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We would like to express our gratitude to the anonymous reviewer for providing helpful
comments. We certainly appreciate your time in reviewing this manuscript.

We apologize if this manuscript fails to convey succinctly our main points from the
perspective of the reviewer. We will try to address each of the comments as best as
we can. Certainly, we value your comments in improving this manuscript, as we also
recognized the prospects of joint inversions in future studies.

————– Please see our responses to your comments below.

C1

(General Comment). The manuscript "On the relationship between tropospheric CO
and CO2 during KORUS-AQ and its role in constraining anthropogenic CO2" by Tang
et al. presents analysis based on the CO, CO2 and 14CO2 data collected during
the KORUS-AQ campaign over South Korea. It compares simulations of CO, CO2
and FFCO2 concentrations from a global transport model to the data and presents
inversions of the FFCO2 emissions in East Asia (Eastern China, Korea and Japan)
using this transport model and these data.

The prospect of the joint analysis of CO2, CO and 14CO2 data supported by trans-
port model simulations and of their joint assimilation in an inversion system is very
promising. Sometimes, the manuscript nearly reaches interesting insights on this topic.
However, in a general way, the study and the manuscript fail to exploit the potential of
such analysis. I think that more work and thoughts are needed to produce a paper
that deserves publication and that this goes beyond what is usually done for “major
revisions”.

Response: Yes, this is a paper about the relationship between CO and CO2. We also
emphasize that while our inverse analysis is the final key point of this work, the two
other important key points that we are highlighting in this work are the following:

a) evaluation of CAM-Chem with CO2 and CO tags using prior fluxes from a poste-
riori fluxes from state-of-the-art global CO2 inversions (i.e., CAMSv117r1, CT2017,
CTE2018). To our knowledge, this is the first development of a joint CO2 and CO mod-
eling in community Earth system model, CESM/CAM-Chem. This is also one of the
few studies in recent years that takes advantage of flux/source inversion products as
priors in the model. We note that we have also compared our simulations to Carbon
Tracker CO2 fields to ensure that our simulations are reasonable.

b) detailed description on CO and CO2 error statistics. Our intention is to highlight
the need to evaluate the statistics of the CO and CO2 relationship using aircraft mea-
surements, prior to any inverse analysis. We highlight, in particular, the need to pro-
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vide spatiotemporal context on these relationships, which in previous inversion studies
heavily rely on sensitivity tests. In this work, we highlight the importance of having
knowledge of ‘spatial error covariance localization length scales’ prior to inversion.

————– 1a) It is often very difficult to follow because the writing and the reasoning
are not structured and rigorous enough. A large amount of sentences are confusing
because of the lack of clarity, precision and explanations. The reading of the long
series of statistics lacks of hierarchy. The use of simulations or datasets that are not
much exploited in the analysis does not help. For instance, efforts are needed to follow,
in section 3, whether or why under or over estimations of concentrations are supposed
to highlight the under or over estimation of local, regional or global sources and sinks.
The reading of section 4 is even more difficult.

Response: We are not quite clear as to what the reviewer is referring to about structure
and hierarchy. As for Section 3, the aim is to evaluate the modeled abundance against
aircraft measurements, which we summarized in Table 2. Our intention is to lay out
the basis of error statistics as any typical model evaluation would conduct and provide
some physical context on these errors. We recognized that these statistics (bias, cor-
relation, rmse, as well as error correlation, enhancement ratio), while common, have
direct relevance to Section 4 where we expound more on the spatial variability of these
errors. We note that a more accurate representation of both the a priori error and ob-
servation error covariance matrices is in fact the crux of the inverse analysis, as with
any other inversion methods that account for these uncertainties. We do emphasize the
need to investigate the covariances and error covariances (and sensitivities) as these
are the terms in the analysis that ‘transfer information’ to unobserved parameters that
we are interested in estimating. We see this as an important step before any inverse
analysis is undertaken.

The spatial data groupings correspond to different sampling regimes which help us un-
derstand issues of the CTM (i.e., representativeness, boundary layer, transport, mixing,
emissions, sinks). Here, we provide a spatial and temporal context on the fidelity of the
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model to capture these statistical measures, as these measures represent different
components of the error characteristics.

Our emphasis is also to understand the vertical structure of these errors (Figure 4)
and associate them to potential model deficiencies. As such, we used this section to
compare not only with CarbonTracker (which we used for CO2 initial condition) but also
to CAMS, based on our previous work also published in this journal. As we mentioned
above, we recognize the need to provide an evaluation of CAM-Chem to establish its
fidelity (relative to state of the art models of CO2) since this is the first development
of such a system. We also note that this system is different from most models as we
are taking advantage of 3 different a posterior fluxes (CAMS, CT2017, CTE2018) and
used these as our priors. This is the reason why there is an added dimension to our
model evaluation.

We approach this model evaluation similar to Tang et al. (2018) in order to be consistent
with our previous work. We want to show across all the sections, the main essence
of this paper: to show the relationship between CO and CO2 and ffCO2. For our
comparison with 14CO2 data, we note that to our knowledge this is the first publication
of this data for this campaign with comparison to model equivalents. This is the reason
why we have a separate sub-section. This is also very timely as there have been recent
publications (also in this journal) about 14CO2 in nearby region.

It is unfortunate that the reviewer finds this section to be confusing. We do recognize
that this manuscript is long but we chose to elaborate more on these statistics. This is
the main reason why prior to our inverse analysis (Section 5), we expanded our discus-
sion on error statistics to make sense of error covariances used in inverse analysis and
to come up with reasonable ‘localization’ through the use of a subset of measurements
closer to the sources (section 4.1 and 4.2 leading to section 4.3). We emphasize that
this is not a manuscript of an inverse analysis of ffCO2 but more of elucidating the need
to investigate the relationships prior to any inversions.
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————– 1b) Furthermore, despite being relatively long, the text goes too fast on
some of the critical parts of the reasoning like the rationale for the study in the introduc-
tion and the justification for the use of specific inversion configurations and parameters.

I think that many assumptions and analysis are debatable and that the manuscript
shows a lack of hindsight on the topic and results of this study.

Response: We regret that the reviewer finds that many of our assumptions and anal-
ysis are debatable. We do recognize the length of this manuscript. As we mentioned
above, we emphasis that this is not an inverse study per se. We intend to show the role
of CO, CO2 and ffCO2 relationship on the inverse analysis (section 5) but only to briefly
make an example. In this manuscript, we focus on discussing the spatial variability of
the terms used in the inverse analysis and highlight the need to evaluate these relation-
ships in CTMs. Again, the approach we have taken on this paper (i.e., revisiting Palmer
et al. 2006) could open up discussion on the methodology for joint inverse analysis.
Our intention is to bring to light some of the issues that need to be considered for future
joint inversions, especially on the use of satellite retrievals for inversions, which lacks
the vertical information that is critical in identifying transport-related errors that may
confound any inverse analysis. This is not only true in single-species inversions but
in fact is an added complication with multi-species inversions that should be carefully
considered. There is relevance to adding CO observations in reducing uncertainties
on top-down estimates of ffCO2; especially with the availability of atmospheric com-
position retrievals (CO, NO2) nowadays (i.e., TROPOMI, GOSAT-2). We emphasize
the need to better understand the joint inversion, as this has yet to be investigated
rigorously and that the species relationships (and associated errors) should not be
taken for granted. As mentioned in the manuscript, our approach is based on widely
used Bayesian synthesis inversion introduced by Enting (2002) and used by Baker et
al. (2006), and more recently applied for multi-species inversion by Boschetti et al.
(2018). While Wang et al. (2018) used a similar method (for single-species CO2 inver-
sion), they focused on investigating the impact of reduced carbon component of CO2
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based on CO on their estimates. We note that this approach, while with disadvantages,
is still used in global inversions.

————– 2a) The specific scope and the objectives of sections 3 and 4 are not clear.
This manuscript is the 5th one analyzing the CO2 and/or CO data from the KORUS-AQ
campaign using transport models (after Tang et al. 2018, Halliday et al. 2019, Tang
et al. 2019a and Gaubert et al. 2020, ACPD). How do section 3 and 4 draw on these
previous publications and bring new learning?

Response: We thank the reviewer for pointing this out. As we mentioned above, this
is the first evaluation of a community Earth system model (CESM/CAM-Chem) for joint
CO2 and CO simulations. Tang et al. 2018 is about CAMS not CAM-Chem. We draw
insights to this paper by comparing CAMS to CAM-Chem given the relatively different
model configuration between these models. Halliday et al. 2019 is about enhance-
ment ratios mostly focused on data. We draw insights to this paper by comparing their
analysis to model equivalents especially with regards to the vertical distribution of en-
hancement ratios and correlations. As we mentioned in the Introduction, we view this
as complementary (i.e., data and model comparison with inverse analysis). Tang et al.
2019a is about CO not CO2 using CAM-Chem. We draw insights on this work by using
the optimized CO and error statistics (model vs data) which we used in our inverse
analysis. Gaubert et al. 2020 is about data assimilation (with EnKF). We draw in-
sights to this work by comparing tagging simulations that we did versus EnKF emission
estimation that they conducted.

Note that this is the first time we provide model-data synthesis for CAM-Chem on both
CO2 and CO. Here, we highlight the correlation (and error correlation) as this is really
the crux of any inversions and clearly there is lack of detailed investigation reported in
literature with regards to these covariances for joint inversions. And if we are to proceed
with joint global inversions, we ought to be aware of the deficiencies of the CTMs
in capturing these relationships. And what better way to do this but by comparison
with aircraft data. Also, note that 14CO2 during KORUS-AQ is first reported in this
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manuscript. If there’s new learning on this manuscript, it would be the synthesis of all
these in the context of inverse analysis.

————– 2b) Furthermore, opposed to what is claimed repeatedly (e.g. in the title, the
abstract, the beginning of section 1.1, the beginning of the conclusion...), I hardly see
how hese sections feed the configuration (in particular the error covariance matrices)
or the analysis of the inversions in section 5.

The introduction does not help much. Until the beginning of section 1.1, this is a collec-
tion of very general (and sometimes misleading) statements about the monitoring CO2
anthropogenic emissions using atmospheric data. Section 1.1 fails to bring clear spe-
cific context, rationale and objectives for this study. Lines 150-154 look like a summary
of the activities rather than a list of objectives. Lines 154-172 attempt to distinguish this
new study from the previous ones by pointing to practical differences that are hardly
convincing. Lines 769-770 and 775-776 claim that the set-up of matrix Se follows val-
ues of errors on CO and CO2 and errRCO,CO2 from section 4 but I do not see how.
Anyhow, the errors and the correlation of errors in CO and CO2 modeled concentra-
tions are driven by the atmospheric transport, the surface fluxes (and other source and
sinks), and to errors in both the transport model and in the modeled sources and sinks.
I do not see why it should be used to characterize transport model errors only. The
authors seem to miss the links between their statistics of model-data differences and
Sa (see below my general comment about the key role that this matrix should have
played).

Response: We thank the reviewer for what appears to be a thorough read of our
manuscript. We value your comments. We again regret that the reviewer fails to find
a clear understanding of the flow. This may be due to the length of the manuscript.
It is quite unfortunate that the reviewer views the Introduction as a “collection of very
general (and sometimes misleading) statements”. Our intent was to provide context
on the role of CO to GHG and ffCO2 in particular. Why CO? We apologize if our
interpretation of literature is inaccurate from the reviewer’s perspective. We would ap-
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preciate it though if the reviewer points out some of these inaccuracies and misleading
statements.

To reiterate, Section 3 is about comparison with data and models. Section 4 is about
error correlation and enhancement ratios. Section 5 is about a simple demonstration of
a joint inverse analysis. Section 4 feeds to Section 5 through the analysis of the spatial
extent of these errors (especially in the vertical). We use the error correlations from
Section 4 in particular and localized the dataset we used in the inversion to account for
potential confounding factors (transport errors) especially aloft. Again, this paper is not
all about joint inverse analysis.

We would like to repeat our response to Reviewer 2 with regards to Sa and Se as this
is also relevant in later comments of the reviewer:

Palmer et al., (2006), as well as Boschetti et al. (2018), relied on tagging CO2 and CO
components using a CTM (linearizing both CO2 and CO) to conduct a suite of Bayesian
synthesis inversions. Boschetti et al. (2018), however, utilized STILT to obtain these
Jacobians.

Within the CTM (where both CO2 and CO are simulated), there is, however, a
physically-based coupling between these runs through the use of emission ratios in
prior emissions for ffCO2 and CO. That is, they are both emitted to the atmosphere
in the model by sector-specific assumptions of emission factors per species, and as-
sociated emission ratio between species. As we showed in Tang et al. (2019b), for a
particular combustion process, we can estimate the combustion products by stoichiom-
etry:

— please see figure 1 for equations and figures —

And so, if we are to look at the equivalent atmosphere abundance of these emis-
sion tags (as they are emitted to the atmosphere), they are mostly correlated near
the sources, with correlations diminishing downwind of the source. Obviously, observ-
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ing the relationship downwind does not imply that the correlations (or the lack thereof)
are created by this co-emission alone, but typically also through mixing, transport, and
associated sinks. These are further quantified in the inverse analysis through the a
priori error covariance matrix (i.e., errors in emission ratios) and observation error co-
variance matrix (i.e., errors in transport, mixing, among others).

We note here that a more accurate representation of both the a priori error and obser-
vation error covariance matrices is in fact the crux of the analysis, as with any other
inversion methods that account for these uncertainties. We do emphasize the need to
investigate the covariances and error covariances (and sensitivities) as these are the
terms in the analysis that ‘transfer information’ to unobserved parameters that we are
interested in estimating.

We agree that it is worth comparing with what happens in nature. In fact, this is one of
our key points – i.e., can we evaluate this ‘modeled’ relationship? Are these relation-
ships that can be derived from observations of the species abundance in nature rea-
sonably captured by CTMs? We agree with Peter regarding the expression on sources.
Please see our response to Comment 3). In essence, we are looking at α ( effective
emission factor in our notation), which we argue should be consistently represented in
the a priori inventory for both CO and CO2. At present, with few exceptions, ffCO2 is
derived from energy statistics separate from air pollution emission inventories.

We note, however, that as we previously mentioned the yield is quantified as effective
emission factor, and the emission ratio is the quantity we can evaluate with observa-
tions by looking at the derived enhancement ratio (∆CO/∆CO2) from observations of
CO and CO2 abundance. Note that this can only be ‘appropriately’ evaluated with ob-
servations near the emission sources, just like studies using field campaign measure-
ments to estimate emission ratio. Otherwise, the enhancement ratio is confounded by
mixing and transport and hence cannot be taken and interpreted as the abundance
equivalent of emission ratio. See for example Mauzerall et al. (1998) Figure 4 (shown
below):
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— please see figure 2 for equations and figures —

where, the regression line of [X] and [Y] (i.e., (∆[Y])/(∆[X])) downwind is steeper than
over a fresh plume. This complication arises from various sources and sinks, other than
combustion which in reality are ubiquitous. And so, here we take the enhancement ratio
only as a key diagnostic on the bulk relationship between CO and CO2 (resulting from
a combination of emission ratio, mixing and sinks).

Palmer et al. (2006) investigated the sensitivities of different assumptions of activity,
and emission factors and concluded that errors in emission factors largely contribute to
the uncertainty estimate. Rather than ‘reinventing the wheel’, we took a more conser-
vative value of 0.5 (Boschetti et al. 2018 used 0.7, while Palmer et al. 2006 suggested
>0.7). As we noted in the manuscript, there is little information from flux measurements
to verify this error correlation. Also, note that these correlations, when used in the in-
version, is not correlation between CO and CO2 abundance near the source but the
correlation of the errors between modeled CO and CO2 abundance.

We agree on the proper interpretation of observation error covariances, R. We also
agree on the influence of R on the Bayesian synthesis inversion mean estimate and
a posteriori error covariance estimate. In fact, both P (or B) and R influence the first
and second moment estimates of the conditional pdf. This is the main reason why prior
to our inverse analysis (section 5), we expanded our discussion on error statistics to
make sense of R and to come up with reasonable localization of R through the use of a
subset of measurements closer to the sources (section 4.1 and 4.2 leading to section
4.3).

This influence is clearly more complex but it shows as well that the a posteriori error
covariance is a function of both the a priori error and observation error covariances.
While the Jacobians (tags) itself should exhibit some correlation as the species are
co-emitted, we need to quantify the uncertainties, not only on error variances but more
importantly on the error correlations.
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We note as well that our inverse analysis is a product of this investigation on R. By way
of expressing the sensitivity (enhancement ratio) with correlation (see related response
in Comment 3), we get:

— please see figure 3 for equations and figures —

The same relationship holds for the error sensitivity. In this manuscript, we focus on
discussing the spatial variability of these terms, as well as the corresponding magni-
tudes, so as to guide us in defining the cross-species error correlation components of
R (see Eq. 4 of our manuscript). In fact, we used a more conservative error correlation
of 0.33 (Boschetti et al. 2018 and Palmer et al. 2006 used 0.7). We opted not to show
our tests where we vary our assumptions of these values as this was already done by
Palmer et al. (2006). Rather, we choose to emphasize the need to have an estimate
of these values based on data, especially aircraft measurements given known issues
with vertical transport/mixing in CTMs. We intend to show the role of this relationship
on the inverse analysis (section 5) but only to briefly make an example. We emphasize
that this is not a manuscript of an inverse analysis of ffCO2 but more of elucidating the
need to investigate the relationships prior to any inversions.

As an aside, if we are to recast the first moment of p(x|y):

— please see figure 4 for equations and figures —

————– 3a) There is a critical lack of proper discussion on the spatial extent and
scales that are suitable for the analysis of the data. Parts of sections 3 to 5 attempt
to distinguish the influence of Eastern Asia or the rest of the world vs that of Korea,
l340-350 discuss the sources overflown during the campaign and the flights over the
West Sea are said to be designed to capture “China pollution outflow”. Some sen-
tences even raise (too late) some concerns associated to the coarse spatial resolution
of CAM-chem. However, in general, and in particular in the title, introduction and sec-
tion 2, there is no real reasoning regarding the observation footprints and regarding the
modeling and inversion domain and resolution that are suited for these data

C11

Response: This is quite unfortunate as this is one of the main theme of this manuscript.
We revisited Palmer et al. (2006) which uses a global CTM and aircraft data over sim-
ilar region. We are well cognizant of the representativeness of these measurements.
This is why we ended up aggregating our tags (emission regions). In particular, we
only focused on East Asia and Korea+Japan. This is also the reason why we use
more local data close to the source rather than using all the data. We note however
that we have compared to CarbonTracker and CAMS of similar resolution. Again, the
inverse analysis is intended to show an example as knowledge of enhancement ratio
and correlation extends beyond inverse analysis.

————– 3b) The introduction mixes all inversion scales and all types of observation
networks. Nothing is said about the wind fields during the campaign. The compar-
isons of a single global coarse resolution model to TCCON individual sites, to OCO-2,
to MOPITT data or to the aircraft data are brought together without consideration for
the differences between these observation datasets in terms of flux and process rep-
resentativeness. The statistics obtained here are sometimes compared with results
from other campaigns in different regions or with different coverage, or from “state-of-
the-art” models (without mentioning whether they are global or regional). The contrast
between the spatial extent of the regions for which the total emissions are rescaled by
the inversion and the local (nearly vertical) reading of the data footprints at l340-350 is
questioning.

Given the spatial extent of the KORUS-AQ campaign (less than 8âŮęx8âŮę) and its
density of data over South Korea, the use of a global 1âŮę resolution transport model
with coarse vertical resolution to analyze it is not obvious and sounds like a step back-
ward compared to the previous publications on this campaign (which used higher reso-
lution models). From what I understand, the model is interpolated at each observation
location and all the statistics are derived over the ensemble of observation locations.
What can be the meaning of such statistics at a resolution much finer than that of the
model?
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Response: We compared our results to CarbonTracker as well. CAMS is also com-
pared with CAM-Chem. Palmer et al. (2006) used a global CTM. There are several
global inversions as well in literature that in fact used regional datasets. The intent
of using TCCON, OCO-2 and MOPITT is to provide a comprehensive (albeit limited
in time) evaluation on the extent of CAM-Chem (relative to other models) to capture
not just the regional scale but global features of both CO and CO2 (e.g., surface and
column, synoptic and boundary layer). There’s obvious (and understandable) argu-
ment about using global CTMs to estimate regional sources. But we have carefully
presented all these statistics and show that at some of these scales, it is appropriate
to estimate regional sources. Our evaluation of CO2 is comparable to CarbonTracker
and CAMS. Having said this, we will modify our manuscript to ensure we mention the
appropriate scales of these comparisons.

It is unclear as to what the reviewer is referring to with regards to the statement “brought
together without consideration for the differences between these observation datasets
in terms of flux and process representativeness”. Across more than 20 years of inver-
sion literature, we are well-cognizant of the issue of representativeness especially with
global models. We will try to revise this manuscript to provide more emphasis. How-
ever, providing proofs and arguments related to representativeness and aggregation
errors is beyond the scope for this manuscript.

We would like to reiterate here that joint inversions are relatively new. While dealing
with confounding factors is necessary, we intend to show that CTMs that do not capture
even the large-scale features of the CO and CO2 relationship would have difficulty
taking advantage of the information that CO brings. In fact, we emphasize that joint
inversion of CO and CO2 has to be conducted at scales commensurate with the lifetime
of CO. Our presentation of the statistics is an honest way to show the scales at which
CAM-Chem has captured.

————– 4a) The usual concept for the co-assimilation of CO and CO2 is that the
signal from misfits between modeled and measured CO can be used to add constraint
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on the inversion of FFCO2 emissions because uncertainties in the FFCO2 emissions
are connected to uncertainties in FFCO emissions. This usually translates into two op-
tions for the inversion: (a) rescaling activity levels underlying both FFCO and FFCO2
emissions rather than FFCO and FFCO2 emissions separately or (b) rescaling sepa-
rately FFCO and FFCO2 emissions accounting for positive correlations between their
respective prior uncertainties. The key challenge for joint CO-CO2 inversions is usually
thought to be the uncertainties and high spatial and temporal variations in the CO/CO2
emission ratios i.e. in (a) the uncertainties and variations in the CO and CO2 emission
factors to be multiplied by the common activity indices to get emissions and in (b) the
level and variations of the positive correlation between the prior uncertainties in FFCO
and FFCO2 emissions. The authors of this study control separately FFCO and FFCO2
emissions but neglect the correlations between their respective prior uncertainties or
acknowledge that they have no idea about how to parameterize them, cutting the crit-
ical connection between FFCO2 and FFCO (see lines 819-830). The configuration
of Sa is actually made all the more difficult by using two different inventories for prior
FFCO2 and FFCO emissions, which undermines the ability to rely on tights connec-
tions between these emissions (especially since the CO inventory has been multiplied
by 2 to better fit the data before the inversion).

Response: Please see our response to comment 2b) and to Reviewer 2 on Sa. While
these inventories are taken from different sources, we argue that evaluating the bulk
enhancement ratios would provide insights on their inconsistencies. We highlight in
fact the need to have consistent emission inventories for GHG and air quality. This
manuscript is trying to revisit Palmer et al. (2006) and open up discussion on mean-
ingful ways on how these correlative measurements can be used effectively in ffCO2
estimation.

————– 4b) The authors even assume that these correlations are negative, i.e. that
the combustion efficiency could be the main source of uncertainty in both FFCO2 and
FFCO emissions. However, the prior FFCO and FFCO2 emissions are based on differ-
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ent inventories (and FFCO emissions have been multiplied by 2), so that, in principle,
the ratios between these emissions should not correspond to an assumption on this
efficiency. In a more general way, such an assumption is quite surprising. Uncer-
tainties in the level of activity at national, and even more at regional to local scales
should be a dominant source of uncertainty in FFCO2 emission inventories (especially
at sub-annual temporal scales). Such a driver of uncertainty in FFCO2 emissions
raises correlations with uncertainties in FFCO emissions. Even if uncertainties in CO
emission factors are one of the main sources of uncertainties in FFCO emissions, their
counterpart in FFCO2 emissions (the generation of plus or minus CO2 depending on
the combustion efficiency) can hardly balance this driver. The assumption of nega-
tive correlations between uncertainties in FFCO2 and FFCO prior emissions is further
weakened by various discussions in sections 3 and 4 that point to common underesti-
mation or overestimation of sources in both the CO2 and CO inventories.

Response: Please see our response to comment 2b) and to Reviewer 2 on Sa as
well. Based on Palmer et al. (2006), they found that the emission factor contributes
largely to the uncertainty. Looking at emission ratios, which to an extent (Eq A3) can
be proportional to enhancement ratio especially near the source, activity cancels out.
The utility of CO lies not on the magnitude alone but its sensitivity to CO2 (i.e., its
relationship). Please see our recasting of the a posteriori estimates in our response
to comment 2b as well. We agree with the reviewer that it is non-trivial to attribute
the mismatch on specific sectors or to activity alone. We cannot differentiate this with
the data so far nor can we differentiate this with CO alone. Our intention here is to
highlight the information content of CO on ffCO2 estimation. But in order to do this,
we need to ensure that we understand the error statistics and that the CTMs capture
this relationship. Again, the inverse analysis is an example of showing this information
content.

————– 4c) The idea that Se could ensure the expected connection between FFCO2
and FFCO is not relevant. Se prevents the inversion from overfitting the data and limits
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the corrections to the prior emissions. Correlations between CO2 and CO transport
modeling errors help the inversion better filter such errors when deriving FFCO2 and
FFCO emisions but this has a very indirect and weak impact on the connection between
these emissions. One could think that the results from the inversions in section 5 con-
tradict these statements. However, I assume that the consistency between FFCO2 and
CO2- CO inversions and their divergence from CO2 inversions is intrinsically linked to
the very low dimension of these inversions (with 4 or 8 unknowns). Various assump-
tions and settings of these inversion raise issues (see below) and I thus have the feeling
that this result is not robust.

The general topic of the CO-CO2 correlations that should be at the heart of this paper
is complex and I feel that the authors missed it.

Response: We beg to disagree. As with Palmer et al. (2006), in the Bayesian synthe-
sis inversion framework, Se does not only represent observation error covariances, but
more dominantly represent (supposedly) model errors including transport, mixing and
sinks. Hence, the mismatch (innovation) reflects errors in capturing the relationship –
perhaps not on the emission level but on the representation of the variability of the en-
hancement ratio due to differences in lifetime of the species (e.g., sources and sinks).
The main issue with these inversions is the fact that we treat the model as perfect and
it is extremely difficult to quantify model errors. Errors on the Jacobian (which we are
trying to assess) should not be taken for granted.

Yes, the consistency is due to lower dimension; mainly as a result of our effort to
understand the scales at which the information content of CO can be utilized effectively.

It is again unfortunate that the reviewer sees the general essence of this work as some-
thing that we missed. We will continue on this work and refine our statements to im-
prove on clarity.

We note that this concept, while old, is already difficult to grasp. How much more by
introducing this to inverse analysis. We emphasize that there are only very few studies
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about joint inversion, mainly due to the misconception that the inherent variability of
these relationships is far greater than the information content. We argue that we need
to start thinking about extracting information more effectively.

————– 5a) I don’t understand how global inversions (even if they focus on East
Asia) assimilating CO2 (with or without CO) can behave correctly when inverting scal-
ing factors for FFCO2 emissions only and keeping other CO2 fluxes fixed. The “pos-
terior” biogenic fluxes from CTE and CAMS bear large uncertainties. The problem is
enhanced by the lack of spatial resolution of the inversion, which does not help distin-
guish the patterns from anthropogenic vs biogenic fluxes in the data.

Response: This is a valid point. We do not have a concrete answer to this. We view
this as a signal-to-noise issue: i.e., we should see a large source of ffCO2 over East
Asia and that expect to be able to ‘track’ this with CO. We also think that posterior
errors are smaller than prior errors especially for CESM/CAM-Chem, which is an Earth
system model with dynamic vegetation. We view this as well as a two-step approach
(or iterative), where the expectation is that posterior fluxes fit atmospheric abundance
better than the prior fluxes (but obviously perhaps for the wrong reason).

————– 5b) I do not understand the rationale behind removing observations above
3 km (the “localization purposes”: l791-792 refer to “previous section” but I do not see
where sections 3 and 4 help understand this choice). The inversions are global, and
data above 3 km should be helpful for constraining ROW.

Response: We selected the data where ffCO2 signal is relatively strong (Figure 8 of
Section 4). In essence, we view this as reducing the noise. For example, data above
3km do not really have ffCO2 signal from both East Asia and Korea. You can also
think about this as tapering the radius of influence of a given datapoint by localizing
its impact – similar to error covariance localization in EnKF. Here, we are effectively
localizing the Jacobians and use of data to lower than 3km.

————– 5c) I have some doubts regarding the way the FFCO2 simulations are com-
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pared to gradients of FFCO2 from gradients in 14CO2 observations: I believe that the
authors should have computed, in the FFCO2 simulations, the gradients to the location
of the 14CO2 background sites rather than introduce a “ffCO2 offset”.

Response: This is a valid point. We think that our global ffCO2 is under-estimated and
that spatial gradient (variability) is ffCO2 offset is small. We view this to be similar to a
constant in a regression analysis. However, we acknowledge this issue. Thank you for
the suggestion.

————– 5d) There is a lack of consideration for the inventories. As mentioned above,
the fact that the FFCO2 and FFCO inventories are quite independent strongly hampers
the interpretation of the model-data comparisons and the reading of CO/CO2 ratios
in the model. The EDGAR inventory, which plays a critical role in this study (this is
the FFCO2 emission inventory behind the simulations in sections 3 and 4 and the
prior emission inventory in section 5) is not even named in the main text, the authors
speaking about CTE and CAMS fluxes (which combine natural fluxes optimized through
global inversions with the EDGAR inventory) only. Differences between the CAMS
analysis and CAM-Chem simulations are not supported by insights on the emission
maps behind these two simulations. The FFCO2 emissions from the inversion are
hardly compared to official inventories (and the CO emissions from the inversions are
not discussed).

Response: We mentioned it in Table 1 and Table S1. We showed a regional budget for
ffCO2 in Table S2. In addition, we showed the spatial distribution of the fluxes in Figure
S1.

We do acknowledge that we did not choose to compare rigorously with emission inven-
tories at this stage of our work, given that we are only starting to get a handle of this
relationship and full, comprehensive inversion is beyond the scope of this work at this
point.

————– 5e) I could draw a long list of secondary issues in specific paragraphs or
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sentences (and even in the mathematical notations and equations) but I restrain myself
to the main ones raised above

Response: Your input is always welcome. We follow the notations by Rodgers 2001
and Palmer et al. 2006. Similar notations are used by Boschetti et al. (2018) as well.

————– 5d) In conclusion, I think that the scope and configuration of the analysis
should be rethought, and that the presentation of such a study should be strongly
improved. I thus recommend this manuscript to be rejected and re-submitted after a
deep revision.

Response: Thank you for your comments. We will revisit the manner in which we
presented our study for this manuscript.

————–

References (not cited in the manuscript):

Mauzerall, D.L., Logan, J.A., Jacob, D.J., Anderson, B.E., Blake, D.R., Bradshaw, J.D.,
Heikes, B., Sachse, G.W., Singh, H. and Talbot, B., 1998. Photochemistry in biomass
burning plumes and implications for tropospheric ozone over the tropical South Atlantic.
Journal of Geophysical Research: Atmospheres, 103(D7), pp.8401-8423.

Interactive comment on Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-864,
2020.

C19

Fig. 1.

C20



Fig. 2.

C21

Fig. 3.
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