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Abstract 

Ice-nucleating particles (INPs) influence the formation of ice crystals in clouds and many types of 
precipitation. However, our knowledge of the relationship between INPs and precipitation is still insufficient. 15 
This study was conducted to fill this gap by assessing precipitation properties and INP concentrations (nINP) 
from a total of 42 precipitation events observed in the Texas Panhandle region from June 2018 to July 2019. 
We used a cold-stage instrument called the West Texas Cryogenic Refrigerator Applied to Freezing Test system 
to estimate nINP through immersion freezing in our precipitation samples. A disdrometer was used to measure 
the precipitation intensity and size of precipitating particles during each precipitation event. The analysis of 20 
yearlong precipitation properties as well as INPs for the samples shed a light on the seasonal variation of the 
nINP values in West Texas. Furthermore, we characterized the bacteria speciation of the storm and ambient 
dust samples collected at a commercial feedlot in West Texas to identify potential biological sources of INPs in 
our precipitation samples. Overall, our results showed a positive correlation between nINP and intensity of 
precipitation with notably large hydrometeor sizes in storm precipitations. Amongst all observed precipitation 25 
types, the highest INPs were found in the snow samples, and hail/thunderstorm samples have the highest INPs 
at high temperature -5°C. 

1 Introduction 

1.1. What are INPs?  

Aerosol particles play a major role in altering the cloud properties, precipitation patterns, and ultimately 30 
the Earth’s radiation budget (Lohmann and Feichter, 2005). In the past few decades, the aerosol particle direct 
effects (i.e., the impact of aerosol particles on net radiation through scattering and absorption of solar radiation) 
have been extensively studied (Satheesh and Krishna Moorthy, 2005). For example, the global radiative forcing 
by sea salt aerosols and dust is known to be in the range of −0.5 to −2 W m−2 and −2 to +0.5 W m−2, respectively. 
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However, the aerosol particle indirect effects (i.e., radiative impact due to formation of clouds) have been 35 
enigmatic. Some atmospheric aerosol particles are known to act as ice-nucleating particles (INPs) and catalyze 
the formation of ice crystals in the clouds, but their overall impact on the Earth’s radiative budget remains 
quantitatively uncertain (Lohmann et al., 2007).  

 

While INPs are sparse in the atmosphere, they have substantial impacts on the cloud microphysics and 40 
the precipitation formation (DeMott et al., 2010). The sources of atmospheric INPs are diverse as they emerge 
naturally and also through human activities, adding complexities to our comprehensive understanding in their 
impacts (e.g., Kanji et al., 2017; Zhao et al., 2019). In general, INPs provide a surface on which the water vapor 
and/or cloud droplet deposits and freezes (Van den Heever et al., 2006). This type of ice formation in the 
presence of INP is known as heterogenous freezing (Vali et al., 2015). In the absence of INPs, the formation of 45 
atmospheric ice particles follows the process of homogeneous nucleation, in which it requires the cloud droplet 
to be supercooled to the temperature (T) of -32°C and below (depending on the pure water droplet size) to form 
ice crystals (Koop et al., 2000; Koop and Murray, 2016). Though our knowledge regarding INP remains 
insufficient, there have been advances in understanding the different modes of heterogeneous ice nucleation 
(IN) in the atmosphere in the last few decades. For example, deposition nucleation is induced by the direct 50 
deposition of water vapor on to an INP’s surface and ice embryo formation on the surface under ice 
supersaturation conditions (Kanji and Abbatt, 2006; Möhler et al., 2008). Recently, some studies have argued 
that the deposition nucleation could be interpreted as pore condensation and freezing (Marcolli, 2014). The 
presence of water in pores of mineral materials and the resulting inverse Kelvin effect cause an instantaneous 
water saturation condition in the confined space, allowing the water to freeze even at water sub-saturated 55 
ambient conditions (David et al., 2019; Marcolli, 2014). Amongst various IN paths, perhaps the most important 
mode is immersion freezing (De Boer et al., 2010). This process starts with the formation of cloud droplet 
followed by freezing due to an INP immersed in the supercooled droplet. In addition, the past studies have 
identified other modes of heterogeneous nucleation, such as condensation freezing (Belosi and Santachiara, 
2019), contact freezing (Hoffmann et al., 2013) and inside-out evaporation freezing (Durant and Shaw, 2005). 60 
These modes are relatively less relevant in the mixed-phase clouds (MPCs) as discussed in the next section. 
 
1.2. Importance of Immersion Freezing 

 

INPs greatly influence cloud properties, especially in MPCs, which are typically observed in the altitude 65 
range of 2 km to 9 km above ground level (Hartmann et al., 1992). Out of all heterogeneous ice-nucleation modes, 
the immersion freezing is the most dominant mode of ice formation in MPCs (Ansmann et al., 2008; De Boer et 
al., 2010; Hande and Hoose, 2017; Vergara-Temprado et al., 2018). In Hande and Hoose (2017), different cloud 
types such as orographic, stratiform and deep-convective systems were simulated and analyzed for different 
freezing modes under various polluted conditions. The authors demonstrate that immersion freezing is the 70 
predominant IN mode under various simulated circumstances, accounting for 85 to 99%, while other IN paths 
play a less significant role. Cui et al. (2006) also showed that immersion freezing is the primary mode of ice 
formation with little significance of the deposition mode in the early stages of the cloud development. Moreover, 
whereas contact freezing may be a highly efficient ice formation path, a previous simulation study showed that 
it is a negligible mode in the given MPC conditions (Phillips et al., 2007). Field et al. (2012) and De Boer et al. 75 
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(2011) showed that the formation of cloud droplets is a precondition for ice formation in MPCs, thus highlighting 
the importance of immersion nucleation. Furthermore, using multiple ground-based instruments, including Lidar, 
AERONET Sun Photometer, and Vaisala Radiosonde, Ansmann et al. (2008) found that a high INP concentration 
(nINP) (i.e., ~ 1 – 20 cm-3) in the Saharan dust. This high dust-including nINP episode coincided with the presence of 
liquid droplets at cloud tops at Ts of -22°C to -25°C. Similarly, Ansmann et al. (2009) shows the observation of 80 
tropical altocumulus clouds having the liquid cloud tops. Due to the importance and dominance of immersion 
freezing, the current study focuses on measuring the immersion freezing efficiency of the precipitation samples 
collected in the Texas Panhandle region. 

1.3. INPs and Atmospheric Precipitation  

It is known that INPs in MPCs have a notable impact on the properties of precipitation. Previously, Yang 85 
et al. (2019) studied the effect of INPs on cloud dynamics and precipitation through model simulations of an 
observed severe storm in Northern China. The authors show that an increase in INPs can enhance the storm, 
whereas an excessive increase of INPs may impede the updrafts in the storm. The reason for this complex effect 
of INPs may be explained by the variation in the latent heat release in the convective system at different stages 
of its development. This latent heat is further influenced by INP episode, thus affecting the dynamics of the 90 
precipitation system. Furthermore, the increase in INP number might reduce the mean hail diameter (hail 
particles with smaller diameters melt more easily), which leads to decreased hail precipitation and an increased 
rain formation in contrast to the previous studies (Fan et al., 2017; Van den Heever et al., 2006). Similar results 
have been found by Chen et al. (2019). The authors show that an increased nINP in the simulated hailstorm can 
reduce the graupel size and reduce the concentration of hail stones. Likewise, the aircraft observations along 95 
with the model simulations of convective storms in West Texas and U.S. High Plains have shown that the addition 
of INPs at the base of warm clouds would result in an increase of the precipitation amount by strong updrafts in 
the system (Rosenfeld et al., 2008), ultimately affecting the local hydrological cycle (Mülmenstädt et al., 2015). 
It has also been observed that INPs can be removed from the atmosphere through precipitation resulting in a net 
decrease in nINP, affecting the precipitation development (Stopelli et al., 2015). The estimation of nINP in this study 100 
from the precipitation samples gives a quantitative approximation of INPs in the locally observed weather 
systems, potentially allowing us to parameterize the INP-precipitation relationship. 
  
 Several previous studies have characterized the nINP in the precipitation samples from various locations 
(Creamean et al., 2019; Petters and Wright, 2015; Levin et al., 2019). Petters and Wright (2015) reported a wide 105 
range of nINP values in their local precipitation samples collected approximately 3 km west of Raleigh, NC, USA for 
July 2012 and October 2013. Their study shows a variation of 10 orders of magnitude in the concentrations of 
INPs with a high variability in the T range of -5°C to -12°C, suggesting inclusion of biological INPs, which are 
generally known to be active at relatively high freezing Ts (Després et al., 2012). The lower limit for the INP 
spectrum as a function of T derived from the cloud water and precipitation samples in Petters and Wright (2015) 110 
may highlight the extreme rarity of INPs at Ts warmer than -10°C. Particularly, the authors showed that the 
highest ever observed nINP at -8°C were three orders of magnitude lower than observed ice crystal 
concentrations in tropical cumuli at the same temperature. More precipitation studies may provide a constraint 
on minimum enhancement factors for secondary ice formation processes. In Levin et al. (2019) the nINP values 
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during an atmospheric river event on the west coast of United States were studied. The authors found an 115 
increased concentration of marine INPs in contrast to their previous studies, showing high mineral/soil dust 
during an atmospheric river precipitation. However, the relation between INPs and the physical properties of 
precipitation particles as well as the variation in severity of the precipitation is still uncertain, representing a 
knowledge gap regarding precipitation INPs. This study narrows this gap by investigating the role of INPs in 
different precipitation systems. 120 

1.4. Study Objectives  

In this study, we calculated the nINP in precipitation samples collected in the Texas Panhandle region. 
All of our samples were analyzed at our laboratory using a cold stage instrument. The estimated nINP in the 
precipitation samples were compared with precipitation properties, such as the intensity of precipitation (mm 
hr-1) and hydrometeor particle size (mm). In addition, the seasonal variation of nINP in the Texas Panhandle 125 
region was studied and compared with the particulate matter (PM) concentrations measured by our Internet 
of Things (IoT) sensors. A subset of the collected precipitation samples was analyzed for their bio-speciation to 
characterize potential biological INP sources in the West Texas region and also to investigate if the biological 
composition matches with any previously known high T biological INPs.  

2 Methods 130 

2.1 Precipitation Sampling 

In this study, the precipitation samples were collected from different seasons throughout the year 

during June 2018 – July 2019. Sterilized Polypropylene tubes of 50 ml (VWR Centrifuge Tube) were used as 

sampling gauges. The gauges were placed at ~50 ft above the ground on the rooftop of Natural Science Building 

at West Texas A&M University, Canyon, TX. This particular location was chosen to avoid any obstruction for 135 

our sampling activities. The sampling tubes were well exposed to the ambient air without any canopies 

throughout the sampling process. The sampling gauges were replaced every 24 hours to minimize the effect of 

dry deposition prior to the precipitation sample collection. A blank dry deposition sample (Sample# 34) was 

specifically collected for 24 hours from January 2-3, 2019 in order to examine and quantify the effect of dry 

deposition on nINP. The freezing spectrum of this dry deposition sample (suspended in HPLC grade pure water) 140 

was later compared with the IN spectra of precipitation samples (see Sect. 3.3.1). For the duration of a given 

precipitation episode, some amount of sample was accumulated in the tube. The sampling tubes were then 

capped and stored at T of 4°C in the refrigerator, following the method described in Petters and Wright (2015), 

until the droplet-freezing assay experiments were commenced. The effect of storage conditions on the IN 

activity was not considered in this study. We note that Beall et al. (2020) recently found a decrease in 145 

precipitation nINP by 42% when stored at 4°C and suggested correction factors for the T range of -7°C to -17°C. 

After the freezing experiment, a subset of our samples was kept under deep-freezing conditions (-80°C) for 

further biological analysis (see Sect. 2.6). In total, 42 precipitation samples were collected from different 

weather systems. In this study we estimated the nINP values from (1) snows, (2) hails/thunderstorms, (3) long-
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lasted rains, and (4) weak rains. More information about the samples used in this study, precipitation types 150 

and the amount of the precipitation collected for each sample are provided in the Supplemental Information 

(SI) Table S1-1. 

2.2. Disdrometer Measurements of Precipitation Properties 

For our precipitation measurements, we used the OTT Parsivel2 (Particle Size Velocity 2) sensor. This 
device is a modern laser-optical disdrometer (λ = 780 nm) which measures the size and fall velocity of 155 
precipitating particles. The OTT Parsivel2 was deployed in side-by-side position with the precipitation gauge 

collector for the duration of our study period. A detailed technical description of OTT Parsivel2 is given in a 
previous study (Tokay et al., 2014), so only a brief description is provided here. A combination of the laser 
transmitter and receiver component was integrated as a single cluster in a weatherproof housing and detect 
precipitation particles passing through a horizontal strip of light. A nominal cross section area of a laser beam 160 
detection was 54 cm2, and the system recorded the number of hydrometeors in a 32 x 32 matrix (i.e., fall 
velocity x diameter) in the ≥ 30 seconds time resolution. The measurable size range of hydrometeor particles 

was 0.062 - 24.5 mm in diameter (Dp) with bin size intervals (∆Dp) varying from 0.125 to 3.0 mm. Our 
disdrometer was coupled with an OTT netDL Hydrosystem logger (40 channels). The OTT Parsivel2 also 
measured the intensity of precipitation (mm hr-1) and the number of precipitation particles passing through the 165 
horizontal strip of light in the event of precipitation. The OTT Parsivel2 automatically categorized the 
precipitation type according to the National Weather Service (NWS) weather code based on the measured 
precipitation properties. Due to the intermittent nature of the precipitation, the OTT Parsivel2 assigned multiple 
NWS precipitation codes during a single precipitation event (Table S1-1 column ‘NWS Code’). We compared 

our manual observations with the NWS precipitation code assigned by the disdrometer, and we categorized all 170 
observed precipitations into four different types. These four major precipitation types defined in this study 
included snow, hail/thunderstorm, long-lasted rain, and weak rain. More detailed methodology of precipitation 
categorization is discussed in SI S1.1.  

2.3 IoT Air Quality Sensor Measurements 

A cluster of Arduino-based IoT air quality sensors was developed to measure ambient air conditions at 175 

our precipitation sampling location. This IoT cluster was deployed alongside the disdrometer and sampling 

gauge to complement this study. A DFRobot PM laser dust sensor measured PM with size ranges of < 1 µm 

(PM1.0), < 2.5 µm (PM2.5), and < 10 µm (PM10). Other ambient conditions, including T, barometric pressure, and 

humidity, were measured with a precision Bosch BME280 environmental sensor. We calibrated our sensors 

against a commercially available sensor (GlobalSat Inc., LS-113). Our sensors utilized Long Range and Wide Area 180 

Network (LoRaWAN) technology for data transmission. A LoRaWAN transceiver is connected to our sensors for 
wireless data transmission. This small IoT device operated with 915 MHz signal frequency, transmitting encrypted 
and signed packets of captured air quality data through a hosted LoRa network server to a Kibana visualization 
server. This data interface enabled in situ monitoring and processing of the data. The PM concentrations were 
later time-averaged for comparison with the precipitation properties and nINP in the precipitation samples. 185 
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2.4 Immersion Freezing Experiment 

All immersion freezing experiments in this study were conducted using an offline instrument called 
West Texas - Cryogenic Refrigerator Applied to Freezing Test (WT-CRAFT) system (Hiranuma et al., 2019; Cory 
et al., 2019; Rodriguez et al., 2020). The WT-CRAFT system is a cold-stage technique in which the droplets are 
placed on an aluminum plate and cooled until they are frozen. A commercially available digital camera was 190 

used to record the droplet freezing events, and we visually evaluated the freezing Ts based on the shift in 
droplet brightness while freezing. If there was an uncertainty in determining the T at which a droplet was 
completely frozen, we used the ImageJ software for further image analysis of those droplets (see Table S4 in 
Hiranuma et al., 2019). This system was used to obtain T-resolved nINP in -25°C < T < 0°C. The lower T limit was 
-25°C to ensure measuring INPs with negligible artefacts (Hiranuma et al., 2019). Our system is susceptible to 195 
low INP detection, and the minimum INP detection limit of the WT-CRAFT system for this study was 0.002 L-1 
air. To minimize any contamination during the IN measurement, the WT-CRAFT system was placed in a 

ventilated fume hood. For each experiment an aluminum plate surface was freshly coated with a thin layer of 
thermally conductive and IN-inert Vaseline to physically isolate individual droplets from the aluminum surface 

(otherwise, aluminum can act as a heterogeneous IN surface). A total of 70 suspension droplets of 3L volume 200 
each were prepared for each run. The aluminum plate with the droplets on it was then placed inside a portable 

cryogenic refrigerator (Cryo-Porter). Freezing Ts were measured by the sensor taped on the aluminum surface 
with a resolution of 0.1°C, and the external keypad controller was used to control cooling rate (°C min-1). In 
this study, the freezing experiments were carried out at a cooling rate of 1°C min-1. The validity of using this 
cooling rate and another test regarding time trial aspect are demonstrated in SI S2 (Figs. S2-1 and S2-2). The 205 
droplets were cooled until all 70 droplets were frozen before warming up the system to 5°C to be prepared for 
a subsequent experiment.  

If all the droplets were frozen at T > -25°C, a HPLC-grade ultrapure water was used to prepare different 
serial dilutions for the precipitation samples. The diluted suspensions were made to compute the nINP down to 
-25°C. Some of our precipitation samples were diluted until the frozen fraction (the ratio of number of droplets 210 

frozen to the total number of droplets) curve was conformed to the background curve (i.e., frozen fraction 
curve for the HPLC ultrapure water). At the end each WT-CRAFT experiment, the frozen fraction and ambient 
nINP were estimated as a function of T with an interval of 0.5°C. The IN measurements from the undiluted and 
diluted runs were merged by taking the lower nINP values for the overlapped T region. 

The total systematic T uncertainty in our experiments for this study was ± 0.5°C (Hiranuma et al., 2019). 215 
The uncertainty in our estimated nINP were estimated using the 95% confidence interval method described in 
Schiebel (2017). Background contamination tests for WT-CRAFT were carried out weekly to make sure 
negligible background freezing at -25°C. In this study, we consider the frozen fraction ≤ 0.05, accounting for 

less than 3% of pure water activation, as negligible background (Hiranuma et al., 2019). For these background 
tests, only HPLC grade ultrapure water was used for preparing the droplets. 220 

 
2.5 IN Parameterization 

 
Here we describe the parameterization used to estimate ambient nINP. Initially, we computed the CINP(T) 
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value, which is the nucleus concentration in precipitation suspension (L−1 water) at a given T as described in 225 
Vali (1971). This CINP(T) value was calculated as a function of unfrozen fraction, funfrozen(T) (i.e., the ratio of 

number of droplets unfrozen to the total number of droplets) as:  
 

 
                   230 
 

 

𝐶𝐼𝑁𝑃(𝑇) =  − 
ln (𝑓𝑢𝑛𝑓𝑟𝑜𝑧𝑒𝑛(𝑇))

𝑉𝑑
 

 (1) 

 

in which, Vd is the volume of the droplet (3 µL).  

Next, we used the cloud water content (CWC) parameter in order to convert CINP(T) to nINP(T), INP in 

the unit volume of atmospheric air at standard T and pressure (STP) conditions, which is 273.15 K and 1013 235 

mbar. We presumed CWC to be a constant of 0.4 g m−3, covering the continental clouds in our study. Our 

assumption would be reasonable since Petters and Wright (2015) showed that the variation of nINP with CWC 

values for different cloud types in the atmosphere would typically be limited within a factor of two, and our 

nINP uncertainties could be larger than that. Thus, the effect of CWC on the nINP would be negligible. 

The sample air volume (Vair) at the cloud level was calculated by converting the volume of the   240 

precipitation sample collected (Vl) using the Eqn. (2) from Petters and Wright, 2015: 

 
 

                        𝑉𝑎𝑖𝑟   =    
𝑉𝑙  × 1000 × ρ𝑤

𝐶𝑊𝐶
 

  (2) 

where ρw is a unit density of water (1 g ml-1). Vair  is in liters (L), whereas Vl is given in ml. The multiplication 245 

factor ‘1000’ is used to convert the volume from cubic meter (m3) of air to liter of air. The cumulative nINP per 

unit volume of sample air, described in the previous study DeMott et al. (2017), was then estimated as:  

 

 
𝑛𝐼𝑁𝑃(𝑇) =  𝐶𝐼𝑁𝑃(𝑇) × (𝐷𝐹) ×

𝑉𝑙

𝑉𝑎𝑖𝑟
 

(3) 

where DF is a serial dilution factor (e.g., DF = 1 or 10 or 100 and so on). 

 250 
2.6. Microbiome of feedlot dust and precipitation samples 
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The overall goal of our metagenomics analysis was to identify known ice-nucleation-active bacterial and 
fungal species in feedlot dust and precipitation samples collected in the West Texas region. In this study, we have 
examined a heterogenous set of samples including feedlot samples, hail, long-lasted rain and a 24-hour dry 255 
deposition sample. Next, we describe our microbiome analysis procedure in four different steps, including (1) 
DNA Extraction, (2) 16S rRNA Amplicon Diversity Sequencing, (3) Bioinformatics, and (4) Data Analysis. For DNA 
extraction, Genomic DNA was first extracted from all samples using PowerSoil DNA Isolation Kits (MoBio 
Laboratories, Inc., Carlsbad, CA, USA). Extraction proceeded following the manufacturer’s protocol, with the 
following minor changes: solutions C1 and C6 were heated to 65°C and solution C6 was allowed to remain on the 260 
filter membrane for at least one minute before centrifugation. Additionally, the C6 step was repeated. Library 
preparation for bacterial 16S DNA amplicon sequencing utilized primers for the V1-V3 hypervariable region of 
the 16S gene. These primers were constructed for the 16S amplicon using a combination of the 28F and Illumina 
i5 sequencing primer and the Illumina i7 sequencing primer with the 519R primer. Amplifications were performed 
in 25 μl reactions with Qiagen HotStar Taq master mix (Qiagen Inc, Valencia, CA, USA). Reactions were performed 265 
with 1 μl of each 5μM primer and the template DNA. Amplification was performed on an ABI Veriti thermocycler 
(Applied Biosytems, Carlsbad, CA, USA) under the following thermal profile: 95°C for 5 min, then 25 cycles of 94°C 
for 30 sec, 54°C for 40 sec, 72°C for 1 min, followed by one cycle of 72°C for 10 min and 4°C hold. An ethidium 
bromide stained gel was used to qualitatively determine the amount of the amplification product to add to the 
second amplification stage. Primers for the second PCR were designed based on the Illumina Nextera PCR 270 
primers. The second stage amplification proceeded using the same cycling protocol as the first round, except it 
was amplified for only 10 cycles. SPRIselect beads (BeckmanCoulter, Indianapolis, IN, USA) were used at a 0.7 
ratio to size-select the DNA amplicons from an equimolar pooled sample. Pooled samples were then quantified 
using a Quibit 2.0 fluorometer (Life Technologies) and loaded on an Illumina MiSeq (Illumina, Inc. San Diego, CA, 
USA) 2x300 flow cell at 10pM. 275 

 
  For bioinformatics, raw data were initially processed using a standard microbial diversity analysis pipeline 
(QIIME2-2020). Raw data was first checked for sequencing quality and chimeric sequences, before being parsed 
through a microbial diversity pipeline. During the cleanup stage; denoising of the raw data was performed using 
various techniques to remove short sequences, singleton sequences, and reads with poor quality scores. Next, 280 
chimera detection software was used to filter out any potentially chimeric sequences. Finally, remaining high-
quality sequences were corrected base by base to check for sequencer miscalls. The diversity analysis pipeline 
clustered all sequences based on 97% similarity to yield operational taxonomic units (OTUs), before running a 
seed sequence from each OTU through a taxonomic database curated in-house by RTLGenomics. Finally, the 
taxonomy was assigned to each sequence using a classifier that was pretrained on GreenGenes database with 285 
99% OTUs. The relative abundance of bacterial taxa within each sediment sample was determined by dividing 
each OTU by the total number of reads. Alpha diversity was carried out by taking phylogenetic distances into 
account and by looking at how diverse the phylogentic tree is for each sample. Next, beta diversities were 
analyzed using weighted (by bacterial abundance) or unweighted Unifrac distances calculated from a mid-point 
rooted tree. Multivariate differences in beta diversity were analyzed using Permutational Multivariate Analysis 290 
of Variance Using Distance Matrices function (ADONIS), which uses an ANOVA-like simulation to test for sampling 
location differences (McMurdie and Holmes 2013). 
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3 Results and Discussion 

3.1 Ambient and Precipitation Properties 295 

The time series summary of ambient and precipitation properties measured by our disdrometer as well 

as IoT cluster, respectively, is shown in Fig. 1. All the individual T and relative humidity data points shown in 

Fig. 1a and 1b correspond to the sampling start date of each precipitation event. A notable seasonal variation 

of atmospheric T was observed. Each data point in Fig. 1a show the average temperature measured over the 

sampling period of a given precipitation event. The highest average temperature measured during a 300 

precipitation event was 34.9°C ± 12.2, which was in the summer of 2018 (i.e., 16 July; ID#  7; a long-lasted rain 

sample), while the lowest T was -6.5°C ± 6.7, measured during the winter of 2018 (i.e., 28 Dec; ID# 23; a snow 

sample). The annual mean T for Canyon, TX region measured at our sampling site was 17.7°C. The details of 

each precipitation event and its properties are shown in the SI Table S1-1 and S1-2. The diurnal cycles of 

ambient properties are not shown in Fig. 1a. Nevertheless, we typically observed suppression of T before 305 

precipitation events in our study. It has been understood that the T gradient plays a major role in the 

development and growth of the precipitation systems (Vaid and Liang 2015). The relative humidity shown in 

Fig. 1b was the averaged value for each precipitation sampling period. The highest and lowest relative humidity 

values measured were 70.7% ± 2.3 (on 12 March 2019; ID# 26; a weak rain sample) and 30.8% ± 0.7 (on 16 July 

2018; ID# 7; a long-lasted rain sample). Figure 1c displays the time series of the cumulative number of detected 310 

precipitation particles in individual precipitation events and the overall mean number of detected particles 

(dashed line). In our study period, the precipitation events during September 2018 – January 2019 exhibited a 

substantial number of precipitation particles with a cumulative number of 2E+05 to 6.6E+05 per event. This 

high number of precipitation particles, greater than the overall mean cumulative number (i.e., 7.9E+04) was 

observed in conjunction with snow/hail-involving precipitation events during this period. Out of all the 42 315 

samples, the highest number of precipitation particles detected were 6.6E+05 (on 5 Nov, 2018; ID# 19; a snow 

sample), while the lowest was 1.0E+04 (2 Sep, 2018; ID# 13; weak rain). Additional information is detailed in SI 

Table S1-2 and S1-3. There were other occasional snow/hail precipitation events in our study period, but the 

frequency of their occurrence was indeed high in Fall - Winter. Overall, a high average number of precipitation 

particles were detected for all the snow samples combined, 2E+05 ± 2E+02, followed by hail/thunderstorm 320 

samples, 7.1E+04 ± 1.9E+04. On the other hand, the weak rain episode had lowest average number of 

precipitation particles, 1.8E+04 ± 5.4E+03 (SI Table S1-3). Figure 1d shows the average, maximum and minimum 
precipitation intensity (mm hr-1) measured during each precipitation event. Due to the intermittent nature of 

the precipitation, the intensity widely ranged from 0 to 150 mm hr-1 per event. The measured lower values of 

the average intensity were due to the influence of low intensities observed over a prolonged period of a given 325 

precipitation event. The highest maximum intensity of 129.3 mm hr-1 was measured during a 

hail/thunderstorm event (ID# 40), while the lowest was 1.1 mm hr-1 during a snow event (ID# 23). The average 

intensity ± standard error for each precipitation category is shown in the SI Table S1-3. Hail/thunderstorm 

events have recorded the highest average precipitation intensity of 5.3 ± 7E-01 mm hr-1, which was greater 

than the average intensity measured for the weak rain episodes, 1.5 ± 3.8E-01 mm hr-1 by a factor of 3 (SI Table 330 

S1-3).  
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The variation of precipitation properties was further investigated by analyzing the size distribution of 
precipitation particles. Figure 2 shows the log-normal particle diameter distribution for each category of 
precipitation system. These size distributions were computed from the size-resolved precipitation particle 335 
measurements by the OTT Parsivel2 disdrometer during each precipitation event. The size of precipitation 
particles was represented at the mid-value of the corresponding size bin. As shown in the Fig. 2a and 2b, both 

the snow and hail/thunderstorm samples had particles of diameter greater than 10 mm, and the maximum 
particle diameter was 17 mm. Although there are three episodes of long-lasted rain with a particle diameter 
greater than 14 mm (Fig. 2c), a clear trend of overall decrease in the hydrometeor size was seen for this category 340 
as well as the weak rain samples (Fig. 2d). Even though the number of samples in each precipitation category 
was different, 66.7% (4 samples) of the total snow samples (n=6) had precipitation particles of diameter ≥ 8.5 
mm. Less compared to snow, but 55.6% (10 samples) and 46% (6 samples) of the hail/thunderstorms (n=18) 
and long-lasted rain (n=13) samples, respectively, had recorded precipitation particles of diameter ≥ 8.5 mm. 

In contrast, none of the weak rain samples (n=5) had hydrometeors of diameter ≥ 8.5 mm, and all weak rain 345 
samples contained particles only smaller than 6.5 mm. Moreover, the mode precipitation particle diameter for 
the snow, hail/thunderstorm, and long-lasted rain samples was 0.44 mm, whereas it was 0.31 mm for the weak 
rain samples (see SI Table S1-3). This variation in mode diameter along with the results shown in Fig. 2 exhibited 
the shift in hydrometeor particle size distribution towards a higher diameter with an increased intensity of 
precipitation. Further discussion regarding the variation of nINP with the severity of precipitation was analyzed 350 

and is followed in Section 3.3. 
 
3.2 IoT Air Quality Sensor Results 

An IoT air quality sensor-measured PM concentrations were also analyzed for each precipitation 

sampling period to understand the effect of wet deposition of PMs on INPs. Figure 3 shows the time series of 355 

average PM concentrations observed during each precipitation episode, overall mean PM values, and the 

hourly PM data. The overall mean ± standard error PM concentrations calculated from over one year of data 

were 3.9E+00 ± 9.2E-02 (PM1.0), 4E+00 ± 4.5E-02 (PM2.5), and 1E+01 ± 2.2E-01 (PM10) µg m-3. Although, there 

was an inconsistent variation of PM concentrations with precipitation type, we observed a substantial increase 

in all PM values for the period July – Aug 2018 and May 2019. In contrast, a decrease in all PM concentrations 360 

was observed during Sep 2018 – Mar 2019. This increase in PM values during summer and decrease during 

winter suggested the seasonal variation at the sampling site. In addition, the influence of PM values on nINP 

from each precipitation event was analyzed at -10°C, -15°C, -20°C, and -25°C. The Pearson correlation 

coefficients (R-value) at -10°C, -15°C, -20°C, and -25°C were statistically insignificant and negative for all PM 

types (SI Fig. S3). These results suggested no strong positive correlation between the PM and nINP for our 365 

sampling period. Moreover, we did not observe a clear sign of wet deposition during a given precipitation event 

(Stopelli et al., 2015), as there was no decrease in the original hourly PM concentrations during or after the 

precipitation. Overall, our PM analysis had suggested a local seasonal variation in PM concentrations, and no 

significant relation between PM and nINP values from our precipitation samples. 
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3.3 INP Results 370 

3.3.1 nINP(T) spectra of each precipitation type 

 Figure 4 shows the IN spectra for different precipitation types analyzed in this study superposed on the 
IN spectral boundaries adapted from a previous precipitation INP study (Petters and Wright, 2015). This figure 
also displays other reference IN spectra, including our 24-hour dry deposition blank sample (collected from 
January 2 – 3, 2019 at our sampling site) and IN spectra measured for dust suspension samples collected from 375 
the downwind side of a local feedlot (identity purposely concealed), where substantial and consistent dust 
emission historically persists (Whiteside et al., 2018). For the measured T range, nINP values from dry deposition 
blank sample were at least an order of magnitude lower than that from our precipitation samples. This finding 
corroborated our assumption of negligible contribution of dry deposition in our WT-CRAFT estimated nINP from 
precipitation samples. Interestingly, the feedlot IN spectra and most of our precipitation samples shown in Fig. 4 380 
were greater than the previously derived precipitation IN upper limit, implying abundant IN active feedlot dusts, 
which might be involved in the precipitation formation and thereby our samples. It is noteworthy that adjacent 
feedlots (> 45,000 head capacity) are located within 33 miles of our sampling site. We observed approximately a 
two orders of magnitude increase in the upper limit of feedlot nINP compared to previous precipitation study at -
15°C. For T ≥ -15°C, there was at least one sample from each precipitation category falling in the IN spectra region 385 
of feedlot dust. Some of the hail/thunderstorm type samples had nINP values in the range of feedlot samples even 
for the entire T range of 0°C to -25°C (Fig. 4b). For example, at -5°C, nINP from our precipitation samples were in 
the range of 0.01 – 0.11 L-1 of air in the atmosphere. These findings suggest the influence of local feedlot dust on 
precipitations and on increase of nINP upper limit for precipitation samples. Furthermore, for 0°C ≤ T ≤ -25°C, we 
found no precipitation sample with nINP values below the lower limit from the Petters and Wright (2015) study. 390 
 
 Compared to all other precipitation types, hail/thunderstorm type had the highest average nINP ± 
standard error of 0.1 ± 0.01 and 118 ± 68.1 L-1 at -5°C and -25°C. In addition, the snow type had the highest 
average nINP of 0.4 ± 0.3, 0.8 ± 0.5, and 5.7 ± 2.5 L-1 at -10°C, -15°C, and -20°C (SI Table S3-1). The lowest nINP 
values were observed in both the long-lasted and weak rain samples at most of the temperatures. Interestingly, 395 
we observed an order of magnitude increase in the maximum nINP calculated at -5°C and -25°C in 
hail/thunderstorm type compared to long-lasted and weak rains. Such high values of nINP in snow and 
hail/thunderstorm samples suggested that the INPs impact the severity of a precipitation at least in the West 
Texas region. These feedlot dusts could reach cloud height and be involve in local aerosol-cloud-precipitation 
interactions, influencing the local hydrological cycle. Further discussion regarding the feedlot contribution in INPs 400 
in our precipitation samples are provided in Section 3.4. We observed a reduced uncertainty in nINP from 
precipitation samples at T > -10°C. For example, a two order magnitude difference was estimated at -8°C in this 
study, which is lower than previously reported nINP uncertainty at the same temperature (Petters and Wright, 
2015). Nonetheless, the discrepancy in nINP still remains at high Ts. Furthermore, the lower nINP values from this 
study were greater than the lower limit presented in Petters and Wright (2015). The upper and lower nINP limit 405 
derived from this precipitation study could help in comparison studies of nINP at the cloud level to the observed 
ice-crystal concentrations. Overall, our findings imply that the local feedlot dust contribute to the regional INPs, 
with an increase in the high T nINP in our precipitation samples. 
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3.3.2. Seasonal variability and INP-precipitation relationship 410 

The time series of cumulative nINP from precipitation samples at different Ts (i.e., -5°C, -10°C, -15°C, -

20°C, and -25°C) is shown in Fig. 5. The overall average, cumulative nINP ± standard error is also presented in 

Fig. 5. For example, we observed an average nINP of 0.17 ± 0.04 L-1 at high T such as -10°C. Figure 5b shows nINP 

for two precipitation samples (ID# 26 and 27) observed on the same day of 12 March 2019. In total, 24 

precipitation samples were collected in the year 2018 and 18 in 2019. A clear variation in high T nINP at -5°C 415 

was observed with seasons due to variation in the occurrence of severe precipitations which is discussed below. 

Furthermore, an increase in nINP at -25°C was observed in the summer of both 2018 and 2019 (Fig. 5a). Overall, 

2018 had recorded the highest maximum nINP at -5°C and -10°C (0.11 and 1.62 L-1) compared to 2019 (0.06 and 

0.65 L-1). This high INPs in the year 2018 than in 2019 might be due the presence of more snow and 

hail/thunderstorms in the year 2018 compared to 2019. A combined total of 14 snow and hail/thunderstorm 420 

samples were collected in 2018 and a total of 10 in the year 2019. In order to elucidate this seasonal variation, 

we further subcategorized our sampling period into four different periods; i.e., May-August (May-Aug; which 

is a summer season at Canyon, TX), September-October (Sep-Oct), November-January (Nov-Jan; which is a 

winter season at Canyon, TX), and February-April (Feb-Apr), shown in Fig. 6a. Most of the high T (-5°C) nINP were 

observed during May – Aug, while there was a decrease in the following seasons, with no INPs at -5°C in the 425 

Feb – Apr period. The May - Aug season was dominated by hail/thunderstorms, whereas Feb – Apr had seen 

mostly long-lasted and weak rains. Likewise, significantly (p-value = 0.09; student’s independent t-test) higher 

INPs were measured at -10°C during Nov – Jan than in Feb – Apr. These findings suggested a strong seasonal 

variation in INPs, specifically in the high T  (≥ -15°C) INPs in Canyon, TX.  

The variation of INPs among the precipitation types is shown in Fig. 6b. A statistically significant (p-430 

value ≤ 0.01; student’s independent t-test) increase in high T (-5°C) nINP was found in hail/thunderstorm 

samples compared to long-lasted rains. Additionally, we observed only one sample from weak rain type with 

nINP at -5°C, supporting the decrease of high T INPs in the less severe precipitation types. Similarly, the 

distribution of nINP at -25°C for weak rain type was shifted towards relatively lower values than compared with 

more severe precipitation types, such as hail/thunderstorm. For example, at -25°C, hail/thunderstorm type had 435 

a median nINP of 22.44 L-1, which was greater than what was measured in weak rain (6.19 L-1) type. These results 

of increase in severity of precipitation with an increase in INPs were further corroborated by our findings from 
maximum intensity range based nINP analysis (shown in Fig. 6c). For this intensity - nINP analysis, we grouped all 

our precipitation samples into three different categories based on the observed maximum intensity (mm hr-1) 

in each precipitation event. A significant (p-value ≤ 0.01) increase in INPs at -5°C was found when the maximum 440 

intensity was > 50 mm hr-1 compared to the range of 10 – 50 mm hr-1. The samples from this high intensity 

range (> 50 mm hr-1) were mostly coincided with the hail/thunderstorm precipitation types, supporting our 

previous findings of increase in severity of precipitation with INPs. It is also important to note that there was 

only one hail/thunderstorm sample which fell in the low intensity range (< 10 mm hr-1). Overall, we found a 

strong seasonal variation in INPs, especially in the high T (-5°C and -10°C) INPs from our yearlong precipitation 445 

study. Moreover, we observed an increase in the severity of precipitation with INPs, which highlights the 
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importance of INPs in the development and growth of severe precipitation systems in the West Texas region.  

3.4. Microbiome of Feedlot and Precipitation Samples 

 We successfully generated data on the bacterial microbiome of our precipitation and feedlot dust 

samples. Unfortunately, our attempt to extract fungal microbe was not successful due to the limitation in 450 

sample amount. Thus, we focus on bacterial discussions hereafter. In most cases, bacterial phyla were classified 

to the level of genus. The majority of bacteria in all samples belonged to phyla Proteobacteria and 

Bacteroidetes (Fig. 7a and Table S4-1). In hailstorm samples, the main taxa of Proteobacteria were Massilia (a 

genus found in clinical samples, mammals, but also soil, rhizosphere and even aerosols), genera belonging to 

the order Sphingomonadales (bacteria with wide metabolic abilities), Caulobacterales (bacteria living in diverse 455 

terrestrial and aquatic habitats, some are minor human pathogens), and Rhizobiales (nitrogen-fixing bacteria 

forming symbioses with the roots of legumes). Among the Bacteroidetes phylum, the genus Marinoscillum was 

relatively the most abundant. This genus is a recently described marine bacterium and it is interesting that it 

was found in hailstorm samples at percentages from 17.3% to 3.2% of the microbiome. Our results perhaps 

indicate some connection with storms or winds originating from the North Atlantic Ocean (back-trajectories 460 

analyses done, but not shown). Other Bacteroidetes taxa with notable presence in hailstorm microbiome 

included Saprospirales and Chitinophagales orders with bacteria living on animals and in the gut of animals as 

expected. 

The microbiome of one long-lasted rain sample shared members also found in hailstorms: the genus 

Massilia in significant numbers (11.3% of the microbiome), bacteria of the Proteobacterial orders Rhizobiales, 465 

Sphingomonadales and Burkholderiales; a significant percentage (8.5%) of the marine genus Marinoscillum and 

bacteria in order Sarospirales of phylum Bacteroidetes. Our results suggest that no known ice nucleation active 

species detected in precipitation microbiomes. The order Pseudomonadales, which includes most known ice 

nucleation active species, was found at the limit of detection. 

  470 

Massilia was also relatively dominant in all four feedlot samples with percentages from 6.5% to 65.4% 

of the microbiome. Marinoscillum was also found in feedlot samples from 3% to 8.5% of the microbiome, 

perhaps indicating some connection of these genera either with the formation of precipitation or with their 

presence in aerosols during precipitation events. It is noteworthy to mention that neither of these two genera 
(Massilia and Marinoscillum) was detected in the background deposition blank sample and it is not known 475 

whether they have any ice nucleation activity. Other bacterial taxa with significant presence in feedlot samples 

included members of orders Caulobacterales and Burkholderiales. 

 

Alpha diversity analysis (Shannon’s Faith PD index of diversity) indicated that feedlot and hailstorm 
samples had a lower bacterial diversity than the long-lasting rain sample (Fig. 7b). We sought to identify a possible 480 
connection between the feedlot microbiome and the microbiome of hail and rain. Beta diversity analysis 
compared the microbiome diversity distance of feedlot samples between themselves, as well as the microbiome 
diversity distance of the background deposition, hailstorm and long-lasted rain samples to feedlot samples (Fig. 
7c). In all comparisons, the distance was at least 0.70, a high value not indicating a “cause and effect” connection 
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between the feedlot and precipitation microbiomes. However, our detailed phylogenetic analysis showed 485 
evidence of such a connection by identifying common bacterial taxa in feedlot and precipitation microbiomes. 
Their absence from the background deposition blank sample may indicate local aerosol-cloud interactions leading 
to precipitation events, but it is not known if this is a result of any bacterial traits such as ice nucleation activity. 
  
 490 
4. Conclusion 
 
 We have successfully estimated nINP (per liter of air) in the immersion freezing mode from different 
precipitation samples collected in Canyon, TX, USA. IN spectra were derived for MPC T range (0°C to -25°C) from 
four different precipitation types (snows, thunder/hail storms, long-lasted rains, and weak rains) using a cold-495 
stage instrument (WT-CRAFT). Our disdrometer measurements showed a clear variation in the precipitation 
properties among the four different categories of precipitation samples. Severe precipitations, such as 
hail/thunderstorms, had the highest rainfall intensity (mm hr-1) and the number of precipitation particles were 
highest in the snow samples. We also found an increased number of large hydrometeors (> 8.5 mm in diameter) 
in both the snow and hail/thunderstorm samples. In contrast, there were no precipitation particles > 6.5 mm in 500 
diameter observed in the weak rain samples. Our PM concentration measurements showed no strong correlation 
with the measured INPs from precipitation samples. The IN spectra from each precipitation category in this study 
were compared with the nucleus spectra from previous precipitation based INP study (Petters and Wright, 2015). 
Previously derived IN spectra from local feedlot dust samples (Whiteside et al., 2018) was also used for comparing 
nINP from precipitation samples. We have found that nINP values from our precipitation samples were greater than 505 
previously derived IN upper limits from precipitations. Especially, the high T (≥ -15°C) INPs in some of our 
precipitation samples were in the same order of magnitude as of local feedlot dust samples. These findings 
suggested the importance of local feedlot dusts as INP sources. Moreover, we have observed a strong seasonal 
variation in nINP in this precipitation based INP study. The May – Aug period had seen the most INPs at -5°C, while 
none during Feb – Apr season. It is important to note that, hail/thunderstorms were predominantly observed in 510 
the May – Aug season. A statistically significant increase in high T (-5°C) INPs was observed in hail/thunderstorms 
compared to long-lasted rains. Except in one case, we observed no weak rain samples with INPs at -5°C. These 
findings suggested an increase in high T (-5°C and -10°C) INPs in severe precipitation systems like 
hail/thunderstorm and snow in the West Texas region. These results were further supported by our findings of 
increased high T INPs when the rainfall intensity was > 50 mm hr-1. Overall, our results showed that the INPs 515 
impact the severity of precipitation systems observed in Texas Panhandle, which represents the importance of 
more precipitation based INP studies in the future. We also identified the similarity in bacterial microbiome 
between our hailstorm and local feedlot dust samples, nevertheless, it is not known whether these microbiomes 
are IN active. Regardless, we did not find the previously known bacterial INPs, such as Pseudomonas and 
Xanthomonas (Morris et al., 2004) in both the precipitation and feedlot samples. Our preliminary analysis showed 520 
that organic component was predominant in our precipitation residuals (>70%, not shown in this study), which 
is similar to the composition of local animal feeding dust (Hiranuma et al., 2011). This similarity might explain the 
observed increase in nINP from precipitation samples at high Ts (≥ -15°C). Therefore, it is worthwhile to 
characterize the local feedlot dust, as they can be the sources of INPs and can impact the local hydrological cycle. 
 525 
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The relationship between pollen and the PM concentrations has not been analyzed in this study. 

Collecting long-term observational pollen and other biogenic aerosol particles data for multiple years may add 
important knowledge regarding the role of local bioaerosols on the precipitation INPs. As for more future 

studies, INPs derived from precipitation samples collected over multiple years would give comprehensive 

insight into their impact on local precipitation systems. This work highlights this need for more precipitation 530 
based INP studies from different geographical locations. Precipitation category based nINP parametrizations can 

be applicable to any future studies as demonstrated in this study. The reduced uncertainties in nINP along with 
the observed increase in the lower nINP values from this study could help in addressing the long debated issue 

of INP rarity at Ts ≥ -10°C. In other words, the increased nINP at high Ts from this study might minimize the 

discrepancies between the measured INPs in the atmosphere and observed ice crystal concentrations. 535 
Accordingly, these parametrizations can help in minimizing the uncertainty in the ice-cloud formation. 
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Figure 1.  Time series of disdrometer and IoT sensor measurements of  (a) average T ± standard deviation, (b) average relative 795 
humidity ± standard deviation, (c) cumulative number of detected hydrometeors in each precipitation event, and (d) 
maximum, average, and minimum intensity for each precipitation sample.  
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Figure 2. Size distribution of precipitation particles detected in (a) Snow, (b) Hail/Thunderstorm, (c) Long-lasted rain, and (d) 
Weak rain samples with varying uncertainty in diameter (mm). The X-axis error bars are ± 1.0 mm of size class for diameter 825 
< 2mm and ± 0.5 mm of size class for diameter > 2mm. The Y-axis error bars represent standard errors at each diameter. The number 
of precipitation samples in each category is shown by the value of ‘n’.  
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Figure 3. Time series of IoT air quality sensor measurements of (a) PM1.0, (b) PM2.5, and (c) PM10 for each precipitation event. 
Hourly data include the non-precipitation periods (grey dots). The Y-axis error bars are standard errors measured for each 
precipitation event.   
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Figure 4. IN spectra of (a) Snow, (b), Hail/Thunderstorm, (c) Long-Lasted rain, and (d) Weak rain samples superposed on 

nucleation spectra from previous studies. The X-axis error bars represent constant uncertainty of ± 0.5°C in temperature. 885 
The Y-axis error bars are 95% confidence interval for nINP shown only for two samples from each category. The number of 
precipitation samples in each category is shown by the value of ‘n’. 
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 890 

 
Figure 5. (a) Time series of cumulative nINP (L-1 air) in each precipitation sample at different temperatures. (b) nINP for two 
precipitation samples (ID# 26 and 27) observed on the same day of 12 March 2019. The uncertainty in the average nINP at 
each temperature (± numbers in parentheses) is the standard error calculated for 42 samples. 
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Figure 6. The distribution of nINP for different (a) seasons, (b) precipitation types, and (c) range of maximum intensity 
observed in precipitation sample. The p-value from student’s independent t-test is also shown by ‘p’ at different Ts between 
different categories. The solid line in the box is median nINP and the box edges are the inter-quartile ranges q1 (25 percentile) 
and q3 (75 percentile). The diamond markers are the outliers with maximum nINP values. 
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Figure 7.  Metagenomics analysis of precipitation and feedlot dust samples showing (a) Relative Frequency (%) or abundance 
of Bacterial taxonomy, (b) alpha-diversity analysis with Faith’s PD index of diversity (Y-axis), and (c) beta-diversity analysis 
comparing microbial distance of feedlot samples between themselves, as well as the microbiome diversity distance of other 
samples. ‘Bkgr’ represents the 24-hour dry deposition blank sample. 
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