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Abstract 1 
While the complementarity of CO data in monitoring CO2 from fossil-fuel combustion (ffCO2) is 2 
widely known, a rigorous demonstration of its use in reducing uncertainties on top-down regional 3 
ffCO2 emissions is still warranted. Here, we report a case study investigating the regional 4 
covariation of observed and modeled abundances of CO, CO2, and ffCO2 and demonstrating its 5 
implication to joint CO:CO2 inversions. We use data from a recent aircraft field campaign 6 
(KORUS-AQ) conducted over Korea and neighboring regions on May 2016 for this case study. 7 
We use the Community Atmosphere Model with Chemistry (CAM-Chem) to simulate CO, CO2, 8 
ffCO2 and associated source tags, using a posteriori fluxes from global CO2 flux inversions and 9 
CO emissions independently calibrated against CO data. Among other model-data comparisons, 10 
CAM-Chem simulations show an underestimation in CO2 (1 ppm), CO (24 ppb) and ffCO2 (1 11 
ppm) against aircraft measurements. These are all within the range of model and data uncertainties. 12 
Although the overall observed enhancement ratio, ΔCO ΔCO!⁄  (~13.3±0.21 ppb/ppm), is well 13 
captured by CAM-Chem (~13.8±0.23 ppb/ppm), we find an overestimation (29 ppb/ppm) for air 14 
samples between 2 to 3 km, where East Asian influence is substantial (35%). The contribution of 15 
ffCO2 from Korea and Japan is smaller (30%) and localized below 3 km, suggesting that regional 16 
ffCO2 and background and non-ffCO2 cannot be neglected in interpreting observed enhancements 17 
in this region. These spatial variations translate in the joint CO:CO2 inversion to increases in a 18 
posteriori ffCO2 estimates from East Asia (27%±24%) and Korea and Japan (9%±17%). This is 19 
consistent (albeit larger in 1-sigma uncertainty) with our estimate using 14CO2 data (27%±9% and 20 
10%±3%, respectively). In contrast, the inversion using only CO2 data shows a decrease by 21 
~5%±27% in East Asia and ~6%±19% in Korea and Japan. Our results show that inversions using 22 
both CO2 and CO can be an effective  approach in constraining ffCO2 when the regional variations 23 
of CO and CO2 relationships are appropriately accounted for. Although this further points to the 24 
potential of augmenting current observing system of CO2 with CO for global inverse analyses of 25 
ffCO2 from different regions of the globe, we highlight the need to verify the spatiotemporal 26 
distribution of the covariation of CO with CO2 in both regional and global models. We caution its 27 
use for constraining local ffCO2, unless the spatiotemporal a priori flux distribution and surface 28 
processes are reasonably represented, as they may confound the analysis. These have important 29 
implications on inversion studies using columnar data from satellite observations, especially for 30 
regions lacking necessary verification measurements.  31 
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1. Introduction 32 

Reducing the uncertainty on top-down estimates of carbon dioxide emissions from fossil fuel 33 
combustion (ffCO2) continues to be a challenge. This is due to the dearth of accurate CO2 34 
measurements, including 14CO2-derived ffCO2 measurements, with sufficient spatiotemporal 35 
coverage necessary to resolve variations in combustion and fuel-use patterns, along with difficulty 36 
in teasing out small anthropogenic signature from the large natural sources and sinks dominating 37 
the carbon cycle, and the uncertainties in modeling atmospheric transport (e.g., NRC, 2010; Ciais 38 
et al. 2014). This challenge remains despite the addition of aircraft and satellite measurements of 39 
CO2 abundance in recent years (e.g., Hungershoefer et al. 2010; Chevallier et al., 2014; Houweling 40 
et al., 2015). Understandably, global atmospheric CO2 inversions are sharply focused on 41 
quantifying land and ocean biospheric sources and sinks because of the significantly larger 42 
uncertainties in a priori biospheric fluxes of CO2 and transport models than global ffCO2 emissions, 43 
together with the reality that current global carbon observing systems have been mostly designed 44 
to provide constraints on biospheric fluxes (e.g., Gurney et al., 2003, 2004; Peylin et al., 2013; 45 
Schuh et al., 2019). In light of this, global ffCO2 emissions are typically not constrained in these 46 
inversions, although their importance has long been pointed out, often in the context of terrestrial 47 
and oceanic CO2 flux inversions (e.g., Gurney et al., 2005; Peylin et al., 2011; Saeki and Patra, 48 
2017; Gaubert et al., 2019). As discussed in Andres et al. (2012), the uncertainty in current global 49 
bottom-up fossil fuel CO2 (ffCO2) emission inventories is about 10% globally and ranges from a 50 
few percent to greater than 50% regionally (or nationally). Combustion activity and efficiency and 51 
fuel-use mixtures are still poorly characterized particularly in rapidly developing nations. This is 52 
because of the paucity of detailed information on energy use, combustion practices, and pollution 53 
control strategies in these regions (e.g., Quillcaille et al., 2018; Andres et al., 2016; Hogue et al., 54 
2016). Most recently, Basu et al. (2020) reported that even at national level, ffCO2 emission 55 
inventories in the United States are significantly underestimated by 2 to 3-sigma uncertainties. 56 
While significant efforts on improving bottom-up ffCO2 emission inventories through detailed 57 
accounting on other sources of information have been made (e.g., Gurney et al. 2009; Rayner et 58 
al., 2010; Asefi-Najafabady et al., 2014), the lack of finer scale measurements to verify these 59 
inventories remains to be addressed. Recent reports have recognized this limitation and 60 
recommend augmenting the current observing system with systems that can help identify 61 
dynamical, physical, and chemical signatures of ffCO2 at regional scales (e.g., Ciais et al., 2015).  62 

Observational constraints on ffCO2 from radioactive tracer 14C have largely been established. 63 
Measurements of 14C of CO2 are able to separate the fossil and biogenic contributions in observed 64 
CO2 and serve as useful tracer of ffCO2 emissions from different regions (e.g., Levin et al., 2003, 65 
2008; Turnbull et al., 2006, 2009, 2011, 2015; Graven et al., 2009, 2018; Miller et al. 2012; Basu 66 
et al., 2016; Niu et al., 2016; Berhanu et al., 2017; Nathan et al., 2018; Basu et al., 2020). Fossil C 67 
is 14C free due to the much shorter half-life of 14C (~5,700 years) than the age of the fossil (~/>106 68 
years). Measurements of radiocarbon content (14C) of atmospheric CO2 may sensitively indicate 69 
fossil fuel CO2 (delta value of -1000 ‰) additions to the air sample, showing 14C is lower than 70 
contemporary background (clean air) D14C values. While extremely useful, such measurements 71 
have only been made routinely in few locations around the world (e.g., Turnbull et al., 2007 at 72 
some Global Atmospheric Watch (GAW) sites; Berthanu et al., 2017 in Switzerland) or 73 
occasionally at specific region during field measurement campaigns (e.g., Turnbull et al., 2012 74 
during INFLUX: Indianapolis Flux Experiment). These are still limited in providing sufficient top-75 
down constraints on ffCO2 emissions at a regional to global scale, especially emissions from poorly 76 
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observed developing regions of the world. The utility of these measurements in constraining ffCO2, 77 
in the context of deploying a potential network of these measurements within a joint inversion 78 
framework, have recently been assessed, albeit only through observing system simulations 79 
experiments or OSSEs (e.g., Basu et al., 2016; Nathan et al. 2018; Wu et al., 2018; Wang et al., 80 
2018). The recent study by Basu et al. (2020) using real ∆14CO2 from NOAA sites in the United 81 
States, however, shows very promising results on ffCO2 emission constraints at national level. A 82 
consistent finding among these studies is that, while there is strong potential to reduce national 83 
ffCO2 uncertainties (1% on yearly basis to 5-10% on monthly basis), such atmospheric-based 84 
approach to estimate emissions also requires careful consideration of errors in transport, systematic 85 
bias and accuracy of measurements, and characterization of background CO2.  86 

It is particularly appealing to consider synergies between CO2 and ffCO2 and air quality monitoring 87 
(AQ) observations (e.g., CO, NO2), since in an environment where combustion activities are 88 
dominant, these species being monitored regularly often share the same dominant source category. 89 
Both are co-emitted during carbonaceous-fuel (fossil fuel-FF or biofuel-BF) generation, 90 
combustion, and distribution processes. In particular, CO is produced when combustion is 91 
incomplete; otherwise carbon in the fuel is oxidized to CO2 at equilibrium levels of CO. And so, 92 
observing the relative abundance of ffCO2, CO2, and CO in this environment should provide useful 93 
synergistic information on their associated combustion-related emissions. This is the case for CO, 94 
for which larger number of observations are available from ground network, airborne, and satellite-95 
derived measurements. Such datasets have been utilized in the past to provide additional 96 
constraints on combustion-related emission patterns in urban regions and biomass burning 97 
activities at local to global scales. They have been extended to provide insights on ffCO2 or fire 98 
CO2 (e.g., Suntharalingam et al., 2004; Palmer et al. 2006; Wang et al., 2010; Turnbull et al., 2011; 99 
Brioude et al., 2013; Lopez et al., 2013; Silva et al., 2013; Konovalov et al., 2014; Lindenmaier et 100 
al. 2014; Ammoura et al., 2016; Bowman et al., 2017; Super, 2018; Nathan et al., 2018; Boschetti 101 
et al., 2018 among others), as well as to identify and characterize air masses (e.g., Halliday et al. 102 
2019). These studies used CO as an indirect tracer of combustion through a variety of ways: data 103 
analysis, model-data comparison, modeling, or inversions at different scales and region depending 104 
on their application. ffCO2 emissions in bottom-up emission inventories are calculated using 105 
information on combustion activity, emission factor, and combustion efficiency (CE). A typical 106 
indicator of combustion efficiency is the ratio of measured CO2 to (CO + CO2). Differences in CE 107 
across different source sectors (e.g., power plant: high CE, domestic heating: low CE, flaming fire: 108 
high CE, smoldering fire: low CE) can be distinguished with atmospheric measurements of CO 109 
and CO2. In particular, derived CO:CO2 enhancement ratios near a source region are used to verify 110 
bulk CO:CO2 emission ratios from these inventories. Hourly ffCO2 emission profile from traffic 111 
are also deduced from measurements of CO (e.g., Vogel et al., 2010; Super, 2018). Because of its 112 
medium-length lifetime (1 to 2 months), CO is also a useful tracer of pollution (incl. ffCO2) 113 
transport. Tracking urban plumes using CO can help enhance horizontal and vertical transport 114 
signatures of ffCO2 plumes, which may be difficult with CO2 measurements alone due to its longer 115 
lifetime and the influence of a large biospheric signal. 116 

From a spatiotemporal sampling standpoint, these CO datasets are strongly complementary, 117 
especially in the absence or lack of CO2 and 14CO2 measurements. In addition, identifiable 118 
physico-chemical constraints from CO on anthropogenic CO2 emissions and their transformations 119 
can also be exploited (i.e., oxidation of reduced carbon to CO2, Suntharalingam et al., 2005; Nassar 120 
et al., 2010; Wang et al, 2020). In fact, the recent study by Wang et al. (2020) highlighted the 121 
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impact of accounting for the chemical production of CO2 on estimates of global carbon sinks. Yet, 122 
unlike 14CO2, these types of information from CO are generally confounded by: a) sharp 123 
differences in their associated sinks (through chemical transformation) downwind of its source; 124 
and hence differences in lifetimes and background concentrations across space and time; b) 125 
biogenic sources even within an urban environment; and c) variations in the effectiveness of 126 
pollution control strategies for CO between sectors within an urban region. Note that many of these 127 
confounding factors become more dominant at finer scales of the study region. Hence, constraints 128 
on ffCO2 emissions from CO data has to be exploited at appropriate scales. The joint inversion of 129 
CO and CO2 by Palmer et al. (2006), for example, clearly shows that estimates of anthropogenic 130 
CO2 can be very sensitive to assumptions of the relationship between CO and CO2, which can then 131 
also influence the accuracy of biospheric flux estimates. Due to these factors, its use in constraining 132 
regional to global ffCO2 emissions remains to be limited, despite its complementarity and the 133 
availability of a large number of its measurements. In our view, it is critical to first understand and 134 
better characterize the observed and modeled relationship between CO and CO2 abundance before 135 
incorporating such information at appropriate scales in systems directed towards improving our 136 
capability to attribute the sources of ffCO2.  137 

1.1 Objectives 138 

The main goals of this study are to assess the relationship between CO and CO2 that can be inferred 139 
from observations and a climate-chemistry model and demonstrate its implications to joint 140 
CO:CO2 inversion. Here, we take advantage of 14CO2, CO2, and CO measurements during a recent 141 
field campaign conducted over Korea on May 1-June 10, 2016. This study is a continuation of our 142 
work on evaluating the Copernicus Atmosphere Monitoring Service (CAMS) CO and CO2 high 143 
resolution forecast and analysis products during Korea-United States Air Quality (KORUS-AQ) 144 
field campaign (Tang et al., 2018). This also serves as a complementary study to our recent work 145 
on quantifying the source contributions of CO over Seoul during KORUS-AQ using regional tags 146 
or tracers in the Community Atmosphere Model with Chemistry or CAM-chem (Tang et al., 147 
2019a), and to the study by Halliday et al. (2019) on characterizing air masses using short-term 148 
CO:CO2 ratios during the same field campaign. 149 

The specific objectives of this study are three-fold: 1) We introduce and evaluate a single-model 150 
analysis framework for multi-species analysis and inversions; 2) We examine the modeled and 151 
observed spatial distribution of the inferred relationship between CO, ffCO2 and CO2; and 3) We 152 
demonstrate the role of CO in refining observational constraints in regional ffCO2 emissions 153 
through Bayesian synthesis inversions. This framework is directed towards simulating the 154 
abundance of CO and CO2 in CAM-chem, based on observationally constrained surface fluxes for 155 
CO2 from global flux inversions and a ‘best emission scenario’ for CO from our previous work. In 156 
addition, we added a capability in CAM-Chem to tag the regional sources of ffCO and ffCO2, 157 
which we could not do in our previous study using the CAMS operational forecasting system. 158 
These tags enable us to assess the relationship of regional ffCO2 and CO2 which would not be 159 
possible in this type of model using observations of ffCO2 and CO2 alone. We note that the system 160 
approach we are suggesting in this work is similar to previous global studies of these species, 161 
particularly with Palmer et al. (2006), which also considered aircraft measurements from a field 162 
campaign conducted in 2001 over similar (albeit larger) region (TRACE-P: TRAnsport and 163 
Chemical Evolution over the Pacific, Jacob et al., 2003). We view this work to be complementary 164 
to their study by updating the state of CO:CO2 ratios in this region after 15 years. We emphasize 165 
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that our focus, however, is to characterize these ratios in the context of refining ffCO2 constraints, 166 
and not purely in optimizing global flux inversions. The main difference in modeling framework 167 
between this work and previous studies is the use of a posteriori fluxes (and emissions), rather 168 
than a priori fluxes in simulating the abundance. Also, while Halliday et al. (2019) and Tang et al. 169 
(2018) have already presented such characterization of CO:CO2 ratios during KORUS-AQ, this 170 
study is unique in a way that we use the tagged ffCO2 component of this system to attribute the 171 
contributions of regional ffCO2 on these ratios. 172 

This paper is structured as follows. In Section 2, we describe the model and datasets used in this 173 
study. In Section 3, we evaluate the modeled CO, CO2, and ffCO2 during KORUS-AQ. We 174 
characterize the spatial distribution of CO and CO2 relationships and its implication to CO:CO2 175 
inversion in Sections 4 and 5, respectively. We present the discussion and general implications of 176 
this study in Section 6 and our conclusions in Section 7. 177 

2. Methods and data description 178 

2.1 CESM/CAM-Chem 179 

The Community Earth System Model version 2 (CESM2) includes atmosphere, land, ocean, land 180 
ice, sea ice, and river components, all of which are connected by a coupler (Danabasoglu et al., 181 
2020). CAM-chem is the atmospheric chemistry component of CESM, coupled with the land 182 
model (Lamarque et al., 2012). In CESM2, CAM-chem includes a significantly updated 183 
tropospheric chemistry mechanism (MOZART-T1), coupled to a VBS (volatility basis set) scheme 184 
for the formation of Secondary Organic Aerosols (SOA), allowing to simulate explicitly the 185 
tropospheric and stratospheric composition (Emmons et al., 2020; Tilmes et al., 2019).  186 

2.1.1. CO2 fluxes and CO emissions  187 

The default CAM-chem configuration for greenhouse gases (CO2 and CH4) simulations are carried 188 
out by prescribing mixing ratios of these species at the model surface layer, following the CMIP6 189 
protocol (Meinshausen et al., 2017). The CO2 mixing ratios at the surface layer are based on 190 
zonally averaged observed CO2 from NOAA ESRL Carbon Cycle Cooperative Global Air 191 
Sampling Network (Dlugonkencky et al., 2015). In this study, however, we simulate atmospheric 192 
CO2 explicitly with an ensemble of external CO2 fluxes. Specifically, we use the a posteriori fluxes 193 
from CAMS Greenhouse Gases (GHG) flux inversion (CAMSv17r1; Chevallier et al., 2005, 2010, 194 
2013, 2018), CarbonTracker 2017 (CT2017; Peters et al., 2007, with updates documented at 195 
http://carbontracker.noaa.gov), and CarbonTracker Europe 2018 (CTE2018; van der Laan-Luijkx 196 
et al., 2017). CarbonTracker is a global modeling system of CO2 developed by NOAA with a 197 
nested grid on North America (Peters et al., 2007, with updates documented at 198 
http://carbontracker.noaa.gov). CarbonTracker Europe is developed based on CarbonTracker (van 199 
der Laan-Luijkx et al., 2017). Both CT2017 and CTE2018 provide fluxes of fossil fuel, fire, land, 200 
and ocean components, which we use for our tagging of regional sources of ffCO2. CAMSv17r1 201 
is produced by the inversion system called PyVAR (Chevallier, 2018). We regridded all these CO2 202 
fluxes to match our CAM-chem resolution (0.95°´1.25°). Details of the fluxes are listed in Table 203 
1 (and Table S1). Technical details for simulating atmospheric CO2 explicitly with external CO2 204 
fluxes in CAM-chem are included in the supplementary material (Text S1). The term “CAM-chem 205 
CO2”, “simulated CO2” and “modeled CO2” in this study stand for the atmospheric CO2 simulated 206 
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with the aforementioned method rather than the atmospheric CO2 prescribed in CAM-chem by 207 
default, unless stated otherwise. To simulate CO in CAM-chem, we use the Fire INventory from 208 
NCAR (FINN; Wiedinmyer et al., 2011) for biomass burning CO (as well as other related species 209 
such as NMVOCs) emissions, and the Hemispheric Transport of Air Pollution version 2 inventory 210 
(HTAPv2; Janssens-Maenhout et al., 2015) for anthropogenic CO (as well as other related species 211 
such as NMVOCs) emissions. In our previous evaluation of CO (Tang et al., 2019a), we calibrated 212 
these HTAPv2 emissions by doubling its associated CO and VOC emissions in East Asia and 213 
Korea to match the CO data in the region. The CT2017 CO2 fluxes and CO emissions are shown 214 
in Figure 2 while the other 3 CO2 fluxes and the ensemble standard deviation are shown in Figure 215 
S1. 216 

2.1.2 Implementation 217 

We run four CAM-chem simulations with simulated CO2 as well as full chemistry (e.g., CO, O3) 218 
for the year 2016, using four sets of CO2 fluxes as described in Table S1 (including CT2017 3-219 
hourly fluxes, CT2017 monthly fluxes, CTE2018 fluxes, and CAMS fluxes). We run CAM-chem 220 
with the model meteorological fields nudged towards Modern-Era Retrospective analysis for 221 
Research and Applications, Version 2 (MERRA-2, Gelaro et al., 2017). The CAM-chem CO2 is 222 
initialized with CT2017 mole fraction fields on January 1st, 2016, while other variables in CAM-223 
chem (e.g., CO) are initialized with results from previous CAM-chem simulations. The associated 224 
global budgets for our CO and CO2 simulations are presented in Table S2. We also show in the 225 
supplementary material (Figure S2) the corresponding global CO2 abundance for each flux product 226 
that we used and the concentration fields from CT2017. This is intended to ensure that: a) CAM-227 
chem reasonably reproduces the CT2017 CO2 fields when using CT2017 fluxes; b) appropriate 228 
accounting of each tag is carried out; and c) mass is conserved. Overall, our simulation results 229 
produce CO2 fields comparable to current CO2 analyses while carbon is reasonably accounted for. 230 
Differences in CO2 mass is ~0.001% of initial burden which may be attributed to a cutoff of model 231 
top at ~2 hPa. In most of our analysis, we will use CAM-chem with CT3h fluxes as our base 232 
simulation. Comparisons of simulated CO2 between other fluxes are only intended to show the 233 
total spread and not necessarily to draw conclusions on emissions or performance of these fluxes 234 
since these fluxes vary in spatiotemporal resolution. 235 
 236 
2.1.3 Tagging ffCO2 and CO 237 
As previously noted, we developed a capability in CAM-chem to tag different source regions 238 
and/or emission types for ffCO2 in addition to the existing CO tagging mechanism. This tagging 239 
approach is further described in Appendix A. We run one tagged simulation for May to June 2016 240 
(the KORUS-AQ campaign period) using the same model configuration but only with CO2 fluxes 241 
and CO emissions from the tagged regions defined in Figure 1. Note that for this particular 242 
simulation, we use CT2017 3-hourly fluxes for CO2 (CT3h) and a relatively well performing CO 243 
emission scenario from Tang et al. (2019a) which is based on HTAPv2 for anthropogenic CO 244 
emissions. We tag ffCO2 from 11 regions in East Asia (shown in Figure 1) with one additional tag 245 
that accounts for fossil fuel emissions from the rest of the world (ROW), to complete the ffCO2 246 
budget in CAM-chem. The CO2 and CO tags are initialized with zero fields on Jan 1, 2016, so that 247 
only the emissions in 2016 are accounted when analyzing the relationships between ffCO2 tags, 248 
CO and CO2. Note that this Eulerian tagging method will be used to account for the relative 249 
contribution of different source regions to modeled CO2. This is similar, in principle, to forward 250 
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and backward Lagrangian trajectory models of air parcels like FLEXible PARTicle dispersion 251 
model (FLEXPART, Stohl et al. 2009) used in Turnbull et al. (2011).  252 

2.2 Observational datasets  253 
While we focus our analysis on KORUS-AQ measurements, we also use other datasets to assess 254 
the overall consistency of simulated CO and CO2 (incl. their relationships) during this period. 255 
Please see the supplementary material (Table S3) for more information.  256 

2.2.1 Aircraft measurements of CO, CO2, and ffCO2 during KORUS-AQ 257 

The Korea United States Air Quality (KORUS-AQ) field campaign was conducted over South 258 
Korea and its surrounding waters from May to June 2016 (Al-Saadi et al., 2014; https://www-259 
air.larc.nasa.gov/missions/korus-aq/). The flight tracks are shown in Figure 1. The Atmospheric 260 
Vertical Observations of CO2 in the Earth's Troposphere (AVOCET; Vay et al., 2011) and 261 
Differential Absorption CO Measurement (DACOM; Sachse et al., 1987, 1991) were onboard the 262 
NASA DC-8 aircraft to measure CO2 and CO, respectively. AVOCET uses a modified LI-COR 263 
6252 instrument with time response of 1 second, precision and accuracy of 0.25 ppm (Vay et al. 264 
2003). The DACOM instrument has a time response of 1 second, precision of 0.4 ppb and accuracy 265 
of 2%. These instruments were calibrated in flight during the campaign with standards from 266 
NOAA ESRL traceable to WMO CO2_X2007 (Zhao & Tans, 2006) and CO_X2014A (NOAA, 267 
2020). 268 

In addition, 46 radiocarbon (14CO2) samples have also been collected onboard the NASA DC-8 269 
aircraft during KORUS-AQ campaign with WAS (Whole Air Sampler team at UCI) flask samples 270 
and measured at W.M. Keck Carbon Cycle Accelerator Mass Spectrometer lab at UC, Irvine. 271 
ffCO2 calculation from 14C of CO2 followed the approach by Turnbull et al. (2011), Miller et al. 272 
(2012), and Lehman et al. (2013). In particular, we use Eq. 1 of Turnbull et al. (2011) to derive 273 
𝐶𝑂!"" (using their notation) with a background value of D14CO2 (or ∆#$ in their notation) of 15‰. 274 
This value is adopted based on D14CO2 data in Point Barrow, AK (13.9±1.5 ‰) and Niwot Ridge, 275 
CO (NWR, ~15 ‰) during the same May-June 2016 period corresponding to the KORUS-AQ 276 
campaign. This choice follows in the same manner to the discussion in Turnbull et al. (2011) on 277 
representative background values. As they pointed out, the high-altitude clean air sites, like NWR, 278 
appear to be representative of Northern Hemisphere midlatitude background and similar to 279 
Jungfraujoch, Switzerland which was also previously used in other studies to represent the 280 
background. They also pointed out that differences on the choice of background values do not 281 
significantly affect their results since these differences are smaller than the enhancements in their 282 
study region (Tae-Ahn Peninsula, Korea -TAP, Shangdianzi, China - SDZ), which is similar to our 283 
study region. In fact, we find that D14CO2 during the campaign are always lower than 15‰. For 284 
the correction of the other effects, such as heterotrophic respiration and biomass burning (see 2nd 285 
term of Eq 1 in Turnbull et al., 2011, bias b in Eq 4 of Turnbull et al., 2009), we use -0.5 ppm 286 
corresponding to their estimate of this correction for summer months. We also follow a similar 287 
reasoning regarding the relatively small (with some that are not quantifiable in North Korea nuclear 288 
facility) 14C influence on emissions of ffCO2 from nuclear powerplant activities in Korea, since all 289 
the powerplant sites are using pressurized water reactor ((https://www.world-290 
nuclear.org/information-library/country-profiles/countries-o-s/south-korea.aspx). In the same 291 
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manner, the 1-sigma uncertainties in ffCO2 and D14CO2 are estimated to be 1 ppm and ±1.8‰, 292 
respectively. 293 

2.2.2 Satellite-derived measurements of CO and CO2  294 

To provide a broader spatial context, we use retrievals of CO2 column-averaged dry-air mole 295 
fraction (XCO2) from the NASA Orbiting Carbon Observatory-2 (OCO-2), version 8, level 2 (L2) 296 
Lite product with the recommended quality flag (i.e., xco2 quality flag equals to 0) (Boesch et al., 297 
2011; Osterman et al., 2017; O’Dell et al., 2018). The uncertainty of XCO2 retrievals is about 1-2 298 
ppm (Wunch et al., 2017). For CO, we use total column retrievals (XCO) of the Measurements Of 299 
Pollution In The Troposphere onboard Terra, version 7, Level 2, multispectral (thermal 300 
infrared/near infrared; TIR/NIR) (MOP02J, L2, V7) with the recommended quality flag (i.e.: cloud 301 
mask from MOPITT and Moderate Resolution Imaging Spectroradiometer agree on clear for 302 
Cloud Description; sum of Retrieval Anomaly Diagnostics equals to 0; solar zenith angle is less 303 
than 80) (Worden et al., 2010; Deeter et al., 2017). The model equivalent is calculated by first 304 
interpolating the model profile to the location of the satellite retrieval and applying the associated 305 
a priori profile and averaging kernel. 306 

3. Comparison of modeled and observed CO, CO2, and ffCO2  307 

A comprehensive summary of our comparison against KORUS-AQ (and other types of observing 308 
platforms) is presented in Table 2 (and Table S4). Overall, these simulations show relatively good 309 
agreement. The error statistics are comparable with state-of-the-art CO2 and CO model 310 
simulations. The CO2 simulations, in particular, closely matches with CT2017 mole fractions. The 311 
bias in modeled CO2 against observations are also within the range of biases in other models. For 312 
example, the bias in CAM-chem against TCCON Saga site (Shiomi et al., 2017) range from -0.6 313 
to -1.5 ppm, which is within the error range of OCO-2 MIP CO2 (Crowell et al. 2019) for the same 314 
period. We emphasize here that the statistics of such comparisons (including error statistics like 315 
bias, root-mean-squared-error, and correlation) are estimated for instantaneous data points during 316 
the KORUS-AQ period (May to June 2016) or only for a single year in 2016 (in the case of NOAA 317 
and TCCON comparisons, see Figure S3 and S4). This period corresponds mostly to the peak in 318 
global average CO2 in 2016 (Figure S2). Error comparison with other models should be limited to 319 
this specific month and year.  320 

As shown in Figure 2, the mean spatial covariation of major sources of CO2 and CO in the region 321 
(Beijing, Shanghai, Guangzhou, Seoul, Tokyo) for this period are broadly similar. However, they 322 
are more pronounced in observed XCO2 than XCO. We attribute this to relatively lower sensitivity 323 
of MOPITT retrievals near the surface and differences in the source magnitudes between large 324 
cities in East Asia and Korea and Japan. While the overall correlation (R=0.46-0.68) and bias (~0.5 325 
to 0.8 ppm) between modeled and observed XCO2 are relatively moderate, the modeled XCO2 is 326 
slightly underestimated in source regions (e.g., Beijing, Tokyo, Seoul) and overestimated in the 327 
Yellow Sea and northern latitudes. The modeled XCO, on the other hand, appears to be 328 
overestimated across the East Asian domain (i.e., R=0.76, bias~6.4 ppb) with higher variability 329 
(27 ppb) than observed (19 ppb). This is most likely due to the previous scaling (doubling) of 330 
anthropogenic CO and VOC HTAPv2 emissions in East Asia and Korea, as well as possible 331 
overestimation of fires in the region from FINN. Observed “background” of XCO2 (401.75 ppm) 332 
and XCO (80.01 ppb) are slightly overestimated (402.94 ppm) and underestimated (79.50 ppb) by 333 
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CAM-chem.  “Background” is broadly defined here as 5th percentile across the domain for the 334 
May 2016 period. On the other hand, the 95th percentile of observed XCO2 (408 ppm) and XCO 335 
(137 ppb), broadly representing “polluted” conditions, are underestimated (407 ppm) and 336 
overestimated (156 ppb) by CAM-Chem suggesting variations in overall bias between 337 
“background” and “polluted” conditions in this region.  338 

3.1 Comparison against KORUS-AQ CO and CO2 measurements 339 

Similar to Tang et al. (2018), we organized these aircraft measurements into five flight groups to 340 
facilitate a more detailed comparison of the spatial distribution of CO and CO2 in the region. These 341 
groups represent variations in sampling of air mass characteristics during the campaign (see Figure 342 
3f). In particular, the Seoul flight group represents air samples over Seoul, which is characterized 343 
to have a dominant signature from anthropogenic combustion processes, while Taehwa represents 344 
air samples that may have both biospheric (nearby forest) and anthropogenic (Seoul metropolitan) 345 
influence. The flights over the West Sea were designed to capture China pollution outflows by 346 
conducting only on days when a China outflow is expected to be present. The Seoul–Jeju flight 347 
group represents air samples over local power plants, transported air from the West Sea, and over 348 
nearby croplands, while the Seoul–Busan flight group represents air samples over forest, rural, and 349 
Busan urban regions.  350 

We show in Figures 3 and 4 the average horizontal and vertical distribution of observed and 351 
modeled CO and CO2 for different flight groups. The overall statistics, which are calculated across 352 
all data points within a flight group, are also summarized in Table 2. For comparison with CAM-353 
Chem CO2, we also show the model equivalent CO2 from the mole fractions reported in CT2017 354 
system, which uses a different transport model (TM5). It is evident from these comparisons, that 355 
while the spatial gradients in observed CO2 are relatively captured by CAM-chem (albeit also 356 
showing lower variability than observed), there appears to be a low negative bias (i.e., model minus 357 
obs) in nearby source regions (Seoul and its west coast), and over West Sea. The range of observed 358 
CO2 values across flight groups, altitude, and KORUS-AQ period starts from a low of 408 ppm 359 
(Taehwa) to a high 415 ppm (Seoul) with the standard deviation ranging from 4 ppm (Seoul-360 
Busan) to 13 ppm (Seoul). The model equivalents are slightly lower and less variable: 408 ppm 361 
(Taehwa) to 412 (Seoul) with standard deviation between 3.5 ppm (West Sea) and 10.5 ppm 362 
(Seoul). Such a slight underestimation is shown to occur in the lowermost layer of the observed 363 
CO2 vertical profiles (Figure 4) where the median bias and interquartile range (IQR) across flight 364 
groups is -2.7±4.6 ppm.  Yet over the southern coast of Korean peninsula, as well as the transect 365 
from Seoul to Busan, there is a positive bias. A slight overestimation can also be seen in the air 366 
aloft (Taehwa, Seoul-Busan, and Seoul-Jeju), where the median bias and IQR is 0.6±0.6 ppm. 367 
Above 3 km, the 5th percentile of CO2 data (All flights) is 403.5 ppm, while its model equivalent 368 
is 405.1 ppm. Such underestimation and overestimation are consistent with our comparison against 369 
OCO-2 XCO2 indicating variations on the influence of local and regional “pollution” 370 
(underestimation) and “background” (slight overestimation) on these biases. Differences between 371 
CAM-chem and CT2017 CO2 are small except in below 2 km. The median difference in bias 372 
between CAM-chem and CT2017 across flight groups and altitude is -0.1±0.6 ppm, where much 373 
of the variability comes from West Sea. Since both systems use the same flux distribution (CT3h), 374 
we mostly attribute this difference to the coarser resolution (3o x 2o) of the CT2017 mole fraction 375 
fields that we obtained from Carbon Tracker, which may not be able to better represent local 376 
variations in CO2. It is quite possible that these differences are due to differences in boundary layer 377 
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representation due to coarser vertical resolution and/or different treatment of boundary layer 378 
processes between TM5 and CAM-chem. The overall bias in CAM-chem (-1 ppm) is also 379 
comparable (albeit opposite in sign) to the bias in CAMS forecast and analysis system (0.8 to 2.2 380 
ppm) that we reported in Tang et al. (2018). This system is based on the Integrated Forecasting 381 
System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) combined 382 
with modules for atmosphere composition (Flemming et al., 2017, Agustí-Panareda et al., 2017), 383 
biospheric CO2 fluxes from terrestrial vegetation (Boussetta et al., 2013), four-dimensional 384 
variational data assimilation (Inness et al., 2019), and biogenic flux adjustment (Agustí-Panareda 385 
et al., 2016). Note that the CO2 fluxes in this system are different from GHG CAMSv17r1 386 
(Chevallier, 2018), which we used as one of a posteriori CO2 fluxes in model. Unlike in CAM-387 
chem, where we see an underestimation of CO2 in the boundary layer, the positive bias in CAMS 388 
is systematic across the vertical profiles for all flight groups, except over West Sea (see Figure 4 389 
of Tang et al. 2018).  390 

In contrast to our comparison with MOPITT XCO across East Asian domain, the modeled CO 391 
over Korea during KORUS-AQ is generally underestimated (model minus obs: -20 to -35 ppb), 392 
except over the west of Seoul and southern Korea. The range of observed CO values across flight 393 
groups, altitude and KORUS-AQ period starts from a low of 163 ppb (Taehwa) to a high of 266 394 
ppb (Seoul) with the standard deviation ranging from 64 ppb (Seoul-Busan) to 143 ppb (West Sea). 395 
The model equivalents are lower and less variable: 143 ppb (Taehwa) to 237 (Seoul) with standard 396 
deviation between 62 ppb (Seoul-Busan) and 133 ppm (Seoul). This is reflected in the CO vertical 397 
profiles, where across most of flight groups (except Seoul-Busan) the modeled CO is 398 
underestimated below 2 km (median bias and IQR across flight groups is -41 ±24 ppb) and above 399 
3 km (-12 ±13 ppb). The only overestimation in modeled CO (median bias of +3 ppb), which is 400 
also reflected in the higher variability of the bias (IQR=84 ppb), can be found at 2-3 km aloft over 401 
Seoul (80 ppb), West Sea (67 ppb) and at 4-5 km over Seoul-Jeju (32 ppb). Above 3 km, the 5th 402 
percentile in observed and modeled CO are 97 and 86 ppb, respectively. Below 3 km, similar 403 
negative bias of ~12 ppb (420 ppb versus 432 ppb) can be found. This suggests an underestimation 404 
of CO in “background” conditions by CAM-chem across the vertical profile in the KORUS-AQ 405 
sampling domain. The regional influence at 2-3 km, on the other hand, is overestimated, as is also 406 
reflected in MOPITT XCO, which we attributed to  an overestimation of “polluted” conditions in 407 
the model. The overall negative (and systematic) bias in CO is attributed to an underestimation of 408 
secondary and background CO or an overestimation of OH, since we still see an underestimation 409 
despite previous scaling of East Asia’s and Korea’s anthropogenic CO and VOC emissions. We 410 
expect that anthropogenic sources of CO in this region is already overestimated. This systematic 411 
bias has been reported in Tang et al. (2019a), which implies considering optimizing secondary CO 412 
and indirectly constraining CO loss due to OH together with primary CO emissions (Gaubert et 413 
al., 2020). Relative to CAMS CO, the overall mean bias against KORUS-AQ in CAM-chem (-24 414 
ppb) is also comparable to CAMS (-20 to -25 ppb). Note that the CAMS system assimilates 415 
MOPITT XCO among other datasets into their forecasting system. 416 

The correlations between CO2 and CO errors (bias) are relatively moderate across all flight groups. 417 
These error correlations range from 0.36 over Seoul to 0.57 over West Sea, and 0.40 over All 418 
flights. These are lower than CAMS CO and CO2 forecasts and analysis (i.e., 0.64-0.90 over Seoul, 419 
0.80-0.82 over West Sea, and 0.49 -0.61 overall). Since CO2 and CO simulations share a common 420 
transport in CAM-chem, lower error correlation in CAM-chem can be due to larger inconsistencies 421 
in representing CO2 and CO sources and sinks in this model. And since both CO and CO2 422 
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simulations are consistently underestimating surface concentrations while the same set of 423 
simulations underestimate and overestimate concentrations aloft, respectively, this suggests that 424 
biases in regional sources and sinks are inconsistent between CO and CO2. Although this 425 
inconsistency is expected by design since we used emissions and fluxes from different inventories 426 
and analysis system to highlight variations and potential errors in effective emission ratios, this 427 
also implies the need for accounting for these errors within a multi-species optimization approach. 428 

3.2 Comparison against KORUS-AQ 14CO2-derived ffCO2 measurements  429 

Figure 5 shows the horizontal (5a), vertical (5c), and temporal distributions (5d) of 14CO2 430 
measurements during the campaign. Sample IDs are indicated in the sample location along with 431 
approximate time stamps for a group of samples. We compare these with model ffCO2, which is 432 
calculated as the sum of ffCO2 abundance from the 12 tagged ffCO2 emissions. We note that the 433 
model ffCO2 is not exactly the same as ffCO2 derived from the 14CO2 measurements because of 434 
our assumption of initial condition (accounting for emissions from January 1, 2016). As described 435 
in section 2, ffCO2 is derived from 14CO2 using a D14CO2 background value representative of the 436 
entire KORUS-AQ campaign period. Since these airborne measurements are taken close to the 437 
fossil fuel emission sources, and hence the variations in the ffCO2 (accumulated since Jan 1st, 438 
2016) are expected to mostly capture the spatial and temporal variations of regional ffCO2 derived 439 
from 14CO2 measurements. We expect that the tagged ffCO2 outside of this region is small and can 440 
be lumped as an offset in ffCO2 initial condition. Figure 5b also shows a scatter plot of ffCO2 441 
derived from the 14CO2 measurements and ffCO2 from CAM-chem. We note that there is a lack of 442 
variability in the model for low ffCO2 samples (model standard deviation of 8.6 ppm), as shown 443 
by points clustering around 9 ppm by the model, in contrast to 1 to 12 ppm by the data (obs standard 444 
deviation of 13.2 ppm). This may be related to the relative coarse model resolution (0.9° ´1.25°). 445 
Despite the lack of variability in the model and the limited 14CO2 samples, the overall correlation 446 
between ffCO2 derived from 14CO2 measurements and modeled ffCO2 tags is moderate (R=0.51). 447 
We identified five (5) data points where derived ffCO2 is significantly high (or low) relative to 448 
their model equivalents (i.e., >90th percentile of the variance of residual). These points are marked 449 
as red (orange) points in Figure 5b. Without these five data points, derived ffCO2 and modeled 450 
ffCO2 have a better correlation of 0.82 (R2=0.67), which is significant at >99% confidence interval. 451 
Note that the average 14CO2 values for this campaign period (May 2016), excluding these 5 points, 452 
is 13.2±9.5 ppm, while the 10th and 90th percentiles are in the order of 4.3 and 26.1 ppm, 453 
respectively. This is relatively consistent (albeit higher) with the values from Turnbull et al. (2011) 454 
at Tae-Ahn Peninsula (NOAA/TAP is west coast of Seoul), where the average CO2ff they reported 455 
is 8.5±8.6 ppm and 0.4 and 23.2 ppm for 10th and 90th percentile across a different period (~2005-456 
2010). The recent study by Lee et al. (2020) at Anmyeon-do (NOAA/KMA-GAW/AMY is 24 km 457 
away from TAP) reports a mean value of 9.7±7.9 ppm (with a range between -0.05 to 32.7 ppm) 458 
for the more recent period from May 2014 to May 2016. The value of ffCO2 derived from 459 
interpolated values of NOAA/KMA-GAW/AMY CO2 (417 ppm) and D14CO2 (-15‰) fitted curves 460 
(https://www.esrl.noaa.gov/gmd/dv/iadv) is roughly around 11.8 ppm using the same assumptions 461 
of D14CO2 in the region. We find a relatively higher value during KORUS-AQ as there are more 462 
polluted air masses sampled over Seoul and West Sea during the campaign. These relatively higher 463 
values imply a slight increase in derived ffCO2 in this region. This is reflected in the trend of the 464 
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fitted curves for CO2 (increasing) and D14CO2 (decreasing) at AMY and consistent with the 465 
analysis by Lee et al. (2020).  466 

The regional contributions to modeled ffCO2 are superimposed in the bar plots of Figure 5d. The 467 
observed and modeled CO2 and CO corresponding to the same air samples are also shown in Figure 468 
5d to show the relationship between CO2, CO, and ffCO2. While we will discuss this in more detail 469 
in the next two sections, we introduce these tags to point out that the main contributors to the 470 
modeled ffCO2 during the campaign are the nearby source regions in East Asia and Korea. ffCO2 471 
ROW has relatively flat contribution across all samples. Including an offset of 1 ppm to account 472 
for errors in initial condition, the model exhibits a low bias of 1 ppm compared to derived ffCO2. 473 
Note that ffCO2 only accounts a small fraction of observed CO2, even near large source regions 474 
like Seoul. We also note that the 2 sample points over Seoul, where the modeled ffCO2 is 475 
significantly overestimated, correspond to large overestimation in CO when East Asia has 476 
relatively moderate contribution and overestimation in CO2 when Korea’s contribution is expected 477 
to be dominant. On the other hand, the 3 sample points over the west of Seoul and West Sea, where 478 
modeled ffCO2 is significantly underestimated, correspond to an underestimation of CO and CO2 479 
regardless of the main source contributor. Again, this variation is consistent with the variation in 480 
bias in “polluted” conditions of modeled CO and CO2 in East Asia described earlier. We attribute 481 
these  differences to the following: (1) errors in initial condition of ffCO2; (2) CO2 (and CO) FF/BF 482 
emissions used in this study may be underestimated (overestimated) over East Asia and Korea; 483 
and (3) the vertical mixing may be overestimated by CAM-chem. We will further investigate these 484 
differences in section 5, where we conducted an inversion using derived ffCO2. 485 

4. Observed and modeled relationships of CO and CO2   486 

In this section, we present a closer look at the variations in CO:CO2 correlation (𝑅%&,%&!) and 487 
enhancement ratios (ΔCO ΔCO!⁄ ) across flight groups and along vertical profiles. These ratios 488 
represent the change of CO abundance per unit change in CO2 relative to their corresponding 489 
background values (i.e., enhancement or excess). Here, enhancement ratios refer to the slopes 490 
derived from a bivariate linear regression of CO and CO2 data points rather than the estimates of 491 
the ratio of enhancements based on a priori knowledge of their background (e.g., Yokelson et al., 492 
2013; Hedelius et al., 2018). The results in our model evaluation against KORUS-AQ 493 
measurements indicate that at near surface and near polluted conditions, both CO and CO2 are 494 
underestimated suggesting a possible underestimation of common local processes, while aloft, CO2 495 
is slightly overestimated, and CO is underestimated suggesting a more dominant “background” 496 
influence. Here, we will assess if variations in 𝑅%&,%&! and ΔCO ΔCO!⁄  also reflect this finding. 497 
We have broken down the statistics in Table 2, with regards to modeled and observed correlation 498 
between CO and CO2 and their associated error correlations, into 6 (1-km) vertical layers for each 499 
flight group. We also derived the corresponding vertical profile of ΔCO ΔCO!⁄  using two 500 
regression approaches: 1) ordinary least squares (OLS) regression approach with CO2 as our 501 
predictor since it is more stable than CO, and 2) reduced major axis regression (RMA) at 95% 502 
confidence to account for errors in both CO and CO2. The enhancement ratios in Table 2 503 
correspond to regression slopes using RMA. We will refer to CAM-chem simulations with CT3h 504 
fluxes as the model equivalents for all our analyses. 505 

 506 
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4.1 Correlation and error correlation  507 

Figure 6 shows the vertical profiles of the CO:CO2 statistics for each flight group during the 508 
campaign. Although we only plotted statistically significant correlation and error correlation, 509 
statistics using less than 30 data points are not considered in this analysis. It is important to note 510 
here that these statistics are only indicative of covariations in CO and CO2. We focus our analysis 511 
on the relative differences between observed and modeled statistics. This only serves as another 512 
piece of information on the variability in CO and CO2 relationship in the region.      513 

Below 2 km, the modeled CO:CO2 correlation (𝑅%&,%&!
()* ) is systematically lower than observed 514 

(𝑅%&,%&!
)#+ ) except at 1 km in Seoul-Jeju and Seoul-Busan. The average 𝑅%&,%&!

)#+ values across flight 515 
groups is 0.67±0.02 whereas the average 𝑅%&,%&!

)#+ is 0.47±0.16. Aloft, it is the opposite (i.e., 516 
modeled correlation is higher than observed) except in Taehwa, where they appear to be diverging 517 
along the upper layer of the vertical profile. The average 𝑅%&,%&!

)#+ value across flight groups in these 518 
vertical levels is 0.47±0.22, whereas the average 𝑅%&,%&!

)#+ is 0.55±0.32. This pattern of lower 519 
modeled correlation at the surface but higher aloft is clearly seen in West Sea, where we see the 520 
highest 𝑅%&,%&!

)#+  (0.95) against the lowest 𝑅%&,%&!
()*  (0.11) among flight groups. The low 521 

𝑅%&,%&!
()* relative to 𝑅%&,%&!

)#+ at the surface supports previous discussion that the model does not 522 
capture the observed variability in both CO and CO2 data. Near the surface, a high 𝑅%&,%&! in both 523 
model and observations can be associated with well-correlated sources and sinks since CO, CO2, 524 
and ffCO2 share the same model transport representation. A low 𝑅%&,%&!

()*  but high 𝑅%&,%&!
)#+  on the 525 

other hand, can be associated with lack of variability in the model. Similar underestimation of 526 
boundary layer 𝑅%&,%&!

()* (albeit notably smaller) can be found in Seoul (0.57 vs 0.79) and Taehwa 527 
(0.41 vs 0.61). Coarser spatiotemporal representation of associated sources and sinks and boundary 528 
layer processes can influence these values. In Tang et al. (2018), for example, we find that the 9-529 
km resolution forecast/analysis of CAMS with 137 vertical levels (FC9s) led to significantly closer 530 
correlation to 𝑅%&,%&!

)#+  than its free running 16-km resolution (FC16s), except over West Sea where 531 
both FC16s and FC9s, like in CAM-chem, failed to capture the high 𝑅%&,%&!

)#+ .  532 

On the other hand, above 2-3 km, 𝑅%&,%&!
()*  is higher than 𝑅%&,%&!

)#+  indicating that the modeled air 533 
masses are more influenced by relatively less-aged plumes transported into the region. As we will 534 
discussed in later section, the influence of emissions to CO and CO2 over Korea are significantly 535 
limited to the boundary layer and hence, the vertical profiles of these correlations exhibit a strong 536 
contrast on local and regional influences in the sampling region. During TRACE-P (2001), the 537 
𝑅%&,%&!
)#+ coefficients reported by Palmer et al. (2006) using GEOS-Chem is mostly greater than 0.7 538 

varying only within 5-10%. They observed lower 𝑅%&,%&!
)#+  aloft which they attribute to a larger 539 

influence of aged air masses from Asia. While noting that the flights during TRACE-P is farther 540 
downwind (and has a larger coverage) than KORUS-AQ flights, we see a similar pattern (albeit 541 
lower in magnitude) to 𝑅%&,%&!

)#+ during KORUS-AQ. The lower magnitudes are due to higher 542 
background values (and more variable) in KORUS-AQ than TRACE-P, following the same 543 
reasoning by Palmer et al. (2006) for relatively polluted TRACE-P samples located >30 degrees 544 
north. These differences highlight the importance of vertical information in effectively 545 
differentiating local and regional influences (and associated errors in transport versus emissions), 546 
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especially within an inverse modeling framework (e.g., Stephens et al., 2007, Schuh et al., 2019, 547 
Arellano et al., 2006, Jiang et al., 2015).  548 

Vertical profiles of the error correlation between CO and CO2 ( 𝑒𝑟𝑟𝑅%&,%&!)  provide a 549 
complementary perspective in examining biases in the model and in quantifying model-data error 550 
covariances used in inverse modeling algorithms. A high 𝑒𝑟𝑟𝑅%&,%&!  corresponds to a higher 551 
correlation between the errors in CO and CO2, while a low 𝑒𝑟𝑟𝑅%&,%&!indicates the presence of 552 
model misrepresentation of processes on either CO2 or CO that are not related to the other (i.e., 553 
different sources and sinks). Although the overall 𝑒𝑟𝑟𝑅%&,%&! values in CAM-chem is smaller than 554 
we previously reported for CAMS, the 𝑒𝑟𝑟𝑅%&,%&! values in CAMS are also lower compared to 555 
𝑅%&,%&!
)#+ . We note that 𝑒𝑟𝑟𝑅%&,%&! values in both CAM-Chem (0.57) and CAMS (0.82) are highest 556 

over West Sea among flight groups, regardless of resolution in the case of CAMS. Furthermore, 557 
over West Sea, the 𝑒𝑟𝑟𝑅%&,%&! in CAM-chem near the surface (0.5 km) lies in the middle of its 558 
𝑅%&,%&!
)#+ and 𝑅%&,%&!

()* . Values of 𝑒𝑟𝑟𝑅%&,%&! that are closer towards 𝑅%&,%&!
)#+  are interpreted to reflect 559 

errors in CO and CO2 processes that are related (i.e., common sources and sinks). This indicates 560 
that East Asian sources are clearly the dominant influence on  𝑒𝑟𝑟𝑅%&,%&! for these samples; more 561 
than their associated sinks during transport, since over Yellow Sea, CO and CO2 do not share a 562 
common major sink. Differences between modeled and observed correlation can be associated 563 
with coarser representation of related processes. On the other hand, over Seoul, CAM-chem 564 
𝑒𝑟𝑟𝑅%&,%&! (0.36) is smaller than CAMS (0.64). The value in CAMS is the second highest among 565 
flight groups, while the value in CAM-chem is the lowest. The 𝑒𝑟𝑟𝑅%&,%&! over Seoul (0.35) in 566 
CAM-chem near the surface (0.5 km) is lower than both 𝑅%&,%&!

)#+ and 𝑅%&,%&!
()* . Model 567 

misrepresentation of unrelated processes may also be influencing these values (e.g., secondary CO, 568 
non-ffCO2). We note that the pattern in 𝑒𝑟𝑟𝑅%&,%&! along the overall vertical profile is consistent  569 
(albeit lower in magnitude) with 𝑅%&,%&!

)#+  (except at 4-5 km where it follows 𝑅%&,%&!
()* ). Patterns in 570 

other flight groups cannot be compared due to incomplete statistically significant data points.  571 

4.2 Enhancement ratios  572 

Vertical profiles of modeled and observed ΔCO ΔCO!⁄  are also shown in Figure 6. Like in previous 573 
section, please note that data points in the profile which are not statistically significant in 574 
correlation and having less than 30 points are not considered in this analysis to avoid 575 
misinterpretation of results. Also, estimates of slopes derived from both OLS and RMA regression 576 
are plotted in Figure 6 to show the difference due to the choice of regression algorithm. Although 577 
both slope estimates follow the same pattern along the vertical profile, the slopes from OLS is 578 
systematically lower by 50%. The OLS algorithm is useful in understanding patterns rather than 579 
in comparing magnitudes with other studies.  In OLS, ΔCO ΔCO!⁄  can be expressed as the product 580 
of 𝑅%&,%&!and the ratio of the respective standard deviations (𝜎%& 𝜎%&!⁄ ). As such, the difference 581 
between OLS ΔCO ΔCO!⁄  and 𝑅%&,%&! profiles correspond to 𝜎%& 𝜎%&!⁄ ,	for which such quantity 582 
can be better represented in RMA regression. 583 

Overall, the observed and modeled RMA ΔCO ΔCO!⁄  across all altitudes are very similar, with 584 
values of 13.30±0.21 ppb/ppm (~1.3%) and 13.80±0.23 ppb/ppm (~1.4%), respectively (see scatter 585 
plot in Figure S6). Higher values of ΔCO ΔCO!⁄  correspond to air masses that are characterized (in 586 
a bulk average sense) as less efficient (i.e., high CO is associated with low temperature and less 587 
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efficient combustion). However, it should be noted that as Halliday et al. (2019) pointed out, these 588 
values when viewed as bulk efficiency, are limited only to bulk emission ratio interpretation since 589 
these regressions are subject to transport and mixing processes as well. Values that are derived 590 
from short-term covariations of CO and CO2 are more useful for air mass characterization since 591 
these ratios are non-stationary in both space and time. Variations across flight groups – here 592 
representing non-stationarity in horizontal space --- (Seoul: 9.1, West Sea: 28.2, Taehwa: 15.3, 593 
Seoul-Busan: 15.9, and Seoul-Jeju: 10.4 ppb/ppm) are also captured well by the model (Seoul: 594 
12.6, West Sea: 33.7, Taehwa: 16.6, Seoul-Busan: 10.7, and Seoul-Jeju: 11.5. ppb/ppm). The 595 
overall observed value of 13.30 ppb/ppm reflects the influence of relatively more efficient air 596 
masses from Korea (flight groups other than West Sea) and less efficient air masses from China 597 
(West Sea flight group)(see Figure S6 as well). The variability across flight groups within Korea 598 
(Seoul and Seoul-Jeju versus Seoul-Busan and Taehwa) is likely due to a mixture of source 599 
influences across these locations (i.e., biogenic CO sources and biospheric influence on CO2 over 600 
Taehwa and Seoul-Busan). These model values are comparable (albeit closer to observed values) 601 
to values from the best simulation of CAMS (FC9s) in Tang et al. (2018). 602 

Similar to the correlation profiles, the modeled ΔCO ΔCO!⁄  show larger differences against 603 
observed ΔCO ΔCO!⁄  along the vertical profile. The observed values in All flights are 5.9, 11.8, 604 
11.2, 10.8, 2.8, and 6.7 ppb/ppm for layers from 0.5 to 5.5 km at 1 km interval, respectively.  This 605 
variability with height was also pointed out by Halliday et al. (2019). Higher values can be seen 606 
especially at 1.5-3.5 km. The differences between modeled and observed ΔCO ΔCO!⁄  are also more 607 
pronounced above 3 km (see All flights). It is interesting to note as well that the modeled values 608 
at the surface from RMA regression in West Sea (21.6) and Seoul (11.2) are similar to observed 609 
values (23 ppb/ppm for West Sea and 8 ppb/ppm for Seoul). Again, this suggests that the 610 
differences in 𝑅%&,%&!found in West Sea are mostly due to misrepresentation of related processes 611 
rather than unrelated processes. This is reflected in the lower slope from OLS that matches with 612 
low 𝑅%&,%&!. The slopes from RMA are associated more to 𝜎%& 𝜎%&!⁄ 	which indicate more of a 613 
signature from sources and sinks than transport-related processes in 𝑅%&,%&!. This can be shown in 614 
the overestimation of modeled ΔCO ΔCO!⁄  at 2-3 km by 40 ppb/ppm in West Sea and 29 ppb/ppm 615 
in All flights. This suggest an overestimation of emission ratio from regional sources (i.e., East 616 
Asia). This is also reflected in the larger overestimation in CO (67 ppb and 80 ppb) at this level 617 
over Seoul and West Sea (8 ppb in All flight) and only slight overestimation in CO2 (0.4 to 1.2 618 
ppm) consistent with our earlier discussion on biases. 619 

Relative to other ΔCO ΔCO!⁄ values reported in this region, the observed ΔCO ΔCO!⁄  during 620 
KORUS-AQ shows a similar bulk combustion efficiency contrast between South Korea and China 621 
(i.e., 9 ppb/ppm in Seoul against 28 ppb/ppm in West Sea). During this campaign, the observed 622 
ΔCO ΔCO!⁄  from the ARIAs campaign over China (Benish et al., 2020) is also larger than 20 623 
ppb/ppm.  Fifteen years prior to KORUS-AQ and ARIAs, ΔCO ΔCO!⁄  from northern China during 624 
TRACE-P in 2001 was observed to be largely higher (50-100 ppb/ppm) than over Japan (~12-17 625 
ppb/ppm) (Suntharalingam et al., 2004). A similar contrast (albeit weaker than TRACE-P) was 626 
also reported by Turnbull et al. (2011) in terms of CO:CO2ff ratios over Shangdianzi, China (~47 627 
ppb/ppm) and South Korea (13 ppb/ppm) during winter 2009/2010. This is consistent with the 628 
downward change in ΔCO ΔCO!⁄  near Beijing from 34-42 ppb/ppm in 2005-2007 to 22 ppb/ppm 629 
in 2008 (Wang et al., 2010) and derived ΔCO ΔCO!⁄  from GOSAT/ACOS and MOPITT retrievals 630 
over Seoul (~7-9 ± 0.5 ppb/ppm) and Beijing (~43 ±6 ppb/ppm) in 2010 (Silva et al., 2013).	As 631 
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we have previously noted, we expect that as combustion activities become more efficient in China, 632 
this contrast will decrease in recent years. Unfortunately, there are very limited measurements 633 
(even in TCCON AMY, Goo et al., 2017, and NOAA/KMA-GAW/AMY sites) that we can use to 634 
investigate these possible changes. The recent study by Lee et al. (2020) reports similar values 635 
(ΔCO ΔffCO!⁄ ) derived from NOAA/KMA-GAW/AMY site for air masses coming from the Asian 636 
continent (29-36 ppb/ppm) and Korea (8±2 ppb/ppm) during May 2014 to August 2016. Another 637 
recent study by Xia et al. (2020) also reports a mean ΔCO ΔCO!⁄  of 21.6 ppb/ppm over Jingdezhen 638 
(JDZ) site in central China during the winter months of 2018 to 2019. Together with ffCO2 data 639 
(section 3.2), there appears to be a decrease in this contrast relative to TRACE-P, possibly due to 640 
improved efficiency in both China and Korea energy and road transportation sectors. Activities, 641 
like biofuel and biomass burning, which have lower combustion efficiency, may still influence the 642 
higher ratios in China (e.g., Chen et al. 2017). However, this possibility needs to be verified with 643 
correlative measurements having sufficient spatiotemporal coverage of the region. As has been 644 
suggested in past studies (e.g., Turnbull et al. 2006; Vardag et al. 2015; Super, 2018; Halliday et 645 
al. 2019), these comparisons across flight groups, sampling locations, altitude, and time highlight 646 
the importance of understanding and properly accounting for the spatiotemporal variability of 647 
ΔCO ΔCO!⁄  when estimating ffCO2 emissions since differences in ΔCO ΔCO!⁄  have confounding 648 
factors and cannot be directly attributed to discrepancies in emissions unless investigated 649 
appropriately. 650 

4.3 Local and regional contributions  651 

We use the tagged ffCO and ffCO2 simulations to further elucidate the contributions of local and 652 
regional influences on inferred relationships of CO, CO2, and ffCO2 during the campaign. We 653 
show in Figure 7 the spatial distribution of modeled CO2, CO, and ffCO2 including the associated 654 
distribution of ffCO2 tags at three representative vertical levels (model surface, 800 hPa or ~2 km, 655 
500 hPa or ~5 km above sea level). We also show in Figure S7 a zoom-in version with a side-by-656 
side comparison of CO2 and CO and their associated tags at the surface and also across the mean 657 
vertical profile. The moderately strong relationship between surface CO2 and ffCO2 (0.82), which 658 
is evident over areas of fossil fuel and biofuel combustion, is also found in the relationship between 659 
surface CO2 and CO (0.84). However, there is a high CO2 signature over Seoul and EA-S that is 660 
not very apparent in CO, as has been noted in our OCO-2 and MOPITT qualitative assessment. 661 
High CO2 signatures in the model are associated with mostly ffCO2 (EA-M, EA-N) and fire (EA-662 
S) emissions. Unlike CO2 and ffCO2, the similarity between CO2 and CO is degraded at higher 663 
altitudes (0.66-0.68) due to regional and background influences in CO since ffCO2 aloft is not 664 
affected by its surface sinks. Note that East Asian and ROW ffCO2 also account for the majority 665 
of ffCO2 at these levels, clearly indicating regional influences on the air aloft during the campaign.  666 
This is evident as well from the associated flight curtains of these tags relative to modeled CO2 667 
shown in Figure S8 (All group) and Figure S9 (West Sea group).  668 

To quantify the contribution of local and regional influences of ffCO2 to observed ΔCO ΔCO!⁄ , we 669 
decompose the modeled ΔCO ΔCO!⁄  into four basis functions. The observed CO2 can be 670 
represented as the sum of ffCO2 abundance (or response functions) from Korea and Japan 671 
(hereinafter Kor+Jap), East Asia, and ROW ffCO2 sources (or basis functions), along with other 672 
contributions (non-ffCO2 and background), termed here as “Background+non-ffCO2” (see 673 
Appendix A). We can then regress each response function to the observed CO and CO2 following 674 
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the approach used by Cheng et al. (2018) in decomposing the contributions of tagged CH2O to 675 
ΔO, ΔCH!O⁄ . That is, 676 

∆𝐶𝑂
∆𝐶𝑂!1 2

)#+
≈ ∑ 5𝑐𝑜𝑣(𝑏𝑎𝑠𝑖𝑠- , 𝐶𝑂

)#+)
𝑣𝑎𝑟(𝐶𝑂!)#+)
> ?-./

-.0 	     Eq. (1) 677 

where 𝑏𝑎𝑠𝑖𝑠-  corresponds to 𝑓𝑓𝐶𝑂!1)23456
)67 , 𝑓𝑓𝐶𝑂!85+7	:+-5

)67 , 𝑓𝑓𝐶𝑂!;&<
)67  or 𝑏𝑔 + 𝑛𝑜𝑛𝑓𝑓𝐶𝑂! . 678 

This “Background+non-ffCO2” is calculated as the difference between 𝐶𝑂!)#+and the sum of 679 
𝑓𝑓𝐶𝑂!

)67. To ensure that ffCO2 closely matches with derived ffCO2 measurements (section 3), 680 
the tagged ffCO2 abundances were optimized through a Bayesian synthesis inversion, which we 681 
will describe in the next section. An alternative to tagged simulations is the backward trajectory 682 
analysis using FLEXPART (Stohl et al. 2009), STILT (Lin et al., 2003), or HYSPLIT (Draxler et 683 
al., 1997). This has been used in past studies for a similar analysis (Turnbull et al., 2011; Vardag 684 
et al. 2015; Xia et al., 2020).  685 

Here, we regress each response function with the CO and CO2 data for each flight group and for 686 
each group of vertical bins (<1.5 km, 1.5-3.0 km, and >3.0 km), in order to examine the ffCO2 687 
contributions to the enhancement ratios discussed in previous section. These contributions are 688 
shown in Figure 8, together with the slope estimates from observations of CO and CO2 using OLS 689 
regression. It is clear from this result that the influence of “Background+non-ffCO2” dominates 690 
across the vertical levels, even near the surface and polluted conditions in Seoul. This can be seen 691 
across all flight groups, where the median contributions for each bin are ~74% for <1.5km, ~47% 692 
for 1.5-3 km, and ~81% for >3 km. We also find that ffCO2 contributions in the West Sea flight 693 
group at 1.5-3.0 km and >3 km bins are dominated by ffCO2 from East Asia (~67% for 1.5-3.0 694 
km, ~131% for >3km), with the “Background+non-ffCO2” contributing 90% at the surface and 695 
negatively (-52%) on the air aloft. The dominance of “Background+non-ffCO2” suggests that the 696 
low 𝑅%&,%&!

()*  relative to 𝑅%&,%&!
)#+ , yet consistent  ΔCO ΔCO!⁄  at the surface of the West Sea flight 697 

group, can be attributed to possible inability of the model to represent spatiotemporally finer 698 
variations in both non-ffCO2 and background transport from East Asia, rather than inconsistency 699 
in ffCO2 emission ratio for this region. However, it is clear that the air just above 2 km is 700 
characterized to be a low efficient airmass (high ΔCO ΔCO!⁄ ), having higher 𝑅%&,%&!

()*  than 𝑅%&,%&!
)#+  701 

yet consistent 𝑒𝑟𝑟𝑅%&,%&! 𝑅%&,%&!
)#+  and very high East Asian influence. These conditions clearly 702 

indicate an overestimation of emission ratio in East Asia. While we are aware that ffCO2 and CO 703 
emissions used in this study are taken from different emission inventories which may have caused 704 
this overestimation, this highlights a regional inconsistency between inventories.    705 

The contribution of ffCO2 from Kor+Jap is relatively small, even at the surface (<1.5km) in Seoul 706 
(29%), Seoul-Jeju (20%), Taehwa (15%), and Seoul-Busan (13%). Its contribution can also be 707 
seen at 1.5-3 km in Seoul-Busan (27%) and Taehwa (15%). Above 3 km, this influence is very 708 
minimal, even in Seoul-Busan (0.8%) and Taehwa (2%). In contrast, the contribution of ffCO2 709 
from East Asia is relatively high, even at the surface in Korea (Seoul: 12%, Seoul-Busan: 21%). 710 
Above 1.5 km, the East Asian influence over these flight groups are significant (35% for 1.5-711 
3.0km, 20% for >3km) relative to Kor+Jap. These results strongly suggest that while regional 712 
influence can be inferred, it is critical to understand the vertical structure of these response 713 
functions and recognize the large influence of regional emissions and background on the local 714 
environment. The long-range transport of pollution into the region is known to be present. Simpson 715 
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et al. (2020) also found a larger contribution of CO from long-range transport in the Seoul 716 
Metropolitan Area than CO from combustion over Seoul. The signal-to-noise for ffCO2 abundance 717 
is very low compared to the biospheric fluxes, model transport errors, and source estimation 718 
methods (Schuh et al., 2019; Crowell et al., 2019). Accurately estimating ffCO2 emissions at local-719 
to-regional scales requires sufficient data coverage and precision, especially within the boundary 720 
layer. The statistics that we have presented also points to reducing representativeness and 721 
aggregation errors through the use of higher resolution models, which are expected to be able to 722 
capture the local scale variations. Although CAM-chem at current resolution (0.9 deg x 1 deg) is 723 
able to represent the regional-scale transport, the presence of confounding factors in the boundary 724 
layer limits our ability to improve the signal-to-noise and our ability to exploit all datasets given 725 
that associated errors are sensitive to sampling characteristics. These have been highlighted in 726 
current studies of potential ffCO2 network (Wang et al., 2017; 2018). Furthermore, exploiting the 727 
finer spatiotemporal scale signatures of ffCO2 on CO2 data, which can serve as valuable 728 
observational constraint (e.g., Shiga et al., 2014; Liu et al., 2017), cannot be exploited at coarser 729 
resolution. Variations across the vertical has implications as well on inversions using columnar 730 
data from satellite retrievals of XCO2.  731 

5. Joint CO:CO2 inversions  732 

We saw from the results discussed above that there are spatial variations in CO2 (and CO) 733 
attributable to East Asian underestimation (overestimation) and overestimation (underestimation) 734 
of “background” conditions. It is more complicated, however, to attribute a Korean 735 
underestimation (overestimation) as competing local processes are present. As we have 736 
demonstrated, using information on CO2 and CO relationship provides more context to this 737 
problem in lieu of ffCO2 data. To demonstrate the potential of CO data in refining estimates of 738 
regional ffCO2 emissions, we conducted three sets of Bayesian synthesis inversions following what 739 
we learned from our model evaluation and analysis of CO, CO2 and ffCO2 and their associated 740 
relationships (section 3 and 4). We conducted two single-species experiments: 1) using ffCO2 data, 741 
and 2) using CO2 data, as well as, one joint inversion using both CO2 and CO data. These inversion 742 
experiments are designed simply to quantify the broader role of CO in refining regional scale ffCO2 743 
signatures, which is expected to complement the current yet relatively sparse ffCO2 observing 744 
system and the national networks proposed (e.g., Basu et al., 2016; Wang et al., 2018). We revisit 745 
the Bayesian synthesis inversion algorithm used in one of the first studies of joint regional CO:CO2 746 
inversion with aircraft data from TRACE-P and GEOS-Chem by Palmer et al. (2006). A recent 747 
study by Boschetti et al. (2018) used a similar method using IAGOS CO, CO2 and CH4 data 748 
(Petzold et al., 2015) and STILT to conduct OSSEs for global multi-species inversions. This 749 
approach has also been used in the past for single atmospheric constituent inversions (e.g., Enting, 750 
2002; Baker et al., 2006; Wang et al., 2018). This approach begins with the assumption of a linear 751 
relationship between observation and model, i.e., 752 

𝐲 = 𝐊𝐱 + 𝐞𝒚	,           Eq. (2) 753 

where y is a vector of observations (in our case: ffCO2, CO, and/or CO2), x is a vector of time 754 
averaged source strengths (or basis functions, which in our case is mainly ffCO2 Kor+Jap, ffCO2 755 
East Asia and ffCO2 ROW). K is a matrix of contribution (or response functions) calculated from 756 
our tagged simulations, and 𝐞𝒚 is a vector of errors associated to both K and y. Assuming Gaussian 757 
unbiased error statistics on both 𝐞𝒚 and the error 𝐞𝒙 on the a priori source strengths having average 758 
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values represented as a vector 𝐱𝐚 , the solution to this Bayesian problem is the maximum a 759 
posteriori (MAP) solution: 760 

𝐱I = (𝐊@𝐒𝐞B0𝐊 + 𝐒𝐚B0)B0(𝐊@𝐒𝐞B0𝐲 + 𝐒𝐚B0𝐱𝐚)	,    	𝐒K = (𝐊@𝐒𝐞B0𝐊 + 𝐒𝐚B0)B0	   Eq. (3) 761 

where 𝐱I and 𝐒K are a posteriori mean and error covariance estimates, respectively. Se and Sa are the 762 
expected observation 〈𝐞𝒚𝐞𝒚𝑻〉 and a priori source 〈𝐞𝒙𝐞𝒙𝑻〉 error covariance matrices, respectively.  763 
Superscript T denotes transpose, -1 the inverse of a matrix and 〈 〉 is an expectation operator. These 764 
notations follow Rodgers (2000). Note that this approach suffers from wrong 765 
assumptions/misspecification of the error covariances, especially Se, which includes not only 766 
instrument/retrieval noise but more importantly errors in K when translating emissions to 767 
abundance (i.e., transport and vertical mixing errors in the tagged simulations). Here, we take a 768 
similar approach by Palmer et al. (2006) and Wang et al. (2017), where we estimate Se from the 769 
error statistics we obtained in previous section. That is, 𝐒𝐞DDEF!, 𝐒𝐞EF! and 𝐒𝐞EF are assumed to be 770 
diagonal matrices with the elements corresponding to (𝐞𝒚)2 = (1 ppm)2, (𝐞𝒚)2 = (0.01y ppm)2 and 771 
(𝐞𝒚)2 = (0.2y ppb)2, respectively. Note that the error variances in CO2 and CO are relative quantities 772 
represented as fractions of the data magnitude. We also inflate these fractions to account for 773 
representativeness errors. In the case of joint CO:CO2 inversion, we augment the observation 774 
vector such that	𝐲 = [𝒚𝑪𝑶𝟐 , 𝒚𝑪𝑶]I . We also use the error correlation between CO and CO2 775 
discussed in previous section. That is, 𝐒𝐞 can be expressed as: 776 

𝐒𝐞 = Q
𝑰𝒏𝒚(𝒆𝒚

%&!)! 𝑰𝒏𝒚𝑒𝑟𝑟𝑅%&,%&!
𝑰𝒏𝒚𝑒𝑟𝑟𝑅%&,%&! 𝑰𝒏𝒚(𝒆𝒚

%&)!
T       Eq. (4) 777 

where 𝑰𝒏𝒚 is an identity matrix with 𝑛K diagonal elements corresponding to the number of data 778 
points for each species. Here, we use a much lower 𝑒𝑟𝑟𝑅%&,%&! of 0.33. Notice that in Palmer et 779 
al. (2006), they used 𝑅%&,%&!  (0.7) on 𝐒𝐞 , which is much higher than the model-dependent 780 
𝑒𝑟𝑟𝑅%&,%&! from this study. A similar error correlation of 0.7 was also used by Boschetti et al. 781 
(2018). While we recognize that from a purist perspective, 𝐒𝐞 should only account errors in the 782 
data, we also need to account for model errors (in observation space) as the assumption of perfect 783 
K is obviously not valid. We use the more conservative 𝑒𝑟𝑟𝑅%&,%&!to represent the correlation 784 
component of 𝐒𝐞  assuming that these model errors are more reflected in correlation than the 785 
variance structure of 𝐒𝐞. However, we still use the errors on the data to represent the error variance 786 
component of 𝐒𝐞 but with added inflation to account for representativeness errors (which is also 787 
model-dependent). Albeit clearly simplified, this is along the same line as the more rigorous 788 
representation of these errors discussed in Wang et al. (2017, 2018) and Basu et al. (2016). We 789 
also filter the data with points having the residual (model-obs) variance that is a factor of 1.25 (for 790 
ffCO2 data) or 2.0 (for CO2 and CO data) greater than the overall residual standard deviation. More 791 
importantly, we only use data below 3 km for localization purposes (see previous section). The 792 
effective number of data points for each observation vector that are used in a particular inversion 793 
are as follows: 𝑛K

"%&!=41, 𝑛K
%&!=4,716, and 𝑛K%&=4,716. Notice that exactly the same set of CO2 794 

data points in CO2 inversion is used for the joint CO:CO2 inversion to facilitate comparison 795 
between inversions. Our emphasis for these inversions is to show the role of CO in refining our 796 
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estimates of ffCO2 emissions rather than accurately estimating biospheric sources and sinks. For 797 
the same reason that we use a posteriori CO2 fluxes rather than the a priori CAM-chem fluxes. 798 

For single-species inversion using ffCO2 data, we added another basis that we call ‘ffCO2 Offset’. 799 
This is a constant term (1 ppm) that is intended to account for a potential bias in ffCO2 due to our 800 
assumption of ffCO2 initial condition. We replace the basis “ffCO2 Offset” for the single-species 801 
inversion using CO2 data with the residual between modeled CO2 and modeled ffCO2 and call it 802 
“Background+non-ffCO2” as noted in section 4.3. This represents the larger non-ffCO2 component 803 
of CO2 (see Eq. A.1). Both single-species inversions will have m=4 basis functions that will be 804 
optimized using Eq. 3.  For joint inversion, there will be m=8 basis functions corresponding to 805 
CO2 and CO basis (i.e., 𝐱𝐚 = U𝒙𝒂

𝑪𝑶𝟐 𝒙𝒂𝑪𝑶W
I
). The 4x4 Sa matrix for single species ffCO2 inversion 806 

is assumed to be diagonal with 𝐞𝒙 = 𝒅 ∘ 𝐱𝐚  and 𝒅 = [0.3, 0.3, 0.1, 0.5]I  to account for 807 
heteroskedasticity in these errors. We assumed that error in ffCO2 ROW is the smallest while the 808 
“ffCO2 Offset” is largest. However, as we mentioned before, the 14CO2-derived ffCO2 is 809 
representative of the regional ffCO2 (not global) and specific to the assumptions of D14CO2. We 810 
have seen from section 4.3 as well that ffCO2 ROW has negligible contributions to ΔCO ΔCO!⁄  in 811 
the region. We expect that the errors in ffCO2 ROW and “ffCO2 Offset” to be largely correlated. 812 
Accordingly, the 8x8 Sa matrix for the joint CO:CO2 inversion is constructed as follows: 813 

𝐒𝐚 = 𝐬 ∙ 𝐂𝒂 ∙ 𝐬, where	𝐬 = f𝑰𝟒g𝒆𝒙
%&!h

!
𝟎

𝟎 𝑰𝟒(𝒆𝒙%&)!
j 	and	𝐂𝒂 = n 𝑰𝟒 𝑰𝟒𝒄

𝑰𝟒𝒄 𝑰𝟒
p   Eq. (5) 814 

We assumed no correlation across basis functions within a particular species. However, the source 815 
error correlation across species is specified as 𝐜 =	 [-0.5,	-0.5,	-0.1,	0.0]I. We also assumed that 816 
the source error correlation across species is higher near the source region (i.e., East Asia and 817 
Kor+Jap) and smaller to negligible for the more “diffused” sources from ROW and 818 
“Background+non-ffCO2”. At the source, CO is mostly negatively correlated with CO2 (i.e., higher 819 
combustion efficiency is associated with low CO). It should be noted that while this vector is 820 
critical in transferring information from CO (or CO2) data to the other species (Palmer et al., 2006, 821 
Boschetti et al. 2018), there is little information on quantifying this correlation. In fact, it is very 822 
difficult to accurately specify the elements of 𝐂𝒂 since these statistics cannot be derived from 823 
measurements. There are only few direct measurements of CO2 fluxes (and CO emissions) to 824 
quantify their associated errors. One way to estimate 𝐂𝒂 is to have an ensemble of CO and CO2 825 
sources, where we can compute its statistics following a similar approach by Wang et al. (2018). 826 
For this study, however, we follow a simpler approach using similar critical values of these 827 
correlations suggested in Palmer et al. (2006). This is more conservative than the correlation used 828 
by Boschetti et al. (2018) of 0.7. We note that in our setup, a posteriori estimates are not that 829 
sensitive to the correlation values in 𝐒𝐚  than in 𝐒𝐞 . We also specify the error variances while 830 
accounting for heteroskedasticity as:  𝒆𝒙

%&! = 𝒅𝑪𝑶𝟐 ∘ 𝐱𝒂
𝑪𝑶𝟐  where 𝒅𝑪𝑶𝟐 =	 [0.3, 0.3, 0.1, 0.05]

I 831 
and 𝒆𝒙%& = 𝒅𝑪𝑶 ∘ 𝐱𝒂𝑪𝑶  where 𝒅𝑪𝑶 =	 [0.5, 0.5, 0.1, 0.05]I . These error variances are typically 832 
prescribed to be larger than reported 1-sigma uncertainties in order to include potential errors that 833 
are unaccounted for. We assumed that errors in ffCO emissions are larger in East Asia, and 834 
Kor+Jap than in ROW while the “Background+non-ffCO” is smallest based on their associated 835 
variability.  836 
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5.1 Inversion results  837 

We present in Figure 9 the results of the three sets of inversions. We show the change in a 838 
posteriori estimate relative to a priori (represented here as scaling factors) of ffCO2 basis including 839 
“ffCO2 Offset” or “Background+non-ffCO2” (depending on the dataset used in the inversion). The 840 
error bars correspond to the square root of the diagonal elements of 𝐒K for a posteriori or 𝐒𝐚 for a 841 
priori estimates. The error for a priori “Background+non-ffCO2” is not shown. For ffCO2 842 
inversion, we find that ffCO2 East Asia and ffCO2 Kor+Jap need to be increased by ~27% ±9% 843 
and ~10% ±3%, respectively. At the same time, ffCO2 ROW needs to be slightly decreased (albeit 844 
with higher uncertainty) by 14% ±9%. This results to a reduction in bias (model-obs) against ffCO2 845 
derived measurements (including “ffCO2 Offset”) from -1 ppm to -0.01 ppm. The error reduction 846 
in ffCO2 estimates (1- 𝑒̂N 𝑒⁄ N), where 𝑒̂N  is the a posteriori error, is largest in ffCO2 Kor+Jap 847 
(91%) followed by ffCO2 East Asia (71%), “ffCO2 Offset” (62%), and ffCO2 ROW (8%), 848 
suggesting that East Asia and Kor+Jap are reasonably resolved by the measurements. Again, it is 849 
important to note that we do not expect 14CO2-derived ffCO2 measurements to resolve ffCO2 850 
ROW. The error reductions in East Asia and Kor+Jap are comparable to the uncertainty reduction 851 
(UR) values reported in Wang et al. (2018) for OSSEs using a potential ffCO2 network in Europe. 852 
The increases in East Asia and Kor+Jap are also expected based on our evaluation of modeled CO2 853 
and ffCO2 (section 3) and our analysis of CO and CO2 relationships (section 4) of apparent 854 
underestimation of CO2, and ffCO2 below 3 km. Although such increase is reasonable and within 855 
range of the uncertainties in regional ffCO2 emissions (Andres et al., 2012), the equivalent 856 
reduction of the bias in terms of CO2 abundance remains small, even with the contribution of 857 
“ffCO2 Offset”. This is consistent with the relatively low contribution of ffCO2 from these source 858 
regions discussed in section 4.3. 859 

We find reasonable consistency in scaling factors that are within the range of their associated 860 
uncertainties when CO2 and CO across the campaign are used instead of ffCO2 data. In particular, 861 
emissions of ffCO2 from East Asia and Kor+Jap need to be increased by ~27% ±24% and (9% 862 
±17%). However, the scaling factor for ffCO2 from ROW only suggests a smaller decrease 863 
(6%±10%) in ffCO2 emissions compared to ffCO2 inversion. The “Background+non-ffCO2” 864 
appears to only have a very small decrease (0.7% ±0.3%). Reduction in the error estimates are 865 
lower (although still significant) in East Asia (20%) and Kor+Jap (42%). On the other hand, there 866 
is very little error reduction in ROW (0.4%) but higher error reduction in “Background+non-867 
ffCO2” (94%) indicating that the estimate of ffCO2 from ROW is not resolved using either CO, 868 
CO2 or ffCO2 measurements. This is expected as the source error correlation for this basis function 869 
is smaller and that the contribution of ffCO2 ROW is already very small to begin with. On the other 870 
hand, the error reduction in “Background+non-ffCO2” is mostly constrained by CO2 data given 871 
that we assumed zero source error correlation across species. However, unlike the joint inversion, 872 
we find larger differences in ffCO2 mean estimates when CO2 measurements across the campaign 873 
are used. Our results show a decrease in both ffCO2 East Asia (5% ±27%) and Kor+Jap (6% ±19%) 874 
and practically no changes in ffCO2 ROW (0% ±10%) and “Background+non-ffCO2” (0% ±0.3%). 875 
The error reduction is slightly smaller than the reduction from joint inversion for East Asia (9%) 876 
and Kor+Jap (38%), while similar error reduction can be observed for ROW (0.1%) and 877 
“Background CO2” (94%), again suggesting that ffCO2 ROW is not resolved neither by CO2 nor 878 
CO measurements as well. 879 
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6. Discussion and general implications 880 

These results imply that inversion using CO and CO2 data is able to match the regional ffCO2 881 
emission estimates for East Asia and Kor+Jap from ffCO2 inversion, whereas using CO2 data alone 882 
is not sufficient even with a much larger number of data points compared to ffCO2 data. This is 883 
seen in the estimates of the mean of ffCO2 East Asia and Kor+Jap, where CO pulls this estimate 884 
in the same direction as the ones using ffCO2 data. This adjustment is mostly due to the addition 885 
of model-data error correlation across species (𝐒𝐞) than source error correlation across species (𝐒𝐚). 886 
A suggested decrease of CO emissions in East Asia and Kor+Jap, along with an increase in 887 
“Background+non-ffCO” sources resulted to increases in East Asia and Kor+Jap ffCO2 emissions. 888 
Note that our a priori HTAPv2 CO and VOC emissions were doubled for East Asia and Korea to 889 
begin with. The slight negative bias in CO at the surface and larger positive bias at 2-3 km, 890 
especially over Seoul and West Sea, is consistent with the adjustments in CO, indicating that bias 891 
in CO is mostly from underestimation of secondary CO and possibly ffCO ROW (e.g., India). The 892 
dominance of 𝐒𝐞 on our results for ffCO2 is in contrast to Boschetti et al. (2018). This may be due 893 
to our approach of localizing our data to below 3 km and aggregating to a smaller number of basis 894 
functions. Nevertheless, a posteriori estimates in ffCO2 sources using ffCO2 and CO with CO2 895 
data are statistically significantly indistinguishable from a two-tailed t-test at 99% confidence 896 
interval. This is not the case between a posteriori estimates in ffCO2 sources using ffCO2 and CO2 897 
data. We recognize that this is only a proof-of-concept to demonstrate the complementary 898 
information in CO data on ffCO2 at regional scales (even with conservative use of error correlation 899 
estimates). These results are consistent with our analysis of covariation between CO, CO2, and 900 
ffCO2 during the campaign, where the regional difference between air masses from China and 901 
Korea is clearly evident. Vertical profiles of these covariations (both correlation and enhancement 902 
ratio) reveal this regional contrast.  903 

However, the modeled local covariations are confounded by misrepresentation of local and 904 
transport-related processes. Such type of errors can skew the results and have to be addressed (e.g., 905 
Wu et al., 2018). Our analysis approach was designed to account for these confounding factors 906 
(albeit sub-optimally) by specifying relatively conservative (larger) error covariances and only 907 
using data below 3 km to mimic the sampling distribution of derived ffCO2 measurements, which 908 
is used in this study as our basis of comparison. We are aware that this is still sub-optimal but 909 
detailed refinements to this approach is beyond the scope of this study. We highlight some of these 910 
limitations in Figure 10, where we show vertical profiles of ffCO2 contributions from East Asia, 911 
Kor+Jap and ROW emissions, including the overall bias in CO2 relative to DC-8 CO2 data. While 912 
there is an apparent increase in boundary layer ffCO2 over the West Sea (~1.25 ppm) from the 913 
same increase in a posteriori scaling factor relative to a priori emissions from East Asia, this 914 
increase only translates to a decrease of ~0.9 ppm in the CO2 bias for this flight group as a result 915 
of all ffCO2 adjustments since there is competing effect between a slight increase in ffCO2 Kor+Jap 916 
and a decrease in ffCO2 ROW. In addition, the use of a single scaling factor for a broad basis 917 
function results to a degradation of CO2 aloft, suggesting that non-ffCO2 and background CO2 918 
needs to be adjusted accordingly by region (not globally) since they are dominant aloft. This 919 
sensitivity between ffCO2 and non-ffCO2 estimates has been pointed out in previous studies (e.g., 920 
Palmer et al., 2006; Basu et al., 2016; 2020). An added complication to these inversions is the 921 
accounting of CO2 chemical production (Wang et al. 2020) that may also be reflected in the 922 
“Background+non-ffCO2”. The aggregation error (Kaminski et al., 2001) confounding our results 923 
also needs to be addressed, perhaps by adding regional basis functions for non-ffCO2 and 924 
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background CO2 within a multi-scale (or multi-tiered) hierarchical inversion framework (e.g., 925 
Cusworth et al., 2020). An ensemble approach using a larger ensemble size from different flux 926 
inversions (e.g., Global Carbon Project, OCO-2 MIP) may offer opportunities to better quantify 927 
the a priori error covariances of non-ffCO2 and background CO2. We also recognize that by design 928 
this is a simplistic study focused on CO data as potential constraints on regional ffCO2. A more 929 
realistic scenario would be to show its impact on top of current observational constraints for CO2 930 
(e.g., XCO2 satellite retrievals and derived ffCO2 measurements). Augmenting the flux vector in 931 
CO2 flux inversions with CO and ffCO2 sources may also offer opportunities to understand its 932 
impact on biospheric flux estimates (Basu et al., 2016, 2020; Wang et al., 2020). 933 

There have been several studies using information on local enhancement (∆𝐶𝑂) that can be derived 934 
from ΔCO ΔCO!⁄  to constrain ffCO2 emissions (Super, 2018). This approach employs assumptions 935 
on the spatiotemporal distribution of emission ratios between CO and ffCO2 using mass balance. 936 
We emphasize here that CO may not be the most appropriate data unless the stationarity 937 
assumption for these ΔCO ΔCO!⁄  are valid and temporal changes in CO2 are reasonably 938 
characterized (e.g., Nassar et al. 2013; Liu et al., 2017). This has been indicated for example in 939 
Super (2018) and Nathan et al. (2018). As has been highlighted in this study, the use of regression 940 
approach in deriving these relationships are confounded by mixing and transport-related processes 941 
making it difficult to attribute the changes in the slopes to emission ratios alone, especially when 942 
analyzing downwind measurements. For this purpose, we suggest a ‘model calibration’ approach 943 
where ffCO2 emissions are adjusted based on CO2 and CO tags and derived ΔCO ΔCO!⁄  at a 944 
spatiotemporal scale that is representative of the best possible change in combustion efficiency. In 945 
particular, changes in ffCO2 emissions due to changes in CE (through improved technology, 946 
pollution abatement, changes in fuel mixture, process changes, or even decommissioning of a 947 
power plant) do not manifest at local spatiotemporal scale. Ratios derived at finer scale can be 948 
noisy and non-stationary. Changes in emissions due to changes in CE is usually detectable at a far 949 
longer spatiotemporal scale. Long-term satellite retrievals of CO and other proxies of fossil fuel 950 
combustion signatures (e.g., NOX) at decadal timescale (Tang et al., 2019b; Zheng et al. 2018) 951 
may be useful to detect trends on the changes of ffCO2 emissions (Yin et al., 2019).  952 

7. Conclusions 953 
In this study, we highlight the spatial variability of tropospheric CO and CO2 relationships and its 954 
implication in constraining CO2 from fossil fuel combustion. We use the KORUS-AQ field 955 
campaign as our case study. This campaign, which was aimed to study air quality in South Korea, 956 
was conducted on May to June 2016. Incidentally, it also coincided with the peak in global CO2 957 
concentration for this particular year. We use a single-model (CAM-chem) analysis framework, 958 
where the a priori CO2 fluxes in the model are taken from a posteriori fluxes of recent global flux 959 
inversions (e.g., Carbon Tracker – CT2017). We also use CO emissions that were calibrated with 960 
CO data (albeit in an ad-hoc manner) from our previous CAM-chem CO analysis. The availability 961 
of 14CO2, CO, and CO2 vertical profiles from NASA DC-8 offers an opportunity to assess the 962 
fidelity of this framework in simulating CO and CO2 abundances from the best possible and 963 
observationally constrained fluxes and emissions. More importantly, this framework enables us to 964 
facilitate a better understanding of the variability in observed and modeled relationships between 965 
the abundances of these species. Our analysis is directed towards investigating the covariation of 966 
CO, CO2, and ffCO2, which can then be made useful in refining our estimates of regional ffCO2 967 
emissions. 968 
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We evaluated CAM-chem CO and CO2 simulations from a variety of observing system 969 
perspectives, while focusing on key diagnostics relative to KORUS-AQ measurements and 970 
previous model and data analysis for this particular period and region. Our results show that the 971 
spatiotemporal distribution of CAM-chem CO and CO2 simulated abundances (and their 972 
associated correlations and enhancement ratios) are reasonably consistent (and within the range of 973 
uncertainties) with KORUS-AQ CO and CO2 data, CAMS high resolution forecast/analysis of CO 974 
and CO2, and CT2017 mole fractions for CO2 -- both of which used different transport models at 975 
different resolution. In particular, we find that: 1) The overall biases against DC-8 CO2 and CO 976 
measurements in CAM-chem using CT2017 fluxes are -1.0 ppm and -24 ppb, respectively, while 977 
the CAMS FC9s is biased by about 0.7 ppm in CO2 and -17 ppb in CO. The CT2017 CO2 mole 978 
fraction is biased by -1.2 ppm; 2) The overall correlation (𝑅%&,%&! ) and enhancement ratio 979 
(ΔCO ΔCO!⁄ ) between CO and CO2 are as follows: DC-8: 0.67 and 13.3±0.21 ppb/ppm, CAM-980 
chem: 0.55 and 13.8±0.23 ppb/ppm, and CAMS FC9s – 0.65 and 12.5 ppb/ppm. The error 981 
correlation 𝑒𝑟𝑟𝑅%&,%&! in CAM-chem (0.40) is also comparable to CAMS FC9s (0.49); 3) The 982 
overall bias in CAM-chem ffCO2 against 14CO2 data is -1 ppm, which is close to 1-sigma 983 
uncertainty of the data (1 ppm). We also note that the modeled CO and CO2 correlation and 984 
enhancement ratios vary differently relative to DC-8, suggesting possible misrepresentation of 985 
related sources and sinks in CAM-chem. In particular, we find a significantly lower (higher) 986 
correlation near the surface (aloft) over West Sea relative to DC-8, whereas its enhancement ratio 987 
is comparable near the surface but larger aloft. We attribute this difference to coarser 988 
representation of boundary layer processes (low correlation) and overestimation of regional 989 
emission ratio aloft (high enhancement ratio). 990 

We also investigated the contribution of regional ffCO2 to observed ΔCO ΔCO!⁄  using tagged 991 
ffCO2 simulations. We find that, even near the surface in Seoul, there is a significant contribution 992 
of background and non-ffCO2 that cannot be neglected. Its median contribution across flight 993 
groups is 74% below 1.5 km, 47% between 1.5 and 3km and 81% > 3 km. ffCO2 from East Asia 994 
also contributes significantly, with median contributions ranging from 10% below 1.5km, 35% 995 
between 1.5 and 3 km, and 20% >3 km.  Its higher contribution is especially evident at all levels 996 
over the West Sea air samples, which are representative of Chinese pollution outflows. These 997 
variations in contributions affect the design and interpretation of joint CO:CO2 inversions. We find, 998 
for example, that in order to effectively constrain ffCO2 emissions from Kor+Jap and East Asia, 999 
we have to localize our inversion to data points below 3 km. Else, the larger impact of 1000 
“Background+non-ffCO2” can obscure the response from ffCO2 emissions. We conducted three 1001 
sets of inversions to demonstrate the impact of CO data in refining estimates of regional ffCO2 1002 
emissions. While recognizing the simplicity of our joint Bayesian synthesis inversion (which 1003 
follows Palmer et al., 2006), we find that ffCO2 from East Asia and Kor+Jap need to be increased 1004 
by 27%±24% and 9%±17%, respectively. This is very consistent (albeit with larger uncertainty) 1005 
with results from an inversion using derived ffCO2 data only (East Asia: 27%±9% and Kor+Jap: 1006 
10%±3%). In contrast, inversion using only CO2 data results to a decrease in both East Asia (-1007 
5%±27%) and Kor+Jap (-6%±19%) reflecting the difficulty to differentiate the response of 1008 
background+non-ffCO2 and regional ffCO2 using CO2 profiles alone. 1009 
Although these results are promising, we emphasize that this is only proof-of-concept which needs 1010 
to be refined with more rigorous and realistic inverse modeling experiments for different observing 1011 
systems. This is especially the case for global inversion systems that take into account the 1012 
appropriate scales inherent in these types of information and goes beyond the use of traditional 1013 
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error covariance estimation. CO, in particular, is useful in constraining ffCO2 at regional scales 1014 
since this scale is commensurate to its lifetime of 1 to 2 months. It becomes problematic at local 1015 
scales due to its inherent confounding factors and inability of global chemical transport models to 1016 
capture its variability at these scales. While this study focuses on a specific region, we highlight 1017 
in this work the importance of rigorously verifying the relationships and sensitivities derived from 1018 
regional and global models to any joint inverse analyses. It is especially important to verify 1019 
consistencies across species. Careful consideration of associated errors on the vertical distribution 1020 
of these sensitivities and assumptions of stationarity is warranted, especially for future joint 1021 
analyses using satellite columnar retrievals of these species, which lack vertical information and 1022 
may not necessarily be collocated in both space and time.  1023 
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Appendix A. Tagging ffCO2 and ffCO in CAM-chem 1055 

The abundance of tropospheric CO2 at any given space (𝑠) and time (𝑡) can be decomposed into 1056 
contributions from different processes. That is, 1057 
 1058 
𝐶𝑂!(𝑠, 𝑡) = 𝐶𝑂!

#$(𝑠, 𝑡) 1059 
																						+ u𝐶𝑂!

""#"(𝑠, 𝑡) + 𝐶𝑂!##(𝑠, 𝑡) + 𝐶𝑂!OP((𝑠, 𝑡) +	𝐶𝑂!2P+(𝑠, 𝑡) + 𝐶𝑂!OQP((𝑠, 𝑡)v 1060 

																							− u𝐶𝑂!RS*(𝑠, 𝑡) + 𝐶𝑂!)OS(𝑠, 𝑡) + 𝐶𝑂!+7(𝑠, 𝑡)v      (A.1) 1061 
 1062 
where  𝑏𝑔  denotes background,  𝑓𝑓𝑏𝑓 , 𝑏𝑏 , 𝑐𝑒𝑚 , 𝑟𝑒𝑠  and 𝑐ℎ𝑒𝑚  are CO2 sources from fossil 1063 
fuel/biofuel combustion, biomass burning, cement production, biospheric respiration, and 1064 
chemical production processes, while 𝑙𝑛𝑑 , 𝑜𝑐𝑛 , 𝑠𝑡  are CO2 sinks due to biospheric 1065 
(photosynthetic) uptake, ocean-tropospheric, and tropospheric-stratospheric exchange, 1066 
respectively. Our notation of non-ffCO2 corresponds to other sources that are not 𝑓𝑓𝑏𝑓. 1067 
 1068 
Similarly,  1069 
 1070 
𝐶𝑂	(𝑠, 𝑡) = 𝐶𝑂#$(𝑠, 𝑡) 1071 
																						+ u𝐶𝑂""#"(𝑠, 𝑡) + 𝐶𝑂##(𝑠, 𝑡) + 𝐶𝑂)N-*(𝑠, 𝑡)v 1072 

																							−	u𝐶𝑂&T(𝑠, 𝑡) + 𝐶𝑂*P6(𝑠, 𝑡)v	       (A.2) 1073 
 1074 
where 𝑜𝑥𝑖𝑑 , 𝑂𝐻  and 𝑑𝑒𝑝  denote secondary CO due to VOC oxidation, CO sinks due to its 1075 
reaction with 𝑂𝐻 radical and dry deposition, respectively. 1076 
 1077 
We have developed tagging capabilities in CAM-chem for both CO and CO2 sources by 1078 
prescribing their associated sinks. Tagging CO has been developed in the past by treating CO from 1079 
a particular basis function as tracers. That is, we solve the continuity equation for every tagged CO 1080 
in the same way as the default CO variable in the model but making sure that each tagged CO does 1081 
not interact with model chemistry (i.e., by treating it as a passive tracer). This mechanism is 1082 
mentioned in Emmons et al. (2012) and previously used in Bayesian synthesis inversion studies 1083 
(e.g., Arellano and Hess, 2006) and chemical budget studies (Gaubert et al., 2016). A similar 1084 
approach is also used by Fisher et al. (2017) with GEOS-Chemv9 model. This tagging capability 1085 
is further illustrated in Eq. A.3 for a particular tag CO (itag).  1086 
 1087 
U[W]$%&'

U7
= U[W]$%&'

U7
2
725S+6)27

+ U[W]$%&'

U7
2
+)Y2OP+

− U[W]$%&'

U7
2
+-SZ+

     (A.3) 1088 

 1089 
The temporal evolution of a tracer [𝑋]-75$ for each grid cell in the model is calculated using the 1090 
same continuity equation for species [𝑋]. As expressed in Eq A.2, this includes the background 1091 
dynamics represented here as transport term (dynamics and physics incl. advection, diffusion, 1092 
mixing, convection, and CO flux convergence and divergence), all sources (emissions and 1093 
chemical production), and all sinks (CO+OH reaction, and deposition). These tags or basis can be 1094 
either disaggregated sectoral components and/or regional source components of CO depending on 1095 
the problem to be addressed. Here, we use ffCO emitted from a few regions around Korea as our 1096 
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basis. All these regions are defined in Figure 1. The response of this basis or the contribution of 1097 
this source region to overall abundance in CO is estimated by integrating Eq. A.3. Hence, the 1098 
simulated [𝐶𝑂]-75$ for example corresponds to [𝐶𝑂] mixing ratio for a given mass of CO emitted 1099 
to the atmosphere by this itag region. The CO tags added in CAM-chem consists of the following 1100 
edits to the code: (1) The CO tags are defined in the chemical preprocessor (variable names are 1101 
arbitrary defined as “CO01”, “CO02” …); (2) emission files for the tags of emissions from specific 1102 
regions are prepared and defined in the namelist; (3) chemical production of CO for CO tags of 1103 
chemical sources are defined by adding related chemical reactions in chemical preprocessor; (4) 1104 
the OH chemical loss is defined in the chemical preprocessor, OH is not affected by the oxidation 1105 
of tags; (5) dry deposition for the CO tags is applied in the same way as for the default CO variable. 1106 
Detailed evaluation and validation of CAM-chem CO tags can be found in Tang et al. (2019a) and 1107 
https://wiki.ucar.edu/display/camchem/. 1108 
 1109 
We apply a similar approach in tagging ffCO2 (Eq. A.1 and Eq. A.3). However, we do not account 1110 
for chemical production in the source term nor deposition in the sink term. The sink of each ffCO2 1111 
tags is derived from the negative surface flux 𝑓%&!

-75$, which we define as the product of the negative 1112 
surface flux of CO2 (𝑓%&!) at a given time and the ratio of the associated CO2 mixing ratio of the 1113 
tag ([𝐶𝑂!]+2"

-75$) at the surface and the modeled CO2 mixing ratio [𝐶𝑂!]+2" at the surface; i.e.,  1114 
 1115 

𝑓%&!
-75$ = 𝑓%&! ∙ 	�

[𝐶𝑂!]+2"
-75$

[𝐶𝑂!]+2"
> �       (A.4) 1116 

In this manner, the sink of model CO2 can be disaggregated into the sum of the sinks for all tags. 1117 
This ensures that the relative abundance of the tagged CO2 to the total CO2 is conserved. Other 1118 
sources of CO2 (chemical oxidation) is treated as part of the “Background+non-ffCO2” in the same 1119 
manner as the secondary CO within “Background+non-ffCO”. Edits to the model include: 1) The 1120 
CO2 tags are defined in the chemical preprocessor similarly as “CO2_online” (named 1121 
“CO2_online_anthro”, “CO2_online_fire”, “CO2_online01”, “CO2_online02”, …); (2) positive 1122 
flux (source) files for the tags from specific regions are prepared and defined in the namelist; (4) 1123 
sinks of all tags are defined using Eq. A.4. The routines, mo_srf_emissions.F90 and chemistry.F90 1124 
codes of the CESM chemistry routines are modified for this development. The modified CAM-1125 
chem source codes and chemical preprocessor are accessible through Github (See data availability 1126 
for details).  1127 
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Figure 1. Map of the study domain including: land cover (colored map), definition of tag (basis) 
regions (blue rectangles), location of four East Asia sites from the NOAA ESRL Carbon Cycle 
Cooperative Global Air Sampling Network (colored dots), location of East Asia TCCON sites 
(colored rhombus), and the DC-8 aircraft flight tracks during KORUS-AQ (black lines). 
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Figure 2. Spatial distribution of a priori mean CO2 fluxes from CT3h (top left), CAM-Chem CO 
emissions (top, right), OCO-2 XCO2 (middle left) and MOPITT XCO composites (middle right) 
for the entire KORUS-AQ campaign period. Also shown is the spatial distribution of CAM-Chem 
XCO2 (bottom left) and XCO (bottom right) model equivalents. See Figure S5 for sub-monthly 
comparisons. 
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Figure 3. Campaign composite of KORUS-AQ DC-8 flight CO2 (a) and CO (b) data, model 
equivalent CO2 from CAM-Chem (c) and CO (d), and CO2 from Carbon Tracker (CT2017) CO2.  
Panel f) shows the flight tracks for the flight groupings in this study. 
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Figure 4. Mean vertical profiles of CO2 (ppm) and CO (ppb) averaged across the KORUS-AQ 
campaign period by flight groups (see Figure 3f for the location of these groups).  DC-8 data CO2 
and CO are shown in black (with error bars corresponding to its standard deviation). Superimposed 
are model equivalents of CO2 and CO from CAM-Chem (red), CO2 from Carbon Tracker (CT2017, 
blue), and ensemble mean CO2 from CAM-Chem using CT3h, CAMS, and CTE2018 fluxes 
(green).  
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Figure 5. Comparison of ffCO2 with radiocarbon (14CO2) data during KORUS-AQ. The spatial 
and temporal sampling of 14CO2 (colored markers) and CO2 measurements (gray line) are shown 
in top left panel (a), (horizontal) and middle panel (c) (vertical and time), respectively. Data points 
colored in orange and red are considered outliers. The top right panel (b) correspond to a scatterplot 
between ffCO2 from CAM-chem tags and ffCO2 from 14CO2 (overall correlation is indicated for 
all data points and excluding outliers). Modeled regional contributions to ffCO2 are shown in the 
bottom panel (d) along with the values of 14CO2 samples (ppm), and observed and modeled CO 
and CO2 in the bottom panels of d). 
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Figure 6. Vertical profiles of mean CO:CO2 correlations (left panels) from DC-8 (red) and CAM-
Chem/CT3h (blue), and the correlation between model CO minus DC-8 CO and model CO2 minus 
DC-8 CO2 (black) arranged by flight groups. Right panels correspond to vertical profiles of derived 
enhancement ratios (DCO: DCO2) from DC-8 (red) and CAM-Chem/CT3h (blue) based on 
ordinary least squares (OLS) regression. Open circles with dotted lines are enhancement ratios 
derived using reduced major axis (RMA) regression at p<0.05. Number of data points for each 
vertical layer (1-km) bin is shown in the left panels. The error bar denotes the associated 
uncertainty of every estimate. Missing values denote non-statistically significant (p<0.05) 
correlations. 
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Figure 7. Spatial distribution (averaged across KORUS-AQ) of modeled total CO2 (ppm) and CO 
(ppb), modeled ffCO2 and ffCO2 tags at model surface, 800 hPa, and 500 hPa. Pearson (pair-wise) 
correlation coefficients across the domain relative to total CO2 are shown in the bottom right of 
each image.
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Figure 8.   DC-8 DCO: DCO2 (green) and associated uncertainty (error bar) derived from all data 
points within a flight group and vertical layer (0 to 1.5km, 1.5-3.0km and >3.0km). Also shown 
are contributions of each optimized response functions (based on an inversion using ffCO2 data, 
see Figure 9) to the overall observed sensitivity. 
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Figure 9.  A priori (blue) and a posteriori estimates of ffCO2 scaling factors (and associated 
uncertainty shown as an error bar) from a Bayesian synthesis inversion using ffCO2 data derived 
from 14CO2 samples (red) and inversion using DC-8 CO2 (yellow-orange) and joint inversion using 
DC-8 CO2 and CO (magenta).  Here, the basis functions are aggregated to include East Asia, 
Kor+Jap, Rest of the World ffCO2 and “ffCO2 offset” (for ffCO2 inversion) or “Background+non-
ffCO2” (for CO2 or CO2 and CO inversions). 
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Figure 10.   Mean vertical profiles of ffCO2 response functions from Kor+Jap (blue), East Asia 
(red) and ROW (yellow-orange) for each flight group. Dashed and solid lines correspond to a 
priori and a posteriori estimates, respectively. Mean CO2 bias (model-obs) are shown in the right 
panels. 
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Table 1. CO2 fluxes used in this study. 
 

CO2 
fluxes 

Spatial 
Res. 

Temporal 
Res. Period Transport 

Model 
Fossil Fuel 

Priors 
Biosphere and 

Fires Priors Ocean Priors Main 
Reference 

CT2017  
1o lon 
1o lat 3-hourly 2000-

2017 TM5 

“Miller" 
(EDGAR 
scaled to 

CDIAC) & 
"ODIAC" 

CASA w/ 
GFED 4.1s 

GFED_CMS 

Jacobson et al. 
(2007) 

Takahashi et al. 
(2009) 

Peters et al. 
(2007)1 

1With updates documented at http://carbontracker.noaa.gov. 
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Table 2. Summary statistics of CO and CO2 NASA DC-8 measurements. npair is the number of 
data pairs of CO and CO2. Model equivalents and model evaluation against CO and CO2 data are 
also shown. Units are ppm for CO2 and ppb for CO.  

 

  All    Seoul Taehwa West 
Sea 

Seoul 
Jeju 

Seoul 
Busan 

npair  8942 542 1579 1129 2712 1179 
Obs 
Mean 

CO2 410 415 408 411 411 408 
CO 205 266 163 234 223 183 

Obs 
Std 

CO2 7.7 13 5 5 10 4 
CO 101.9 113 73 143 101 64 

Obs RCO2,CO 0.66 0.79 0.68 0.89 0.62 0.60 
Obs DCO/DCO2 13.30 9.13 15.28 28.20 10.37 15.92 
Model  
Mean 

CO2 410 412 408 409 412 410 
CO 188.4 237 143 202 213 155 

Model 
Std 

CO2 7.8 10.5 4.2 3.5 10.1 5.8 
CO 107.1 133 70 119 117 62 

Model RCO2,CO 0.55 0.59 0.50 0.39 0.67 0.60 

Model DCO/DCO2 13.80 12.61 16.56 33.66 11.54 10.68 
Bias 
Model 
minus 
Obs 

CT3h -1.0 -3.5 -0.1 -2.2 -1.4 0.8 
CT2017 -1.2 -3.5 -0.4 -1.3 -1.9 0.6 

CO -24.2 -29.2 -20.4 -32.6 -34.5 -27.9 
R 
Model 
versus 
Obs  

CT3h 0.39 0.60 0.45 0.40 0.38 0.05 
CT2017 0.37 0.43 0.60 0.51 0.32 0.21 

CO 0.63 0.63 0.64 0.67 0.59 0.72 

RMSE 
CT3h 7.7 11.0 4.7 5.3 9.3 7.0 
CT2017 6.9 9.8 3.9 4.6 9.0 4.8 
CO 87.6 111.5 64.0 113.6 90.3 55.2 

errorR CT3h 0.40 0.36 0.41 0.57 0.41 0.43 
 

https://doi.org/10.5194/acp-2020-864
Preprint. Discussion started: 31 August 2020
c© Author(s) 2020. CC BY 4.0 License.


