distribution of CAM-Chem XCO$_2$ (bottom left) and XCO (bottom right) model equivalents. See Figure S5 for sub-monthly comparisons.
Figure 3. Campaign composite of KORUS-AQ DC-8 flight CO$_2$ (a) and CO (b) data, model equivalent CO$_2$ from CAM-Chem (c) and CO (d), and CO$_2$ from Carbon Tracker (CT2017) CO$_2$. Panel f) shows the flight tracks for the flight groupings in this study.
Figure 4. Mean vertical profiles of CO$_2$ (ppm) and CO (ppb) averaged across the KORUS-AQ campaign period by flight groups (see Figure 3f for the location of these groups). DC-8 data CO$_2$ and CO are shown in black (with error bars corresponding to its standard deviation). Superimposed are model equivalents of CO$_2$ and CO from CAM-Chem (red), CO$_2$ from Carbon Tracker (CT2017, blue), and ensemble mean CO$_2$ from CAM-Chem using CT3h, CAMS, and CTE2018 fluxes (green).
Figure 5. Comparison of ffCO$_2$ with radiocarbon (14CO$_2$) data during KORUS-AQ. The spatial and temporal sampling of 14CO$_2$ (colored markers) and CO$_2$ measurements (gray line) are shown in top left panel (a), (horizontal) and middle panel (c) (vertical and time), respectively. Data points colored in orange and red are considered outliers. The top right panel (b) correspond to a scatterplot between ffCO$_2$ from CAM-chem tags and ffCO$_2$ from 14CO$_2$ (overall correlation is indicated for all data points and excluding outliers). Modeled regional contributions to ffCO$_2$ are shown in the bottom panel (d) along with the values of 14CO$_2$ samples (ppm), and observed and modeled CO and CO$_2$ in the bottom panels of d).
Figure 6. Vertical profiles of mean CO:CO$_2$ correlations (left panels) from DC-8 (red) and CAM-Chem/CT3h (blue), and the correlation between model CO minus DC-8 CO and model CO$_2$ minus DC-8 CO$_2$ (black) arranged by flight groups. Right panels correspond to vertical profiles of derived enhancement ratios (ΔCO:ΔCO$_2$) from DC-8 (red) and CAM-Chem/CT3h (blue) based on ordinary least squares (OLS) regression. Open circles with dotted lines are enhancement ratios derived using reduced major axis (RMA) regression at p<0.05. Number of data points for each vertical layer (1-km) bin is shown in the left panels. The error bar denotes the associated uncertainty of every estimate. Missing values denote non-statistically significant (p<0.05) correlations.
Figure 7. Spatial distribution (averaged across KORUS-AQ) of modeled total CO₂ (ppm) and CO (ppb), modeled ffCO₂ and ffCO₂ tags at model surface, 800 hPa, and 500 hPa. Pearson (pair-wise) correlation coefficients across the domain relative to total CO₂ are shown in the bottom right of each image.
Figure 8. DC-8 ΔCO: ΔCO₂ (green) and associated uncertainty (error bar) derived from all data points within a flight group and vertical layer (0 to 1.5km, 1.5-3.0km and >3.0km). Also shown are contributions of each optimized response functions (based on an inversion using ffCO₂ data, see Figure 9) to the overall observed sensitivity.
Figure 9. *A priori* (blue) and *a posteriori* estimates of ffCO$_2$ scaling factors (and associated uncertainty shown as an error bar) from a Bayesian synthesis inversion using ffCO$_2$ data derived from ¹³CO$_2$ samples (red) and inversion using DC-8 CO$_2$ (yellow-orange) and joint inversion using DC-8 CO$_2$ and CO (magenta). Here, the basis functions are aggregated to include East Asia, Kor+Jap, Rest of the World ffCO$_2$ and “ffCO$_2$ offset” (for ffCO$_2$ inversion) or “Background+non-ffCO$_2$” (for CO$_2$ or CO$_2$ and CO inversions).
Figure 10. Mean vertical profiles of fffCO$_2$ response functions from Kor+Jap (blue), East Asia (red) and ROW (yellow-orange) for each flight group. Dashed and solid lines correspond to a priori and a posteriori estimates, respectively. Mean CO$_2$ bias (model-obs) are shown in the right panels.
Table 1. CO$_2$ fluxes used in this study.

<table>
<thead>
<tr>
<th>CO$_2$ fluxes</th>
<th>Spatial Res.</th>
<th>Temporal Res.</th>
<th>Period</th>
<th>Transport Model</th>
<th>Fossil Fuel Priors</th>
<th>Biosphere and Fires Priors</th>
<th>Ocean Priors</th>
<th>Main Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT2017</td>
<td>1° lon 1° lat</td>
<td>3-hourly</td>
<td>2000-2017</td>
<td>TM5</td>
<td>“Miller” (EDGAR scaled to CDIAC) & ”ODIAC”</td>
<td>CASA w/ GFED 4.1s GFED_CMS</td>
<td>Jacobson et al. (2007) Takahashi et al (2009) Peters et al. (2007)1</td>
<td></td>
</tr>
</tbody>
</table>

1With updates documented at http://carbontracker.noaa.gov.
Table 2. Summary statistics of CO and CO$_2$ NASA DC-8 measurements. npair is the number of data pairs of CO and CO$_2$. Model equivalents and model evaluation against CO and CO$_2$ data are also shown. Units are ppm for CO$_2$ and ppb for CO.

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Seoul</th>
<th>Taehwa</th>
<th>West Sea</th>
<th>Seoul Jeju</th>
<th>Seoul Busan</th>
</tr>
</thead>
<tbody>
<tr>
<td>npair</td>
<td>8942</td>
<td>542</td>
<td>1579</td>
<td>1129</td>
<td>2712</td>
<td>1179</td>
</tr>
<tr>
<td>Obs Mean CO$_2$</td>
<td>410</td>
<td>415</td>
<td>408</td>
<td>411</td>
<td>411</td>
<td>408</td>
</tr>
<tr>
<td>Obs Mean CO</td>
<td>205</td>
<td>266</td>
<td>163</td>
<td>234</td>
<td>223</td>
<td>183</td>
</tr>
<tr>
<td>Obs Std CO$_2$</td>
<td>7.7</td>
<td>13</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Obs Std CO</td>
<td>101.9</td>
<td>113</td>
<td>73</td>
<td>143</td>
<td>101</td>
<td>64</td>
</tr>
<tr>
<td>Obs R$_{CO_2,CO}$</td>
<td>0.66</td>
<td>0.79</td>
<td>0.68</td>
<td>0.89</td>
<td>0.62</td>
<td>0.60</td>
</tr>
<tr>
<td>Obs D$_{CO/CO_2}$</td>
<td>13.30</td>
<td>9.13</td>
<td>15.28</td>
<td>28.20</td>
<td>10.37</td>
<td>15.92</td>
</tr>
<tr>
<td>Model Mean CO$_2$</td>
<td>410</td>
<td>412</td>
<td>408</td>
<td>409</td>
<td>412</td>
<td>410</td>
</tr>
<tr>
<td>Model Mean CO</td>
<td>188.4</td>
<td>237</td>
<td>143</td>
<td>202</td>
<td>213</td>
<td>155</td>
</tr>
<tr>
<td>Model Std CO$_2$</td>
<td>7.8</td>
<td>10.5</td>
<td>4.2</td>
<td>3.5</td>
<td>10.1</td>
<td>5.8</td>
</tr>
<tr>
<td>Model Std CO</td>
<td>107.1</td>
<td>133</td>
<td>70</td>
<td>119</td>
<td>117</td>
<td>62</td>
</tr>
<tr>
<td>Model R$_{CO_2,CO}$</td>
<td>0.55</td>
<td>0.59</td>
<td>0.50</td>
<td>0.39</td>
<td>0.67</td>
<td>0.60</td>
</tr>
<tr>
<td>Model D$_{CO/CO_2}$</td>
<td>13.80</td>
<td>12.61</td>
<td>16.56</td>
<td>33.66</td>
<td>11.54</td>
<td>10.68</td>
</tr>
<tr>
<td>Bias CT3h</td>
<td>-1.0</td>
<td>-3.5</td>
<td>-0.1</td>
<td>-2.2</td>
<td>-1.4</td>
<td>0.8</td>
</tr>
<tr>
<td>Bias CT2017</td>
<td>-1.2</td>
<td>-3.5</td>
<td>-0.4</td>
<td>-1.3</td>
<td>-1.9</td>
<td>0.6</td>
</tr>
<tr>
<td>Bias CO</td>
<td>-24.2</td>
<td>-29.2</td>
<td>-20.4</td>
<td>-32.6</td>
<td>-34.5</td>
<td>-27.9</td>
</tr>
<tr>
<td>R Model versus Obs CT3h</td>
<td>0.39</td>
<td>0.60</td>
<td>0.45</td>
<td>0.40</td>
<td>0.38</td>
<td>0.05</td>
</tr>
<tr>
<td>R Model versus Obs CT2017</td>
<td>0.37</td>
<td>0.43</td>
<td>0.60</td>
<td>0.51</td>
<td>0.32</td>
<td>0.21</td>
</tr>
<tr>
<td>R Model versus Obs CO</td>
<td>0.63</td>
<td>0.63</td>
<td>0.64</td>
<td>0.67</td>
<td>0.59</td>
<td>0.72</td>
</tr>
<tr>
<td>RMSE CT3h</td>
<td>7.7</td>
<td>11.0</td>
<td>4.7</td>
<td>5.3</td>
<td>9.3</td>
<td>7.0</td>
</tr>
<tr>
<td>RMSE CT2017</td>
<td>6.9</td>
<td>9.8</td>
<td>3.9</td>
<td>4.6</td>
<td>9.0</td>
<td>4.8</td>
</tr>
<tr>
<td>RMSE CO</td>
<td>87.6</td>
<td>111.5</td>
<td>64.0</td>
<td>113.6</td>
<td>90.3</td>
<td>55.2</td>
</tr>
<tr>
<td>errorR CT3h</td>
<td>0.40</td>
<td>0.36</td>
<td>0.41</td>
<td>0.57</td>
<td>0.41</td>
<td>0.43</td>
</tr>
<tr>
<td>errorR CT2017</td>
<td>0.37</td>
<td>0.43</td>
<td>0.60</td>
<td>0.51</td>
<td>0.32</td>
<td>0.21</td>
</tr>
<tr>
<td>errorR CO</td>
<td>0.63</td>
<td>0.63</td>
<td>0.64</td>
<td>0.67</td>
<td>0.59</td>
<td>0.72</td>
</tr>
</tbody>
</table>