On the relationship between tropospheric CO and CO₂ during KORUS-AQ and its role in constraining anthropogenic CO₂

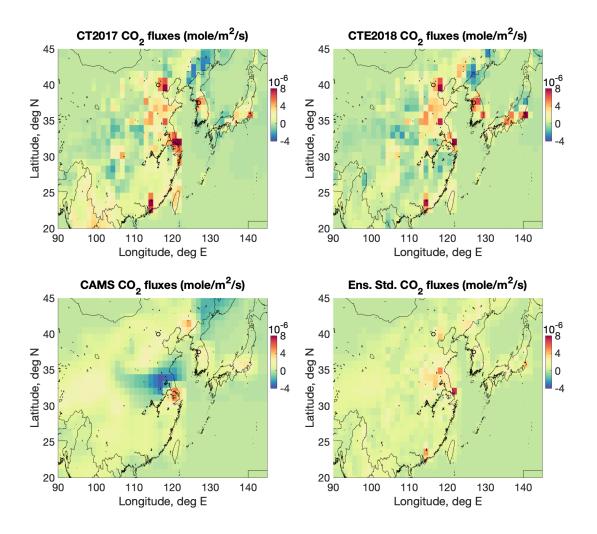
Tang et al., 2020

Text S1: Technical details for simulating atmospheric CO₂ explicitly with external CO₂ fluxes in CAM-chem

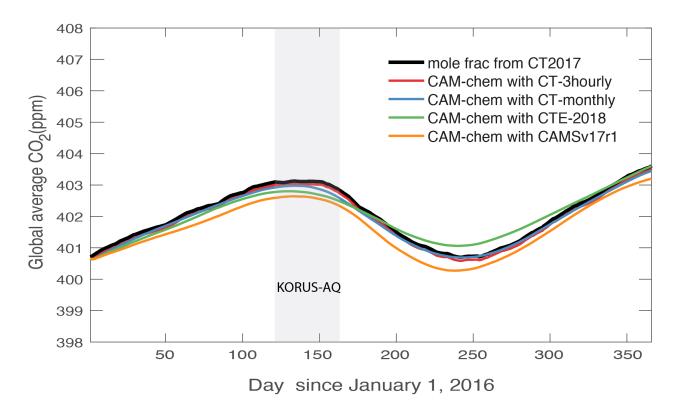
To add the online CO₂ simulation, we firstly define a new species called "CO2_online" in the model. CAM-chem employs a chemical preprocessor (named chem_mech.in by default) to generate CAM Fortran source code for the chemistry solver, which provides flexibility in defining and changing the chemical mechanism (Lamarque et al., 2012). We define "CO2_online" in the chemical preprocessor to be explicitly solved. The CO₂ fluxes described in Section 2.1 are used as prescribed sources and sinks for the "CO2_online" variable at the surface. We do not explicitly solve the chemical production of CO₂ to total CO₂ in these simulations. Although we added a capability to track the chemical contribution to CO₂ from CH₄ and NMVOCs (including CO) by adding an independent variable called "CO2_chem" in CAM-chem, we will be investigating this variable in the future. For initial conditions, we use the CT2017 mole fraction fields to avoid long spin-up. We also note that the "CO2_online" is a newly added chemical species in CAM-chem with no impact to model physics (such as radiative effect) yet.

CO ₂ fluxes	Spatial Res.	Temporal Res.	Period	Transport Model	t Fossil Fuel Priors	Biosphere and Fires Priors	Ocean Priors	Main Reference
CAMS (v17r1)	3.75° lon 1.875° lat		1979- 2017	LMDz ¹	EDGAR scaled to CDIAC	ORCHIDEE (climatology) + GFEDv4	Landschützer et al. (2014)	Chevallier (2018) ²
CT2017	1º lon 1º lat	3-hourly monthly	2000- 2017	TM5	"Miller" (EDGAR scaled to CDIAC) & "ODIAC"	CASA w/ GFED 4.1s GFED_CMS	Jacobson et al. (2007) Takahashi et al (2009)	Peters et al. $(2007)^3$
CTE2018	1º lon 1º lat	monthly	2000- 2016	TM5	EDGAR+ IER scaled to CDIAC	SiBCASA- GFED4	Jacobson et al. (2007)	van der Laan-Luijkx et al. (2017) ⁴

¹The Laboratoire de Météorologie Dynamique General Circulation Model (LMDz).


²Data available at http://apps.ecmwf.int/datasets/data/cams-ghg-inversions.

³With updates documented at http://carbontracker.noaa.gov.


⁴Data available at http://www.carbontracker.eu.

			CO (TgC)			
		Region	CT2017	CTE2018	CAMSv17r1	
Sources		Korea	0.01	0.01	/	0.11
		Japan	0.02	0.03	/	0.13
	fossil fuel or	EA-S	0.07	0.07	/	1.68
	anthropogenic	EA-M	0.11	0.11	/	2.71
		EA-N	0.05	0.04	/	1.05
		the rest	0.53	0.53	/	18.44
	fire		0.11	0.11	/	9.69
	biosphere		/	/	/	3.25
	ocean		/	/	/	0.61
	chemical produc	ction	/	/	/	58.40
	source total		0.90	0.89	/	96.07
	biosphere		0.63	0.90	/	/
Sinks	ocean		0.26	0.18	/	/
	chemical loss*		/	/	/	102.76
	sink total		0.88	1.08	/	102.76
Net (Sources-Sinks)			0.01	-0.19	-0.04	-6.69
Initial Burden			854.83	854.37	853.98	156.82
Final Burden			854.93	854.19	853.93	145.10
Initial-Final			-0.10	0.18	0.05	11.72
Budget delta			-0.08	-0.01	0.01	5.03

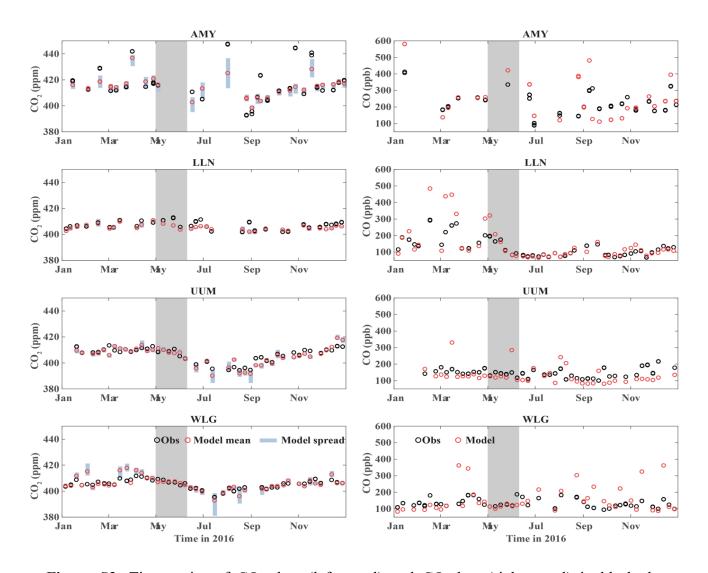
Table S2. Global budget of CO₂ (in 10^{15} g C) and CO (in 10^{12} g C) during KORUS-AQ (May 2016).

Figure S1. Spatial distribution of monthly-mean (May 2016) *a posteriori* fluxes from CT2017 (top left), CTE2018 (top right), CAMSv17r1 (bottom left), and the corresponding ensemble standard deviation across the three fluxes (bottom right).

Figure S2. Global average atmospheric CO₂ mixing ratios in 2016 from CT2017 mole fraction fields (black line) and CAM-chem simulations of CO₂ (using fluxes from CT3h, red; CTm, blue, CTE2018, green; and CAMSv17r1, orange). The KORUS-AQ period corresponds to 122-162 days since January 1, 2016.

Other observational datasets used in the study:

Surface flask air sampling. The NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network is an international effort that includes samples from the NOAA ESRL/GMD baseline cooperative fixed observatories, sites, as well as commercial ships (https://www.esrl.noaa.gov/gmd/ccgg/flask.php). We use the flask measurements of atmospheric CO₂ and CO dry air mole fractions from four ground sites in East Asia that are part of the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network (Dlugokencky et al., 2018; Petron et al., 2018), namely Anmyeon-do (AMY), Lulin (LLN), Ulaan Uul (UUM), and Mt. Waliguan (WLG). For comparison, model results are interpolated to the four sites. These datasets serve as the data for baseline comparison and providing seasonal context of the model simulations.


Ground-based remote sensing. The Total Carbon Column Observing Network (TCCON) is a global ground-based network that measure column abundances of CO₂, CO, CH₄, N₂O as well as other species that also absorb in the near-infrared (Wunch et al., 2011; https://tccon-wiki.caltech.edu/). In this study, XCO₂ and XCO measurements from four TCCON sites in East Asia (Release GGG2014) are used (Wunch et al., 2015), including Anmyeon-do (Goo et al., 2017), Saga (Shiomi et al., 2017), Tsukuba (Morino et al., 2017a), and Rikubetsu (Morino et al., 2017b). For comparison, model results are interpolated to TCCON locations and smoothed with TCCON *a priori* profiles and averaging kernels (AKs). These datasets also serve as our data for baseline comparison and consistency check with the corresponding satellite retrievals.

 CO_2 CO Date product Level 2 v8 Lite XCO2 2.25x1.29 km Resolution Global coverage Orbiting Carbon 2x/month Observatory-2 (OCO-2) Revisit time 1:18 - 1:33 pm 1-2 ppm XCO₂ Satellite (Boesch et al., 2011 Uncertainty Retrievals and references therein) TIR/NIR Level 2 v7 XCO Date product 22 x 22 km Measurements Of Resolution \sim 3-4 days Pollution In The 10:30 AM Revisit time Troposphere (MOPITT) 0.09e18 molec/cm² total column Uncertainty retrieval; (Deeter et al., 2014) Available period 2013.12 - now Anmyeon-do (AMY) 36.54°N, 126.33°E Measuring method Surface flask air sampling 85.12 masl Data size 119 measurements in 2016 NOAA ESRL Available period 2006.08 - now Lulin (LLN) Carbon Cycle 23.47°N, 120.87°E Measuring method Surface flask air sampling Cooperative 2862.00 masl Data size 98 measurements in 2016 Global Available period 1992.01 - now Ulaan Uul (UUM) (CCGG) Air 44.45°N.111.10°E Measuring method Surface flask air sampling Sampling 1007.00 masl Data size 104 measurements in 2016 Network Mt. Waliguan (WLG) Available period 1990.08 - now 36.29°N, 100.90°E Measuring method Surface flask air sampling 3810.00 masl 102 measurements in 2016 Data size Available period 2015.02 - 2016.11 Anmyeon-do ground-based Fourier Transform Spectrometers Instrument 36.54°N, 126.33°E Data size 3081 measurements in 2016 30 masl Goo et al., 2017 reference 2011.07 - 2018.08 Available period Saga Instrument ground-based Fourier Transform Spectrometers 33.24°N, 130.29°E Total Carbon Data size 7177 measurements in 2016 7 masl Column reference Shiomi et al., 2017 Observing Available period 2011.08 - 2017.12 Network Tsukuba Instrument ground-based Fourier Transform Spectrometers (TCCON) 36.05°N, 140.12°E 16499 measurements in 2016 Data size 31 masl Morino et al., 2017a reference Available period 2013.11 - 2017.12 Rikubetsu Instrument ground-based Fourier Transform Spectrometers 43.46°N, 143.77°E, Data size 6127 measurements in 2016 380 masl reference Morino et al., 2017b Team AVOCET DACOM/DLH Instrument LI-COR DACOM NASA DC-8 aircraft Time Response 1 second 1 second Measurements during Precision < 0.1 ppm < 1% or 0.1 ppb **KORUS-AQ** 0.25 ppm 2% Accuracy LI-COR LI-7500 Thermo 48i Taehwa ground site Instrument 37.31°N,127.31°E Data intervals 1 hour 1 hour

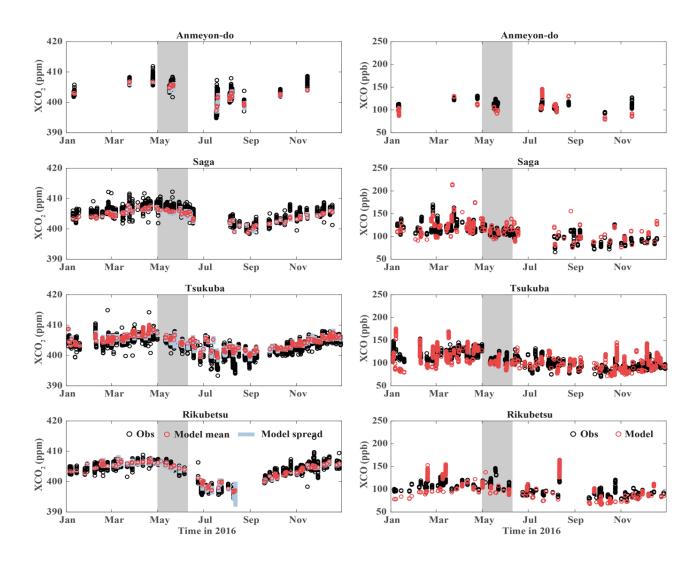

Table S3. Summary of all observations used in this study.

Table S4. Summary statistics of CO and CO₂ from surface (in-situ/CCGG, column/TCCON), aircraft (DC-8), and remote sensing (OCO-2, MOPITT) measurements. npair is the number of data pairs of CO and CO₂. Model equivalent and model evaluation against CO and CO₂ data are also shown. Units are ppm for CO₂ and ppb for CO.

		NOAA/ESRL CCGG				TCCON			
		AMY	LLN	UUM	WLG	Amy	Sag	Tsu	Rik
npair		95	64	86	89	3081	7177	6499	6127
Obs	CO_2	415	407	406	405	403	406	403	403
Mean	СО	217	124	142	130	109	108	103	99
Obs	CO ₂	12	3	6	3	3	2	2	3
Std	СО	67	55	26	26	8	15	14	15
Obs R _{CO2,CO}		0.32	0.31	0.48	0.36	0.59	0.52	0.37	0.28
Obs $\Delta CO/\Delta CO_2$		5.90	18.90	4.53	9.42	2.86	7.40	5.63	4.81
	CO ₂	414	405	405	406	403	405	404	403
Model Mean	СО	239	142	129	187	105	111	102	93
Model	CO ₂	6-8	2	6-8	5-7	2-3	~2	~2	3-4
Std	CO	124	103	52	173	12	19	17	20
Model R _{CO2,CO}		-0.12	0.46	0.16	0.40	-0.2	0.51	0.33	0.05
(min/max)		0.18	0.70	0.27	0.71	-0.1	0.54	0.44	0.29
Model $\Delta CO/\Delta CO_2$		21.01	48.85	6.64	33.88	1	9.53	7.43	5.57
(min/max)		26.17	59.80	8.68	44.47	1	11.24	8.67	7.53
	CT3h	-0.2	-1.4	-0.6	-0.1	-0.6	-1.0	0.9	-0.1
Bias	CTm	-0.2	-1.4	-0.7	0.3	-0.2	-1.0	1.1	0.2
Model	CTE2018	1.4	-1.2	-0.3	1.5	0.5	-0.6	1.6	0.6
minus Obs	CAMS CT2017	-3.4	-1.6	-1.0	0.1	-0.9	-1.5	0.3	-0.5
	СО	22.0	18.1	-13.7	57.1	-4.3	2.3	-0.9	-6.1
	CT3h	0.74	0.46	0.84	0.83	0.92	0.85	0.87	0.94
R	CTm	0.70	0.71	0.86	0.81	0.92	0.87	0.86	0.94
Model	CTE2018	0.81	0.62	0.88	0.69	0.91	0.86	0.84	0.91
versus Obs	CAMS CT2017	0.67	0.67	0.92	0.82	0.92	0.86	0.89	0.95
	CO	0.68	0.92	0.21	0.22	0.40	0.63	0.61	0.66
	CT3h	8.1	3.0	4.5	4.4	1.3	1.5	1.5	1.2
RMSE	CTm	8.6	2.5	3.3	2.8	1.2	1.4	1.6	1.1
	CTE2018	7.4	2.6	3.0	4.0	1.4	1.2	2.1	1.4
NIVIOL	CAMS CT2017	9.7	2.7	2.7	2.6	1.5	1.8	1.2	1.1
	СО	94.6	59.0	54.7	177.9	12.1	15.5	14.1	16.2
errorR	CT3h	0.43	0.17	0.43	0.49	0.10	0.31	0.15	0.01
	CTm	0.41	0.32	0.46	0.62	0.07	0.30	0.19	0.40
	CTE2018	0.47	0.36	0.50	0.84	0.34	0.30	0.34	0.56
	CAMS	0.54	0.13	0.48	0.79	0.13	0.31	0.22	0.43

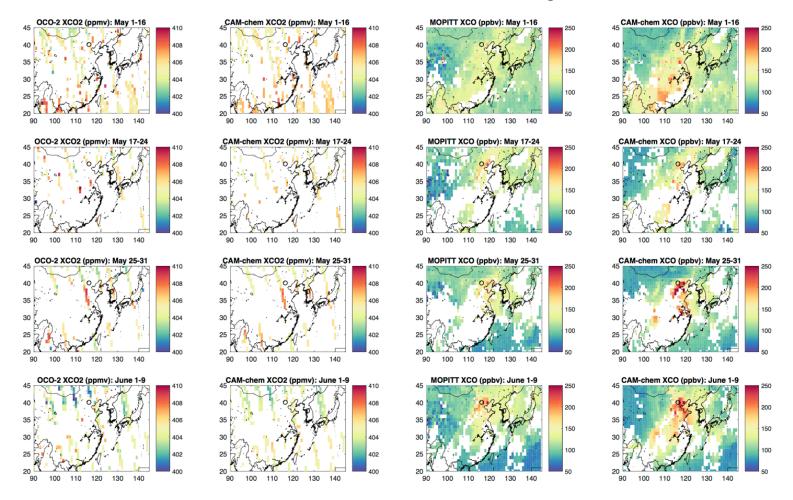


Figure S3. Time series of CO₂ data (left panel) and CO data (right panel) in black dots superimposed with the corresponding model results (red dots) at four East Asia sites from the NOAA ESRL Carbon Cycle Cooperative Global (CCGG) Air Sampling Network in 2016. The equivalent modeled CO₂ is represented as the mean of four model simulations with the blue bars representing the spread (min/max) of the four model simulations) The KORUS-AQ period (May 1 - June 10) is indicated in gray shade.

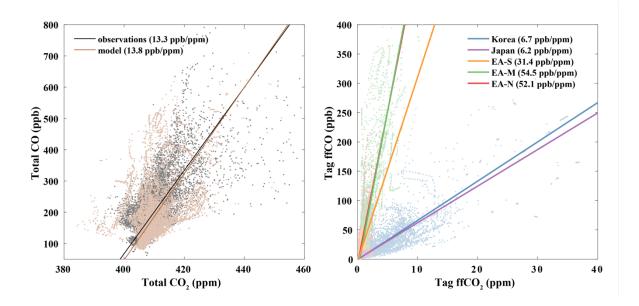
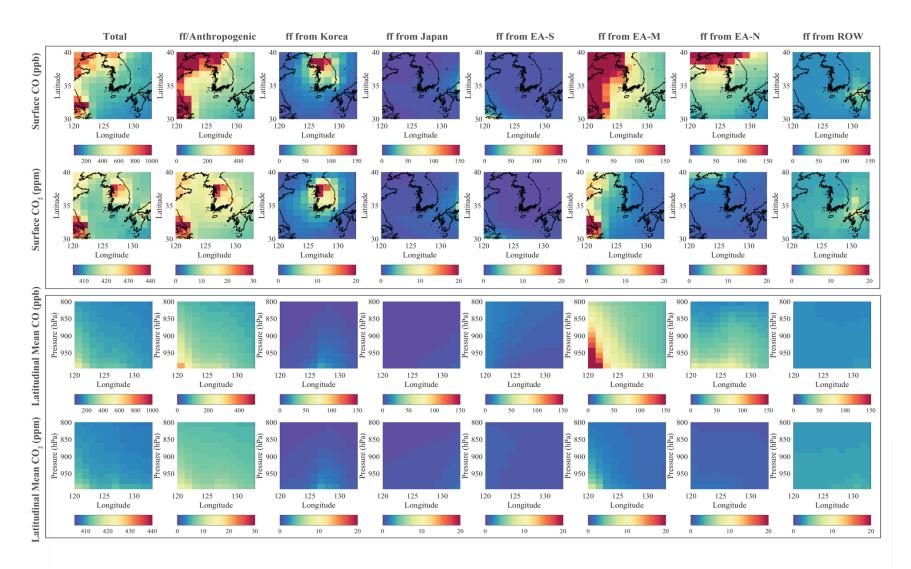


Figure S4. Time series of observations (black dots) and corresponding model results (red dots) The equivalent modeled CO_2 is represented as the ensemble mean of four model simulations with the blue bars representing the spread (min/max) of the four model simulations at four TCCON sites in 2016. KORUS-AQ period (May 1 – June 10) is indicated in gray shade.


Observed and modeled XCO₂ and XCO in the region

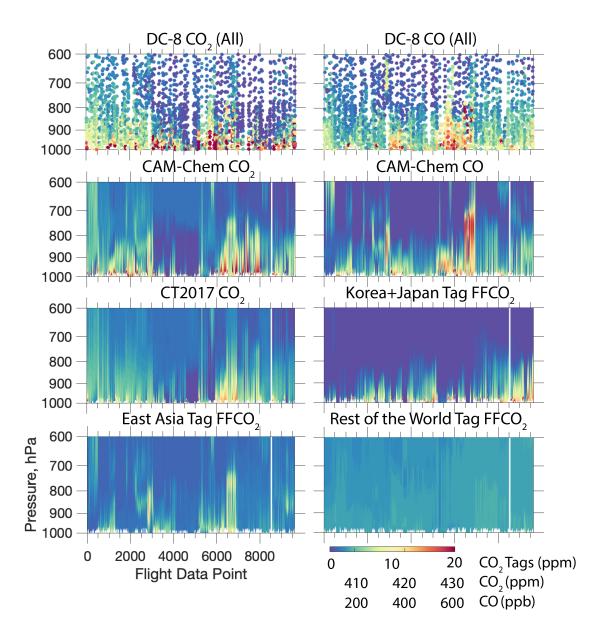

Figure S5. Comparison CAM-Chem results with CO₂ and CO satellite data (similar to Figure 2 of main text but for specific periods during the campaign). Panels in the first column correspond to the mean OCO-2 XCO₂ column density across KORUS-AQ period (ppm) and equivalent XCO₂ averaged across four model simulations in the second column). Panels in the third column correspond to MOPITT XCO column density averaged across KORUS-AQ period (ppb) and equivalent XCO (fourth column).

Figure S6. Comparison between observed (black) and modeled (brown) total CO_2 and CO mixing ratios (left panel) and corresponding association of modeled ffCO and ffCO₂ tags in CAM-Chem.

Figure S7. Spatial distribution of CO_2 and CO over Seoul and nearby regions. This is shown in the different columns for total CO_2 (or CO), its associated ff CO_2 (or ffCO) and regional contributions at the surface (top), along with corresponding mean zonal distributions averaged across KORUS-AQ domain (bottom).

Figure S8. KORUS-AQ flight curtains for DC-8 CO₂ and CO (top row) and for CAM-Chem model equivalent (second row) and for Carbon Tracker CO₂ files (CT3h, third row, left panel). These curtains correspond to all flight data points of the campaign (flight group:All). Also shown are corresponding contributions of a priori ffCO₂ response functions from Korea+Japan (third row, right panel), East Asia (fourth row, left) and Rest of the World (fourth row, right).

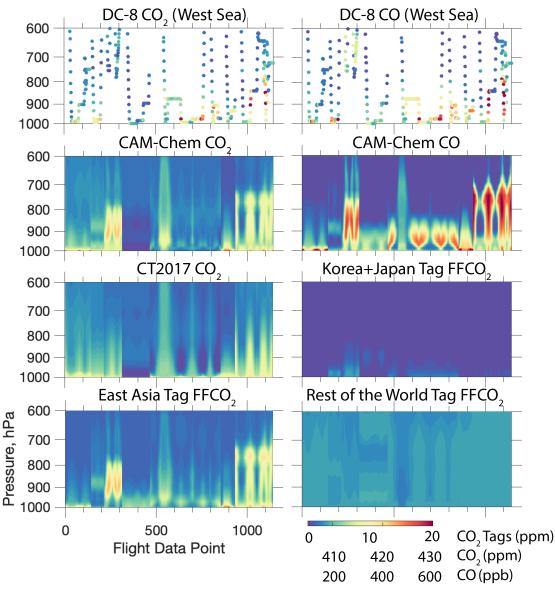


Figure S9. Same as Figure S7 but for West Sea flight group.

Other References (not cited in main text)

- Morino, I., T. Matsuzaki, A. Shishime.: TCCON data from Tsukuba, Ibaraki, Japan, 125HR, Release GGG2014R2. TCCON data archive, hosted by CaltechDATA, California Institute of Technology, Pasadena, CA, U.S.A. http://doi.org/10.14291/tccon.ggg2014.tsukuba02.R2, 2017a.
- Morino, I., N. Yokozeki, T. Matzuzaki, A. Shishime.: TCCON data from Rikubetsu, Hokkaido, Japan, Release GGG2014R2. TCCON data archive, hosted by CaltechDATA, California Institute of Technology, Pasadena, CA, U.S.A. https://doi.org/10.14291/tccon.ggg2014.rikubetsu01.R2, 2017b.
- Oh, Y.S., Kenea, S.T., Goo, T.Y., Chung, K.S., Rhee, J.S., Ou, M.L., Byun, Y.H., Wennberg, P.O., Kiel, M., DiGangi, J.P. and Diskin, G.S.: Characteristics of greenhouse gas concentrations derived from ground-based FTS spectra at Anmyeondo, South Korea, *Atmospheric Measurement Techniques*, 11, 2361-2374, 2018.
- Landschützer, P., Gruber, N., Bakker, D.C. and Schuster, U.: Recent variability of the global ocean carbon sink. *Global Biogeochemical Cycles*, *28*(9), 927-949, 2014.
- Petron, G., Crotwell, A.M., Lang, P.M., Dlugokencky, E.: Atmospheric Carbon Monoxide Dry Air Mole Fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, 1988-2017, Version: 2018-10-17, Path: ftp://aftp.cmdl.noaa.gov/data/trace_gases/co/flask/surface/, 2018.
- Wunch, D., Toon, G. C., Blavier, J. F. L., Washenfelder, R. A., Notholt, J., Connor, B. J., Griffith,
 D. W., Sherlock, V., and Wennberg, P. O.: The total carbon column observing network, *Philosophical Transactions of the Royal Society A*, 369, 2087–2112, 2011.