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Abstract 
Ice-nucleating particles (INPs) influence the formation of ice crystals in clouds and many types of precipitation. 
This study reports unique properties of INPs collected from 42 precipitation samples in the Texas Panhandle 15 
region from June 2018 to July 2019. We used a cold-stage instrument called the West Texas Cryogenic 
Refrigerator Applied to Freezing Test system to estimate INP concentrations (nINP) through immersion freezing in 
our precipitation samples with our detection capability of > 0.006 INP L-1. A disdrometer was used for two 
purposes; (1) to characterize the ground level precipitation type and (2) to measure the precipitation intensity as 
well as size of precipitating particles at the ground level during each precipitation event. While no clear seasonal 20 
variations of nINP values were apparent, the analysis of yearlong ground level precipitation observation as well as 
INPs in the precipitation samples showed some INP variations, for example, the highest and lowest at -25 °C both 
in the summer for hail-involved severe thunderstorm samples (3.0 to 1,130 INP L-1), followed by the second lowest 
at the same T from one of our snow samples collected during the winter (3.2 INP L-1). Furthermore, we conducted 
the bacteria speciation using a subset of our precipitation samples to examine the presence of known biological 25 
INPs. In parallel, we also performed metagenomics analysis of ambient dust samples collected at commercial 
feedlots in West Texas to check the similarity and to test if local feedlots can act as a source of bioaerosol particles 
and/or INPs found in the precipitation samples. Overall, our results showed that cumulative nINP in our 
precipitation samples below -20 °C could be high in the samples collected while observing > 10 mm hr-1 
precipitation with notably large hydrometeor sizes and an implication of feedlot bacteria inclusion.  30 

1 Introduction 

1.1. What are INPs?  
Aerosol particles play a major role in altering the cloud properties, precipitation patterns, and ultimately the 
Earth’s radiation budget (Lohmann and Feichter, 2005). In the past few decades, the aerosol particle direct effects 
(i.e., the impact of aerosol particles on net radiation through scattering and absorption of solar radiation) have 35 
been extensively studied (Satheesh and Krishna Moorthy, 2005). For example, the global radiative forcing by sea 
salt aerosols and dust is known to be in the range of −0.5 to −2 W m−2 and −2 to +0.5 W m−2, respectively. 
However, the aerosol particle indirect effects (i.e., radiative impact due to formation of clouds) have been 
enigmatic. Some atmospheric aerosol particles are known to act as ice-nucleating particles (INPs) and catalyze 
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the formation of ice crystals in the clouds, but their overall impact on the Earth’s radiative budget remains 40 
quantitatively uncertain (Lohmann et al., 2007).  

While INPs are sparse in the atmosphere, they have substantial impacts on the cloud microphysics and 
the precipitation formation (DeMott et al., 2010). The sources of atmospheric INPs are diverse as they emerge 
naturally and also through human activities, adding complexities to our comprehensive understanding in their 
impacts (e.g., Kanji et al., 2017; Zhao et al., 2019). In general, INPs provide a surface on which the water vapor 45 
and/or cloud droplet deposits and freezes (Van den Heever et al., 2006). This type of ice formation in the presence 
of INP is known as heterogenous freezing (Vali et al., 2015). In the absence of INPs, the formation of atmospheric 
ice particles follows the process of homogeneous nucleation, in which it requires the cloud droplet to be 
supercooled to the temperature (T) of -32 °C and below (depending on the pure water droplet size) to form ice 
crystals (Koop et al., 2000; Koop and Murray, 2016). Though our knowledge regarding INPs remains insufficient, 50 
there have been advances in understanding the different modes of heterogeneous ice nucleation (IN) in the 
atmosphere in the last few decades. For example, deposition nucleation is induced by the direct deposition of 
water vapor on to an INP’s surface and ice embryo formation on the surface under ice supersaturation conditions 
(Kanji and Abbatt, 2006; Möhler et al., 2008). Recently, some studies have argued that the deposition nucleation 
could be interpreted as pore condensation and freezing (Marcolli, 2014). The presence of water in pores of 55 
mineral materials and the resulting inverse Kelvin effect cause an instantaneous water saturation condition in the 
confined space, allowing the water to freeze even at water sub-saturated ambient conditions (David et al., 2019; 
Marcolli, 2014). Amongst various IN paths, perhaps the most important mode is immersion freezing (De Boer et 
al., 2010). This process starts with the formation of cloud droplet followed by freezing due to an INP immersed in 
the supercooled droplet. In addition, the past studies have identified other modes of heterogeneous nucleation, 60 
such as condensation freezing (Belosi and Santachiara, 2019), contact freezing (Hoffmann et al., 2013), and inside-
out evaporation freezing (Durant and Shaw, 2005). These modes are relatively less relevant in the mixed-phase 
clouds (MPCs) as discussed in the next section. 
 
1.2. Importance of Immersion Freezing 65 
INPs greatly influence cloud properties, especially in MPCs, which are typically observed in the altitude range of 
2 km to 9 km above ground level (Hartmann et al., 1992). Out of all heterogeneous ice-nucleation modes, the 
immersion freezing is the most dominant mode of ice formation in MPCs (Ansmann et al., 2008; De Boer et al., 
2010; Hande and Hoose, 2017; Vergara-Temprado et al., 2018). In Hande and Hoose (2017), different cloud types 
such as orographic, stratiform, and deep-convective systems were simulated and analyzed for different freezing 70 
modes under various polluted conditions. The authors demonstrate that immersion freezing is the predominant 
IN mode under various simulated circumstances, accounting for 85 to 99%, while other IN paths play a less 
significant role. Cui et al. (2006) also showed that immersion freezing is the primary mode of ice formation with 
little significance of the deposition mode in the early stages of the cloud development. Moreover, whereas 
contact freezing may be a highly efficient ice formation path, a previous simulation study showed that it is a 75 
negligible mode in the given MPC conditions (Phillips et al., 2007). Field et al. (2012) and De Boer et al. (2011) 
showed that the formation of cloud droplets is a precondition for ice formation in MPCs, thus highlighting the 
importance of immersion nucleation. Furthermore, using multiple ground-based instruments, including Lidar, 
AERONET Sun Photometer, and Vaisala Radiosonde, Ansmann et al. (2008) found that a high INP concentration 
(nINP) (i.e., ~ 1 – 20 cm-3) in the Saharan dust. This high dust-including nINP episode coincided with the presence of 80 
liquid droplets at cloud tops at Ts of -22 to -25 °C. Similarly, Ansmann et al. (2009) shows the observation of 
tropical altocumulus clouds having liquid cloud tops. Due to the importance and dominance of immersion freezing, 



3 
 

 

the current study focuses on measuring the immersion freezing efficiency of the precipitation samples collected 
in the Texas Panhandle region. 
 85 
1.3. INPs in Precipitation  
It is known that INPs in MPCs have a notable impact on the properties of precipitation. Previously, Yang et al. 
(2019) studied the effect of INPs on cloud dynamics and precipitation through model simulations of an observed 
severe storm in Northern China. The authors show that an increase in INPs can enhance the storm, whereas an 
excessive increase of INPs may impede the updrafts in the storm. The reason for this complex effect of INPs may 90 
be explained by the variation in the latent heat release in the convective system at different stages of its 
development. This latent heat is further influenced by INP episode, thus affecting the dynamics of the 
precipitation system. Furthermore, the increase in INP number might reduce the mean hail diameter (hail 
particles with smaller diameters melt more easily), which leads to decreased hail precipitation and an increased 
rain formation in contrast to the previous studies (Fan et al., 2017; Van den Heever et al., 2006). Similar results 95 
have been found by Chen et al. (2019). The authors show that an increased nINP in the simulated hailstorm can 
reduce the graupel size and the concentration of hail stones. Likewise, the aircraft observations along with the 
model simulations of convective storms in West Texas and U.S. High Plains have shown that the addition of INPs 
at the base of warm clouds would result in an increase of the precipitation amount by strong updrafts in the 
system (Rosenfeld et al., 2008), ultimately affecting the local hydrological cycle (Mülmenstädt et al., 2015). It has 100 
also been observed that INPs can be removed from the atmosphere through precipitation resulting in a net 
decrease in nINP, affecting the precipitation development (Stopelli et al., 2015).  
 Several previous studies have characterized the nINP in the precipitation samples from various locations 
(Creamean et al., 2019; Petters and Wright, 2015; Levin et al., 2019). Petters and Wright (2015) reported a wide 
range of nINP values in their local precipitation samples collected approximately 3 km west of Raleigh, NC, USA for 105 
July 2012 and October 2013. Their study shows a variation of 10 orders of magnitude in the concentrations of 
INPs with a high variability in the T range of -5 to -12 °C, suggesting inclusion of biological INPs, which are generally 
known to be active at relatively high freezing Ts (Després et al., 2012). The lower limit for the INP spectrum as a 
function of T derived from the cloud water and precipitation samples in Petters and Wright (2015) may highlight 
the extreme rarity of INPs at Ts warmer than -10 °C. Particularly, the authors showed that the highest ever 110 
observed nINP at -8 °C were three orders of magnitude lower than observed ice crystal concentrations in tropical 
cumuli at the same temperature. More precipitation studies may provide a constraint on minimum enhancement 
factors for secondary ice formation processes. In Levin et al. (2019) the nINP values during an atmospheric river 
event on the west coast of United States were studied. The authors found an increased concentration of marine 
INPs in contrast to their previous studies, showing high mineral/soil dust during an atmospheric river 115 
precipitation.  
 
1.4. Study Objectives  
In this study, we characterized properties of INPs in precipitation samples collected in the Texas Panhandle region. 
All of our samples were analyzed at our laboratory using a cold stage instrument. The estimated nINP in the 120 
precipitation samples were studied with ground level precipitation properties, such as the precipitation type, 
intensity of precipitation (mm hr-1), and hydrometeor particle size (mm). A subset of the collected precipitation 
samples was analyzed for their bio-speciation to characterize potential biological INP sources in the West Texas 
region and also to examine the presence of known high T biological INPs. Although the estimation of nINP in 
precipitation samples collected at the ground level does not represent INPs at the cloud height, we report the 125 
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INPs resolved by the ground level weather observation that help understanding of ambient INPs in the West Texas 
region, where unique and substantial INPs, i.e., several hundred and thousand INPs L-1 at -20 °C and -25 °C, 
respectively, are consistently emitted from animal feeding operations (Hiranuma et al., 2020). 

2 Methods 

2.1 Precipitation Sampling 130 
The precipitation samples were collected from different seasons throughout the year during June 2018 – July 

2019. Sterilized polypropylene tubes of 50 ml volume (VWR Centrifuge Tube) were used as sampling gauges. 
The gauges were placed at ~50 ft above the ground on the rooftop of the Natural Science Building at West Texas 
A&M University, Canyon, TX. This particular location was chosen to avoid any obstruction of our sampling 
activities. The sampling tubes were well exposed to the ambient air without any canopies throughout the 135 
sampling process. The sampling gauges were replaced every 24 hours to minimize the effect of dry deposition 
prior to the precipitation sample collection. A blank dry deposition sample (Sample# 34) was specifically collected 
for 24 hours from January 2-3, 2019 in order to examine and quantify the effect of dry deposition on nINP. The 
freezing spectrum of this dry deposition sample (suspended in HPLC grade pure water) was later compared with 
the IN spectra of precipitation samples (see Sect. 3.3). We note that a volume of pure water (5 ml) for an 140 
atmospheric INP estimate based on a dry deposition sample was determined by averaging collected precipitation 
volumes of all samples prior to this dry deposition sample. For the duration of a given precipitation episode, some 
amount of sample was accumulated in the tube. The sampling tubes were then capped and stored at T of 4 °C in 
the refrigerator, following the method described in Petters and Wright (2015), until the droplet-freezing assay 
experiments were commenced. The effect of storage conditions on the IN activity was not considered in this 145 
study. We note that Beall et al. (2020) recently found a decrease in precipitation nINP by 42% when stored at 4 °C 
(i.e., Table 5) and suggested correction factors for the T range of -7 to -17 °C. After the freezing experiment, a 
subset of our samples was kept under deep-freeze conditions (-80 °C) for further biological analysis (see Sect. 
2.6). In total, 42 precipitation samples were collected from different weather systems observed at the surface 
level. Based on these samples and observations, we estimated the nINP values from (1) snow, (2) 150 
hails/thunderstorm, (3) long-lasted rain, and (4) weak rain. More information about the samples used in this 
study, precipitation types and the amount of the precipitation collected for each sample are provided in the 
Supplemental Information (SI) Sect. S1. 
 
2.2. Disdrometer Measurements of Precipitation Properties 155 

For our precipitation measurements, we used the OTT Parsivel2 (Particle Size Velocity 2) sensor. This 
device is a modern laser-optical disdrometer (λ = 780 nm) which measures the size and fall velocity of 
precipitating particles. The OTT Parsivel2 was deployed in side-by-side position with the precipitation gauge 
collector for the duration of our study period. A detailed technical description of OTT Parsivel2 is given in a 
previous study (Tokay et al., 2014), so only a brief description is provided here. A combination of the laser 160 
transmitter and receiver component was integrated as a single cluster in a weatherproof housing and detects 
precipitation particles passing through a horizontal strip of light. A nominal cross section area of a laser beam 
detection was 54 cm2, and the system recorded the number of hydrometeors in a 32 x 32 matrix (i.e., fall velocity 
x diameter) in the ≥ 30 seconds time resolution. The measurable size range of hydrometeor particles was 0.062 - 
24.5 mm in diameter (Dp) with bin size intervals (∆Dp) varying from 0.125 to 3.0 mm. Our disdrometer was coupled 165 
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with an OTT netDL Hydrosystem logger (40 channels). The OTT Parsivel2 also measured the intensity of 
precipitation (mm hr-1) and the number of precipitation particles passing through the horizontal strip of light in 
the event of precipitation. The OTT Parsivel2 automatically categorized the precipitation type according to the 
National Weather Service (NWS) weather code based on the measured precipitation properties. Due to the 
intermittent nature of the precipitation, the OTT Parsivel2 assigned multiple NWS precipitation codes during a 170 
single precipitation event (Table S1 column ‘NWS Code’). We compared our manual observations with the NWS 
precipitation code assigned by the disdrometer, and we categorized all observed precipitation into four different 
types. These four major precipitation types defined in this study included snow, hail/thunderstorm, long-lasted 
rain, and weak rain, and we collected 6, 18, 13, and 5 samples from each type, respectively, which sum up to a 
total of 42 samples More detailed methodology of precipitation categorization is discussed in SI Sect. S1.1.  175 
 
2.3 IoT Air Quality Sensor Measurements 
A cluster of Arduino-based Internet of Things (IoT) air quality sensors was developed to measure ambient air 
conditions at our precipitation sampling location. This IoT cluster was deployed alongside the disdrometer and 
sampling gauge to complement this study. A DFRobot particulate matter (PM) laser dust sensor measured PM 180 
with size ranges of < 1 µm (PM1.0), < 2.5 µm (PM2.5), and < 10 µm (PM10) with an estimated uncertainty of ±27% 
relative to an optical particle counter (Markowiz and Chiliński, 2020). Other ambient conditions, including T, 
barometric pressure, and humidity, were measured with a precision Bosch BME280 environmental sensor. We 
calibrated our sensors against a commercially available sensor (GlobalSat Inc., LS-113). Our sensors utilized Long 
Range and Wide Area Network (LoRaWAN) technology for data transmission. A LoRaWAN transceiver is 185 
connected to our sensors for wireless data transmission. This small IoT device operated with 915 MHz signal 
frequency, transmitting encrypted and signed packets of captured air quality data through a hosted LoRa network 
server to a Kibana visualization server. This data interface enabled in situ monitoring and processing of the data. 
The PM concentrations were later time-averaged for assessing contribution of wet scavenging of aerosol particles 
to nINP in the precipitation samples. 190 
 
2.4 Immersion Freezing Experiment 
All immersion freezing experiments in this study were conducted using an offline instrument called West Texas - 
Cryogenic Refrigerator Applied to Freezing Test (WT-CRAFT) system (Hiranuma et al., 2019; Cory et al., 2019). The 
WT-CRAFT system is a cold-stage technique, in which the droplets are placed on an aluminum plate and cooled 195 
until they are frozen. A commercially available digital camera was used to record the droplet freezing events, and 
we visually evaluated the freezing Ts based on the shift in droplet brightness while freezing. If there was an 
uncertainty in determining the T at which a droplet was completely frozen, we used the ImageJ software for 
further image analysis of those droplets (see Table S4 in Hiranuma et al., 2019). This system was used to obtain 
T-resolved nINP in -25 °C < T < 0 °C. The lower T limit was -25 °C to ensure measuring INPs with negligible artefacts 200 
(Hiranuma et al., 2019). Our system is susceptible to low INP detection, and the minimum INP detection limit of 
the WT-CRAFT system for this study was 0.006 L-1 air. To minimize any contamination during the IN measurement, 
the WT-CRAFT system was placed in a ventilated fume hood. For each experiment an aluminum plate surface was 
freshly coated with a thin layer of thermally conductive and IN-inert Vaseline to physically isolate individual 
droplets from the aluminum surface (otherwise, aluminum can act as a heterogeneous IN surface). A total of 70 205 

suspension droplets of 3L volume each were prepared for each run. The aluminum plate with the droplets on it 
was then placed inside a portable cryogenic refrigerator (Cryo-Porter). Freezing Ts were measured by the sensor 



6 
 

 

taped on the aluminum surface with a resolution of 0.1 °C, and the external keypad controller was used to control 
cooling rate (°C min-1). In this study, the freezing experiments were carried out at a cooling rate of 1 °C min-1. The 
validity of using this cooling rate and another test regarding time trial aspect are demonstrated in SI Sect. S2 (Figs. 210 
S1 and S2). The droplets were cooled until all 70 droplets were frozen before warming up the system to 5 °C to 
be prepared for a subsequent experiment.  

If all the droplets were frozen at T > -25 °C, a HPLC-grade ultrapure water was used to prepare different 
serial dilutions for the precipitation samples. The diluted suspensions were made to compute the nINP down to -
25 °C. Some of our precipitation samples were diluted until the frozen fraction (the ratio of number of droplets 215 
frozen to the total number of droplets) curve was conformed to the background curve (i.e., frozen fraction curve 
for the HPLC ultrapure water). At the end of each WT-CRAFT experiment, the frozen fraction and ambient nINP 
were estimated as a function of T with an interval of 0.5 °C. The IN measurements from the undiluted and diluted 
runs were merged by taking the lower nINP values, which typically possess the lowest confidence intervals, for the 
overlapped T region. 220 

The total systematic T and nINP uncertainties in WT-CRAFT are ±0.5 °C  and ±23.5% (Hiranuma et al., 2019). 
For this study, the experimental uncertainty in our estimated nINP was evaluated and reported using the 95% 
confidence interval method described in Schiebel (2017). Background contamination tests for WT-CRAFT were 
carried out weekly to make sure negligible background freezing at -25 °C. In this study, we consider the frozen 
fraction ≤ 0.05, accounting for less than 3% of pure water activation, as negligible background (Hiranuma et al., 225 
2019). For these background tests, only HPLC grade ultrapure water was used for preparing the droplets. 

 
2.5 IN Parameterization 
Here we describe the parameterization used to estimate ambient nINP. Initially, we computed the CINP(T) value, 
which is the nucleus concentration in precipitation suspension (L−1 water) at a given T as described in Vali (1971). 230 
This CINP(T) value was calculated as a function of unfrozen fraction, funfrozen(T) (i.e., the ratio of number of droplets 
unfrozen to the total number of droplets) as:  

 

 

 𝐶𝐼𝑁𝑃(𝑇) =  − 
ln (𝑓𝑢𝑛𝑓𝑟𝑜𝑧𝑒𝑛(𝑇))

𝑉𝑑
 

 (1) 

in which, Vd is the volume of the droplet (3 µL). Next, we used the cloud water content (CWC) parameter in 

order to convert CINP(T) to nINP(T), INP in the unit volume of atmospheric air at standard T and pressure (STP) 235 

conditions, which is 273.15 K and 1013 mbar. We assumed CWC to be a constant of 0.4 g m−3, following Petters 

and Wright (2015). This assumption would be reasonable for the following three reasons: (1) Petters and Wright 

(2015) and references therein showed typical values of CWC for different cloud types could narrowly range 

from 0.2 g m−3 to a factor of few more, (2) the authors also showed that the variation of nINP with CWC values 

for different cloud types in the atmosphere would typically be limited within a factor of two, and our nINP 240 

uncertainties could be larger than that, and (3) based on a parametrization for rainwater evaporation, Zhang 

et al. (2006) suggests that evaporation does not contribute to nINP bias for both strong convective systems and 

persistent rain events with cloud base heights of ≈3 km. Thus, the variation of CWC on the nINP was considered 

to be negligible. Nonetheless, it is necessary in the future to further investigate in cloud specific CWCs 

incorporating with loss of water through partial evaporation of raindrops during free fall based on vertical vapor 245 

deficit profiles to conclusively assess if this assumption is fair or not. Precipitation evaporation rate might 
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introduce bias in nINP for precipitation systems with high cloud base, and the correction can be applied 

accordingly (Petters and Wright, 2015). Direct comparison between INP measurements in cloud water samples 

and those in precipitation samples might also be key to answer this question (e.g., Pereira et al., 2020). 

The sample air volume (Vair) at the cloud level was calculated by converting the volume of the   250 

precipitation sample collected (Vl) using the Eqn. (2) from Petters and Wright (2015): 
 

                        𝑉𝑎𝑖𝑟   =    
𝑉𝑙 × 1000 × ρ𝑤

𝐶𝑊𝐶
 

  (2) 

where ρw is a unit density of water (1 g ml-1). Vair  is in liters (L), whereas Vl is given in ml. The multiplication 

factor ‘1000’ is used to convert the volume from cubic meter (m3) of air to liter of air. The cumulative nINP per 255 

unit volume of sample air, described in the previous study DeMott et al. (2017), was then estimated as:  

 
𝑛𝐼𝑁𝑃(𝑇) =  𝐶𝐼𝑁𝑃(𝑇) × 𝐷𝐹 ×

𝑉𝑙

𝑉𝑎𝑖𝑟
 

(3) 

where DF is a serial dilution factor (e.g., DF = 1 or 10 or 100 and so on). 
 
2.6. Microbiome of Feedlot Dust and Precipitation Samples 
The overall goal of our metagenomics analysis was to identify known ice-nucleation-active bacterial and fungal 260 
species in feedlot dust and precipitation samples collected in the West Texas region. This biological speciation is 
also useful to examine if local feedlots can act as a source of bioaerosol particles and/or INPs found in the 
precipitation samples. In this study, we have examined a heterogeneous set of samples including four feedlot 
samples locally collected on March 28, 2019 and July 22, 23, and 24, 2018 (see Table 1 of Hiranuma et al., 2020), 
precipitation samples (Sample# 1, 2, 7, and 50), and a 24-hour dry deposition sample (Sample# 34). We note that 265 
the precipitation Sample# 50 (another hail/thunderstorm sample), which was collected on March 23, 2019 when 
a tornado warming was issued, was preserved only for metagenomics due to its low volume (≈ 1ml). It is also 
noteworthy that we attempted to analyze samples of all precipitation types, but acquired quantitative results 
only for those hail/thunderstorm samples (the reason is unknown). Next, we describe our microbiome analysis 
procedure in four different steps, including (1) DNA Extraction, (2) 16S rRNA Amplicon Diversity Sequencing, (3) 270 
Bioinformatics, and (4) Data Analysis. For DNA extraction, genomic DNA was first extracted from all samples using 
PowerSoil DNA Isolation Kits (MoBio Laboratories, Inc., Carlsbad, CA, USA). Extraction proceeded following the 
manufacturer’s protocol, with the following minor changes: solutions C1 and C6 were heated to 65 °C and solution 
C6 was allowed to remain on the filter membrane for at least one minute before centrifugation. Additionally, the 
C6 step was repeated. Library preparation for bacterial 16S DNA amplicon sequencing utilized primers for the V1-275 
V3 hypervariable region of the 16S gene. These primers were constructed for the 16S amplicon using a 
combination of the 28F and Illumina i5 sequencing primer and the Illumina i7 sequencing primer with the 519R 
primer. Amplifications were performed in 25 μl reactions with Qiagen HotStar Taq master mix (Qiagen Inc, 
Valencia, CA, USA). Reactions were performed with 1 μl of each 5μM primer and the template DNA. Amplification 
was performed on an ABI Veriti thermocycler (Applied Biosytems, Carlsbad, CA, USA) under the following thermal 280 
profile: 95 °C for 5 min, then 25 cycles of 94 °C for 30 sec, 54 °C for 40 sec, 72 °C for 1 min, followed by one cycle 
of 72 °C for 10 min and 4 °C hold. An ethidium bromide-stained gel was used to qualitatively determine the 
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amount of the amplification product to add to the second amplification stage. Primers for the second PCR were 
designed based on the Illumina Nextera PCR primers. The second stage amplification proceeded using the same 
cycling protocol as the first round, except it was amplified for only 10 cycles. SPRIselect beads (BeckmanCoulter, 285 
Indianapolis, IN, USA) were used at a 0.7 ratio to size-select the DNA amplicons from an equimolar pooled sample. 
Pooled samples were then quantified using a Quibit 2.0 fluorometer (Life Technologies) and loaded on an Illumina 
MiSeq (Illumina, Inc. San Diego, CA, USA) 2x300 flow cell at 10pM. 
  For bioinformatics, raw data were initially processed using a standard microbial diversity analysis pipeline 
(QIIME2-2020). Raw data was first checked for sequencing quality and chimeric sequences, before being parsed 290 
through a microbial diversity pipeline. During the cleanup stage; denoising of the raw data was performed using 
various techniques to remove short sequences, singleton sequences, and reads with poor quality scores. Next, 
chimera detection software was used to filter out any potentially chimeric sequences. Finally, remaining high-
quality sequences were corrected base by base to check for sequencer miscalls. The diversity analysis pipeline 
clustered all sequences based on 97% similarity to yield operational taxonomic units (OTUs), before running a 295 
seed sequence from each OTU through a taxonomic database curated in-house by RTLGenomics. Finally, the 
taxonomy was assigned to each sequence using a classifier that was pretrained on GreenGenes database with 
99% OTUs. The relative abundance of bacterial taxa within each sediment sample was determined by dividing 
each OTU by the total number of reads.  

3 Results and Discussion 300 

3.1 Ambient and Precipitation Properties 
The time series summary of ambient and precipitation properties measured by our disdrometer as well as IoT 
cluster is shown in Fig. 1. Each data point in Fig. 1a shows the average temperature measured over the sampling 
period of a given precipitation event. A notable seasonal variation of ambient T at our sampling location was 
observed.  The highest average temperature measured during a precipitation event was 34.9 ± 12.2 °C, which 305 
was in the summer of 2018 (i.e., ID#  7; a long-lasted rain sample), while the lowest T was -6.5  ± 6.7 °C, measured 
during the winter of 2018 (i.e., ID# 23; a snow sample). The annual mean T for Canyon, TX region measured at 
our sampling site was 17.7 °C. The diurnal cycles of ambient properties are not shown in Fig. 1a. Nevertheless, 
we typically observed suppression of T before precipitation events in our study. It  is known that the T gradient 
plays a major role in the development and growth of the precipitation systems (Vaid and Liang 2015).  Next, each 310 
relative humidity data point shown in Fig. 1b corresponds to the average during each precipitation event.  With 
an overall average of 54.0%, the highest and lowest relative humidity values measured were 70.7 ± 2.3 % (ID# 26; 
a weak rain sample) and 30.8 ± 0.7 % (ID# 7; a long-lasted rain sample). The observed low ground level relative 
humidities during some precipitation events (Tables S1 - S2) may be a concern as loss of water through partial 
evaporation of hydrometeors during free fall. But, it is noteworthy that the water evaporation might have 315 
negligible effect on nINP estimated from precipitation samples as discussed in Sect. 2.5. Third, Fig. 1c displays the 
time series of the cumulative number of detected precipitation particles in individual precipitation events and 
the overall mean number of detected particles (dashed line). In our study period, a disdrometer detected a 
substantial number of precipitation particles with a cumulative number ranging from 1.0 x 104 to 6.6 x 105 
particles passing through its laser beam cross section per event. More details of each precipitation event and its 320 
properties are shown in the Tables S1 - S3. As seen in Table S3, high numbers of precipitation particles  were 
observed in conjunction with snow/hail-involving precipitation events during our study period, which may 
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increase the wet scavenging efficiency of ambient aerosol particles during precipitation (see Sect. 3.2 and SI Sect. 
S4). Out of all the 42 samples, the highest number of precipitation particles was detected on the 5th of Nov, 2018 
(ID# 19; a snow sample), while the lowest was observed on the 2nd of Sep, 2018 (ID# 13; weak rain). Finally, Fig. 325 
1d shows the average, maximum, and minimum precipitation intensity (mm hr-1) measured during each 
precipitation event. Due to the intermittent nature of the precipitation, the intensity widely ranged from 1.1 to 
129.3 mm hr-1 per event. The highest maximum intensity of 129.3 mm hr-1 was measured during a 
hail/thunderstorm event (ID# 40), while the lowest was 1.1 mm hr-1 during a snow event (ID# 23). These intensity 
data were used for our wet deposition analysis (SI Sect. S4).  330 

The variation of precipitation properties was further investigated by analyzing the size distribution of 
precipitation particles measured by the OTT Parsivel2 disdrometer. Figure 2 shows the precipitation  particle size 
distribution for each category of ground level observed precipitation type. The size of precipitation particles was 
represented at the median diameter of the corresponding disdrometer’s size bin. As shown in the Fig. 2a and 2b, 
both snow and hail/thunderstorm samples had particles of diameter greater than 10 mm with the maximum 335 
particle diameter of 17 mm. Although there are three episodes of long-lasted rain with a particle diameter greater 
than 14 mm (Fig. 2c), a clear trend of overall decrease in the hydrometeor size was seen for this category as well 
as the weak rain samples (Fig. 2d).  In fact, all weak rain samples contained particles only smaller than 6.5 mm. 
Moreover, the mode precipitation particle diameter for the snow, hail/thunderstorm, and long-lasted rain 
samples was 0.44 mm, whereas it was 0.31 mm for the weak rain samples (see Table S3). This variation in mode 340 
diameter along with the results shown in Fig. 2 generally exhibited the shift in hydrometeor particle size 
distribution towards a larger diameter with an increased intensity of precipitation at the ground level.  
 
3.2 IoT Air Quality Sensor Results and Implication of Wet Deposition 
The overall mean PM concentrations (± standard error) measured by an IoT air quality sensor for our study period 345 
were 3.9 ± 9.2 x 10-2 µg m-3 (PM1.0), 4.0 ± 4.5 x 10-2 µg m-3 (PM2.5), and 10.0 ± 2.2 x 10-1 µg m-3 (PM10). Although 
there was an inconsistent variation of PM concentrations with precipitation type, we observed a substantial 
increase in all PM values for the period July – Aug 2018 and May 2019. In contrast, a decrease in all PM 
concentrations was observed during Sep 2018 – Mar 2019. This increase in PM values during summer and 
decrease during winter suggested a seasonal variation at the sampling site. The seasonal variation in PMs may be 350 
indicative of different aerosol particle sources or the local meteorological conditions. In the Southern Great Plains, 
the local sources include harvesting crop fields and agricultural burning (Garcia et al., 2012; DeMott et al., 2015). 
Based on the long-term measurements of aerosol particle composition at Southern Great Plains (SGP), Parworth 
et al. (2015) found a seasonally varying interstate transport of biogenic aerosols to the SGP site. The authors also 
observed a springtime increase in biomass burning organic aerosols at SGP, which were mainly associated with 355 
local fires. The long-distance dispersion of Juniperus ashei pollen into the SGP area by the southern winds was 
previously observed by Van de Water et al. (2003). Elevated layers of haze have been observed over the same 
site due to the inter-oceanic and intercontinental transport of smoke from intense Siberian fires (Arnott et al., 
2006; Damoah et al., 2004). It was also evident from previous observation and simulation modeling studies that 
Saharan dust can reach southeastern parts of USA through the transatlantic long-range transport (Weinzierl et 360 
al., 2017). Thus, PMs observed in the West Texas region may be a mixture of aerosol particles from different 
sources and spatial scales of transport.  

Table 1 shows the hourly time-averaged PM data measured prior to vs. after precipitation. During intense 
precipitation, aerosol particle concentrations below cloud tend to decrease due to the wet scavenging effect 
(Hanlon et al., 2017). In fact, the reduction in our hourly averaged PM1, PM2.5, and PM10 after precipitation is 365 
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apparent in Table 1, presumably because of scavenging in part at least. Note that any counter mechanisms, such 
as primary biological aerosol particles and surface material rupture after rainfall (e.g., Huffman et al., 2013), were 
not considered in our data interpretation. The first order calculations are performed to understand implications 
of scavenging processes towards the reduction in the PM after rain event (SI Sect. S4). These calculations contain 
±61.5% uncertainty and can be further extended with some assumptions to estimate INP. However, to better 370 
constrain these estimates, direct vertical INP (He et al., 2020) and scavenging measurements (Hanlon et al., 2017) 
are needed. A total of 28 precipitation events was analyzed, and our estimated nINP(T) of scavenged aerosol 
particles appeared to be constantly an order magnitude lower as compared to total nINP(T) measured in our 
precipitation samples (Fig. S3). This trend is true across all ranges of examined Ts (> -25 °C). Nevertheless, our 
estimates imply some (but negligible) contributions of scavenged aerosol particles on nINP(T) in our precipitation 375 
samples.   
 
3.3 INP Results 
The time series of cumulative nINP from precipitation samples at different Ts (i.e., -5, -10, -15, -20, and -25 °C) are 
shown in Fig. 3. The T-resolved averaged cumulative nINP ± standard error is also presented in Fig. 3. Note that 380 
Fig. 3b shows nINP for two precipitation samples (ID# 26 and 27) observed on the same day of 12 March 2019. 
Overall, three orders of magnitude variations of averaged cumulative nINP values were observed between -10 °C 
(0.17 ± 0.04 L-1) and -25 °C (74.74 ± 28.28 L-1) for our precipitation samples.  Occasionally, we observed nINP 
detected at ≥ -5 °C, but such a high T INPs was randomly found in only 7 out of 42 samples within our detection 
capability.  385 

Attempts to examine the distribution of nINP based on the precipitation type, meteorological season, and 
maximum precipitation intensity (mm hr-1) were made (see SI Sect. S5). Due to the limited total number of 
samples we collected, we cannot conclusively state anything regarding seasonal variations of nINP in our 
precipitation samples. Nonetheless, our INP results showed that the lowest nINP at -25 °C (3.0 L-1) was found in a 
hail/thunderstorm sample (ID#37; no inclusion of large hydrometeors as seen in Fig. 2b) collected during the 390 
summer 2019. Likewise, the highest nINP at -25 °C (1,130 L-1) was found in a hail-involved severe thunderstorm 
sample (ID# 1) collected in summer 2018. This observation is interesting because the measured PM10 of ~6.2 µg 
m-3 prior to precipitation of ID# 1 (Table 1) is not the highest PM10 recorded in 2018-2019, suggesting wet 
scavenging does not control the total INPs in precipitation samples. The fact that the second lowest nINP (-25 °C), 
which is 3.2 L-1, is from the snow sample (ID# 23) also supports a negligible contribution of scavenging in our INP 395 
data. Moreover, our results showed that cumulative nINP below -20 °C in our precipitation samples could be high 
in the samples collected while observing > 10 mm hr-1 hail/thunderstorm and snow precipitation with notably 
large hydrometeor sizes.  

Figure 4 shows a compilation of nINP(T) spectra of each precipitation type in comparison to previously 
reported precipitation nINP(T). In general, most of nINP spectra fall in the upper range of the previous precipitation 400 
nINP data presented in Petters and Wright (2015) and Vali (1968). INP humps shaping the reference spectra (i.e., 
one below -20 °C and another at > -20 °C) are also found in our spectra. The observed hump is especially obvious 
for nINP at T above -20 °C, and some of our spectra exceed the upper bound of the reference spectra in any 
precipitation types. For Ts below -20 °C, our nINP(T) data match fairly well within the range of the reference nINP(T) 
for all four precipitation types. Thus, the precipitation type observed at the ground level would not have any 405 
relationships with INP propensity at least for our 42 samples collected for this study. However, it is interesting 
that most of our nINP data points above -15 °C fall within the range of estimated nINP at cloud height with < 50% 
storm efficiency, reported in Vali (1968). In fact, regardless of precipitation type, we see reasonable overlaps of 
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our nINP(T) with Vali (1968). The author stated that the large differences in IN content among precipitation samples 
were mainly caused by differences in the nucleus content of the air entering the storm. This implies that the cloud 410 
level dynamics like cloud entrainment impact the cloud level INP concentrations. Hence, we compared our 
precipitation INP data with the lower and upper limits of the IN concentrations in the air entering the storm given 
by Vali (1968) (Table 2, Chapter# 9). These cloud level INP concentrations given by Vali (1968) were for two 
different storm efficiencies, which is the ratio of mass of precipitation to the mass of water input. The storm 
efficiency of 10% represents the time when high concentrations of precipitation inside the storm begins to 415 
develop. Likewise, 50% is at the peak intensity of the storm. These different combinations of storm efficiencies 
and water content accounted for a tenfold variation in the ice nucleus content. As more air is entered into the 
storm with 50% efficiency, more IN concentrations are observed at cloud level. Though our data are comparable 
to Vali (1968), there is still indeed the need for cloud level INP measurements to define the relationship between 
the ground level INP concentrations and precipitation intensity. 420 

In addition, Fig. 4 also shows the nINP result of our 24-hour dry deposition blank sample. For the measured 
T range, nINP values from the dry deposition blank sample were at least an order of magnitude lower than that 
from our precipitation samples. This finding corroborated our assumption of negligible contribution of dry 
deposition in our WT-CRAFT estimated nINP from precipitation samples.  
 Figure 5 shows another compilation plot of our precipitation nINP(T) spectra compared to ambient nINP(T) 425 
data of local agricultural dusts from Fig. 3 of Hiranuma (2020). As seen, most of our precipitation INP spectra are 
accumulated near the lower end of the feedlot IN spectra, implying some inclusion of these local dusts as INPs in 
our samples. Although we are not certain if these local dusts play a role in precipitation, and assessing the 
potential of locally emitted aerosol particles to precipitation formation is beyond the scope of the current study, 
it is important to study the contribution of local agricultural dust in wet scavenging and INP formation at cloud 430 
height separately in the future. It is noteworthy that adjacent feedlots (> 45,000 head capacity) are located within 
33 miles of our sampling site, and the role of feedlot dusts in atmospheric INPs is described in more detail in 
Hiranuma et al. (2020). Further discussion regarding the feedlot contribution in INPs in our precipitation samples 
is provided in Sect. 3.4.  
 435 
3.4. Microbiome of Feedlot and Precipitation Samples 
Furthermore, we conducted the bacteria speciation of a subset of our precipitation samples and ambient dust 
samples collected at commercial feedlots in West Texas to identify potential biological sources of INPs in our 
precipitation samples.  

We successfully generated data on the bacterial microbiome of our precipitation and feedlot dust 440 
samples. Unfortunately, our attempt to extract fungal microbes was not successful due to the limitation in sample 
amount. Thus, we focus on bacterial discussions hereafter. In most cases, bacterial phyla were classified to the 
level of genus. The majority of bacteria in all samples belonged to phyla Proteobacteria and Bacteroidetes (Fig. 6 
and Table S9). In hailstorm samples, the main taxa of Proteobacteria were Massilia (a genus found in clinical 
samples and mammals, but also the soil, rhizosphere, and even aerosols), genera belonging to the order 445 
Sphingomonadales (bacteria with wide metabolic abilities), Caulobacterales (bacteria living in diverse terrestrial 
and aquatic habitats; some are minor human pathogens), and Rhizobiales (nitrogen-fixing bacteria forming 
symbioses with the roots of legumes). Among the Bacteroidetes phylum, the genus Marinoscillum was relatively 
the most abundant. This genus is a recently described marine bacterium, and it is interesting that it was found in 
hailstorm samples at percentages from 17.3% to 3.2% of the microbiome. Our results perhaps indicate some 450 
connection with storms or winds originating from the North Atlantic Ocean (back-trajectory analyses done, but 
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not shown). Other Bacteroidetes taxa with notable presence in hailstorm microbiome included Saprospirales and 
Chitinophagales orders with bacteria living on animals and in the gut of animals as expected. 

The microbiomes commonly found in our precipitation samples included the genus Massilia in significant 
numbers (11.3% of the microbiome), bacteria of the Proteobacterial orders Rhizobiales, Sphingomonadales, and 455 
Burkholderiales; a significant percentage (8.5%) of the marine genus Marinoscillum and bacteria in order 
Saprospirales of phylum Bacteroidetes. Our results suggest that no known IN active species were detected in 
precipitation microbiomes. The order Pseudomonadales, which includes most known IN active species, was found 
at the limit of detection. 

Massilia and other unidentified genera of the family Oxalobacteraceae were also relatively dominant in 460 
all four feedlot samples with percentages from 6.5% to 65.4% of the microbiome. Marinoscillum, a marine 
bacterium surprisingly found in all precipitation samples, was also found in all feedlot samples from 3% to 8.5% 
of the microbiome. These similarities of the predominant bacteria in the microbiome of four feedlot dust samples 
and of four precipitation samples taken at an area distant from the feedlots, perhaps indicate some connection 
of the feedlot dust and precipitation microbiomes, either with the formation of precipitation or with their 465 
presence in aerosols during precipitation events. Although we cannot rule out the possibility that scavenging of 
aerosolized bacteria explains the presence of these bacteria both in feedlot and precipitation samples taken even 
at a distance from feedlots, our dry deposition background result shows different biological composition (Fig. 6). 
It is also noteworthy to mention that neither of the genera (Massilia and Marinoscillum) were detected in the 
background deposition blank sample and it is not known whether they have any IN activity. Therefore, the 470 
scavenging may not be the main reason for the presence of Massilia and Marinoscillum found in our precipitation 
samples. Other bacterial taxa with a significant presence in feedlot samples included members of orders 
Caulobacterales and Burkholderiales.  
 
3.5. Caveats and Future Studies 475 
A surface level air mass on a plain is not necessarily the same as the air mass where precipitation forms at the 
cloud level. Studying the vertical gradient in INP concentrations in this region would hint at the link between 
these two vertical zones (e.g., He et al., 2020). The future investigation should also include investigations in 
physicochemical transformation of hydrometers and INPs, which might occur between the cloud height and the 
ground (e.g., Pereira et al., 2020), impact of aerosol dynamics and processing, effect of solutes to alter the 480 
freezing point (Whale et al., 2018), secondary ice formation, and cloud macrophysics addressed in Wright and 
Petters (2015 - Sects. 4.1 to 4.3).  

The precipitation intensity strongly depends on several other dynamical factors and thermodynamic 
conditions, including the land use, moisture levels, land surface temperatures, and convective available potential 
energy. For instance, recent observational study showed that the irrigation practices in the Great Plains region 485 
had enhanced summer precipitation intensity (Alter et al., 2015) resulting an increase in the total precipitation 
received. Hence, it is not straightforward to link the precipitation intensity to the estimated INP concentrations 
and more future studies involving cloud level and surface level INP measurements might help in elucidating this 
problem. To assess the impact of INPs on precipitation properties (and vice versa), it is necessary to conduct the 
INP measurement of cloud water samples, aerosol particle characterizations below cloud, and more detailed 490 
analysis of precipitation-forming cloud properties as well as cloud height. More detailed scavenging analysis 
without many assumptions and limitations, such as assuming a constant scavenging rate over precipitation, 
limited particle size distributions, and assuming a well-mixed boundary layer, is also necessary to connect the 
surface observation to cloud level phenomenon. Diffusional scavenging of small particles may not contribute to 
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IN unless they are highly ice active macromolecules or other small biological species. Regardless, robust aerosol 495 
particle size distribution data across the ground to cloud base segment would definitely complement to 
accurately and precisely estimate scavenging efficiencies. Some previous studies support the assumption of a 
well-mixed boundary layer near the study area. Further effort may be needed to characterize the climatology of 
boundary layer height in the West Texas region at different times of a day, as demonstrated in Schmid and Niyogi 
(2012) and Zhu et al. (2001). Incorporating more local specific vertical ambient profiles (lapse rate, Dong et al., 500 
2008) for further analysis would also be helpful. 

As for more future studies, INPs derived from precipitation samples collected over multiple years would 
give comprehensive insight into their impact on local precipitation systems. This work highlights this need for 
more precipitation-based INP studies from different geographical locations.  The reduced uncertainties in nINP 
along with the high INP detection sensitivity could help in addressing the long-debated issue of INP rarity at Ts ≥ 505 
-10 °C. 
 
4. Conclusion 
 
 We have successfully estimated nINP (per liter of air) in the immersion freezing mode from different 510 
precipitation samples collected in Canyon, TX, USA during June 2018 – July 2019. IN spectra were derived for MPC 
T range (0 to -25 °C) from four different precipitation types (snow, thunder/hailstorm, long-lasted rain, and weak 
rain) using a cold-stage instrument (WT-CRAFT). Our disdrometer measurements showed a clear variation in the 
precipitation properties among the four different categories of precipitation samples. Severe precipitation, such 
as hail/thunderstorms, had the highest rainfall intensity (mm hr-1) and the number of precipitation particles were 515 
highest in the snow samples. We also found an increased number of large hydrometeors (> 10 mm in diameter) 
in both the snow and hail/thunderstorm samples. In contrast, there were no precipitation particles > 6.5 mm in 
diameter observed in the weak rain samples. Our PM concentration measurements implied some possibilities of 
wet deposition (but neglected). The IN spectra from each precipitation category in this study were compared with 
the IN spectra from previous precipitation-based INP studies (Petters and Wright, 2015; Vali, 1986). We have 520 
found that nINP values from our precipitation samples match or exceed previously derived nINP from precipitation. 
Notably, the high T (≥ -15 °C) INPs in some of our precipitation samples are in the same order of magnitude as 
what is reported in Vali (1986). Although we found no clear seasonal variations in nINP values, in part due to the 
limited number of samples, the analysis of yearlong ground level precipitation observations as well as INPs for 
the precipitation samples showed that the highest nINP at -25 °C of 1,130 L-1 coincided with a hail-involved severe 525 
thunderstorm event observed during the summer in 2018 (ID# 1). Similarly, the lowest cumulative INP at the 
same temperature, 3.0 INP L-1, was found in another hail/thunderstorm samples collected in June, 2019 (ID# 37). 
The second lowest nINP (-25 °C) was found in one of our snow samples collected during the winter (ID# 23 = 3.2 
INP L-1). Overall, our results showed that cumulative nINP in our precipitation samples below -20 °C could be high 
in the samples collected while observing > 10 mm hr-1 precipitation with the presence of notably large 530 
hydrometeor sizes. While our results cannot conclusively define the relationship between INPs and precipitation, 
our precipitation INP data is an important asset for understanding ambient INPs in the West Texas region, where 
a rural agricultural environment prevails.   

We also identified the similarity in bacterial microbiomes between our precipitation and local feedlot 
dust samples. While we cannot conclude if local feedlot dust contributes to precipitation formation, we find some 535 
indications of the inclusion of agricultural dust in our precipitation samples. Regardless, we did not find the 
previously known bacterial INPs, such as Pseudomonas and Xanthomonas (Morris et al., 2004) in either the 
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precipitation or feedlot samples. To further seek a connection between local dust and precipitation, it is 
worthwhile to characterize the local feedlot dust in cloud water samples, as it can be the source of INPs and may 
impact the local hydrological cycle. Collecting long-term pollen and other biogenic aerosol particles samples and 540 
associated observational data for multiple years may add important knowledge regarding the role of local 
bioaerosols on precipitation INPs. 
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Figures 805 

 
Figure 1.  Time series of disdrometer and IoT sensor measurements for  (a) average T ± standard deviation, (b) average relative 
humidity ± standard deviation, (c) cumulative number of detected hydrometeors in each precipitation event, and (d) 
maximum, average, and minimum precipitation intensity. Each data point corresponds to the sampling start time for each 
precipitation event. 810 
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Figure 2. Size distribution of precipitation particles detected in (a) Snow, (b) Hail/Thunderstorm, (c) Long-lasted rain, and (d) 
Weak rain samples. A subset of distributions shows varying uncertainty in diameter (mm). The X-axis error bars are ±1.0 mm 
of size class for diameter < 2mm and ±0.5 mm of size class for diameter > 2mm. The Y-axis error bars represent standard errors at 815 
each diameter. The sub-total number of precipitation samples in each category is shown by the value of ‘n’.  
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Figure 3. (a) Time series of cumulative nINP (L-1 air) in each precipitation sample at different temperatures. (b) nINP for two 820 
precipitation samples (ID# 26 and 27) observed on the same day of 12 March 2019. The uncertainty in the average nINP at 
each temperature (± numbers in parentheses) is the standard error calculated for 42 samples. 

 

 

 825 



24 
 

 

 

Figure 4. IN spectra of (a) Snow, (b), Hail/Thunderstorm, (c) Long-Lasted rain, and (d) Weak rain samples superposed on 
nucleation spectra from previous precipitation INP studies (shaded areas). A subset of spectra shows error bars. The X-axis 

error bars represent constant uncertainty of ±0.5 °C in temperature. The Y-axis error bars are 95% confidence interval for 

nINP shown only for two samples from each category. The number of precipitation samples in each category is shown by the 830 
value of ‘n’. 
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Figure 5. Compiled IN spectra of our precipitation samples superposed on nucleation spectra from local feedlot dust study 835 
(shaded area). The feedlot INP data are adapted from Fig. 3 of Hiranuma et al. (2020). 
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Figure 6.  Metagenomics analysis of precipitation and feedlot dust samples showing Relative Frequency (%) or abundance of 840 
Bacterial taxonomy. ‘Bkgr’ represents the 24-hour dry deposition blank sample (Sample# 34). Our feedlot samples are 
collected locally on March 28, 2019 (1), July 22, 2018 (2), July 23, 2018 (3), and July 24, 2018 (4) – see Hiranuma et al. (2020). 
PCPT 1-4 corresponds to our Sample# 1, 2, 50, and 7, respectively.   
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Table 1. Adjacent hourly averaged PM values before and after each precipitation event. We excluded 14 data where PM 845 
data were not recorded due to technical issues etc. (ID# of 6-7, 17, 20, 22-24, 26, 28-33).  

        PM1 (µg m-3)   PM2.5 (µg m-3)   PM10 (µg m-3) 

ID# Sample# Precipitation type   Before After   Before After   Before After 

1 PCPT_NSB_1 Hail/Thunderstorm   1.969 0.111   4.090 1.693   6.188 1.990 
2 PCPT_NSB_2 Hail/Thunderstorm   0.010 0   1.811 0.001   2.111 0.001 
3 PCPT_NSB_5 Long-Lasted Rain   4.667 0.660   5.734 1.947   10.790 3.690 
4 PCPT_NSB_6 Long-Lasted Rain   3.755 3.755   5.956 5.721   8.867 8.580 
5 PCPT_NSB_7 Hail/Thunderstorm   0 N/A   0.557 N/A   0.723 N/A 
8 PCPT_NSB_10 Long-Lasted Rain   7.479 1.495   9.894 3.409   14.771 4.742 
9 PCPT_NSB_11 Weak Rain   5.760 3.812   8.165 6.190   12.770 9.436 

10 PCPT_NSB_15 Hail/Thunderstorm   14.289 4.020   16.078 5.124   30.794 9.277 
11 PCPT_NSB_16 Hail/Thunderstorm   4.913 N/A   5.423 N/A   10.534 N/A 
12 PCPT_NSB_17 Long-Lasted Rain   4.551 N/A   6.414 N/A   10.633 N/A 
13 PCPT_NSB_19 Weak Rain   0.049 N/A   1.283 N/A   6.301 N/A 
14 PCPT_NSB_20 Long-Lasted Rain   1.780 N/A   4.312 N/A   5.890 N/A 
15 PCPT_NSB_23 Hail/Thunderstorm   3.867 2.167   5.740 5.740   9.551 7.235 
16 PCPT_NSB_24 Hail/Thunderstorm   1.592 0   4.984 0.003   5.786 0.003 
18 PCPT_NSB_26 Long-Lasted Rain   0.657 0   2.830 0   3.192 0 
19 PCPT_NSB_27 Snow Sample   0 N/A   0.011 N/A   0.080 N/A 
21 PCPT_NSB_30 Snow Sample   0.760 0   2.627 0.275   3.180 0.275 
25 PCPT_NSB_46 Weak Rain   1.461 0   4.525 1.233   5.449 1.233 
27 PCPT_NSB_48 Hail/Thunderstorm   0 0   0.427 0.002   0.427 0.002 
34 PCPT_NSB_57 Hail/Thunderstorm   29.649 13.515   29.649 13.770   58.946 26.604 
35 PCPT_NSB_58 Hail/Thunderstorm   12.450 0.680   13.245 1.400   24.390 2.860 
36 PCPT_NSB_59 Long-Lasted Rain   10.515 6.912   11.516 7.918   21.192 12.892 
37 PCPT_NSB_60 Hail/Thunderstorm   9.740 3.423   10.661 4.396   18.750 7.269 
38 PCPT_NSB_61 Long-Lasted Rain   4.396 0.192   5.912 1.215   10.069 2.051 
39 PCPT_NSB_62 Hail/Thunderstorm   0.039 N/A   1.555 N/A   1.804 N/A 
40 PCPT_NSB_63 Hail/Thunderstorm   2.217 1.365   4.348 2.479   6.533 4.781 
41 PCPT_NSB_65 Hail/Thunderstorm   1.694 0   3.994 0.316   5.306 0.316 
42 PCPT_NSB_66 Hail/Thunderstorm   1.750 0.080   2.881 1.459   5.771 1.530 

NOTE: N/A: either below detection limit of our PM sensor (< 0.001 µg m-3) or sensor failure return values. 
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Abstract 
Ice-nucleating particles (INPs) influence the formation of ice crystals in clouds and many types of precipitation. 
However, our knowledge of the relationship between INPs and precipitation is still insufficient. This study 15 
reports unique properties of INPs collected from This study was conducted to fill this gap by assessing 
precipitation properties and INP concentrations (nINP) from a total of 42 precipitation samplesevents observed 
in the Texas Panhandle region from June 2018 to July 2019. We used a cold-stage instrument called the West 
Texas Cryogenic Refrigerator Applied to Freezing Test system to estimate INP concentrations (nINP) through 
immersion freezing in our precipitation samples with our detection capability of > 0.006 INP L-1. A disdrometer 20 
was used for two purposes; (1) to characterize the ground level precipitation type and (2) to measure the 
precipitation intensity as well as size of precipitating particles at the ground level during each precipitation 
event. While no clear seasonal variations of nINP values were apparent, the analysis of yearlong ground level 
precipitation observation as well as INPs in the precipitation samples showed some INP variations, for example, 
the highest and lowest at -25 °C both in the summer for hail-involved severe thunderstorm samples (3.0 to 25 
1,130 INP L-1), followed by the second lowest at the same T from one of our snow samples collected during the 
winter (3.2 INP L-1). Furthermore, we conducted the bacteria speciation using a subset of our precipitation 
samples to examine the presence of known biological INPs. In parallel, we also performed metagenomics 
analysis of ambient dust samples collected at commercial feedlots in West Texas to check the similarity and to 
test if local feedlots can act as a source of bioaerosol particles and/or INPs found in the precipitation samples. 30 
Overall, our results showed that cumulative nINP in our precipitation samples below -20 °C could be high in the 
samples collected while observing > 10 mm hr-1 precipitation with notably large hydrometeor sizes and an 
implication of feedlot bacteria inclusion. A disdrometer was used to measure the precipitation intensity and 
size of precipitating particles during each precipitation event. The analysis of yearlong precipitation properties 
as well as INPs for the samples shed a light on the seasonal variation of the nINP values in West Texas. 35 
Furthermore, we characterized the bacteria speciation of the storm and ambient dust samples collected at a 
commercial feedlot in West Texas to identify potential biological sources of INPs in our precipitation samples. 
Overall, our results showed a positive correlation between nINP and intensity of precipitation with notably large 
hydrometeor sizes in storm precipitations. Amongst all observed precipitation types, the highest INPs were 
found in the snow samples, and hail/thunderstorm samples have the highest INPs at high temperature -5°C.  40 
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1 Introduction 

1.1. What are INPs?  

Aerosol particles play a major role in altering the cloud properties, precipitation patterns, and ultimately the 
Earth’s radiation budget (Lohmann and Feichter, 2005). In the past few decades, the aerosol particle direct effects 
(i.e., the impact of aerosol particles on net radiation through scattering and absorption of solar radiation) have 45 
been extensively studied (Satheesh and Krishna Moorthy, 2005). For example, the global radiative forcing by sea 
salt aerosols and dust is known to be in the range of −0.5 to −2 W m−2 and −2 to +0.5 W m−2, respectively. 
However, the aerosol particle indirect effects (i.e., radiative impact due to formation of clouds) have been 
enigmatic. Some atmospheric aerosol particles are known to act as ice-nucleating particles (INPs) and catalyze 
the formation of ice crystals in the clouds, but their overall impact on the Earth’s radiative budget remains 50 
quantitatively uncertain (Lohmann et al., 2007).  

While INPs are sparse in the atmosphere, they have substantial impacts on the cloud microphysics and 
the precipitation formation (DeMott et al., 2010). The sources of atmospheric INPs are diverse as they emerge 
naturally and also through human activities, adding complexities to our comprehensive understanding in their 
impacts (e.g., Kanji et al., 2017; Zhao et al., 2019). In general, INPs provide a surface on which the water vapor 55 
and/or cloud droplet deposits and freezes (Van den Heever et al., 2006). This type of ice formation in the presence 
of INP is known as heterogenous freezing (Vali et al., 2015). In the absence of INPs, the formation of atmospheric 
ice particles follows the process of homogeneous nucleation, in which it requires the cloud droplet to be 
supercooled to the temperature (T) of -32 °C and below (depending on the pure water droplet size) to form ice 
crystals (Koop et al., 2000; Koop and Murray, 2016). Though our knowledge regarding INPs remains insufficient, 60 
there have been advances in understanding the different modes of heterogeneous ice nucleation (IN) in the 
atmosphere in the last few decades. For example, deposition nucleation is induced by the direct deposition of 
water vapor on to an INP’s surface and ice embryo formation on the surface under ice supersaturation conditions 
(Kanji and Abbatt, 2006; Möhler et al., 2008). Recently, some studies have argued that the deposition nucleation 
could be interpreted as pore condensation and freezing (Marcolli, 2014). The presence of water in pores of 65 
mineral materials and the resulting inverse Kelvin effect cause an instantaneous water saturation condition in 
the confined space, allowing the water to freeze even at water sub-saturated ambient conditions (David et al., 
2019; Marcolli, 2014). Amongst various IN paths, perhaps the most important mode is immersion freezing (De 
Boer et al., 2010). This process starts with the formation of cloud droplet followed by freezing due to an INP 
immersed in the supercooled droplet. In addition, the past studies have identified other modes of heterogeneous 70 
nucleation, such as condensation freezing (Belosi and Santachiara, 2019), contact freezing (Hoffmann et al., 
2013), and inside-out evaporation freezing (Durant and Shaw, 2005). These modes are relatively less relevant in 
the mixed-phase clouds (MPCs) as discussed in the next section. 
 
1.2. Importance of Immersion Freezing 75 
 
INPs greatly influence cloud properties, especially in MPCs, which are typically observed in the altitude range of 
2 km to 9 km above ground level (Hartmann et al., 1992). Out of all heterogeneous ice-nucleation modes, the 
immersion freezing is the most dominant mode of ice formation in MPCs (Ansmann et al., 2008; De Boer et al., 
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2010; Hande and Hoose, 2017; Vergara-Temprado et al., 2018). In Hande and Hoose (2017), different cloud types 80 
such as orographic, stratiform, and deep-convective systems were simulated and analyzed for different freezing 
modes under various polluted conditions. The authors demonstrate that immersion freezing is the predominant 
IN mode under various simulated circumstances, accounting for 85 to 99%, while other IN paths play a less 
significant role. Cui et al. (2006) also showed that immersion freezing is the primary mode of ice formation with 
little significance of the deposition mode in the early stages of the cloud development. Moreover, whereas 85 
contact freezing may be a highly efficient ice formation path, a previous simulation study showed that it is a 
negligible mode in the given MPC conditions (Phillips et al., 2007). Field et al. (2012) and De Boer et al. (2011) 
showed that the formation of cloud droplets is a precondition for ice formation in MPCs, thus highlighting the 
importance of immersion nucleation. Furthermore, using multiple ground-based instruments, including Lidar, 
AERONET Sun Photometer, and Vaisala Radiosonde, Ansmann et al. (2008) found that a high INP concentration 90 
(nINP) (i.e., ~ 1 – 20 cm-3) in the Saharan dust. This high dust-including nINP episode coincided with the presence of 
liquid droplets at cloud tops at Ts of -22 °C to -25 °C. Similarly, Ansmann et al. (2009) shows the observation of 
tropical altocumulus clouds having liquid cloud tops. Due to the importance and dominance of immersion 
freezing, the current study focuses on measuring the immersion freezing efficiency of the precipitation samples 
collected in the Texas Panhandle region. 95 

1.3. INPs and Atmosphericin Precipitation  

It is known that INPs in MPCs have a notable impact on the properties of precipitation. Previously, Yang et al. 
(2019) studied the effect of INPs on cloud dynamics and precipitation through model simulations of an observed 
severe storm in Northern China. The authors show that an increase in INPs can enhance the storm, whereas an 
excessive increase of INPs may impede the updrafts in the storm. The reason for this complex effect of INPs may 100 
be explained by the variation in the latent heat release in the convective system at different stages of its 
development. This latent heat is further influenced by INP episode, thus affecting the dynamics of the 
precipitation system. Furthermore, the increase in INP number might reduce the mean hail diameter (hail 
particles with smaller diameters melt more easily), which leads to decreased hail precipitation and an increased 
rain formation in contrast to the previous studies (Fan et al., 2017; Van den Heever et al., 2006). Similar results 105 
have been found by Chen et al. (2019). The authors show that an increased nINP in the simulated hailstorm can 
reduce the graupel size and reduce the concentration of hail stones. Likewise, the aircraft observations along 
with the model simulations of convective storms in West Texas and U.S. High Plains have shown that the addition 
of INPs at the base of warm clouds would result in an increase of the precipitation amount by strong updrafts in 
the system (Rosenfeld et al., 2008), ultimately affecting the local hydrological cycle (Mülmenstädt et al., 2015). 110 
It has also been observed that INPs can be removed from the atmosphere through precipitation resulting in a net 
decrease in nINP, affecting the precipitation development (Stopelli et al., 2015). The estimation of nINP in this study 
from the precipitation samples gives a quantitative approximation of INPs in the locally observed weather 
systems, potentially allowing us to parameterize the INP-precipitation relationship. 
  115 
 Several previous studies have characterized the nINP in the precipitation samples from various locations 
(Creamean et al., 2019; Petters and Wright, 2015; Levin et al., 2019). Petters and Wright (2015) reported a wide 
range of nINP values in their local precipitation samples collected approximately 3 km west of Raleigh, NC, USA for 
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July 2012 and October 2013. Their study shows a variation of 10 orders of magnitude in the concentrations of 
INPs with a high variability in the T range of -5 °C to -12 °C, suggesting inclusion of biological INPs, which are 120 
generally known to be active at relatively high freezing Ts (Després et al., 2012). The lower limit for the INP 
spectrum as a function of T derived from the cloud water and precipitation samples in Petters and Wright (2015) 
may highlight the extreme rarity of INPs at Ts warmer than -10 °C. Particularly, the authors showed that the 
highest ever observed nINP at -8 °C were three orders of magnitude lower than observed ice crystal 
concentrations in tropical cumuli at the same temperature. More precipitation studies may provide a constraint 125 
on minimum enhancement factors for secondary ice formation processes. In Levin et al. (2019) the nINP values 
during an atmospheric river event on the west coast of United States were studied. The authors found an 
increased concentration of marine INPs in contrast to their previous studies, showing high mineral/soil dust 
during an atmospheric river precipitation. However, the relation between INPs and the physical properties of 
precipitation particles as well as the variation in severity of the precipitation is still uncertain, representing a 130 
knowledge gap regarding precipitation INPs. This study narrows this gap by investigating the role of INPs in 
different precipitation systems. 

1.4. Study Objectives  

In this study, we characterized properties of INPs incalculated the nINP in  precipitation samples collected in the 
Texas Panhandle region. All of our samples were analyzed at our laboratory using a cold stage instrument. The 135 
estimated nINP in the precipitation samples were studiedcompared  with ground level precipitation properties, 
such as the precipitation type, intensity of precipitation (mm hr-1), and hydrometeor particle size (mm). In 
addition, the seasonal variation of nINP in the Texas Panhandle region was studied and compared with the 
particulate matter (PM) concentrations measured by our Internet of Things (IoT) sensors. A subset of the 
collected precipitation samples was analyzed for their bio-speciation to characterize potential biological INP 140 
sources in the West Texas region and also to examine the presence of investigate if the biological composition 
matches with any previously known high T biological INPs. Although the estimation of nINP in precipitation 
samples collected at the ground level does not represent INPs at the cloud height, we report the INPs resolved 
by the ground level weather observation that help understanding of ambient INPs in the West Texas region, 
where unique and substantial INPs, i.e., several hundred and thousand INPs L-1 at -20 °C and -25 °C, respectively, 145 
are consistently emitted from animal feeding operations (Hiranuma et al., 2020). 

2 Methods 

2.1 Precipitation Sampling 

In this study, tThe precipitation samples were collected from different seasons throughout the year during June 

2018 – July 2019. Sterilized polypropylene tubes of 50 ml volumemL  (VWR Centrifuge Tube) were used as 150 

sampling gauges. The gauges were placed at ~50 ft above the ground on the rooftop of the Natural Science 

Building at West Texas A&M University, Canyon, TX. This particular location was chosen to avoid any 

obstruction of our sampling activities. The sampling tubes were well exposed to the ambient air without any 

canopies throughout the sampling process. The sampling gauges were replaced every 24 hours to minimize the 
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effect of dry deposition prior to the precipitation sample collection. A blank dry deposition sample (Sample# 155 

34) was specifically collected for 24 hours from January 2-3, 2019 in order to examine and quantify the effect 

of dry deposition on nINP. The freezing spectrum of this dry deposition sample (suspended in HPLC grade pure 

water) was later compared with the IN spectra of precipitation samples (see Sect. 3.3.1). We note that a volume 

of pure water (5 ml) for an atmospheric INP estimate based on a dry deposition sample was determined by 

averaging collected precipitation volumes of all samples prior to this dry deposition sample. For the duration 160 

of a given precipitation episode, some amount of sample was accumulated in the tube. The sampling tubes 

were then capped and stored at T of 4 °C in the refrigerator, following the method described in Petters and 

Wright (2015), until the droplet-freezing assay experiments were commenced. The effect of storage conditions 

on the IN activity was not considered in this study. We note that Beall et al. (2020) recently found a decrease 

in precipitation nINP by 42% when stored at 4 °C (i.e., Table 5) and suggested correction factors for the T range 165 

of -7 °C to -17 °C. After the freezing experiment, a subset of our samples was kept under deep-freeze conditions 

(-80 °C) for further biological analysis (see Sect. 2.6). In total, 42 precipitation samples were collected from 

different weather systems observed at the surface level. Based on these samples and observationsIn this study, 

we estimated the nINP values from (1) snows, (2) hails/thunderstorms, (3) long-lasted rains, and (4) weak rains. 

More information about the samples used in this study, precipitation types and the amount of the precipitation 170 

collected for each sample are provided in the Supplemental Information (SI) Sect. Table S1-1. 

2.2. Disdrometer Measurements of Precipitation Properties 

For our precipitation measurements, we used the OTT Parsivel2 (Particle Size Velocity 2) sensor. This device is a 
modern laser-optical disdrometer (λ = 780 nm) which measures the size and fall velocity of precipitating 
particles. The OTT Parsivel2 was deployed in side-by-side position with the precipitation gauge collector for the 175 
duration of our study period. A detailed technical description of OTT Parsivel2 is given in a previous study (Tokay 
et al., 2014), so only a brief description is provided here. A combination of the laser transmitter and receiver 
component was integrated as a single cluster in a weatherproof housing and detects precipitation particles 
passing through a horizontal strip of light. A nominal cross section area of a laser beam detection was 54 cm2, 
and the system recorded the number of hydrometeors in a 32 x 32 matrix (i.e., fall velocity x diameter) in the ≥ 180 
30 seconds time resolution. The measurable size range of hydrometeor particles was 0.062 - 24.5 mm in 
diameter (Dp) with bin size intervals (∆Dp) varying from 0.125 to 3.0 mm. Our disdrometer was coupled with an 
OTT netDL Hydrosystem logger (40 channels). The OTT Parsivel2 also measured the intensity of precipitation 
(mm hr-1) and the number of precipitation particles passing through the horizontal strip of light in the event of 
precipitation. The OTT Parsivel2 automatically categorized the precipitation type according to the National 185 
Weather Service (NWS) weather code based on the measured precipitation properties. Due to the intermittent 
nature of the precipitation, the OTT Parsivel2 assigned multiple NWS precipitation codes during a single 
precipitation event (Table S1-1 column ‘NWS Code’). We compared our manual observations with the NWS 
precipitation code assigned by the disdrometer, and we categorized all observed precipitations into four 
different types. These four major precipitation types defined in this study included snow, hail/thunderstorm, 190 
long-lasted rain, and weak rain, and we collected 6, 18, 13, and 5 samples from each type, respectively, which 
sum up to a total of 42 samples. More detailed methodology of precipitation categorization is discussed in SI 
Sect. S1.1.  
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2.3 IoT Air Quality Sensor Measurements 

A cluster of Arduino-based Internet of Things (IoT) air quality sensors was developed to measure ambient air 195 

conditions at our precipitation sampling location. This IoT cluster was deployed alongside the disdrometer and 

sampling gauge to complement this study. A DFRobot particulate matter (PM) laser dust sensor measured PM 

with size ranges of < 1 µm (PM1.0), < 2.5 µm (PM2.5), and < 10 µm (PM10) with an estimated uncertainty of ±27% 

relative to an optical particle counter (Markowiz and Chiliński, 2020). Other ambient conditions, including T, 

barometric pressure, and humidity, were measured with a precision Bosch BME280 environmental sensor. We 200 

calibrated our sensors against a commercially available sensor (GlobalSat Inc., LS-113). Our sensors utilized 

Long Range and Wide Area Network (LoRaWAN) technology for data transmission. A LoRaWAN transceiver is 

connected to our sensors for wireless data transmission. This small IoT device operated with 915 MHz signal 

frequency, transmitting encrypted and signed packets of captured air quality data through a hosted LoRa 

network server to a Kibana visualization server. This data interface enabled in situ monitoring and processing 205 

of the data. The PM concentrations were later time-averaged for comparison with the precipitation properties 

and assessing contribution of wet scavenging of aerosol particles to nINP in the precipitation samples. 

2.4 Immersion Freezing Experiment 

All immersion freezing experiments in this study were conducted using an offline instrument called West Texas 
- Cryogenic Refrigerator Applied to Freezing Test (WT-CRAFT) system (Hiranuma et al., 2019; Cory et al., 2019; 210 
Rodriguez et al., 2020). The WT-CRAFT system is a cold-stage technique, in which the droplets are placed on 
an aluminum plate and cooled until they are frozen. A commercially available digital camera was used to record 
the droplet freezing events, and we visually evaluated the freezing Ts based on the shift in droplet brightness 
while freezing. If there was an uncertainty in determining the T at which a droplet was completely frozen, we 
used the ImageJ software for further image analysis of those droplets (see Table S4 in Hiranuma et al., 2019). 215 
This system was used to obtain T-resolved nINP in -25 °C < T < 0 °C. The lower T limit was -25 °C to ensure 
measuring INPs with negligible artefacts (Hiranuma et al., 2019). Our system is susceptible to low INP detection, 
and the minimum INP detection limit of the WT-CRAFT system for this study was 0.002 006 L-1 air. To minimize 
any contamination during the IN measurement, the WT-CRAFT system was placed in a ventilated fume hood. 
For each experiment an aluminum plate surface was freshly coated with a thin layer of thermally conductive 220 
and IN-inert Vaseline to physically isolate individual droplets from the aluminum surface (otherwise, aluminum 

can act as a heterogeneous IN surface). A total of 70 suspension droplets of 3L volume each were prepared 
for each run. The aluminum plate with the droplets on it was then placed inside a portable cryogenic 
refrigerator (Cryo-Porter). Freezing Ts were measured by the sensor taped on the aluminum surface with a 
resolution of 0.1 °C, and the external keypad controller was used to control cooling rate (°C min-1). In this study, 225 
the freezing experiments were carried out at a cooling rate of 1 °C min-1. The validity of using this cooling rate 
and another test regarding time trial aspect are demonstrated in SI Sect. S2 (Figs. S2-1 and S2-2). The droplets 
were cooled until all 70 droplets were frozen before warming up the system to 5 °C to be prepared for a 
subsequent experiment.  

If all the droplets were frozen at T > -25 °C, a HPLC-grade ultrapure water was used to prepare different 230 
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serial dilutions for the precipitation samples. The diluted suspensions were made to compute the nINP down to 
-25 °C. Some of our precipitation samples were diluted until the frozen fraction (the ratio of number of droplets 
frozen to the total number of droplets) curve was conformed to the background curve (i.e., frozen fraction 
curve for the HPLC ultrapure water). At the end of each WT-CRAFT experiment, the frozen fraction and ambient 
nINP were estimated as a function of T with an interval of 0.5 °C. The IN measurements from the undiluted and 235 
diluted runs were merged by taking the lower nINP values, which typically possess the lowest confidence 
intervals, for the overlapped T region. 

The total systematic T and nINP uncertaintiesy in our experimentsWT-CRAFT for this study arewas ± 
0.5 °C  and ±23.5% (Hiranuma et al., 2019). For this study, tThe experimental uncertainty in our estimated nINP 
were estimated was evaluated and reported using the 95% confidence interval method described in Schiebel 240 
(2017). Background contamination tests for WT-CRAFT were carried out weekly to make sure negligible 
background freezing at -25 °C. In this study, we consider the frozen fraction ≤ 0.05, accounting for less than 3% 
of pure water activation, as negligible background (Hiranuma et al., 2019). For these background tests, only 
HPLC grade ultrapure water was used for preparing the droplets. 

 245 
2.5 IN Parameterization 

 
Here we describe the parameterization used to estimate ambient nINP. Initially, we computed the CINP(T) value, 
which is the nucleus concentration in precipitation suspension (L−1 water) at a given T as described in Vali 
(1971). This CINP(T) value was calculated as a function of unfrozen fraction, funfrozen(T) (i.e., the ratio of number 250 
of droplets unfrozen to the total number of droplets) as:  
 

 

𝐶𝐼𝑁𝑃(𝑇) =  − 
ln (𝑓𝑢𝑛𝑓𝑟𝑜𝑧𝑒𝑛(𝑇))

𝑉𝑑
 

 (1) 

in which, Vd is the volume of the droplet (3 µL).  

Next, we used the cloud water content (CWC) parameter in order to convert CINP(T) to nINP(T), INP in 

the unit volume of atmospheric air at standard T and pressure (STP) conditions, which is 273.15 K and 1013 255 

mbar. We assumed CWC to be a constant of 0.4 g m−3, following Petters and Wright (2015). This assumption 

would be reasonable for the following three reasons: (1) Petters and Wright (2015) and references therein 

showed typical values of CWC for different cloud types could narrowly range from 0.2 g m−3 to a factor of few 

more, (2) the authors also showed that the variation of nINP with CWC values for different cloud types in the 

atmosphere would typically be limited within a factor of two, and our nINP uncertainties could be larger than 260 

that, and (3) based on a parametrization for rainwater evaporation, Zhang et al. (2006) suggests that 

evaporation does not contribute to nINP bias for both strong convective systems and persistent rain events with 

cloud base heights of ≈3 km. Thus, the variation of CWC on the nINP was considered to be negligible. 

Nonetheless, it is necessary in the future to further investigate in cloud specific CWCs incorporating with loss 

of water through partial evaporation of raindrops during free fall based on vertical vapor deficit profiles to 265 

conclusively assess if this assumption is fair or not. Precipitation evaporation rate might introduce bias in nINP 
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for precipitation systems with high cloud base, and the correction can be applied accordingly (Petters and 

Wright, 2015). Direct comparison between INP measurements in cloud water samples and those in 

precipitation samples might also be key to answer this question (e.g., Pereira et al., 2020).We presumed CWC 

to be a constant of 0.4 g m−3, covering the continental clouds in our study. Our assumption would be reasonable 270 

since Petters and Wright (2015) showed that the variation of nINP with CWC values for different cloud types in 

the atmosphere would typically be limited within a factor of two, and our nINP uncertainties could be larger 

than that. Thus, the effect of CWC on the nINP would be negligible. 

The sample air volume (Vair) at the cloud level was calculated by converting the volume of the   

precipitation sample collected (Vl) using the Eqn. (2) from Petters and Wright, (2015): 275 

 

                        𝑉𝑎𝑖𝑟   =    
𝑉𝑙 × 1000 × ρ𝑤

𝐶𝑊𝐶
 

  (2) 

where ρw is a unit density of water (1 g ml-1). Vair  is in liters (L), whereas Vl is given in ml. The multiplication 

factor ‘1000’ is used to convert the volume from cubic meter (m3) of air to liter of air. The cumulative nINP per 

unit volume of sample air, described in the previous study DeMott et al. (2017), was then estimated as:  280 

 
𝑛𝐼𝑁𝑃(𝑇) =  𝐶𝐼𝑁𝑃(𝑇) × 𝐷𝐹(𝐷𝐹) ×

𝑉𝑙

𝑉𝑎𝑖𝑟
 

(3) 

where DF is a serial dilution factor (e.g., DF = 1 or 10 or 100 and so on). 

 
2.6. Microbiome of Ffeedlot Ddust and Pprecipitation Ssamples 
 
The overall goal of our metagenomics analysis was to identify known ice-nucleation-active bacterial and fungal 285 
species in feedlot dust and precipitation samples collected in the West Texas region. This biological speciation is 
also useful to examine if local feedlots can act as a source of bioaerosol particles and/or INPs found in the 
precipitation samples. In this study, we have examined a heterogeneous set of samples including four feedlot 
samples locally collected on March 28, 2019 and July 22, 23, and 24, 2018 (see Table 1 of Hiranuma et al., 2020), 
precipitation sampleshail, long-lasted rain (Sample# 1, 2, 7, and 50), and a 24-hour dry deposition sample 290 
(Sample# 34). We note that the precipitation Sample# 50 (another hail/thunderstorm sample), which was 
collected on March 23, 2019 when a tornado warming was issued, was preserved only for metagenomics due to 
its low volume (≈ 1ml). It is also noteworthy that we attempted to analyze samples of all precipitation types, but 
acquired quantitative results only for those hail/thunderstorm samples (the reason is unknown). Next, we 
describe our microbiome analysis procedure in four different steps, including (1) DNA Extraction, (2) 16S rRNA 295 
Amplicon Diversity Sequencing, (3) Bioinformatics, and (4) Data Analysis. For DNA extraction, Genomic genomic 
DNA was first extracted from all samples using PowerSoil DNA Isolation Kits (MoBio Laboratories, Inc., Carlsbad, 
CA, USA). Extraction proceeded following the manufacturer’s protocol, with the following minor changes: 
solutions C1 and C6 were heated to 65 °C and solution C6 was allowed to remain on the filter membrane for at 
least one minute before centrifugation. Additionally, the C6 step was repeated. Library preparation for bacterial 300 
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16S DNA amplicon sequencing utilized primers for the V1-V3 hypervariable region of the 16S gene. These primers 
were constructed for the 16S amplicon using a combination of the 28F and Illumina i5 sequencing primer and the 
Illumina i7 sequencing primer with the 519R primer. Amplifications were performed in 25 μl reactions with 
Qiagen HotStar Taq master mix (Qiagen Inc, Valencia, CA, USA). Reactions were performed with 1 μl of each 5μM 
primer and the template DNA. Amplification was performed on an ABI Veriti thermocycler (Applied Biosytems, 305 
Carlsbad, CA, USA) under the following thermal profile: 95 °C for 5 min, then 25 cycles of 94 °C for 30 sec, 54 °C 
for 40 sec, 72 °C for 1 min, followed by one cycle of 72 °C for 10 min and 4 °C hold. An ethidium bromide-stained 
gel was used to qualitatively determine the amount of the amplification product to add to the second 
amplification stage. Primers for the second PCR were designed based on the Illumina Nextera PCR primers. The 
second stage amplification proceeded using the same cycling protocol as the first round, except it was amplified 310 
for only 10 cycles. SPRIselect beads (BeckmanCoulter, Indianapolis, IN, USA) were used at a 0.7 ratio to size-select 
the DNA amplicons from an equimolar pooled sample. Pooled samples were then quantified using a Quibit 2.0 
fluorometer (Life Technologies) and loaded on an Illumina MiSeq (Illumina, Inc. San Diego, CA, USA) 2x300 flow 
cell at 10pM. 
  For bioinformatics, raw data were initially processed using a standard microbial diversity analysis pipeline 315 
(QIIME2-2020). Raw data was first checked for sequencing quality and chimeric sequences, before being parsed 
through a microbial diversity pipeline. During the cleanup stage; denoising of the raw data was performed using 
various techniques to remove short sequences, singleton sequences, and reads with poor quality scores. Next, 
chimera detection software was used to filter out any potentially chimeric sequences. Finally, remaining high-
quality sequences were corrected base by base to check for sequencer miscalls. The diversity analysis pipeline 320 
clustered all sequences based on 97% similarity to yield operational taxonomic units (OTUs), before running a 
seed sequence from each OTU through a taxonomic database curated in-house by RTLGenomics. Finally, the 
taxonomy was assigned to each sequence using a classifier that was pretrained on GreenGenes database with 
99% OTUs. The relative abundance of bacterial taxa within each sediment sample was determined by dividing 
each OTU by the total number of reads. Alpha diversity was carried out by taking phylogenetic distances into 325 
account and by looking at how diverse the phylogenetic tree is for each sample. Next, beta diversities were 
analyzed using weighted (by bacterial abundance) or unweighted Unifrac distances calculated from a mid-point 
rooted tree. Multivariate differences in beta diversity were analyzed using Permutational Multivariate Analysis 
of Variance Using Distance Matrices function (ADONIS), which uses an ANOVA-like simulation to test for sampling 
location differences (McMurdie and Holmes 2013). 330 
 
3 Results and Discussion 

3.1 Ambient and Precipitation Properties 

The time series summary of ambient and precipitation properties measured by our disdrometer as well as IoT 
cluster, respectively, is shown in Fig. 1. Each data point in Fig. 1a shows the average temperature measured 335 

over the sampling period of a given precipitation event. A notable seasonal variation of ambient T at our 
sampling location was observed.  All the individual T and relative humidity data points shown in Fig. 1a and 1b 

correspond to the sampling start date of each precipitation event.  Each data point in Fig. 1a show the average 
temperature measured over the sampling period of a given precipitation event.A notable seasonal variation of 
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atmospheric T was observed.  The highest average temperature measured during a precipitation event was 340 

34.9°C ± 12.2 °C, which was in the summer of 2018 (i.e., 16 July; ID#  7; a long-lasted rain sample), while the 
lowest T was -6.5 °C ± 6.7 °C, measured during the winter of 2018 (i.e., 28 Dec; ID# 23; a snow sample). The 
annual mean T for Canyon, TX region measured at our sampling site was 17.7 °C. The details of each 

precipitation event and its properties are shown in the SI Table S1-1 and S1-2. The diurnal cycles of ambient 

properties are not shown in Fig. 1a. Nevertheless, we typically observed suppression of T before precipitation 345 

events in our study. It has been understood is known that the T gradient plays a major role in the development 
and growth of the precipitation systems (Vaid and Liang 2015).  Next, each relative humidity data point shown 
in Fig. 1b corresponds to the average during each precipitation event. The relative humidity shown in Fig. 1b 

was the averaged value for each precipitation sampling period.  With an overall average of 54.0%, tThe highest 

and lowest relative humidity values measured were 70.7% ± 2.3 % (on 12 March 2019; ID# 26; a weak rain 350 

sample) and 30.8% ± 0.7 % (on 16 July 2018; ID# 7; a long-lasted rain sample). The observed low ground level 
relative humidities during some precipitation events (Tables S1 - S2) may be a concern as loss of water through 

partial evaporation of hydrometeors during free fall. But, it is noteworthy that the water evaporation might 
have negligible effect on nINP estimated from precipitation samples as discussed in Sect. 2.5. Third, Fig.ure 1c 
displays the time series of the cumulative number of detected precipitation particles in individual precipitation 355 

events and the overall mean number of detected particles (dashed line). In our study period, a disdrometer 
detected a substantial number of precipitation particles with a cumulative number ranging from 1.0 x 104 to 

6.6 x 105 particles passing through its laser beam cross section per event. More details of each precipitation 
event and its properties are shown in the Tables S1 - S3. In our study period, the precipitation events during 

September 2018 – January 2019 exhibited a substantial number of precipitation particles with a cumulative 360 

number of 2E+05 to 6.6E+05 per event. As seen in Table S3,This high numbers of precipitation particles , greater 

than the overall mean cumulative number (i.e., 7.9E+04) was  were observed in conjunction with snow/hail-
involving precipitation events during this our study period, which may increase the wet scavenging efficiency 

of ambient aerosol particles during precipitation (see Sect. 3.2 and SI Sect. S4). Out of all the 42 samples, the 
highest number of precipitation particles was detected were 6.6E+05 (on the 5th of Nov, 2018; (ID# 19; a snow 365 

sample), while the lowest was observed on 1.0E+04 (the 2nd of Sep, 2018; (ID# 13; weak rain). Additional 

information is detailed in SI Table S1-2 and S1-3. There were other occasional snow/hail precipitation events 

in our study period, but the frequency of their occurrence was indeed high in Fall - Winter. Overall, a high 

average number of precipitation particles were detected for all the snow samples combined, 2E+05 ± 2E+02, 
followed by hail/thunderstorm samples, 7.1E+04 ± 1.9E+04. On the other hand, the weak rain episode had 370 

lowest average number of precipitation particles, 1.8E+04 ± 5.4E+03 (SI Table S1-3). Finally, Fig.ure 1d shows 
the average, maximum, and minimum precipitation intensity (mm hr-1) measured during each precipitation 
event. Due to the intermittent nature of the precipitation, the intensity widely ranged from 1.1 to 129.3 0 to 

150 mm hr-1 per event. The measured lower values of the average intensity were due to the influence of low 

intensities observed over a prolonged period of a given precipitation event. The highest maximum intensity of 375 

129.3 mm hr-1 was measured during a hail/thunderstorm event (ID# 40), while the lowest was 1.1 mm hr-1 

during a snow event (ID# 23). These intensity data were used for our wet deposition analysis (SI Sect. S4). The 

average intensity ± standard error for each precipitation category is shown in the SI Table S1-3. 
Hail/thunderstorm events have recorded the highest average precipitation intensity of 5.3 ± 7E-01 mm hr-1, 



11 
 

 

which was greater than the average intensity measured for the weak rain episodes, 1.5 ± 3.8E-01 mm hr-1 by a 380 

factor of 3 (SI Table S1-3).  

The variation of precipitation properties was further investigated by analyzing the size distribution of 
precipitation particles measured by the OTT Parsivel2 disdrometer. Figure 2 shows the precipitation log-normal  
particle sizediameter distribution for each category of ground level observed precipitation typesystem. These 
size distributions were computed from the size-resolved precipitation particle measurements by the OTT 385 
Parsivel2 disdrometer during each precipitation event. The size of precipitation particles was represented at the 
mid-valuemedian diameter of the corresponding disdrometer’s size bin. As shown in the Fig. 2a and 2b, both 
the snow and hail/thunderstorm samples had particles of diameter greater than 10 mm with, and the maximum 
particle diameter ofwas 17 mm. Although there are three episodes of long-lasted rain with a particle diameter 
greater than 14 mm (Fig. 2c), a clear trend of overall decrease in the hydrometeor size was seen for this category 390 
as well as the weak rain samples (Fig. 2d). Even though the number of samples in each precipitation category 
was different, 66.7% (4 samples) of the total snow samples (n=6) had precipitation particles of diameter ≥ 8.5 
mm. Less compared to snow, but 55.6% (10 samples) and 46% (6 samples) of the hail/thunderstorms (n=18) 
and long-lasted rain (n=13) samples, respectively, had recorded precipitation particles of diameter ≥ 8.5 mm. 
In contrast, none of the weak rain samples (n=5) had hydrometeors of diameter ≥ 8.5 mm, and  In fact, all weak 395 
rain samples contained particles only smaller than 6.5 mm. Moreover, the mode precipitation particle diameter 
for the snow, hail/thunderstorm, and long-lasted rain samples was 0.44 mm, whereas it was 0.31 mm for the 
weak rain samples (see SI Table S31-3). This variation in mode diameter along with the results shown in Fig. 2 
generally exhibited the shift in hydrometeor particle size distribution towards a higher larger diameter with an 
increased intensity of precipitation at the ground level. Further discussion regarding the variation of nINP with 400 
the severity of precipitation was analyzed and is followed in Section 3.3. 
 
3.2 IoT Air Quality Sensor Results and Implication of Wet Deposition 

The overall mean PM concentrations (± standard error) measured by an IoT air quality sensor for our study 
period were 3.9 ± 9.2 x 10-2 µg m-3 (PM1.0), 4.0 ± 4.5 x 10-2 µg m-3 (PM2.5), and 10.0 ± 2.2 x 10-1 µg m-3 (PM10). 405 

Although there was an inconsistent variation of PM concentrations with precipitation type, we observed a 
substantial increase in all PM values for the period July – Aug 2018 and May 2019. In contrast, a decrease in all 
PM concentrations was observed during Sep 2018 – Mar 2019. This increase in PM values during summer and 

decrease during winter suggested a seasonal variation at the sampling site. The seasonal variation in PMs may 
be indicative of different aerosol particle sources or the local meteorological conditions. In the Southern Great 410 

Plains, the local sources include harvesting crop fields and agricultural burning (Garcia et al., 2012; DeMott et 

al., 2015). Based on the long-term measurements of aerosol particle composition at Southern Great Plains 
(SGP), Parworth et al. (2015) found a seasonally varying interstate transport of biogenic aerosols to the SGP 
site. The authors also observed a springtime increase in biomass burning organic aerosols at SGP, which were 
mainly associated with local fires. The long-distance dispersion of Juniperus ashei pollen into the SGP area by 415 

the southern winds was previously observed by Van de Water et al. (2003). Elevated layers of haze have been 
observed over the same site due to the inter-oceanic and intercontinental transport of smoke from intense 

Siberian fires (Arnott et al., 2006; Damoah et al., 2004). It was also evident from previous observation and 
simulation modeling studies that Saharan dust can reach southeastern parts of USA through the transatlantic 
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long-range transport (Weinzierl et al., 2017). Thus, PMs observed in the West Texas region may be a mixture 420 

of aerosol particles from different sources and spatial scales of transport.  
Table 1 shows the hourly time-averaged PM data measured prior to vs. after precipitation. During intense 

precipitation, aerosol particle concentrations below cloud tend to decrease due to the wet scavenging effect 
(Hanlon et al., 2017). In fact, the reduction in our hourly averaged PM1, PM2.5, and PM10 after precipitation is 
apparent in Table 1, presumably because of scavenging in part at least. Note that any counter mechanisms, such 425 
as primary biological aerosol particles and surface material rupture after rainfall (e.g., Huffman et al., 2013), were 
not considered in our data interpretation. The first order calculations are performed to understand implications 
of scavenging processes towards the reduction in the PM after rain event (SI Sect. S4). These calculations contain 
±61.5% uncertainty and can be further extended with some assumptions to estimate INP. However, to better 
constrain these estimates, direct vertical INP (He et al., 2020) and scavenging measurements (Hanlon et al., 2017) 430 
are needed. A total of 28 precipitation events was analyzed, and our estimated nINP(T) of scavenged aerosol 
particles appeared to be constantly an order magnitude lower as compared to total nINP(T) measured in our 
precipitation samples (Fig. S3). This trend is true across all ranges of examined Ts (> -25 °C). Nevertheless, our 
estimates imply some (but negligible) contributions of scavenged aerosol particles on nINP(T) in our precipitation 
samples.   435 
 
3.2 IoT Air Quality Sensor Results 

An IoT air quality sensor-measured PM concentrations were also analyzed for each precipitation 

sampling period to understand the effect of wet deposition of PMs on INPs. Figure 3 shows the time series of 
average PM concentrations observed during each precipitation episode, overall mean PM values, and the 440 

hourly PM data. The overall mean ± standard error PM concentrations calculated from over one year of data 
were 3.9E+00 ± 9.2E-02 (PM1.0), 4E+00 ± 4.5E-02 (PM2.5), and 1E+01 ± 2.2E-01 (PM10) µg m-3. Although, there 
was an inconsistent variation of PM concentrations with precipitation type, we observed a substantial increase 

in all PM values for the period July – Aug 2018 and May 2019. In contrast, a decrease in all PM concentrations 
was observed during Sep 2018 – Mar 2019. This increase in PM values during summer and decrease during 445 

winter suggested the seasonal variation at the sampling site. In addition, the influence of PM values on nINP 
from each precipitation event was analyzed at -10°C, -15°C, -20°C, and -25°C. The Pearson correlation 

coefficients (R-value) at -10°C, -15°C, -20°C, and -25°C were statistically insignificant and negative for all PM 

types (SI Fig. S3). These results suggested no strong positive correlation between the PM and nINP for our 

sampling period. Moreover, we did not observe a clear sign of wet deposition during a given precipitation event 450 

(Stopelli et al., 2015), as there was no decrease in the original hourly PM concentrations during or after the 

precipitation. Overall, our PM analysis had suggested a local seasonal variation in PM concentrations, and no 

significant relation between PM and nINP values from our precipitation samples. 

3.3 INP Results 

The time series of cumulative nINP from precipitation samples at different Ts (i.e., -5, -10, -15, -20, and -25 °C) 455 

are shown in Fig. 3. The T-resolved averaged cumulative nINP ± standard error is also presented in Fig. 3. Note 

that Fig. 3b shows nINP for two precipitation samples (ID# 26 and 27) observed on the same day of 12 March 
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2019. Overall, three orders of magnitude variations of averaged cumulative nINP values were observed between 

-10 °C (0.17 ± 0.04 L-1) and -25 °C (74.74 ± 28.28 L-1) for our precipitation samples.  Occasionally, we observed 
nINP detected at ≥ -5 °C, but such a high T INPs was randomly found in only 7 out of 42 samples within our 460 

detection capability.  

Attempts to examine the distribution of nINP based on the precipitation type, meteorological season, 
and maximum precipitation intensity (mm hr-1) were made (see SI Sect. S5). Due to the limited total number 

of samples we collected, we cannot conclusively state anything regarding seasonal variations of nINP in our 
precipitation samples. Nonetheless, our INP results showed that the lowest nINP at -25 °C (3.0 L-1) was found in 465 

a hail/thunderstorm sample (ID#37; no inclusion of large hydrometeors as seen in Fig. 2b) Likewise, the highest 
nINP at -25 °C (1,130 L-1) was found in a hail-involved severe thunderstorm sample (ID# 1) collected in summer 

2018. This observation is interesting because the measured PM10 of ~6.2 µg m-3 prior to precipitation of ID# 1 
(Table 1) is not the highest PM10 recorded in 2018-2019, suggesting wet scavenging does not control the total 

INPs in precipitation samples. The fact that the second lowest nINP (-25 °C), which is 3.2 L-1, is from the snow 470 

sample (ID# 23) also supports a negligible contribution of scavenging in our INP data. Moreover, our results 

showed that cumulative nINP below -20 °C in our precipitation samples could be high in the samples collected 
while observing > 10 mm hr-1 hail/thunderstorm and snow precipitation with notably large hydrometeor sizes.  

Figure 4 shows a compilation of nINP(T) spectra of each precipitation type in comparison to previously 

reported precipitation nINP(T). In general, most of nINP spectra fall in the upper range of the previous 475 

precipitation nINP data presented in Petters and Wright (2015) and Vali (1968). INP humps shaping the reference 

spectra (i.e., one below -20 °C and another at > -20 °C) are also found in our spectra. The observed hump is 

especially obvious for nINP at T above -20 °C, and some of our spectra exceed the upper bound of the reference 

spectra in any precipitation types. For Ts below -20 °C, our nINP(T) data match fairly well within the range of the 
reference nINP(T) for all four precipitation types. Thus, the precipitation type observed at the ground level would 480 

not have any relationships with INP propensity at least for our 42 samples collected for this study. However, it 

is interesting that most of our nINP data points above -15 °C fall within the range of estimated nINP at cloud 
height with < 50% storm efficiency, reported in Vali (1968). In fact, regardless of precipitation type, we see 

reasonable overlaps of our nINP(T) with Vali (1968). The author stated that the large differences in IN content 
among precipitation samples were mainly caused by differences in the nucleus content of the air entering the 485 

storm. This implies that the cloud level dynamics like cloud entrainment impact the cloud level INP 
concentrations. Hence, we compared our precipitation INP data with the lower and upper limits of the IN 
concentrations in the air entering the storm given by Vali (1968) (Table 2, Chapter# 9). These cloud level INP 

concentrations given by Vali (1968) were for two different storm efficiencies, which is the ratio of mass of 

precipitation to the mass of water input. The storm efficiency of 10% represents the time when high 490 

concentrations of precipitation inside the storm begins to develop. Likewise, 50% is at the peak intensity of the 
storm. These different combinations of storm efficiencies and water content accounted for a tenfold variation 
in the ice nucleus content. As more air is entered into the storm with 50% efficiency, more IN concentrations 
are observed at cloud level. Nonetheless, there is still indeed the need for cloud level INP measurements to 

define the relationship between the ground level INP concentrations and precipitation intensity. 495 
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In addition, Fig. 4 also shows the nINP result of our 24-hour dry deposition blank sample. For the 

measured T range, nINP values from the dry deposition blank sample were at least an order of magnitude lower 
than that from our precipitation samples. This finding corroborated our assumption of negligible contribution 
of dry deposition in our WT-CRAFT estimated nINP from precipitation samples.  

Figure 5 shows another compilation plot of our precipitation nINP(T) spectra compared to ambient 500 

nINP(T) data of local agricultural dusts from Fig. 3 of Hiranuma (2020). As seen, most of our precipitation INP 

spectra are accumulated near the lower end of the feedlot IN spectra, implying some inclusion of these local 
dusts as INPs in our samples. Although we are not certain if these local dusts play a role in precipitation, and 

assessing the potential of locally emitted aerosol particles to precipitation formation is beyond the scope of 
the current study, it is important to study the contribution of local agricultural dust in wet scavenging and INP 505 

formation at cloud height separately in the future. It is noteworthy that adjacent feedlots (> 45,000 head 
capacity) are located within 33 miles of our sampling site, and the role of feedlot dusts in atmospheric INPs is 

described in more detail in Hiranuma et al. (2020). Further discussion regarding the feedlot contribution in INPs 
in our precipitation samples is provided in Sect. 3.4.  

3.3.1 nINP(T) spectra of each precipitation type 510 

 Figure 4 shows the IN spectra for different precipitation types analyzed in this study superposed on the 
IN spectral boundaries adapted from a previous precipitation INP study (Petters and Wright, 2015). This figure 
also displays other reference IN spectra, including our 24-hour dry deposition blank sample (collected from 
January 2 – 3, 2019 at our sampling site) and IN spectra measured for dust suspension samples collected from 
the downwind side of a local feedlot (identity purposely concealed), where substantial and consistent dust 515 
emission historically persists (Whiteside et al., 2018). For the measured T range, nINP values from dry deposition 
blank sample were at least an order of magnitude lower than that from our precipitation samples. This finding 
corroborated our assumption of negligible contribution of dry deposition in our WT-CRAFT estimated nINP from 
precipitation samples. Interestingly, the feedlot IN spectra and most of our precipitation samples shown in Fig. 4 
were greater than the previously derived precipitation IN upper limit, implying abundant IN active feedlot dusts, 520 
which might be involved in the precipitation formation and thereby our samples. It is noteworthy that adjacent 
feedlots (> 45,000 head capacity) are located within 33 miles of our sampling site. We observed approximately a 
two orders of magnitude increase in the upper limit of feedlot nINP compared to previous precipitation study at -
15°C. For T ≥ -15°C, there was at least one sample from each precipitation category falling in the IN spectra region 
of feedlot dust. Some of the hail/thunderstorm type samples had nINP values in the range of feedlot samples even 525 
for the entire T range of 0°C to -25°C (Fig. 4b). For example, at -5°C, nINP from our precipitation samples were in 
the range of 0.01 – 0.11 L-1 of air in the atmosphere. These findings suggest the influence of local feedlot dust on 
precipitations and on increase of nINP upper limit for precipitation samples. Furthermore, for 0°C ≤ T ≤ -25°C, we 
found no precipitation sample with nINP values below the lower limit from the Petters and Wright (2015) study. 
 530 
 Compared to all other precipitation types, hail/thunderstorm type had the highest average nINP ± 
standard error of 0.1 ± 0.01 and 118 ± 68.1 L-1 at -5°C and -25°C. In addition, the snow type had the highest 
average nINP of 0.4 ± 0.3, 0.8 ± 0.5, and 5.7 ± 2.5 L-1 at -10°C, -15°C, and -20°C (SI Table S3-1). The lowest nINP values 
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were observed in both the long-lasted and weak rain samples at most of the temperatures. Interestingly, we 
observed an order of magnitude increase in the maximum nINP calculated at -5°C and -25°C in hail/thunderstorm 535 
type compared to long-lasted and weak rains. Such high values of nINP in snow and hail/thunderstorm samples 
suggested that the INPs impact the severity of a precipitation at least in the West Texas region. These feedlot 
dusts could reach cloud height and be involve in local aerosol-cloud-precipitation interactions, influencing the 
local hydrological cycle. Further discussion regarding the feedlot contribution in INPs in our precipitation samples 
are provided in Section 3.4. We observed a reduced uncertainty in nINP from precipitation samples at T > -10°C. 540 
For example, a two order magnitude difference was estimated at -8°C in this study, which is lower than previously 
reported nINP uncertainty at the same temperature (Petters and Wright, 2015). Nonetheless, the discrepancy in 
nINP still remains at high Ts. Furthermore, the lower nINP values from this study were greater than the lower limit 
presented in Petters and Wright (2015). The upper and lower nINP limit derived from this precipitation study could 
help in comparison studies of nINP at the cloud level to the observed ice-crystal concentrations. Overall, our 545 
findings imply that the local feedlot dust contribute to the regional INPs, with an increase in the high T nINP in our 
precipitation samples. 

3.3.2. Seasonal variability and INP-precipitation relationship 

The time series of cumulative nINP from precipitation samples at different Ts (i.e., -5°C, -10°C, -15°C, -

20°C, and -25°C) is shown in Fig. 5. The overall average, cumulative nINP ± standard error is also presented in 550 

Fig. 5. For example, we observed an average nINP of 0.17 ± 0.04 L-1 at high T such as -10°C. Figure 5b shows nINP 

for two precipitation samples (ID# 26 and 27) observed on the same day of 12 March 2019. In total, 24 

precipitation samples were collected in the year 2018 and 18 in 2019. A clear variation in high T nINP at -5°C was 
observed with seasons due to variation in the occurrence of severe precipitations which is discussed below. 
Furthermore, an increase in nINP at -25°C was observed in the summer of both 2018 and 2019 (Fig. 5a). Overall, 555 

2018 had recorded the highest maximum nINP at -5°C and -10°C (0.11 and 1.62 L-1) compared to 2019 (0.06 and 
0.65 L-1). This high INPs in the year 2018 than in 2019 might be due the presence of more snow and 

hail/thunderstorms in the year 2018 compared to 2019. A combined total of 14 snow and hail/thunderstorm 
samples were collected in 2018 and a total of 10 in the year 2019. In order to elucidate this seasonal variation, 
we further subcategorized our sampling period into four different periods; i.e., May-August (May-Aug; which 560 

is a summer season at Canyon, TX), September-October (Sep-Oct), November-January (Nov-Jan; which is a 

winter season at Canyon, TX), and February-April (Feb-Apr), shown in Fig. 6a. Most of the high T (-5°C) nINP were 

observed during May – Aug, while there was a decrease in the following seasons, with no INPs at -5°C in the 

Feb – Apr period. The May - Aug season was dominated by hail/thunderstorms, whereas Feb – Apr had seen 
mostly long-lasted and weak rains. Likewise, significantly (p-value = 0.09; student’s independent t-test) higher 565 

INPs were measured at -10°C during Nov – Jan than in Feb – Apr. These findings suggested a strong seasonal 
variation in INPs, specifically in the high T  (≥ -15°C) INPs in Canyon, TX.  

The variation of INPs among the precipitation types is shown in Fig. 6b. A statistically significant (p-
value ≤ 0.01; student’s independent t-test) increase in high T (-5°C) nINP was found in hail/thunderstorm 

samples compared to long-lasted rains. Additionally, we observed only one sample from weak rain type with 570 

nINP at -5°C, supporting the decrease of high T INPs in the less severe precipitation types. Similarly, the 
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distribution of nINP at -25°C for weak rain type was shifted towards relatively lower values than compared with 

more severe precipitation types, such as hail/thunderstorm. For example, at -25°C, hail/thunderstorm type had 
a median nINP of 22.44 L-1, which was greater than what was measured in weak rain (6.19 L-1) type. These results 
of increase in severity of precipitation with an increase in INPs were further corroborated by our findings from 575 

maximum intensity range based nINP analysis (shown in Fig. 6c). For this intensity - nINP analysis, we grouped all 

our precipitation samples into three different categories based on the observed maximum intensity (mm hr-1) 
in each precipitation event. A significant (p-value ≤ 0.01) increase in INPs at -5°C was found when the maximum 
intensity was > 50 mm hr-1 compared to the range of 10 – 50 mm hr-1. The samples from this high intensity 
range (> 50 mm hr-1) were mostly coincided with the hail/thunderstorm precipitation types, supporting our 580 

previous findings of increase in severity of precipitation with INPs. It is also important to note that there was 

only one hail/thunderstorm sample which fell in the low intensity range (< 10 mm hr-1). Overall, we found a 

strong seasonal variation in INPs, especially in the high T (-5°C and -10°C) INPs from our yearlong precipitation 
study. Moreover, we observed an increase in the severity of precipitation with INPs, which highlights the 

importance of INPs in the development and growth of severe precipitation systems in the West Texas region.  585 

3.4. Microbiome of Feedlot and Precipitation Samples 

We carried out a metagenomics analysis of the bacterial microbiome of a subset of our precipitation samples 
and ambient dust samples collected at commercial feedlots in West Texas to identify 1) potential biological 

sources of INPs in our precipitation samples, 2) similarities in the microbiome of feedlot dust and precipitation 

samples. 590 

We successfully generated data on the bacterial microbiome of our precipitation and feedlot dust 
samples. Unfortunately, our attempt to extract fungal microbe DNA was not successful due to the limitation in 
sample amount. Thus, we focus on the bacterial microbiome bacterial discussions hereafter. In most cases, 

bacterial phyla were classified to the level of genus. The majority of bacteria in all feedlot and precipitation 
samples belonged to phyla Proteobacteria and Bacteroidetes (Fig. 7a 6 and Table S4-15). In hailstorm samples, 595 

the main taxa of Proteobacteria were Massilia (a genus found in clinical samples and, mammals, but also the 
soil, rhizosphere, and even aerosols), genera belonging to the order Sphingomonadales (bacteria with wide 

metabolic abilities), Caulobacterales (bacteria living in diverse terrestrial and aquatic habitats;, some are minor 

human pathogens), and Rhizobiales (nitrogen-fixing bacteria forming symbioses with the roots of legumes). 
Among the Bacteroidetes phylum, the genus Marinoscillum was relatively the most abundant. This genus is a 600 

recently described marine bacterium, and it is interesting that it was found in hailstorm samples at percentages 

from 17.3% to 3.2% of the microbiome. Our results perhaps indicate some connection with storms or winds 
originating from the North Atlantic Ocean (back-trajectorytrajectories analyses done, but not shown). Other 

Bacteroidetes taxa with notable presence in hailstorm microbiome included Saprospirales and Chitinophagales 
orders with bacteria living on animals and in the gut of animals as expected. 605 

The microbiomes of one long-lasted rain sample shared members also found in hailstorms:commonly 

found in our precipitation samples included the genus Massilia in significant numbers (11.3% of the 
microbiome), bacteria of the Proteobacterial orders Rhizobiales, Sphingomonadales, and Burkholderiales; a 
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significant percentage (8.5%) of the marine genus Marinoscillum and bacteria in order Saprospirales of phylum 

Bacteroidetes. Our results suggest that no known ice nucleationIN active species were detected in precipitation 610 

microbiomes. The order Pseudomonadales, which includes most known ice nucleationIN active species, was 
found at the limit of detection. 

Massilia and other unidentified genera of the family Oxalobacteraceae werewas also relatively 
dominant in all four feedlot samples with percentages from 6.5% to 65.4% of the microbiome. Marinoscillum, 

a marine bacterium surprisingly found in all precipitation samples, was also found in all feedlot samples from 615 

3% to 8.5% of the microbiome. These similarities of the predominant bacteria in the microbiome of four feedlot 

dust samples and of four precipitation samples taken at an area distant from the feedlots, perhaps 
indicateindicating some connection of the feedlot dust and precipitation microbiomes, these genera either 

with the formation of precipitation or with their presence in aerosols during precipitation events. Although we 
cannot rule out the possibility that scavenging of aerosolized bacteria explains the presence of these bacteria 620 

both in feedlot and precipitation samples taken even at a distance from feedlots, our dry deposition 
background result shows complete different biological composition (Fig. 6). It is also noteworthy to mention 

that neither of thethese two genera (Massilia and Marinoscillum) were was detected in the background 
deposition blank sample and it is not known whether they have any ice nucleationIN activity. Therefore, the 
scavenging may not be the main reason for the presence of Massilia and Marinoscillum found in our 625 

precipitation samples. Other bacterial taxa with a significant presence in feedlot samples included members of 

orders Caulobacterales and Burkholderiales.  

Alpha diversity analysis (Shannon’s Faith PD index of diversity) indicated that feedlot and hailstorm 
samples had a lower bacterial diversity than the long-lasting rain sample (Fig. 7b). We sought to identify a possible 
connection between the feedlot microbiome and the microbiome of hail and rain. Beta diversity analysis 630 
compared the microbiome diversity distance of feedlot samples between themselves, as well as the microbiome 
diversity distance of the background deposition, hailstorm and long-lasted rain samples to feedlot samples (Fig. 
7c). In all comparisons, the distance was at least 0.70, a high value not indicating a “cause and effect” connection 
between the feedlot and precipitation microbiomes. However, our detailed phylogenetic analysis showed 
evidence of such a connection by identifying common bacterial taxa in feedlot and precipitation microbiomes. 635 
Their absence from the background deposition blank sample may indicate local aerosol-cloud interactions leading 
to precipitation events, but it is not known if this is a result of any bacterial traits such as ice nucleation activity. 

3.5. Caveats and Future Studies 

A surface level air mass on a plain is not necessarily the same as the air mass where precipitation forms at the 
cloud level. Studying the vertical gradient in INP concentrations in this region would hint at the link between 640 
these two vertical zones (e.g., He et al., 2020). The future investigation should also include investigations in 
physicochemical transformation of hydrometers and INPs, which might occur between the cloud height and the 
ground (e.g., Pereira et al., 2020), impact of aerosol dynamics and processing, effect of solutes to alter the 
freezing point (Whale et al., 2018), secondary ice formation, and cloud macrophysics addressed in Wright and 
Petters (2015 - Sects. 4.1 to 4.3).  645 
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The precipitation intensity strongly depends on several other dynamical factors and thermodynamic 
conditions, including the land use, moisture levels, land surface temperatures, and convective available potential 
energy. For instance, recent observational study showed that the irrigation practices in the Great Plains region 
had enhanced summer precipitation intensity (Alter et al., 2015) resulting an increase in the total precipitation 
received. Hence, it is not straightforward to link the precipitation intensity to the estimated INP concentrations 650 
and more future studies involving cloud level and surface level INP measurements might help in elucidating this 
problem. To assess the impact of INPs on precipitation properties (and vice versa), it is necessary to conduct the 
INP measurement of cloud water samples, aerosol particle characterizations below cloud, and more detailed 
analysis of precipitation-forming cloud properties as well as cloud height. More detailed scavenging analysis 
without many assumptions and limitations, such as assuming a constant scavenging rate over precipitation, 655 
limited particle size distributions, and assuming a well-mixed boundary layer, is also necessary to connect the 
surface observation to cloud level phenomenon. Diffusional scavenging of small particles may not contribute to 
IN unless they are highly ice active macromolecules or other small biological species. Regardless, robust aerosol 
particle size distribution data across the ground to cloud base segment would definitely complement to 
accurately and precisely estimate scavenging efficiencies. Some previous studies support the assumption of a 660 
well-mixed boundary layer near the study area. Further effort may be needed to characterize the climatology of 
boundary layer height in the West Texas region at different times of a day, as demonstrated in Schmid and Niyogi 
(2012) and Zhu et al. (2001). Incorporating more local specific vertical ambient profiles (lapse rate, Dong et al., 
2008) for further analysis would also be helpful. 

As for more future studies, INPs derived from precipitation samples collected over multiple years would 665 
give comprehensive insight into their impact on local precipitation systems. This work highlights this need for 
more precipitation-based INP studies from different geographical locations.  The reduced uncertainties in nINP 
along with the high INP detection sensitivity could help in addressing the long-debated issue of INP rarity at Ts ≥ 
-10 °C. 
 670 
4. Conclusion 
 
 We have successfully estimated nINP (per liter of air) in the immersion freezing mode from different 
precipitation samples collected in Canyon, TX, USA during June 2018 – July 2019. IN spectra were derived for 
MPC T range (0°C to -25 °C) from four different precipitation types (snows, thunder/hailstorms, long-lasted rains, 675 
and weak rains) using a cold-stage instrument (WT-CRAFT). Our disdrometer measurements showed a clear 
variation in the precipitation properties among the four different categories of precipitation samples. Severe 
precipitation, such as hail/thunderstorms, had the highest rainfall intensity (mm hr-1) and the number of 
precipitation particles were highest in the snow samples. We also found an increased number of large 
hydrometeors (> 108.5 mm in diameter) in both the snow and hail/thunderstorm samples. In contrast, there 680 
were no precipitation particles > 6.5 mm in diameter observed in the weak rain samples. Our PM concentration 
measurements impliedshowed no strong correlation with the measured INPs from precipitation samples some 
possibilities of wet deposition (but neglected). The IN spectra from each precipitation category in this study were 
compared with the nucleus IN spectra from previous precipitation-based INP studiesy (Petters and Wright, 2015; 
Vali, 1986). Previously derived IN spectra from local feedlot dust samples (Whiteside et al., 2018) was also used 685 
for comparing nINP from precipitation samples. We have found that nINP values from our precipitation samples 
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were greater thanmatch or exceed previously derived nINPIN upper limits from precipitation. EspeciallyNotably, 
the high T (≥ -15 °C) INPs in some of our precipitation samples arewere in the same order of magnitude as of local 
feedlot dust sampleswhat is reported in Vali (1986). These findings suggested the importance of local feedlot 
dusts as INP sources. Moreover, we have observed a strong seasonal variation in nINP in this precipitation based 690 
INP study. The May – Aug period had seen the most INPs at -5°C, while none during Feb – Apr season. It is 
important to note that, hail/thunderstorms were predominantly observed in the May – Aug season. A statistically 
significant increase in high T (-5°C) INPs was observed in hail/thunderstorms compared to long-lasted rains. 
Except in one case, we observed no weak rain samples with INPs at -5°C. These findings suggested an increase in 
high T (-5°C and -10°C) INPs in severe precipitation systems like hail/thunderstorm and snow in the West Texas 695 
region. These results were further supported by our findings of increased high T INPs when the rainfall intensity 
was > 50 mm hr-1. Overall, our results showed that the INPs impact the severity of precipitation systems observed 
in Texas Panhandle, which represents the importance of more precipitation based INP studies in the future. 
Although we found no clear seasonal variations in nINP values, in part due to the limited number of samples, the 
analysis of yearlong ground level precipitation observations as well as INPs for the precipitation samples showed 700 
that the highest nINP at -25 °C of 1,130 L-1 coincided with a hail-involved severe thunderstorm event observed 
during the summer in 2018 (ID# 1). Similarly, the lowest cumulative INP at the same temperature, 3.0 INP L-1, was 
found in another hail/thunderstorm samples collected in June, 2019 (ID# 37). The second lowest nINP (-25 °C) was 
found in one of our snow samples collected during the winter (ID# 23 = 3.2 INP L-1). Overall, our results showed 
that cumulative nINP in our precipitation samples below -20 °C could be high in the samples collected while 705 
observing > 10 mm hr-1 precipitation with the presence of notably large hydrometeor sizes. While our results 
cannot conclusively define the relationship between INPs and precipitation, our precipitation INP data is an 
important asset for understanding ambient INPs in the West Texas region, where a rural agricultural environment 
prevails.   

We also identified the similarity in bacterial microbiomes between our hailstorm precipitation and local 710 
feedlot dust samples., While we cannot conclude if local feedlot dust contributes to precipitation formation, we 
find some indications of the inclusion of agricultural dust in our precipitation samplesnevertheless, it is not known 
whether these microbiomes are IN active. Regardless, we did not find the previously known bacterial INPs, such 
as Pseudomonas and Xanthomonas (Morris et al., 2004) in eitherboth the precipitation orand feedlot samples.  
To further seek a connection between local dust and precipitation,Our preliminary analysis showed that organic 715 
component was predominant in our precipitation residuals (>70%, not shown in this study), which is similar to 
the composition of local animal feeding dust (Hiranuma et al., 2011). This similarity might explain the observed 
increase in nINP from precipitation samples at high Ts (≥ -15°C). Therefore, it is worthwhile to characterize the 
local feedlot dust in cloud water samples, as itthey can be the sources of INPs and maycan impact the local 
hydrological cycle. Collecting long-term pollen and other biogenic aerosol particles samples and associated 720 
observational data for multiple years may add important knowledge regarding the role of local bioaerosols on 
precipitation INPs.  

As for more future studies, INPs derived from precipitation samples collected over multiple years would 
give comprehensive insight into their impact on local precipitation systems. This work highlights this need for 
more precipitation based INP studies from different geographical locations. Precipitation category based nINP 725 
parametrizations can be applicable to any future studies as demonstrated in this study.  The reduced 
uncertainties in nINP along with the observed increase in the lower nINP values from this study could help in 
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addressing the long debated issue of INP rarity at Ts ≥ -10°C. In other words, the increased nINP at high Ts from 
this study might minimize the discrepancies between the measured INPs in the atmosphere and observed ice 
crystal concentrations. Accordingly, these parametrizations can help in minimizing the uncertainty in the ice-730 
cloud formation. 
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CINP                   Nucleus concentration in Precipitation suspension 

CWC      Cloud water content 

DF      Dilution Fold 1025 

Dp      Precipitation particle diameter 

funfrozen Unfrozen fraction (ratio of number of unfrozen droplets to 
total number of droplets) 

IoT      Internet of Things 

IN      Ice-nucleation 1030 

INP       Ice-nucleating Particle 

LoRaWAN        Long Range and Wide Area Network 

MPC      Mixed-phase cloud 
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NWS      National Weather Service 1035 

PM      Particulate Matter 

⍴w      Unit density of water 

SI      Supplemental Information 
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Figures 

 
Figure 1.  Time series of disdrometer and IoT sensor measurements forof  (a) average T ± standard deviation, (b) average relative 
humidity ± standard deviation, (c) cumulative number of detected hydrometeors in each precipitation event, and (d) 
maximum, average, and minimum precipitation intensity for each precipitation sample. Each data point corresponds to the 1050 
sampling start time for each precipitation event. 
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Figure 2. Size distribution of precipitation particles detected in (a) Snow, (b) Hail/Thunderstorm, (c) Long-lasted rain, and (d) 
Weak rain samples. A subset of distributions shows with varying uncertainty in diameter (mm). The X-axis error bars are ± 1060 
1.0 mm of size class for diameter < 2mm and ± 0.5 mm of size class for diameter > 2mm. The Y-axis error bars represent standard 
errors at each diameter. The sub-total number of precipitation samples in each category is shown by the value of ‘n’.  

  



31 
 

 

 

 1065 

 

 

 

 

 1070 

 

 

 
Figure 3. Time series of IoT air quality sensor measurements of (a) PM1.0, (b) PM2.5, and (c) PM10 for each precipitation event. 
Hourly data include the non-precipitation periods (grey dots). The Y-axis error bars are standard errors measured for each 1075 
precipitation event.   
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Figure 44. IN spectra of (a) Snow, (b), Hail/Thunderstorm, (c) Long-Lasted rain, and (d) Weak rain samples superposed on 
nucleation spectra from previous precipitation INP studies (shaded areas). A subset of spectra shows error bars. The X-axis 1100 
error bars represent constant uncertainty of ± 0.5 °C in temperature. The Y-axis error bars are 95% confidence interval for 

nINP shown only for two samples from each category. The number of precipitation samples in each category is shown by the 
value of ‘n’. 
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Figure 53. (a) Time series of cumulative nINP (L-1 air) in each precipitation sample at different temperatures. (b) nINP for two 
precipitation samples (ID# 26 and 27) observed on the same day of 12 March 2019. The uncertainty in the average nINP at 1110 
each temperature (± numbers in parentheses) is the standard error calculated for 42 samples. 
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Figure 6. The distribution of nINP for different (a) seasons, (b) precipitation types, and (c) range 
of maximum intensity observed in precipitation sample. The p-value from student’s 
independent t-test is also shown by ‘p’ at different Ts between different categories. The solid 
line in the box is median nINP and the box edges are the inter-quartile ranges q1 (25 1120 
percentile) and q3 (75 percentile). The diamond markers are the outliers with maximum nINP 
values. 
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Figure 5. Compiled IN spectra of our precipitation samples superposed on nucleation spectra from local feedlot dust study 
(shaded area). The feedlot INP data are adapted from Fig. 3 of Hiranuma et al. (2020). 
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 1140 
Figure 7 6.  Metagenomics analysis of precipitation and feedlot dust samples showing (a) Relative Frequency (%) or 
abundance of Bacterial taxonomy., (b) alpha-diversity analysis with Faith’s PD index of diversity (Y-axis), and (c) beta-diversity 
analysis comparing microbial distance of feedlot samples between themselves, as well as the microbiome diversity distance 
of other samples. ‘Bkgr’ represents the 24-hour dry deposition blank sample (Sample# 34). Our feedlot samples are collected 
locally on March 28, 2019 (1), July 22, 2018 (2), July 23, 2018 (3), and July 24, 2018 (4) – see Hiranuma et al. (2020). PCPT 1-1145 
4 corresponds to our Sample# 1, 2, 50, and 7, respectively.   
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Table 1. Adjacent hourly averaged PM values before and after each precipitation event. We excluded 14 data where PM 
data were not recorded due to technical issues etc. (ID# of 6-7, 17, 20, 22-24, 26, 28-33).  

        PM1 (µg m-3)   PM2.5 (µg m-3)   PM10 (µg m-3) 

ID# Sample# Precipitation type   Before After   Before After   Before After 

1 PCPT_NSB_1 Hail/Thunderstorm   1.969 0.111   4.090 1.693   6.188 1.990 
2 PCPT_NSB_2 Hail/Thunderstorm   0.010 0   1.811 0.001   2.111 0.001 
3 PCPT_NSB_5 Long-Lasted Rain   4.667 0.660   5.734 1.947   10.790 3.690 
4 PCPT_NSB_6 Long-Lasted Rain   3.755 3.755   5.956 5.721   8.867 8.580 
5 PCPT_NSB_7 Hail/Thunderstorm   0 N/A   0.557 N/A   0.723 N/A 
8 PCPT_NSB_10 Long-Lasted Rain   7.479 1.495   9.894 3.409   14.771 4.742 
9 PCPT_NSB_11 Weak Rain   5.760 3.812   8.165 6.190   12.770 9.436 

10 PCPT_NSB_15 Hail/Thunderstorm   14.289 4.020   16.078 5.124   30.794 9.277 
11 PCPT_NSB_16 Hail/Thunderstorm   4.913 N/A   5.423 N/A   10.534 N/A 
12 PCPT_NSB_17 Long-Lasted Rain   4.551 N/A   6.414 N/A   10.633 N/A 
13 PCPT_NSB_19 Weak Rain   0.049 N/A   1.283 N/A   6.301 N/A 
14 PCPT_NSB_20 Long-Lasted Rain   1.780 N/A   4.312 N/A   5.890 N/A 
15 PCPT_NSB_23 Hail/Thunderstorm   3.867 2.167   5.740 5.740   9.551 7.235 
16 PCPT_NSB_24 Hail/Thunderstorm   1.592 0   4.984 0.003   5.786 0.003 
18 PCPT_NSB_26 Long-Lasted Rain   0.657 0   2.830 0   3.192 0 
19 PCPT_NSB_27 Snow Sample   0 N/A   0.011 N/A   0.080 N/A 
21 PCPT_NSB_30 Snow Sample   0.760 0   2.627 0.275   3.180 0.275 
25 PCPT_NSB_46 Weak Rain   1.461 0   4.525 1.233   5.449 1.233 
27 PCPT_NSB_48 Hail/Thunderstorm   0 0   0.427 0.002   0.427 0.002 
34 PCPT_NSB_57 Hail/Thunderstorm   29.649 13.515   29.649 13.770   58.946 26.604 
35 PCPT_NSB_58 Hail/Thunderstorm   12.450 0.680   13.245 1.400   24.390 2.860 
36 PCPT_NSB_59 Long-Lasted Rain   10.515 6.912   11.516 7.918   21.192 12.892 
37 PCPT_NSB_60 Hail/Thunderstorm   9.740 3.423   10.661 4.396   18.750 7.269 
38 PCPT_NSB_61 Long-Lasted Rain   4.396 0.192   5.912 1.215   10.069 2.051 
39 PCPT_NSB_62 Hail/Thunderstorm   0.039 N/A   1.555 N/A   1.804 N/A 
40 PCPT_NSB_63 Hail/Thunderstorm   2.217 1.365   4.348 2.479   6.533 4.781 
41 PCPT_NSB_65 Hail/Thunderstorm   1.694 0   3.994 0.316   5.306 0.316 
42 PCPT_NSB_66 Hail/Thunderstorm   1.750 0.080   2.881 1.459   5.771 1.530 

NOTE: N/A: either below detection limit of our PM sensor (< 0.001 µg m-3) or sensor failure return values. 1150 
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