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Abstract 
Ice-nucleating particles (INPs) influence the formation of ice crystals in clouds and many types of precipitation. 15 
This study reports unique properties of INPs collected from 42 precipitation samples in the Texas Panhandle 
region from June 2018 to July 2019. We used a cold-stage instrument called the West Texas Cryogenic 
Refrigerator Applied to Freezing Test system to estimate INP concentrations per unit volume of air (nINP) through 
immersion freezing in our precipitation samples with our detection capability of > 0.006 INP L-1. A disdrometer 
was used for two purposes; (1) to characterize the ground level precipitation type and (2) to measure the 20 
precipitation intensity as well as size of precipitating particles at the ground level during each precipitation event. 
While no clear seasonal variations of nINP values were apparent, the analysis of yearlong ground level precipitation 
observation as well as INPs in the precipitation samples showed some INP variations, for example, the highest 
and lowest nINP values at -25 °C both in the summer for hail-involved severe thunderstorm samples (3.0 to 1,130 
INP L-1), followed by the second lowest at the same T from one of our snow samples collected during the winter 25 
(3.2 INP L-1). Furthermore, we conducted the bacteria speciation community analyses using a subset of our 
precipitation samples to examine the presence of known biological INPs. In parallel, we also performed 
metagenomics characterization of the bacterial microbiome in suspendedanalysis of ambient dust samples 
collected at commercial cattle feedyardfeedlots in West Texas to ascertain whether check the similarity and to 
test if local cattle feedyards local feedlots can act as a source of bioaerosol particles and/or INPs found in the 30 
precipitation samples. Some key bacterial phyla present in cattle feedyard samples appeared in precipitation 
samples. However, no known ice nucleation active species were detected in our samples. Overall, our results 
showed that cumulative nINP in our precipitation samples below -20 °C could be high in the samples collected 
while observing > 10 mm hr-1 precipitation with notably large hydrometeor sizes and an implication of cattle 
feedyardfeedlot bacteria inclusion.  35 

1 Introduction 

1.1. What are INPs?  
Aerosol particles play a major role in altering the cloud properties, precipitation patterns, and ultimately the 
Earth’s radiation budget (Lohmann and Feichter, 2005). In the past few decades, the aerosol particle direct effects 
(i.e., the impact of aerosol particles on net radiation through scattering and absorption of solar radiation) have 40 
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been extensively studied (Satheesh and Krishna Moorthy, 2005). For example, the global radiative forcing by sea 
salt aerosols and dust is known to be in the range of −0.5 to −2 W m−2 and −2 to +0.5 W m−2, respectively. 
However, the aerosol particle indirect effects (i.e., radiative impact due to formation of clouds) have been 
enigmatic. Some atmospheric aerosol particles are known to act as ice-nucleating particles (INPs) and catalyze 
the formation of ice crystals in the clouds, but their overall impact on the Earth’s radiative budget remains 45 
quantitatively uncertain (Lohmann et al., 2007).  

While INPs are sparse in the atmosphere, they have substantial impacts on the cloud microphysics and 
the precipitation formation (DeMott et al., 2010). The sources of atmospheric INPs are diverse as they emerge 
naturally and also through human activities, adding complexities to our comprehensive understanding in their 
impacts (e.g., Kanji et al., 2017; Zhao et al., 2019). In general, INPs provide a surface on which the water vapor 50 
and/or cloud droplets deposits and freezes (Van den Heever et al., 2006). This type of ice formation in the 
presence of INPs is known as heterogenous freezing (Vali et al., 2015). In the absence of INPs, the formation of 
atmospheric ice particles follows the process of homogeneous nucleation, in which it requires the cloud droplets 
to be supercooled to the temperature (T) of -32 °C and below (depending on the pure water droplet size) to form 
ice crystals (Koop et al., 2000; Koop and Murray, 2016). Though our knowledge regarding INPs remains 55 
insufficient, there have been advances in understanding the different modes of heterogeneous ice nucleation 
(IN) in the atmosphere in the last few decades. For example, deposition nucleation is induced by the direct 
deposition of water vapor ontoon to an INP’s surface and ice embryo formation on the surface under ice 
supersaturation conditions (Kanji and Abbatt, 2006; Möhler et al., 2008). Recently, some studies have argued that 
the deposition nucleation could be interpreted as pore condensation and freezing (Marcolli, 2014). The presence 60 
of water in pores of mineral materials and the resulting inverse Kelvin effect cause an instantaneous water 
saturation condition in the confined space, allowing the water to freeze even at water sub-saturated ambient 
conditions (David et al., 2019; Marcolli, 2014). Amongst various IN paths, perhaps the most important mode is 
immersion freezing (De Boer et al., 2010). This process starts with the formation of cloud droplet followed by 
freezing due to an INP immersed in the supercooled droplet. In addition, the past studies have identified other 65 
modes of heterogeneous nucleation, such as condensation freezing (Belosi and Santachiara, 2019), contact 
freezing (Hoffmann et al., 2013), and inside-out evaporation freezing (Durant and Shaw, 2005). These modes are 
relatively less relevant in the mixed-phase clouds (MPCs) as discussed in the next section. 
 
1.2. Importance of Immersion Freezing 70 
INPs greatly influence cloud properties, especially in MPCs, which are typically observed in the altitude range of 
2 km to 9 km above ground level (Hartmann et al., 1992). Out of all heterogeneous ice-nucleation modes, the 
immersion freezing is the most dominant mode of ice formation in MPCs (Ansmann et al., 2008; De Boer et al., 
2010; Westbrook and Illingworth, 2011; Hande and Hoose, 2017; Vergara-Temprado et al., 2018). In Hande and 
Hoose (2017), different cloud types such as orographic, stratiform, and deep-convective systems were simulated 75 
and analyzed for different freezing modes under various polluted conditions. The authors demonstrate that 
immersion freezing is the predominant IN mode under various simulated circumstances, accounting for 85 to 
99%, while other IN paths play a less significant role. Similarly, an importance and predominance of supercooled 
liquid droplets as for a prerequisite of atmospheric ice formation is reported in Westbrook and Illingworth (2011). 
The authors verified it based on radar and lidar observations of clouds over the U.K. at temperatures relevant to 80 
immersion freezing. Cui et al. (2006) also showed that immersion freezing is the primary mode of ice formation 
with little significance of the deposition mode in the early stages of the cloud development. Moreover, whereas 
contact freezing may be a highly efficient ice formation path, a previous simulation study showed that it is a 

https://agupubs.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Illingworth%2C+A+J
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negligible mode in the given MPC conditions (Phillips et al., 2007). Field et al. (2012) and De Boer et al. (2011) 
showed that the formation of cloud droplets is a precondition for ice formation in MPCs, thus highlighting the 85 
importance of immersion nucleation. Furthermore, using multiple ground-based instruments, including Lidar, 
AERONET Sun Photometer, and Vaisala Radiosonde, Ansmann et al. (2008) found that a high INP concentration 
(nINP) (i.e., ~ 1 – 20 cm-3) in the Saharan dust. This high dust-including nINP episode coincided with the presence of 
liquid droplets at cloud tops at Ts of -22 to -25 °C. Similarly, Ansmann et al. (2009) shows the observation of 
tropical altocumulus clouds having liquid cloud tops. Due to the importance and dominance of immersion freezing, 90 
the current study focuses on measuring the immersion freezing efficiency of the precipitation samples collected 
in the Texas Panhandle region. 
 
1.3. INPs in Precipitation  
It is known that INPs in MPCs have a notable impact on the properties of precipitation. Previously, Yang et al. 95 
(2019) studied the effect of INPs on cloud dynamics and precipitation through model simulations of an observed 
severe storm in Northern China. The authors show that an increase in INPs can enhance the storm, whereas an 
excessive increase of INPs may impede the updrafts in the storm. The reason for this complex effect of INPs may 
be explained by the variation in the latent heat release in the convective system at different stages of its 
development. When immersion freezing occurs, theThis latent heat of freezing energy can be releasedis further 100 
influenced by INP episode,. Thus,thus INPs themselves can impactaffecting the dynamics of the precipitation 
system. Furthermore, the increase in INP number might reduce the mean hail diameter (hail particles with smaller 
diameters melt more easily), which leads to decreased hail precipitation and an increased rain formation in 
contrast to the previous studies (Fan et al., 2017; Van den Heever et al., 2006). Similar results have been found 
by Chen et al. (2019). The authors show that an increased ambient INP concentration (nINP ) in the simulated 105 
hailstorm can reduce the graupel size and the concentration of hail stones. Likewise, the aircraft observations 
along with the model simulations of convective storms in West Texas and U.S. High Plains have shown that the 
addition of INPs at the base of warm clouds results in stronger updrafts and lead to increased amounts of 
precipitationhave shown that the addition of INPs at the base of warm clouds would result in an increase of the 
precipitation amount by strong updrafts in the system (Rosenfeld et al., 2008), ultimately affecting the local 110 
hydrological cycle (Mülmenstädt et al., 2015). It has also been observed that INPs can be removed from the 
atmosphere through precipitation resulting in a net decrease in nINP, affecting the precipitation development 
(Stopelli et al., 2015).  
 Several previous studies have characterized the nINP in the precipitation samples from various locations 
(Creamean et al., 2019; Petters and Wright, 2015; Levin et al., 2019). Petters and Wright (2015) reported a wide 115 
range of nINP values in their local precipitation samples collected approximately 3 km west of Raleigh, NC, USA for 
July 2012 and October 2013. Their study shows a variation of 10 orders of magnitude in the concentrations of 
INPs with a high variability in the T range of -5 to -12 °C, suggesting inclusion of biological INPs, which are generally 
known to be active at relatively high freezing Ts (Després et al., 2012). The lower limit for the INP spectrum as a 
function of T derived from the cloud water and precipitation samples in Petters and Wright (2015) may highlight 120 
the extreme rarity of INPs at Ts warmer than -10 °C. Particularly, the authors showed that the highest ever 
observed nINP at -8 °C were three orders of magnitude lower than observed ice crystal concentrations in tropical 
cumuli at the same temperature. More precipitation studies may provide a constraint on minimum enhancement 
factors for secondary ice formation processes. In Levin et al. (2019), the nINP values during an atmospheric river 
event on the west coast of United States were studied. The authors found an increased concentration of marine 125 
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INPs in contrast to their previous studies, showing high mineral/soil dust during an atmospheric river 
precipitation.  
 
1.4. Study Motivation and Objectives  
In this study, we characterized properties of INPs in precipitation samples collected in the Texas Panhandle region 130 
to understand whether the high density of cattle in large open-lot concentrated feeding operation facilities (cattle 
feedyards hereafter), where often >45,000 head capacity can be seen in a single facility in this region, has a 
discernible impact on regional atmospheric INP concentration and composition near the ground and in clouds. 
This region significantly contributes to U.S. cattle production, and the total cattle population of 11 million head 
accounts for 42% of cattle in the U.S. (according to cattle feedyard research experts at Texas A&M AgriLife 135 
Research). Adjacent cattle feedyards are located within 33 miles of our sampling site, and the impact of cattle 
feedyard dusts in ambient particulate matter (PM), frequently exceeding 1200 μg m−3 (24-hour averaged-basis), 
and aerosol particle composition as well as an overall regional air quality is described in Hiranuma et al. (2011) 
and Von Essen and Auvermann (2005). Moreover, the emission flux of PM smaller than < 10 µm diameter (PM10) 

is typically high in the range of 4.5 g m-2 s-1 up to 23.5 g m-2 s-1 depending on stocking density, creating PM-140 
laden ambient conditions in this particular region (Bush et al., 2014). 

All of our precipitation samples were analyzed at our laboratory using a cold stage instrument. The 
estimated nINPnINP in the precipitation samples were comparedstudied with ground level precipitation properties, 
such as the precipitation type, intensity of precipitation (mm hr-1), and hydrometeor particle size (mm). A subset 
of the collected precipitation samples was analyzed for taxonomic identification for their bio-speciation to 145 
characterize potential biological INP sources in the West Texas region and also to examine determine the 
presence of known high T biological INPs. Some of water-suspended cattle feedyard PM samples were also 
analyzed with metagenomics to determine the composition of bacterial microbiome that may appear in 
precipitations. Although the estimation of nINPnINP in precipitation samples collected at the ground level does not 
represent INPs at the cloud height, we report the INPs resolved by the ground level weather observation that 150 
help understanding of ambient INPs in the West Texas region, where unique and substantial INPs, ranging fromi.e., 
several hundred to severaland thousand INPs L-1 at -20 °C and -25 °C, respectively, are consistently emitted from 
animal cattle feeding operations (Hiranuma et al., 2020). 

2 Methods 

2.1 Precipitation Sampling 155 
The Our precipitation samples were collected from different seasons throughout the year during June 2018 – July 

2019. Sterilized polypropylene tubes of 50 ml volume (VWR Centrifuge Tube) were used as sampling gauges. 
The gauges were placed at ~50 ft above the ground on the rooftop of the Natural Science Building at West Texas 
A&M University, Canyon, TX. This particular location was chosen to avoid any obstruction of our sampling 
activities. The sampling tubes were well exposed to the ambient air without any canopies throughout the 160 
sampling process. The sampling gauges were replaced every 24 hours to minimize the effect of dry deposition 
prior to the precipitation sample collection. A blank dry deposition sample (Sample# 34) was specifically collected 
for 24 hours from January 2-3, 2019 in order to examine and quantify the effect of dry deposition on nINP. The 
freezing spectrum of this dry deposition sample (suspended in HPLC grade pure water) was later compared with 
the IN spectra of precipitation samples (see Sect. 3.3). We note that a volume of pure water (5 ml) for an 165 
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atmospheric INP estimate based on a dry deposition sample was determined by averaging collected precipitation 
volumes of all samples prior to this dry deposition sample. For the duration of a given precipitation episode, some 
amount of sample was accumulated in the tube. The sampling tubes were then capped and stored at T of 4 °C in 
the refrigerator, following the method described in Petters and Wright (2015), until the droplet-freezing assay 
experiments were commenced. The effect of storage conditions on the IN activity was not considered in this 170 
study. We note that Beall et al. (2020) recently found a decrease in precipitation nINP by 42% when stored at 4 °C 
(i.e., Table 5) and suggested correction factors for the T range of -7 to -17 °C. After the freezing experiment, a 
subset of our samples was kept under deep-freeze conditions (-80 °C) for further biological analysis (see Sect. 
2.6). In total, 42 precipitation samples were collected from different weather systems observed at the surface 
level. Based on these samples and observations, we estimated the nINP values from (1) snow, (2) 175 
hails/thunderstorm, (3) long-lasted rain, and (4) weak rain. More information about the samples used in this 
study, precipitation types and the amount of the precipitation collected for each sample are provided in the 
Supplemental Information (SI) Sect. S1. 
 
2.2. Disdrometer Measurements of Precipitation Properties 180 
For our precipitation measurements, we used the an OTT Parsivel2 (Particle Size Velocity 2) sensor. This device is 
a modern laser-optical disdrometer (λ = 780 nm) which measures the size and fall velocity of precipitating 
particles. The OTT Parsivel2 was deployed in side-by-side position with the precipitation gauge collector for the 
duration of our study period. A detailed technical description of OTT Parsivel2 is given in a previous study (Tokay 
et al., 2014), so only a brief description is provided here. A combination of the laser transmitter and receiver 185 
component was integrated as a single cluster in a weatherproof housing and to detects precipitation particles 
passing through a horizontal strip of light. A nominal cross section area of a laser beam detection was 54 cm2, 
and the system recorded the number of hydrometeors in a 32 x 32 matrix (i.e., fall velocity x diameter) in the ≥ 
30 seconds time resolution. The measurable size range of hydrometeor particles was 0.062 - 24.5 mm in diameter 
(Dp) with bin size intervals (∆Dp) varying from 0.125 to 3.0 mm. Our disdrometer was coupled with an OTT netDL 190 
Hydrosystem logger (40 channels). The OTT Parsivel2 also measured the intensity of precipitation (mm hr-1) and 
the number of precipitation particles passing through the horizontal strip of light in the event of precipitation. 
The OTT Parsivel2 automatically categorized the precipitation type according to the National Weather Service 
(NWS) weather code based on the measured precipitation properties. Due to the intermittent nature of the 
precipitation, the OTT Parsivel2 assigned multiple NWS precipitation codes during a single precipitation event 195 
(Table S1 column ‘NWS Code’). We compared our manual observations with the NWS precipitation code assigned 
by the disdrometer, and we categorized all observed precipitation into four different types. These four major 
precipitation types defined in this study included snow, hail/thunderstorm, long-lasted rain, and weak rain, and 
we collected 6, 18, 13, and 5 samples from each type, respectively, which sum up to a total of 42 samples. More 
detailed methodology of precipitation categorization is discussed in SI Sect. S1.1.  200 
 
2.3 IoT Air Quality Sensor Measurements 
A cluster of Arduino-based Internet of Things (IoT) air quality sensors was developed to measure ambient air 
conditions at our precipitation sampling location. This IoT cluster was deployed alongside the disdrometer and 
sampling gauge to complement this study. A DFRobot particulate matter (PM) laser dust sensor measured PM 205 
with size ranges of < 1 µm (PM1.0), < 2.5 µm (PM2.5), and < 10 µm (PM10) with an estimated uncertainty of ±27% 
relative to an optical particle counter (Markowicz and Chiliński, 2020). Other ambient conditions, including T, 
barometric pressure, and humidity, were measured with a precision Bosch BME280 environmental sensor. We 
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calibrated our sensors against a commercially available sensor (GlobalSat Inc., LS-113). Our sensors utilized Long 
Range and Wide Area Network (LoRaWAN) technology for data transmission. A LoRaWAN transceiver is 210 
connected to our sensors for wireless data transmission. This small IoT device operated with 915 MHz signal 
frequency, transmitting encrypted and signed packets of captured air quality data through a hosted LoRa network 
server to a Kibana visualization server. This data interface enabled in situ monitoring and processing of the data. 
The PM concentrations were later time-averaged for assessing contribution of wet scavenging of aerosol particles 
to nINP in the precipitation samples. 215 
 
2.4 Immersion Freezing Experiment 
All immersion freezing experiments in this study were conducted using an offline instrument called West Texas - 
Cryogenic Refrigerator Applied to Freezing Test (WT-CRAFT) system (Hiranuma et al., 2019; Cory et al., 2019). The 
WT-CRAFT system is a cold-stage technique, in which the droplets are placed on an aluminum plate and cooled 220 
until they are frozen. A commercially available digital camera was used to record the droplet freezing events, and 
we visually evaluated the freezing Ts based on the shift in droplet brightness while freezing. If there was an 
uncertainty in determining the T at which a droplet was completely frozen, we used the ImageJ software for 
further image analysis of those droplets (see Table S4 in Hiranuma et al., 2019). This system was used to obtain 
T-resolved nINP in -25 °C < T < 0 °C. The lower T limit was -25 °C to ensure measuring INPs with negligible artefacts 225 
(Hiranuma et al., 2019). Our system is susceptible to low INP detection, and the minimum INP detection limit of 
the WT-CRAFT system for this study was 0.006 L-1 air. To minimize any contamination during the IN measurement, 
the WT-CRAFT system was placed in a ventilated fume hood. For each experiment an aluminum plate surface was 
freshly coated with a thin layer of thermally conductive and IN-inert Vaseline to physically isolate individual 
droplets from the aluminum surface (otherwise, aluminum can act as a heterogeneous IN surface). A total of 70 230 

suspension droplets of 3L volume each were prepared for each run. The aluminum plate with the droplets on it 
was then placed inside a portable cryogenic refrigerator (Cryo-Porter). Freezing Ts were measured by the sensor 
taped on the aluminum surface with a resolution of 0.1 °C, and the external keypad controller was used to control 
cooling rate (°C min-1). In this study, the freezing experiments were carried out at a cooling rate of 1 °C min-1. The 
validity of using this cooling rate and another test regarding time trial aspect are demonstrated in SI Sect. S2 (Figs. 235 
S1 and S2). The droplets were cooled until all 70 droplets were frozen before warming up the system to 5 °C to 
be prepared for a subsequent experiment.  

If all the droplets were frozen at T > -25 °C, a HPLC-grade ultrapure water was used to prepare different 
serial dilutions for the precipitation samples. The diluted suspensions were made to compute the nINP down to -
25 °C. Some of our precipitation samples were diluted until the frozen fraction (the ratio of number of droplets 240 
frozen to the total number of droplets) curve was conformed to the background curve (i.e., frozen fraction curve 
for the HPLC ultrapure water). At the end of each WT-CRAFT experiment, the frozen fraction and ambient nINP 
were estimated as a function of T with an interval of 0.5 °C. The IN measurements from the undiluted and diluted 
runs were merged by taking the lower nINP values, which typically possess lower uncertaintiesthe lowest 
confidence intervals, for the overlapped T region. 245 

The total systematic T and nINP uncertainties in WT-CRAFT are ±0.5 °C  and ±23.5% (Hiranuma et al., 2019). 
For this study, the experimental uncertainty in our estimated nINP was evaluated and reported using the 95% 
confidence interval method described in Schiebel (2017). Background contamination tests for WT-CRAFT were 
carried out weekly to make sure negligible background freezing at -25 °C. In this study, we consider the frozen 
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fraction ≤ 0.05, accounting for less than 3% of pure water activation, as negligible background (Hiranuma et al., 250 
2019). For these background tests, only HPLC grade ultrapure water was used for preparing the droplets. 

 
2.5 IN ParameterizationPrecipitation nINP(T) Estimation 
Here we describe the estimation of INP concentration in cloud volume from INP concentration measured in 
precipitation samplesthe parameterization used to estimate ambient nINP. Initially, we computed the CINP(T) value, 255 
which is the nucleus concentration in precipitation suspension (L−1 water) at a given T as described in Vali (1971). 
This CINP(T) value was calculated as a function of unfrozen fraction, funfrozen(T) (i.e., the ratio of number of droplets 
unfrozen to the total number of droplets) as:  

 

 

 𝐶𝐼𝑁𝑃(𝑇) =  − 
ln (𝑓𝑢𝑛𝑓𝑟𝑜𝑧𝑒𝑛(𝑇))

𝑉𝑑
 

 (1) 

in which, funfrozen(T) is a unfrozen fraction of examined droplets at given T, and Vd is the volume of the droplet 260 

(3 µL). Next, we used the cloud water content (CWC) parameter in order to convert CINP(T) to nINP(T), INP in the 

unit volume of atmospheric air at standard T and pressure (STP) conditions, which is 273.15 K and 1013 mbar. 

We assumed CWC to be a constant of 0.4 g m−3, following Petters and Wright (2015). This assumption would 

be reasonable for the following three reasons: (1) Petters and Wright (2015) and references therein showed 

typical values of CWC for different cloud types could narrowly range from 0.2 g m−3 to a factor of few 265 

morewithin a factor of two from 0.4 g m−3, (2) the authors also showed that the variation of nINP with CWC 

values for different cloud types in the atmosphere would typically be limited within a factor of two, and our 

nINP uncertainties could be larger than that, and (3) based on a parametrization for rainwater evaporation, 

Zhang et al. (2006) suggests that evaporation does not contribute to nINP bias for both strong convective systems 

and persistent rain events with cloud base heights of ≈3 km. Thus, the variation of CWC on the nINP was 270 

considered to be negligiblea constant CWC was used in this study. Nonetheless, it is necessary in the future to 

further investigate in cloud specific CWCs incorporating with loss of water through partial evaporation of 

raindrops during free fall based on vertical vapor deficit profiles to conclusively assess if this assumption is fair 

or not. Precipitation evaporation rate might introduce bias in nINP for precipitation systems with high cloud 

base, and the correction can be applied accordingly (Petters and Wright, 2015). Direct comparison between 275 

INP measurements in cloud water samples and those in precipitation samples might also be key to answer this 

question (e.g., Pereira et al., 2020). 

The sample air volume (Vair) at the cloud level was calculated by converting the volume of the   

precipitation sample collected (Vl) using the Eqn. (2) from Petters and Wright (2015): 
 280 

                        𝑉𝑎𝑖𝑟   =    
𝑉𝑙 × 1000 × ρ𝑤

𝐶𝑊𝐶
 

  (2) 

where ρw is a unit density of water (1 g ml-1). Vair  is in liters (L), whereas Vl is given in ml. The multiplication 

factor ‘1000’ is used to convert the volume from cubic meter (m3) of air to liter of air. The cumulative nINP per 

unit volume of sample air, described in the previous study DeMott et al. (2017), was then estimated as:  
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𝑛𝐼𝑁𝑃(𝑇) =  𝐶𝐼𝑁𝑃(𝑇) × 𝐷𝐹 ×

𝑉𝑙

𝑉𝑎𝑖𝑟
 

(3) 

where DF is a serial dilution factor (e.g., DF = 1 or 10 or 100 and so on). 285 
 
2.6. Microbiome of Cattle FeedyardFeedlot Dust and Precipitation Samples 
The overall goal of our metagenomics analysis was to identify known ice-nucleation-active bacterial and fungal 
species in cattle feedyardfeedlot dust, collected in commercial cattle feedyards located within 33 miles from the 
precipitation sampling site and suspended in the high-performance liquid chromatography grade water 290 
(Hiranuma et al., 2020), and precipitation samples collected in the West Texas region. This biological speciation 
analysis is also useful to examine if local cattle feedyardsfeedlots can act as a source of bioaerosol particles and/or 
INPs found in the precipitation samples. In this study, we have examined a heterogeneous set of samples 
including four feedlot airborne PM samples locally collected at the downwind location of typical commercial 
cattle feedyards in West Texas on March 28, 2019 and July 22, 23, and 24, 2018 (see Table 1 of Hiranuma et al., 295 
2020), precipitation samples (Sample# 1, 2, 7, and 50), and a 24-hour dry deposition sample (Sample# 34). We 
note that the precipitation Sample# 50 (another hail/thunderstorm sample), which was collected on March 23, 
2019 when a tornado warnming was issued, was preserved only for metagenomics due to its low volume (≈ 1ml). 
It is also noteworthy that we attempted to analyze samples of all precipitation types, but acquired quantitative 
results only for those hail/thunderstorm samples (the reason is unknown). Next, we describe our microbiome 300 
analysis procedure in four different steps, including (1) DNA Extraction, (2) 16S rRNA Amplicon Diversity 
Sequencing, (3) Bioinformatics, and (4) Data Analysis. For DNA extraction, genomic DNA was first extracted from 
all samples using PowerSoil DNA Isolation Kits (MoBio Laboratories, Inc., Carlsbad, CA, USA). Extraction proceeded 
following the manufacturer’s protocol, with the following minor changes: solutions C1 and C6 were heated to 65 
°C and solution C6 was allowed to remain on the filter membrane for at least one minute before centrifugation. 305 
Additionally, the C6 step was repeated. Library preparation for bacterial 16S DNA amplicon sequencing utilized 
primers for the V1-V3 hypervariable region of the 16S gene. These primers were constructed for the 16S amplicon 
using a combination of the 28F and Illumina i5 sequencing primers and the Illumina i7 sequencing primer with 
the 519R primer. Amplifications were performed in 25 μl reactions with Qiagen HotStar Taq master mix (Qiagen 
Inc, Valencia, CA, USA). Reactions were performed with 1 μl of each 5μM primer mix and the template DNA. 310 
Amplification was performed on an ABI Veriti thermocycler (Applied Biosytems, Carlsbad, CA, USA) under the 
following thermal profile: 95 °C for 5 min, then 25 cycles of 94 °C for 30 sec, 54 °C for 40 sec, 72 °C for 1 min, 
followed by one cycle of 72 °C for 10 min and a 4 °C hold. An ethidium bromide-stained gel was used to 
qualitatively determine the amount of the amplification product to add to the second amplification stage. Primers 
for the second PCR were designed based on the Illumina Nextera PCR primers. The second stage amplification 315 
proceeded using the same cycling protocol as the first round, except it was amplified for only 10 cycles. SPRIselect 
beads (BeckmanCoulter, Indianapolis, IN, USA) were used at a 0.7 ratio to size-select the DNA amplicons from an 
equimolar pooled sample. Pooled samples were then quantified using a Quibit 2.0 fluorometer (Life Technologies) 
and loaded on an Illumina MiSeq (Illumina, Inc. San Diego, CA, USA) 2x300 flow cell at 10pM. 
  For bioinformatics, raw data were initially processed using a standard microbial diversity analysis pipeline 320 
(QIIME2-2020). Raw data were was first checked for sequencing quality and chimeric sequences, before being 
parsed through a microbial diversity pipeline. During the cleanup stage; denoising of the raw data was performed 
using various techniques to remove short sequences, singleton sequences, and reads with poor quality scores. 
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Next, chimera detection software was used to filter out any potentially chimeric sequences. Finally, remaining 
high-quality sequences were corrected base by base to check for sequencer miscalls. The diversity analysis 325 
pipeline clustered all sequences based on 97% similarity to yield operational taxonomic units (OTUs), before 
running a seed sequence from each OTU through a taxonomic database curated in-house by RTLGenomics. 
Finally, the taxonomy was assigned to each sequence using a classifier that was pretrained on the GreenGenes 
database with 99% OTUs. The relative abundance of bacterial taxa within each sediment sample was determined 
by dividing each OTU by the total number of reads.  330 

3 Results and Discussion 

3.1 Ambient and Precipitation Properties 
The time series summary of ambient and precipitation properties measured by our disdrometer as well as IoT 
cluster is shown in Fig. 1. Each data point in Fig. 1a shows the average temperature measured over the sampling 
period of a given precipitation event. A notable seasonal variation of ambient T at our sampling location was 335 
observed.  The highest average temperature measured during a precipitation event was 34.9 ± 12.2 °C, which 
was in the summer of 2018 (i.e., ID#  7; a long-lasted rain sample), while the lowest T was -6.5  ± 6.7 °C, measured 
during the winter of 2018 (i.e., ID# 23; a snow sample). The annual mean T for Canyon, TX region measured at 
our sampling site was 17.7 °C. The diurnal cycles of ambient properties are not shown in Fig. 1a. Nevertheless, 
we typically observed suppression of T before precipitation events in our study. It  is known that the T gradient 340 
plays a major role in the development and growth of the precipitation systems (Vaid and Liang 2015).  Next, each 
relative humidity data point shown in Fig. 1b corresponds to the average during each precipitation event.  With 
an overall average of 54.0%, the highest and lowest relative humidity values measured were 70.7 ± 2.3 % (ID# 26; 
a weak rain sample) and 30.8 ± 0.7 % (ID# 7; a long-lasted rain sample). The observed low ground level relative 
humidity valuesies during some precipitation events (Tables S1 - S2) may be a concern as loss of water through 345 
partial evaporation of hydrometeors during free fall. But, it is noteworthy that the water evaporation might have 
negligible effect on nINP estimated from precipitation samples as discussed in Sect. 2.5. Third, Fig. 1c displays the 
time series of the cumulative number of detected precipitation particles in individual precipitation events and 
the overall mean number of detected particles (dashed line). In our study period, a disdrometer detected a 
substantial number of precipitation particles with a cumulative number ranging from 1.0 x 104 to 6.6 x 105 350 
particles passing through its laser beam cross section per event. More details of each precipitation event and its 
properties are shown in the Tables S1 - S3. As seen in Table S3, high numbers of precipitation particles  were 
observed in conjunction with snow/hail-involving precipitation events during our study period, which may 
increase the wet scavenging efficiency of ambient aerosol particles during precipitation (see Sect. 3.2 and SI Sect. 
S4). Out of all the 42 samples, the highest number of precipitation particles was detected on the 5th of Nov, 2018 355 
(ID# 19; a snow sample), while the lowest was observed on the 2nd of Sep, 2018 (ID# 13; weak rain). Finally, Fig. 
1d shows the average, maximum, and minimum precipitation intensity (mm hr-1) measured during each 
precipitation event. Due to the intermittent nature of the precipitation, the intensity widely ranged from 1.1 to 
129.3 mm hr-1 per event. The highest maximum intensity of 129.3 mm hr-1 was measured during a 
hail/thunderstorm event (ID# 40), while the lowest was 1.1 mm hr-1 during a snow event (ID# 23). These intensity 360 
data were used for our wet deposition analysis (SI Sect. S4).  

The variation of precipitation properties was further investigated by analyzing the size distribution of 
precipitation particles measured by the OTT Parsivel2 disdrometer. Figure 2 shows the precipitation  particle size 
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distribution for each category of ground level observed precipitation type. The size of precipitation particles was 
represented at the median diameter of the corresponding disdrometer’s size bin. As shown in the Fig. 2a and 2b, 365 
both snow and hail/thunderstorm samples had particles of diameter greater than 10 mm with the maximum 
particle diameter of 17 mm. Although there are three episodes of long-lasted rain with a particle diameter greater 
than 14 mm (Fig. 2c), a clear trend of overall decrease in the hydrometeor size was seen for this category as well 
as the weak rain samples (Fig. 2d).  In fact, all weak rain samples contained particles only smaller than 6.5 mm. 
Moreover, the mode precipitation particle diameter for the snow, hail/thunderstorm, and long-lasted rain 370 
samples was 0.44 mm, whereas it was 0.31 mm for the weak rain samples (see Table S3). This variation in mode 
diameter along with the results shown in Fig. 2 generally exhibited the shift in hydrometeor particle size 
distribution towards a larger diameter with an increased intensity of precipitation at the ground level.  
 
3.2 IoT Air Quality Sensor Results and Implication of Wet Deposition 375 
The overall mean PM concentrations (± standard error) measured by an IoT air quality sensor for our study period 
were 3.9 ± 9.2 x 10-20.09 µg m-3 (PM1.0), 4.0 ± 4.5 x 10-20.05 µg m-3 (PM2.5), and 10.0 ± 2.2 x 10-1 0.22 µg m-3 (PM10). 
Although there was an inconsistent variation of PM concentrations with precipitation type, we observed a 
substantial increase in all PM values for the period July – Aug 2018 and May 2019. In contrast, a decrease in all 
PM concentrations was observed during Sep 2018 – Mar 2019. This increase in PM values during summer and 380 
decrease during winter suggested a seasonal variation at the sampling site. The seasonal variation in PMs may be 
indicative of different aerosol particle sources or the local meteorological conditions. Besides the local PMs 
originating from cattle feedyards as described in Sect. 1.4,  In the Southern Great Plains, the other prominent 
local sources include harvesting crop fields and agricultural burning In the Great Plains region nearby West Texas 
(Garcia et al., 2012; DeMott et al., 2015). Based on the long-term measurements of aerosol particle composition 385 
at Southern Great Plains (SGP), Parworth et al. (2015) found a seasonally varying interstate transport of biogenic 
aerosols to the SGP site. The authors also observed a springtime increase in biomass burning organic aerosols at 
SGP, which were mainly associated with local fires. The long-distance dispersion of Juniperus ashei pollen into 
the SGP area by the southern winds was previously observed by Van de Water et al. (2003). Elevated layers of 
haze have been observed over the same site due to the inter-oceanic and intercontinental transport of smoke 390 
from intense Siberian fires (Arnott et al., 2006; Damoah et al., 2004). It was also evident from previous 
observation and simulation modeling studies that Saharan dust can reach southeastern parts of USA through the 
transatlantic long-range transport (Weinzierl et al., 2017). Thus, PMs observed in the West Texas region may be 
a mixture of aerosol particles from different sources and spatial scales of transport.  

Table 1 shows the hourly time-averaged PM data measured prior to vs. after precipitation. During intense 395 
precipitation, aerosol particle concentrations below cloud tend to decrease due to the wet scavenging effect 
(Hanlon et al., 2017). In fact, the reduction in our hourly averaged PM1, PM2.5, and PM10 after precipitation is 
apparent in Table 1, presumably because of scavenging in part at least. Note that any counter mechanisms, such 
as primary biological aerosol particles and surface material rupture ejected by water impaction ofafter rainfall 
(e.g., Huffman et al., 2013; Wang et al., 2016), were not considered in our data interpretation. The first order 400 
calculations are performed to understand implications of scavenging processes towards the reduction in the PM 
after rain event (SI Sect. S4). These calculations contain ±61.5% uncertainty and can be further extended with 
some assumptions to estimate INP. However, to better constrain these estimates, direct vertical INP (He et al., 
2020) and scavenging measurements (Hanlon et al., 2017) are needed. A total of 28 precipitation events was 
analyzed, and our estimated nINP(T) of scavenged aerosol particles appeared to be constantly an order magnitude 405 
lower as compared to total nINP(T) measured in our precipitation samples (Fig. S3). This trend is true across all 
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ranges of examined Ts (> -25 °C). Nevertheless, our estimates imply some (but negligible) contributions of 
scavenged aerosol particles on nINP(T) in our precipitation samples.   
 
3.3 INP Results 410 
The time series of cumulative nINP from precipitation samples at different Ts (i.e., -5, -10, -15, -20, and -25 °C) are 
shown in Fig. 3. The T-resolved averaged cumulative nINP ± standard error is also presented in Fig. 3. Note that 
Fig. 3b shows nINP for two precipitation samples (ID# 26 and 27) observed on the same day of 12 March 2019. 
Overall, three orders of magnitude variations of averaged cumulative nINP values were observed between -10 °C 
(0.17 ± 0.04 L-1) and -25 °C (74.74 ± 28.28 L-1) for our precipitation samples.  Occasionally, we observed nINP 415 
detected at ≥ -5 °C, but such a high T INPs was randomly found in only 7 out of 42 samples within our detection 
capability.  

Attempts to examine the distribution of nINP based on the precipitation type, meteorological season, and 
maximum precipitation intensity (mm hr-1) were made (see SI Sect. S5). Due to the limited total number of 
samples we collected, we cannot conclusively state anything regarding seasonal variations of nINP in our 420 
precipitation samples. Nonetheless, our INP results showed that the lowest nINP at -25 °C (3.0 L-1) was found in a 
hail/thunderstorm sample (ID#37; no inclusion of large hydrometeors as seen in Fig. 2b) collected during the 
summer 2019. Likewise, the highest nINP at -25 °C (1,130 L-1) was found in a hail-involved severe thunderstorm 
sample (ID# 1) collected in summer 2018. This observation is interesting because the measured PM10 of ~6.2 µg 
m-3 prior to precipitation of ID# 1 (Table 1) is not the highest PM10 recorded in 2018-2019, suggesting wet 425 
scavenging does not control the total INPs in precipitation samples. The fact that the second lowest nINP (-25 °C), 
which is 3.2 L-1, is from the snow sample (ID# 23) also supports a negligible contribution of scavenging in our INP 
data. Moreover, our results showed that cumulative nINP below -20 °C in our precipitation samples could be high 
in the samples collected while observing > 10 mm hr-1 hail/thunderstorm and snow precipitation with notably 
large hydrometeor sizes.  430 

Figure 4 shows a compilation of nINP(T) spectra of each precipitation type in comparison to previously 
reported precipitation nINP(T). In general, most of nINP spectra fall in the upper range of the previous precipitation 
nINP data presented in Petters and Wright (2015) and Vali (1968). INP humps shaping the reference spectra (i.e., 
one below -20 °C and another at > -20 °C) are also found in our spectra. The observed hump is especially obvious 
for nINP at T above -20 °C, and some of our spectra exceed the upper bound of the reference spectra in any 435 
precipitation types. For Ts below -20 °C, our nINP(T) data match fairly well within the range of the reference nINP(T) 
for all four precipitation types. Thus, the precipitation type observed at the ground level would not have any 
relationships with INP propensity at least for our 42 samples collected for this study. However, it is interesting 
that most of our nINP data points above -15 °C fall within the range of estimated nINP at cloud height with < 50% 
storm efficiency, reported in Vali (1968). In fact, regardless of precipitation type, we see reasonable overlaps of 440 
our nINP(T) with Vali (1968). The author stated that the large differences in IN content among precipitation samples 
were mainly caused by differences in the nucleus content of the air entering the storm. This implies that the cloud 
level dynamics like cloud entrainment impact the cloud level INP concentrations. Hence, we compared our 
precipitation INP data with the lower and upper limits of the IN concentrations in the air entering the storm given 
by Vali (1968) (Table 2, Chapter# 9). These cloud level INP concentrations given by Vali (1968) were for two 445 
different storm efficiencies, which is the ratio of mass of precipitation to the mass of water input. The storm 
efficiency of 10% represents the time when high concentrations of precipitation inside the storm begins to 
develop. Likewise, 50% is at the peak intensity of the storm. These different combinations of storm efficiencies 
and water content accounted for a tenfold variation in the ice nucleus content. As more air is entered into the 
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storm with 50% efficiency, more IN concentrations are observed at cloud level. Though our data are comparable 450 
to Vali (1968), there is still indeed the need for cloud level INP measurements to define the relationship between 
the ground level INP concentrations and precipitation intensity. 

In addition, Fig. 4 also shows the nINP result of our 24-hour dry deposition blank sample. For the measured 
T range, nINP values from the dry deposition blank sample were at least an order of magnitude lower than that 
from our precipitation samples. This finding corroborated our assumption of negligible contribution of dry 455 
deposition in our WT-CRAFT estimated nINP from precipitation samples.  
 Figure 5 shows another compilation plot of our precipitation nINP(T) spectra compared to ambient nINP(T) 
data of local agricultural dusts from Fig. 3 of Hiranuma (2020). As seen, most of our precipitation INP spectra are 
accumulated near the lower end of the cattle feedyard feedlot IN spectra, implying some inclusion of these local 
dusts as INPs in our samples. Although we are not certain if these local dusts play a role in precipitation, and 460 
assessing the potential of locally emitted aerosol particles to precipitation formation is beyond the scope of the 
current study, it is important to study the contribution of local agricultural dust in wet scavenging and INP 
formation at cloud height separately in the future. It is noteworthy that adjacent feedlots (> 45,000 head capacity) 
are located within 33 miles of our sampling site, and the role of feedlot dusts in atmospheric INPs is described in 
more detail in Hiranuma et al. (2020). Further discussion regarding the cattle feedyardfeedlot contribution in INPs 465 
in our precipitation samples is provided in Sect. 3.4.  
 
3.4. Microbiome of Feedlot Cattle Feedyard and Precipitation Samples 
Furthermore, wWe conducted the bacteria speciationmicrobiome analysis of a subset of our precipitation 
samples and ambient dust samples collected at commercial cattle feedyardsfeedlots in West Texas to identify 470 
potential biological sources of INPs in our precipitation samples.  

We successfully generated data on of the bacterial microbiome of our precipitation and cattle 
feedyardfeedlot dust samples. Unfortunately, our attempt to extract characterize the fungal microbes and 
archaeal components of the microbiome was not successful due to the limitation in sample amount. Thus, we 
focus on bacterial discussions hereafter. In most cases, bacterial phyla were classified to the level of genus. The 475 
majority of bacteria in all samples belonged to the phyla Proteobacteria and Bacteroidetes (Fig. 6 and Table S9). 
In hailstorm samples, the main taxa of Proteobacteria were Massilia (a genus found in clinical samples and 
mammals, but also the soil, rhizosphere, and even aerosols), genera belonging to the order Sphingomonadales 
(bacteria with wide metabolic abilities), Caulobacterales (bacteria living in diverse terrestrial and aquatic habitats; 
some are minor human pathogens), and Rhizobiales (nitrogen-fixing bacteria forming symbioses with the roots 480 
of legumes). Among the Bacteroidetes phylum, the genus Marinoscillum was relatively the most abundant. This 
genus is a recently described marine bacterium, and it is interesting that it was found in hailstorm samples at 
percentages from 17.3% to 3.2% of the microbiome. Additionally, in one hailstorm sample, we also identified 
Gilvimarinus, which is another marine  genus of γ-Proteobacteria (Table S9). Our These results perhaps indicate 
some connection with storms or windsair mass originating from the North Atlantic Oceanocean. To verify this 485 
point, we performed back-trajectory analysis using the HYSPILT-READY model with Global Data Assimilation 
System (1 degree) meteorological data as input (Stein et al., 2015; Rolph et al., 2017). The analysis for our 
precipitation sampling periods (i.e., PCPT 1-4 in Fig. 6) was carried out at different heights over our precipitation 
sampling location; i.e., 500, 1000, and 3000 m above ground level (assuming these as the typical cloud heights). 
Furthermore, for the cattle feedyard samples 1-4 (Fig. 6), the back-trajectory analysis was carried out at the 490 
sampling height, which is 1. 5m above ground level. Overall, all these back-trajectories indicate a possible 
maritime influence through the Caribbean Sea, Gulf of Mexico and/or the Pacific Ocean (back-trajectory analyses 
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done, but not shown). Thus, these results support a possible marine influence in our precipitation and cattle 
feedyard samples. Other Bacteroidetes taxa with notable presence in hailstorm microbiome included 
Saprospirales and Chitinophagales orders with bacteria living on animals and in the gut of animals as expected. 495 

The microbiomes commonly found in our precipitation samples included the genus Massilia in significant 
numbers (11.3% of the microbiome), bacteria of the Proteobacterial orders Rhizobiales, Sphingomonadales, and 
Burkholderiales; a significant percentage (8.5%) of the marine genus Marinoscillum and bacteria in order 
Saprospirales of phylum Bacteroidetes. Our results suggest that no known IN active species were detected in 
precipitation microbiomes. The order Pseudomonadales, which includes most known IN active species, was a very 500 
minor component of the microbiome in our samplesfound at  the limit of detection. 

Massilia and other unidentified genera of the family Oxalobacteraceae were also relatively dominant in 
all four cattle feedyardfeedlot samples with percentages from 6.5% to 65.4% of the microbiome. Marinoscillum, 
a marine bacterium surprisingly found in all precipitation samples, was also found in all cattle feedyardfeedlot 
samples from 3% to 8.5% of the microbiome (Table S9). These similarities of the predominant bacteria in the 505 
microbiome of four cattle feedyardfeedlot dust samples and of four precipitation samples taken at an area distant 
from the cattle feedyardsfeedlots, perhaps indicate some connection of the cattle feedyardfeedlot dust and 
precipitation microbiomes, either with the formation of precipitation or with their presence in aerosols during 
precipitation events. Although we cannot rule out the possibility that scavenging of aerosolized bacteria explains 
the presence of these bacteria both in cattle feedyardfeedlot and precipitation samples taken even at a distance 510 
from cattle feedyardsfeedlots, our dry deposition background result shows different biological composition (Fig. 
6). It is also noteworthy to mention that neither of the genera (Massilia and Marinoscillum) were detected in the 
background deposition blank sample and it is not known whether they have any IN activity. Genera Massilia and 
Sphingomonas have been reported as weak IN active species (Jimenez-Sanchez et al., 2018), but these results are 
inconclusive and the discussion is ongoing at this stage (Woo and Yamamoto, 2020). Therefore, the scavenging 515 
may not be the main reason for the presence of Massilia and Marinoscillum found in our precipitation samples. 
Other bacterial taxa with a significant presence in cattle feedyardfeedlot samples included members of orders 
Caulobacterales and Burkholderiales.  
 
3.5. Caveats and Future Studies 520 
A surface level air mass on a plain is not necessarily the same as the air mass where precipitation forms at the 
cloud level. Studying the vertical gradient in INP concentrations in this region would hint at the link between 
these two vertical zones (e.g., He et al., 2020). The future investigation should also include investigations in 
physicochemical transformation of hydrometers and INPs, which might occur between the cloud height and the 
ground (e.g., Pereira et al., 2020), impact of aerosol dynamics and processing, effect of solutes to alter the 525 
freezing point (Whale et al., 2018), secondary ice formation, and cloud macrophysics addressed in Wright and 
Petters (2015 - Sects. 4.1 to 4.3). For instance, while assuming a constant CWC may be reasonable to study 
precipitation INPs (i.e., Sect. 2.5), it is necessary in the future to further investigate in cloud specific CWCs 
incorporating with loss of water through partial evaporation of raindrops during free fall based on vertical vapor 
deficit profiles to conclusively assess if this assumption is fair or not. Precipitation evaporation rate might 530 
introduce bias in nINP for precipitation systems with high cloud base, and the correction can be applied accordingly 
(Petters and Wright, 2015). Direct comparison between INP measurements in cloud water samples and those in 
precipitation samples might also be key to answer this question (e.g., Pereira et al., 2020). 

The precipitation intensity strongly depends on several other dynamical factors and thermodynamic 
conditions, including the land use, moisture levels, land surface temperatures, and convective available potential 535 
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energy. For instance, recent observational study showed that the irrigation practices in the Great Plains region 
had enhanced summer precipitation intensity (Alter et al., 2015) resulting an increase in the total precipitation 
received. Hence, it is not straightforward to link the precipitation intensity to the estimated INP concentrations 
and more future studies involving cloud level and surface level INP measurements might help in elucidating this 
problem. To assess the impact of INPs on precipitation properties (and vice versa), it is necessary to conduct the 540 
INP measurement of cloud water samples, aerosol particle characterizations below cloud, and more detailed 
analysis of precipitation-forming cloud properties as well as cloud height. More detailed scavenging analysis 
without many assumptions and limitations, such as assuming a constant scavenging rate over precipitation, 
limited particle size distributions, and assuming a well-mixed boundary layer, is also necessary to connect the 
surface observation to cloud level phenomenon. Diffusional scavenging of small particles may not contribute to 545 
IN unless they are highly ice active macromolecules or other small biological species. Regardless, robust aerosol 
particle size distribution data across the ground to cloud base segment would definitely complement to 
accurately and precisely estimate scavenging efficiencies. Some previous studies support the assumption of a 
well-mixed boundary layer near the study area. Further effort may be needed to characterize the climatology of 
boundary layer height in the West Texas region at different times of a day, as demonstrated in Schmid and Niyogi 550 
(2012) and Zhu et al. (2001). Incorporating more local specific vertical ambient profiles (lapse rate, Dong et al., 
2008) for further analysis would also be helpful. 

As for more future studies, INPs derived from precipitation samples collected over multiple years would 
give comprehensive insight into their impact on local precipitation systems. This work highlights this need for 
more precipitation-based INP studies from different geographical locations.  The reduced uncertainties in nINP 555 
along with the high INP detection sensitivity could help in addressing the long-debated issue of INP rarity at Ts ≥ 
-10 °C. 
 
4. Summary and Conclusion 
 560 
We have successfully estimated nINP (per liter of air) in the immersion freezing mode from different precipitation 
samples collected in Canyon, TX, USA during June 2018 – July 2019. IN spectra were derived for MPC T range (0 
to -25 °C) from four different precipitation types (snow, thunder/hailstorm, long-lasted rain, and weak rain) using 
a cold-stage instrument (WT-CRAFT). Our disdrometer measurements showed a clear variation in the 
precipitation properties among the four different categories of precipitation samples. Severe precipitation, such 565 
as hail/thunderstorms, had the highest rainfall intensity (mm hr-1) and the number of precipitation particles were 
highest in the snow samples. We also found an increased number of large hydrometeors (> 10 mm in diameter) 
in both the snow and hail/thunderstorm samples. In contrast, there were no precipitation particles > 6.5 mm in 
diameter observed in the weak rain samples. Our PM concentration measurements implied some possibilities of 
wet deposition (but neglected). The IN spectra from each precipitation category in this study were compared with 570 
the IN spectra from previous precipitation-based INP studies (Petters and Wright, 2015; Vali, 1986). We have 
found that nINP values from our precipitation samples match or exceed previously derived nINP from previous 
precipitation-based INP studies (Petters and Wright, 2015; Vali, 1986)precipitation. Notably, the high T (≥ -15 °C) 
INPs in some of our precipitation samples are in the same order of magnitude as what is reported in Vali (1986). 
Although we found no clear seasonal variations in nINP values, in part due to the limited number of samples, the 575 
analysis of yearlong ground level precipitation observations as well as INPs for the precipitation samples showed 
that the highest nINP at -25 °C of 1,130 L-1 coincided with a hail-involved severe thunderstorm event observed 
during the summer in 2018 (ID# 1). Similarly, the lowest cumulative INP at the same temperature, 3.0 INP L-1, was 



15 
 

 

found in another hail/thunderstorm samples collected in June, 2019 (ID# 37). The second lowest nINP (-25 °C) was 
found in one of our snow samples collected during the winter (ID# 23 = 3.2 INP L-1). Overall, our results showed 580 
that cumulative nINP in our precipitation samples below -20 °C could be high in the samples collected while 
observing > 10 mm hr-1 precipitation with the presence of notably large hydrometeor sizes. While our results 
cannot conclusively define the relationship between INPs and precipitation, our precipitation INP data is an 
important asset for understanding ambient INPs in the West Texas region, where a rural agricultural environment 
prevails.   585 

Our metagenomics results suggest the presence of marine genera Marinoscillum and Gilvimarinus in 
precipitation and cattle feedyard PM samples. These genera may have derived by an influence of air mass 
originating from maritime regions. Marine bacteria in inland sampling sites have been identified in previous 
studies (e.g., Cho and Jang, 2014). We also identified bacterial genera common in our precipitation as well as the 
local cattle feedyard dust samples, while the microbiome composition in one feedyard sample (Feedyard 3 in Fig. 590 
6) was considerably different from the microbiome composition in precipitation samples. The difference of the 
microbiomes in dry and wet deposition samples, suggesting a non-local origin of bioaerosols in precipitation, has 
also been observed previously over crops (Constantinidou et al., 1990), as well as in urban precipitation samples 
(Cho and Jang, 2014; Woo and Yamamoto, 2020). We also identified the similarity in bacterial microbiomes 
between our precipitation and local feedlot dust samples. While we cannot conclude if local cattle 595 
feedyardfeedlot dust contributes to precipitation formation, we also foundfind some indications of the inclusion 
of agricultural dust in our precipitation samples. Regardless, we did not find the previously known bacterial INPs, 
such as Pseudomonas and Xanthomonas (Morris et al., 2004) in either the precipitation or cattle feedyardfeedlot 
samples. To further seek a connection between local dust and precipitation, it is worthwhile to characterize the 
local cattle feedyard feedlot dust in cloud water samples, as it can be the source of INPs and may impact the local 600 
hydrological cycle. Collecting long-term pollen and other biogenic aerosol particles samples (i.e., Fungi and 
Archaea) and associated observational data for multiple years may add important knowledge regarding the role 
of local bioaerosols on precipitation INPs. Besides DNA analysis, analysis of RNA by metatranscriptomics will 
provide insights on the active life of the microbiome in clouds and precipitation. Ultimately, both DNA and RNA 
analysis of the microbe in ice crystal residuals would offer a direct link between naturally-occurring biological 605 
particles and INPs. 
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Figures 

 
Figure 1.  Time series of disdrometer and IoT sensor measurements for  (a) average T ± standard deviation, (b) average relative 
humidity ± standard deviation, (c) cumulative number of detected hydrometeors in each precipitation event, and (d) 
maximum, average, and minimum precipitation intensity. Each data point corresponds to the sampling start time for each 905 
precipitation event. 
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Figure 2. Size distribution of precipitation particles detected in (a) Snow, (b) Hail/Thunderstorm, (c) Long-lasted rain, and (d) 
Weak rain samples. A subset of distributions shows varying uncertainty in diameter (mm). The X-axis error bars are ±1.0 mm 910 
of size class for diameter < 2mm and ±0.5 mm of size class for diameter > 2mm. The Y-axis error bars represent standard errors at 
each diameter. The sub-total number of precipitation samples in each category is shown by the value of ‘n’.  
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 915 
Figure 3. (a) Time series of cumulative nINP (L-1 air) in each precipitation sample at different temperatures. (b) nINP for two 
precipitation samples (ID# 26 and 27) observed on the same day of 12 March 2019. The uncertainty in the average nINP at 
each temperature (± numbers in parentheses) is the standard error calculated for 42 samples. 
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Figure 4. IN spectra of (a) Snow, (b), Hail/Thunderstorm, (c) Long-Lasted rain, and (d) Weak rain samples superposed on 
nucleation spectra from previous precipitation INP studies (shaded areas). A subset of spectra shows error bars. The X-axis 

error bars represent constant uncertainty of ±0.5 °C in temperature. The Y-axis error bars are 95% confidence interval for 925 
nINP shown only for two samples from each category. The number of precipitation samples in each category is shown by the 
value of ‘n’. 
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 930 
Figure 5. Compiled IN spectra of our precipitation samples superposed on nucleation spectra from local cattle 
feedyardfeedlot dust study (shaded area). The cattle feedyardfeedlot INP data are adapted from Fig. 3 of Hiranuma et al. 
(2020). 
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Figure 6. Bacterial community  Metagenomics analysis of precipitation and cattle feedyard feedlot dust samples showing 
Relative Frequency (%) or abundance of Bacterial taxonomy. ‘Bkgr’ represents the 24-hour dry deposition blank sample 
(Sample# 34). Our fcattle feedyardeedlot samples are collected locally on March 28, 2019 (1), July 22, 2018 (2), July 23, 2018 940 
(3), and July 24, 2018 (4) – see Hiranuma et al. (2020). PCPT 1-4 corresponds to our Sample# 1, 2, 50, and 7, respectively.   
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Table 1. Adjacent hourly averaged PM values (with one decimal point) before and after each precipitation event. We 
excluded 14 data where PM data were not recorded due to technical issues etc. (ID# of 6-7, 17, 20, 22-24, 26, 28-33).
  945 

        PM1 (µg m-3)   PM2.5 (µg m-3)   PM10 (µg m-3) 

ID# Sample# Precipitation type   Before After   Before After   Before After 

1 PCPT_NSB_1 Hail/Thunderstorm   2.0 0.1   4.1 1.7   6.2 2.0 
2 PCPT_NSB_2 Hail/Thunderstorm   <0.1 0   1.8 <0.1   2.1 <0.1 
3 PCPT_NSB_5 Long-Lasted Rain   4.7 0.7   5.7 1.9   10.8 3.7 
4 PCPT_NSB_6 Long-Lasted Rain   3.8 3.8   6.0 5.7   8.9 8.6 
5 PCPT_NSB_7 Hail/Thunderstorm   0 N/A   0.6 N/A   0.7 N/A 
8 PCPT_NSB_10 Long-Lasted Rain   7.5 1.5   9.9 3.4   14.8 4.7 
9 PCPT_NSB_11 Weak Rain   5.8 3.8   8.2 6.2   12.8 9.4 

10 PCPT_NSB_15 Hail/Thunderstorm   14.3 4.0   16.1 5.1   30.8 9.3 
11 PCPT_NSB_16 Hail/Thunderstorm   4.9 N/A   5.4 N/A   10.5 N/A 
12 PCPT_NSB_17 Long-Lasted Rain   4.6 N/A   6.4 N/A   10.6 N/A 
13 PCPT_NSB_19 Weak Rain   <0.1 N/A   1.3 N/A   6.3 N/A 
14 PCPT_NSB_20 Long-Lasted Rain   1.8 N/A   4.3 N/A   5.9 N/A 
15 PCPT_NSB_23 Hail/Thunderstorm   3.9 2.2   5.7 5.7   9.6 7.2 
16 PCPT_NSB_24 Hail/Thunderstorm   1.6 0   5.0 <0.1   5.8 <0.1 
18 PCPT_NSB_26 Long-Lasted Rain   0.7 0   2.8 0   3.2 0 
19 PCPT_NSB_27 Snow Sample   0 N/A   <0.1 N/A   0.1 N/A 
21 PCPT_NSB_30 Snow Sample   0.8 0   2.6 0.3   3.2 0.3 
25 PCPT_NSB_46 Weak Rain   1.5 0   4.5 1.2   5.4 1.2 
27 PCPT_NSB_48 Hail/Thunderstorm   0 0   0.4 <0.1   0.4 <0.1 
34 PCPT_NSB_57 Hail/Thunderstorm   29.6 13.5   29.6 13.8   58.9 26.6 
35 PCPT_NSB_58 Hail/Thunderstorm   12.5 0.7   13.2 1.4   24.4 2.9 
36 PCPT_NSB_59 Long-Lasted Rain   10.5 6.9   11.5 7.9   21.2 12.9 
37 PCPT_NSB_60 Hail/Thunderstorm   9.7 3.4   10.7 4.4   18.8 7.3 
38 PCPT_NSB_61 Long-Lasted Rain   4.4 0.2   5.9 1.2   10.1 2.1 
39 PCPT_NSB_62 Hail/Thunderstorm   <0.1 N/A   1.6 N/A   1.8 N/A 
40 PCPT_NSB_63 Hail/Thunderstorm   2.2 1.4   4.3 2.5   6.5 4.8 
41 PCPT_NSB_65 Hail/Thunderstorm   1.7 0   4.0 0.3   5.3 0.3 
42 PCPT_NSB_66 Hail/Thunderstorm   1.8 0.1   2.9 1.5   5.8 1.5 

NOTE: N/A: either below detection sensor failure return values (i.e., detection limit of our PM sensor). 
Table 1. Adjacent hourly averaged PM values before and after each precipitation event. We excluded 14 data where PM 
data were not recorded due to technical issues etc. (ID# of 6-7, 17, 20, 22-24, 26, 28-33).  

        PM1 (µg m-3)   PM2.5 (µg m-3)   PM10 (µg m-3) 

ID# Sample# Precipitation type   Before After   Before After   Before After 

1 PCPT_NSB_1 Hail/Thunderstorm   1.969 0.111   4.090 1.693   6.188 1.990 
2 PCPT_NSB_2 Hail/Thunderstorm   0.010 0   1.811 0.001   2.111 0.001 
3 PCPT_NSB_5 Long-Lasted Rain   4.667 0.660   5.734 1.947   10.790 3.690 
4 PCPT_NSB_6 Long-Lasted Rain   3.755 3.755   5.956 5.721   8.867 8.580 
5 PCPT_NSB_7 Hail/Thunderstorm   0 N/A   0.557 N/A   0.723 N/A 
8 PCPT_NSB_10 Long-Lasted Rain   7.479 1.495   9.894 3.409   14.771 4.742 
9 PCPT_NSB_11 Weak Rain   5.760 3.812   8.165 6.190   12.770 9.436 

10 PCPT_NSB_15 Hail/Thunderstorm   14.289 4.020   16.078 5.124   30.794 9.277 
11 PCPT_NSB_16 Hail/Thunderstorm   4.913 N/A   5.423 N/A   10.534 N/A 
12 PCPT_NSB_17 Long-Lasted Rain   4.551 N/A   6.414 N/A   10.633 N/A 
13 PCPT_NSB_19 Weak Rain   0.049 N/A   1.283 N/A   6.301 N/A 
14 PCPT_NSB_20 Long-Lasted Rain   1.780 N/A   4.312 N/A   5.890 N/A 
15 PCPT_NSB_23 Hail/Thunderstorm   3.867 2.167   5.740 5.740   9.551 7.235 
16 PCPT_NSB_24 Hail/Thunderstorm   1.592 0   4.984 0.003   5.786 0.003 
18 PCPT_NSB_26 Long-Lasted Rain   0.657 0   2.830 0   3.192 0 
19 PCPT_NSB_27 Snow Sample   0 N/A   0.011 N/A   0.080 N/A 
21 PCPT_NSB_30 Snow Sample   0.760 0   2.627 0.275   3.180 0.275 
25 PCPT_NSB_46 Weak Rain   1.461 0   4.525 1.233   5.449 1.233 
27 PCPT_NSB_48 Hail/Thunderstorm   0 0   0.427 0.002   0.427 0.002 
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34 PCPT_NSB_57 Hail/Thunderstorm   29.649 13.515   29.649 13.770   58.946 26.604 
35 PCPT_NSB_58 Hail/Thunderstorm   12.450 0.680   13.245 1.400   24.390 2.860 
36 PCPT_NSB_59 Long-Lasted Rain   10.515 6.912   11.516 7.918   21.192 12.892 
37 PCPT_NSB_60 Hail/Thunderstorm   9.740 3.423   10.661 4.396   18.750 7.269 
38 PCPT_NSB_61 Long-Lasted Rain   4.396 0.192   5.912 1.215   10.069 2.051 
39 PCPT_NSB_62 Hail/Thunderstorm   0.039 N/A   1.555 N/A   1.804 N/A 
40 PCPT_NSB_63 Hail/Thunderstorm   2.217 1.365   4.348 2.479   6.533 4.781 
41 PCPT_NSB_65 Hail/Thunderstorm   1.694 0   3.994 0.316   5.306 0.316 
42 PCPT_NSB_66 Hail/Thunderstorm   1.750 0.080   2.881 1.459   5.771 1.530 

NOTE: N/A: either below detection limit of our PM sensor (< 0.001 µg m-3) or sensor failure return values. 

 950 
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Supplemental Information 
 15 
S1. Precipitation and Particulate Matter Properties 
 
S1.1 Precipitation Categorization 
In this study, we have segregated our precipitation samples into four different categories, such as (1) 
snow, (2) hails/thunderstorm, (3) long-lasted rain, and (4) weak rain, based on our disdrometer observation 20 
of precipitation. For this categorization, we have considered both our visual observation and the disdrometer-
assigned National Weather Service (NWS) code. Initially, the precipitation samples had been assigned one of the 
four categories based on our visual observation. NextIn the next step, we have used each NWS code and its 
occurrence in each precipitation sample to finalize the precipitation category. For example, a precipitation sample 
was categorized into snow only when we identified a snow type NWS code (Snow: S-, S, S+ and/or Snow Grains: 25 
SG). Likewise, a precipitation sample was categorized into hail/thunderstorm when the cumulative sum of NWS 
codes for hail was counted more than five times (i.e., A + SP ≥ 5; where A and SP are the codes for soft hail and 
hail, respectively). This limit of five was chosen arbitrarily. If there existed no snow and/or hail type NWS codes, 
we defined the category as we observed, thus falling in either long-lasted or weak rain category. Overall, we 
acquired 6 snow, 18 hail/thunderstorm, 13 long-lasted rain, and 5 weak rain samples for the sampling period of 30 
June 2018 – July 2019. 
 Table S1 gives the detailed information about the collected precipitation samples. The ID# 
column goes from 1-42. The column of ‘Sample#’ is the precipitation sample number in the chronological 
order. The missing precipitation sample numbers are the ones which collected a negligible amount of 
precipitation (typically < 1 ml). This amount is too small to carry out the West Texas Cryogenic Refrigerator 35 
Applied to Freezing Test (WT-CRAFT) ice-nucleating particle (INP) measurements. The amount of 
precipitation collected (in ml) is presented in Table S1. This table also includes the meteorological season 
in which each precipitation was observed and collected. 
 
S1.2 Disdrometer and IoT Measurements 40 
We have measured the ambient meteorological properties, particulate matter (PM) concentrations and 
precipitation properties including the intensity and number of precipitation particles using OTT Parsivel2 
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Laser disdrometer and Internet of Things (IoT) PM sensors.  The average temperature (T), relative 
humidity, PM concentrations, and intensity measured during each precipitation event are shown in Table 
S2. The overall average values calculated for the entire sampling period (i.e., June 2018 – July 2019) for 45 
T and relative humidity are 17.7 ± 15 °C and 46.5 ± 12.3 %, respectively. The maximum and minimum 
intensities observed during each precipitation sampling are also shown in Table S2. The cumulative 
number of detected particles is the total number of precipitation particles measured by a disdrometer 
in each precipitation sample. Table S3 shows the average, maximum and minimum intensity (mm hr-1), 
number of detected particles, and mode and maximum hydrometeor size in diameter (mm) for each 50 
precipitation category. 
 
Table S1. Summary of the Precipitation Categories and sampling periods. 

ID# Sample# 
Start Date 

(Local Time) 
End Date 

(Local Time) 
Season 

Volume 
Collected (ml) 

NWS Code* Precipitation Type 

 

1 PCPT_NSB_1 6/12/2018 0:30 6/13/2018 9:30 
 

13 C, R-, SP, R, R+, A Hail/Thunderstorm 

2 PCPT_NSB_2 6/13/2018 10:42 6/17/2018 13:50 
 

15 C, R, R-, R+, A, SP, RL- Hail/Thunderstorm 

3 PCPT_NSB_5 6/30/2018 12:35 7/3/2018 9:35 
 

3 C, R-, R, R+, A, RL-, L- Long-Lasted Rain 

4 PCPT_NSB_6 7/3/2018 9:40 7/6/2018 19:40 
 

3 C, R-, R, A, R+, RL- Long-Lasted Rain 

5 PCPT_NSB_7 7/13/2018 16:40 7/14/2018 8:05 
 

5.1 C, R, R+, A, R-, RL-, SP Hail/Thunderstorm 

6 PCPT_NSB_8 7/14/2018 8:10 7/16/2018 13:20 Summer 20 C, R, R-, R+, A, RL- Hail/Thunderstorm 

7 PCPT_NSB_9 7/16/2018 13:30 7/17/2018 18:25 
 

3.5 C, R-, R, R+, A, SP, RL- Long-Lasted Rain 

8 PCPT_NSB_10 7/25/2018 0:30 7/26/2018 10:50 
 

5 C, R-, R, R+, RL- Long-Lasted Rain 

9 PCPT_NSB_11 7/26/2018 11:00 7/30/2018 5:09 
 

1 C, R-, R, R+, RL- Weak Rain 

10 PCPT_NSB_15 8/14/2018 8:20 8/16/2018 18:40 
 

5 C, R-, R, R+, A, SP Hail/Thunderstorm 

11 PCPT_NSB_16 8/16/2018 18:50 8/17/2018 8:20 
 

10 C, R-, R, R+, A, RL- Hail/Thunderstorm 

12 PCPT_NSB_17 8/17/2018 8:30 8/20/2018 8:00 
 

15 C, R-, R, R+,  RL+, RL-, L-, A Long-Lasted Rain 
 55 

13 PCPT_NSB_19 9/2/2018 12:00 9/5/2018 12:00 
 

1 C, R-, RL-, R Weak Rain 

14 PCPT_NSB_20 9/10/2018 8:10 9/21/2018 12:30 
 

4 C, R-, R, SP, RL- Long-Lasted Rain 

15 PCPT_NSB_23 10/5/2018 0:30 10/6/2018 10:00 Fall 8 C, SP, A, R+, R, R-, RL-, L- Hail/Thunderstorm 

16 PCPT_NSB_24 10/6/2018 10:10 10/14/2018 10:30 
 

34 C, R-, R, R+, RL-, L-,  A, SP, L+ Hail/Thunderstorm 

17 PCPT_NSB_25 10/14/2018 10:35 10/21/2018 13:30 
 

8 C, RL-, S-, S, SP, L-, R,  R+, RL+ Snow Sample 

18 

19 

PCPT_NSB_26 

PCPT_NSB_27 

10/21/2018 13:35 

11/5/2018 8:00 

10/28/2018 16:45 

11/21/2018 13:55 

 
2.5 

7 

C, R-, RL-, R, R+,  SP, L- 

C, RL-, R-, L-,  SP, S-, S+, S 

Long-Lasted Rain 

Snow Sample 
 

20 PCPT_NSB_29 12/14/2018 15:26 12/26/2018 12:40 
 

3.5 C, RL-, L-, R-, R, R+, SP Long-Lasted Rain 

21 PCPT_NSB_30 12/26/2018 12:50 12/27/2018 21:50  3.5 C, R-, RL-, L-, SP, RLS-, S-, S, S+ Snow Sample 

22 PCPT_NSB_31 12/27/2018 10:00 12/28/2018 13:45 Winter 1.5 C, SP, S-, RL-, S, S+, R- Snow Sample 

23 

24 

PCPT_NSB_32 

PCPT_NSB_43 

12/28/2018 13:55 

2/21/2019 18:30 

12/29/2018 14:08 

2/23/2019 10:45 

 
1 

2.5 

C, S-, SP, L- 

C, R-, R, RL-, R+, A, RLS-,  L- 

Snow Sample 

Snow Sample 
 

25 PCPT_NSB_46 3/11/2019 18:00 3/12/2019 9:45 
 

1.5 C, RL-, R-, L-, R, R+ Weak Rain 

26 PCPT_NSB_47 3/12/2019 9:50 3/12/2019 18:15 
 

5 C, R-, RL-, R, R+,  A, L- Weak Rain 

27 PCPT_NSB_48 3/12/2019 18:20 3/13/2019 10:00  12.2 C, L-, RL-, R-, R, R+,  SP Hail/Thunderstorm 

28 PCPT_NSB_49 3/19/2019 18:38 3/20/2019 8:50 
 

5 C, R-, RL-, R, A, R+ Long-Lasted Rain 

29 PCPT_NSB_51 4/17/2019 12:40 4/18/2019 10:10 
 

7.4 C, R-, R, SP, R+, RL- Hail/Thunderstorm 

30 PCPT_NSB_52 4/22/2019 17:25 4/23/2019 10:10    Spring 7.3 C, R-, RL-, R, L-, R+ Long-Lasted Rain 

31 

32 

33 

34 

35 

36 

PCPT_NSB_54 

PCPT_NSB_55 

PCPT_NSB_56 

PCPT_NSB_57 

PCPT_NSB_58 

PCPT_NSB_59 

4/28/2019 10:30 

4/30/2019 18:50 

5/3/2019 14:40 

5/23/2019 9:00 

5/26/2019 14:20 

5/27/2019 11:40 

4/30/2019 18:45 

5/3/2019 14:35 

5/20/2019 8:40 

5/26/2019 14:30 

5/27/2019 11:35 

6/1/2019 12:30 

 
2.1 

1.8 

6.2 

3.4 

7.4 

7.5 

C, RL-, R-, L-, R, SP, A, R+ 

C, L-, RL-,  R-, R, R+ 

C, L-, R-, R, R+, RL-, SP, A,  RLS- 

C, R, R-, RL-, A, SP, R+, RL+,  L- 

C, R-, R, RL-, R+, A,  SP, L- 

C, R-, R, A, R+, RL-, L- 

Long-Lasted Rain 

Weak Rain 

Hail/Thunderstorm 

Hail/Thunderstorm 

Hail/Thunderstorm 

Long-Lasted Rain 
 

37 PCPT_NSB_60 6/1/2019 12:35 6/2/2019 12:20 
 

17.5 C, R-, RL-, R, R+, A, SP, L- Hail/Thunderstorm 

38 PCPT_NSB_61 6/2/2019 12:25 6/4/2019 11:50 
 

3 C, R-, RL-, R, R+ Long-Lasted Rain 

39 PCPT_NSB_62 6/4/2019 12:00 6/8/2019 11:40   Summer 3 C, R-, RL-, R, R+, SP, L- Hail/Thunderstorm 

40 PCPT_NSB_63 6/8/2019 11:50 6/14/2019 11:50 
 

7.2 C, RL-, L-, R-, SP, R, R+, A Hail/Thunderstorm 

41 PCPT_NSB_65 6/16/2019 12:15 6/19/2019 12:45 
 

5 C, R-, SP, RL-, R, L-, R+, A Hail/Thunderstorm 

42 PCPT_NSB_66 7/5/2019 19:40 7/6/2019 15:30 
 

25 C, R-, R, R+, SP, A, RL- Hail/Thunderstorm 



3 
 

 

*The NWS Code column in the above table shows the assigned precipitation code to each event. The codes are defined as C: no rain; RL, RL+, RL-, L, L+, L-: drizzle; R, R+, R-: rain; 
A, SP: hail and/or soft hail; and S, S+, S-, RLS: snow and/or snow with rain.60 
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Table S2. Summary of the precipitation properties and meteorological parameters during the sampling. 

ID# Sample# Precipitation Type Average T (℃) ± 
standard dev. 

Average RH (%) ± 
standard dev. 

Cumulative No. 
of detected 

particles 

Average Intensity 
(mm hr-1) ±  

standard error 

Maximum 
Intensity 
(mm hr-1) 

Minimum 
Intensity 
(mm hr-1) 

17 PCPT_NSB_25  8.55 ± 8.62 51.94 ± 11.49 2.49E+05 1.00 ± 0.04 21.47 0.01 

19 PCPT_NSB_27  4.26 ± 10.33 41.00 ± 3.38 6.58E+05 2.96 ± 0.10 26.68 0.01 

21 PCPT_NSB_30 Snow  2.53 ± 5.92 54.56 ± 10.30 1.68E+05 1.16 ± 0.06 14.21 0.02 

22 PCPT_NSB_31  -3.09 ± 4.83 47.35 ± 5.03 7.25E+04 1.03 ± 0.06 7.42 0.14 

23 PCPT_NSB_32  -6.50 ± 6.70 53.83 ± 6.24 1.07E+04 0.33 ± 0.01 1.12 0.01 

24 PCPT_NSB_43  2.40 ± 5.23 56.00 ± 8.78 4.16E+04 1.12 ± 0.11 22.58 0.05 

1 PCPT_NSB_1  29.76 ± 12.94 46.70 ± 11.90 2.76E+04 11.08 ± 0.94 67.33 0.05 

2 PCPT_NSB_2  29.61 ± 8.79 46.92 ± 12.37 8.48E+04 5.97 ± 0.57 83.89 0.03 

5 PCPT_NSB_7  21.57 ± 3.87 58.81 ± 9.28 1.53E+04 3.95 ± 0.49 40.27 0.03 

6 PCPT_NSB_8  32.41 ± 11.19 — 7.7E+04 8.60 ± 0.66 105.53 0.04 

10 PCPT_NSB_15  31.90 ± 11.60 53.34 ± 12.37 3.33E+04 3.69 ± 0.37 85.30 0.04 

11 PCPT_NSB_16  25.47 ± 6.30 52.69 ± 5.75 4.75E+04 5.52 ± 0.65 90.45 0.03 

15 PCPT_NSB_23  21.76 ± 10.88 58.87 ± 10.50 2.9E+04 11.63 ± 1.51 80.67 0.02 

16 PCPT_NSB_24  11.72 ± 6.31 66.17 ± 7.63 3.49E+05 2.88 ± 0.17 110.49 0.01 

27 PCPT_NSB_48 Hail/Thunderstorm 7.00 ± 2.91 66.16 ± 9.43 7.63E+04 2.67 ± 0.12 19.90 0.01 

29 PCPT_NSB_51  12.12 ± 9.11 57.10 ± 10.60 3.83E+04 2.23 ± 0.08 9.64 0.04 

33 PCPT_NSB_56  20.03 ± 11.31 51.37 ± 13.12 1.96E+05 2.47 ± 0.12 83.20 0.01 

34 PCPT_NSB_57  21.62 ± 8.19 63.98 ± 8.39 1.37E+04 3.33 ± 0.54 65.64 0.02 

35 PCPT_NSB_58  21.51 ± 7.01 68.47 ± 8.03 3.29E+04 6.56 ± 0.98 103.17 0.02 

37 PCPT_NSB_60  23.57 ± 11.35 57.97 ± 11.33 8.88E+04 5.69 ± 0.34 56.77 0.01 

39 PCPT_NSB_62  25.48 ± 10.80 56.46 ± 10.06 3.52E+04 1.33 ± 0.10 25.75 0.02 

40 PCPT_NSB_63  24.20 ± 10.62 47.64 ± 11.15 2.43E+04 6.93 ± 1.50 129.25 0.01 

41 PCPT_NSB_65  27.02 ± 10.82 52.40 ± 11.07 2.05E+04 3.34 ± 0.40 60.46 0.01 

42 PCPT_NSB_66  22.50 ± 6.03 58.59 ± 8.88 9.48E+04 7.00 ± 0.34 88.18 0.04 

3 PCPT_NSB_5  30.67 ± 9.62 46.25 ± 10.57 1.16E+04 3.72 ± 0.54 34.77 0.04 

4 PCPT_NSB_6  33.69 ± 9.60 42.19 ± 9.94 1.35E+04 10.51 ± 1.20 40.76 0.07 

7 PCPT_NSB_9  34.89 ± 12.21 30.76 ± 0.74 1.67E+04 5.77 ± 0.64 34.37 0.04 

8 PCPT_NSB_10  30.23 ± 10.32 44.30 ± 11.62 5.23E+04 3.06 ± 0.14 13.06 0.04 

12 PCPT_NSB_17  28.71 ± 10.98 52.15 ± 9.98 7.14E+04 7.85 ± 0.66 74.67 0.03 

14 PCPT_NSB_20  26.51 ± 9.01 54.43 ± 10.91 2.77E+04 0.96 ± 0.06 6.85 0.02 

18 PCPT_NSB_26 Long-Lasted Rain 14.81 ± 10.75 51.91 ± 11.22 2.04E+05 0.89 ± 0.03 12.64 0.02 

20 PCPT_NSB_29  5.94 ± 8.97 41.51 ± 11.64 2.07E+04 1.74 ± 0.21 28.48 0.01 

28 PCPT_NSB_49  4.42 ± 2.28 57.95 ± 5.32 7.69E+04 1.13 ± 0.05 12.65 0.02 

30 PCPT_NSB_52  9.57 ± 1.66 65.47 ± 4.02 1.26E+05 1.17 ± 0.05 9.23 0.01 

31 PCPT_NSB_54  18.32 ± 10.31 52.92 ± 11.46 2.42E+04 1.19 ± 0.32 86.29 0.01 

36 PCPT_NSB_59  24.66 ± 11.30 48.02 ± 14.00 6.3E+04 3.35 ± 0.28 69.13 0.02 

38 PCPT_NSB_61  26.91 ± 8.74 57.18 ± 9.31 2.02E+04 2.83 ± 0.21 19.25 0.03 

9 PCPT_NSB_11  31.21 ± 10.43 48.01 ± 10.87 1.27E+04 2.12 ± 0.21 9.09 0.03 

13 PCPT_NSB_19  27.99 ± 9.41 51.91 ± 11.35 1.04E+04 1.05 ± 0.07 4.01 0.03 

25 PCPT_NSB_46 Weak Rain 3.54 ± 0.77 68.65 ± 1.14 1.15E+04 2.17 ± 0.45 31.44 0.03 

26 PCPT_NSB_47  8.86 ± 2.91 70.68 ± 2.29 3.9E+04 2.05 ± 0.37 83.67 0.01 

32 PCPT_NSB_55  16.14 ± 10.16 61.02 ± 12.75 1.71E+04 0.21 ± 0.06 15.60 0.01 
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Table S3. Summary of the precipitation Intensity and Particles Size. 

    

 
Precipitation 

Properties 
 

    

Precipitation Type 

Average 
Intensity 
(mm hr-1) 

± standard 
error 

Maximum 
Intensity 
(mm hr-1) 

Minimum 
Intensity 
(mm hr-1) 

Average No. 
of detected 

precipitation 
particles 

± 
standard 

error 

Maximum 
No. 

of detected 
precipitation 

particles 

Minimum 
No. 

of detected 
precipitation 

particles 

Hydrometeor 
Mode 

diameter 
(mm) 

Maximum  
diameter of 

hydrometeor 
(mm) 

 

Snow 
*(n=6) 

 
1.27E+00 

± 
3.61E-01 

26.68 0.01 
2E+05 

± 
2E+02 

6.58E+05 1.07E+04 0.44 17 

Hail/Thunderstorm  
(n=18) 

5.27E+00 ± 
7.01E-01 

129.25 0.01 

7.13E+04 
± 

1.93E+04 
 

3.49E+05 1.37E+04 0.44 17 

Long-Lasted Rain  
(n=13) 

3.4E+00 ± 
8.26E-01 

86.29 0.01 

5.6E+04 
± 

1.54E+04 
 

2.04E+05 1.16E+04 0.44 17 

Weak Rain  
(n=5) 

1.52E+00 ± 
3.86E-01 

83.67 0.01 

1.81E+04 
± 

5.35E+03 
 

3.9E+04 1.04E+04 0.31 5.5 

 * n is the number of samples in each precipitation category. 

 65 

 

 

 

 

 70 
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S2. Cooling Rate Dependency and Time Trial Test 
S2.1. Cooling Rate Dependency Test 75 

For this study, we have cooled the 3 µL volumesuper microliter droplets from all our precipitation samples in 
the WT-CRAFT system at a cooling rate of 1 °C min-1. However, we observe a rapid cooling rate of 2-3 °C min-1 
in the invigorating convective systems like hurricanes and thunderstorms depending on the vertical updrafts in 
that weather system. This variation in the cooling rate was mimicked at laboratory conditions by conducting 
our immersion freezing tests at different cooling rates. To understand the effect of different cooling rates on 80 
INP measurements, we have selected a hail/thunderstorm sample (ID# 16), which was observed during the 
landfall of Hurricane Michael in 2018. Figure S1 shows the frozen fraction curves and nINP values for this chosen 
sample at three different cooling rates (i.e., at 1, 2, and 3°C min-1). Throughout this test, the T discrepancy was 
within the system’s uncertainty (i.e., ±0.5°C). 

A slight decrease in freezing activity (within a factor of 2-3) was observed with an increase in cooling 85 
rate as shown in Fig. S1. This negligible variation in the freezing behavior highlights that the sensitivity of 
freezing to ∆T (°C) is much higher compared to ∆t (min), supporting previous simulation studies (Ervens and 
Feingold, 2013). This result also supports our assumption for this study, that freezing activity is independent of 
time following the singular freezing theory (Niedermeier et al., 2011). 

 90 
 
Figure S1. The cooling rate dependency tests for a hail/thunderstorm sample (ID# 16) showing (a) frozen fraction curves, the 
dash-dot curves are for a serial dilution fold of 100 and (b) nINP curves. The X-axis error bars represent constant uncertainty 
of ±0.5 °C in temperature. The Y-axis error bars show the 95% confidence interval for nINP shown only for one test here. 

S2.2.  Time Trial Test 95 
There was a time gap between our sample collection day and the day of droplet freezing assay measurements. 
The effect of this delay in measurements on immersion freezing propensity was examined by systematically 
carrying out time trail tests on a hail/thunderstorm sample (ID# 16). Initially the samples were stored at 4 °C in 
the refrigerator from the day of sample collection until we conducted droplet freezing assay measurements. 
Multiple immersion freezing experiments were carried out for the same sample every two weeks since the first 100 



7 
 

 

droplet freezing assay measurement. Overall, three- time trial tests were conducted on hail/thunderstorm 
sample (ID# 16) over a period of one month.  
 We observed a slight decrease in the freezing efficiency with the time (Fig. S2), but not more than a factor 
of 3-4. Therefore, these results showed that our immersion freezing measurements were not affected by the 
delay in droplet freezing assay experiments, agreeing with the previous studies, such as Murray et al. (2012). 105 

 
Figure S2. The time trial tests for a hail/thunderstorm sample (ID# 16) showing (a) frozen fraction curves, the dotted curves 
are for a serial dilution fold of 100 and (b) nINP curves. The X-axis error bars represent constant uncertainty of ±0.5 °C in 
temperature. The Y-axis error bars show the 95% confidence interval for nINP shown only for one test here. 

 110 
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S4. INP Variation with Precipitation Category 
 
Table S4. Summary of precipitation category-wise average and maximum nINP. 

 nINP (L-1 STP) values 

Precipitation 
Type 

(nINP)max 
 

at -5℃ 

(nINP)max 
 

at -10℃ 

(nINP)max 
 

at -
15℃ 

(nINP)max 
 

at -
20℃ 

(nINP)max 
 

at -
25℃ 

 

Average 
nINP ± 

standard  
error 

at -10℃ 

Average 
nINP ± 

standard 
error 

at -15℃ 

Average 
nINP ± 

standard 
error 

at -20℃ 

Average  
nINP ± 

standard 
error 

at -25℃ 

Snow 

*(n=6) 
3.46E-02 1.62E+00 

2.98E+

00 

1.62E+

01 

6.50E+

01 
 4.38E-01 ± 

2.98E-01 

7.84E-01 ± 

4.47E-01 

5.74E+00 ± 

2.46E+00 

2.90E+01 ± 

1.00E+01 

Hail/Thunde

rstorm 

(n=18) 

1.13E-01 9.88E-01 
2.51E+

00 

1.61E+

01 

1.13E+

03 
 1.43E-01 ± 

5.76E-02 

5.46E-01 ± 

1.71E-01 

4.17E+00 ± 

1.19E+00 

1.18E+02 ± 

6.42E+01 

Long-Lasted 

Rain 

(n=13) 

5.84E-03 2.89E-01 
1.4E+0

0 

5.84E+

00 

1.32E+

02 
 9.51E-02 ± 

2.67E-02 

3.15E-01 ± 

1.07E-01 

2.25E+00 ± 

5.59E-01 

4.72E+01 ± 

1.21E+01 

Weak Rain 

(n=5) 
5.84E-02 6.50E-01 

1.00E+

00 

4.74E+

00 

2.05E+

02 
 1.97E-01 ± 

1.52E-01 

3.10E-01 ± 

1.81E-01 

1.34E+00 ± 

8.57E-01 

4.60E+01 ± 

3.99E+01 

* n is the number of samples in each precipitation category. 

 115 
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S4. Wet Deposition 
 120 
This section explains potential implications of aerosol particle scavenging in our precipitation data. First, we have 
assessed the hourly averaged PM values right before vs. after 28 precipitation events, which had relevant PM 
data. Our measurements of PM1, PM2.5, and PM10 are summarized in Table 1 of the main manuscript. As seen in 
the table, we confirm the trend of PM reduction for all three PM categories after precipitation in part due to 
scavenging.  125 

Second, using the PM data measured before precipitation (typically an hour prior or the most adjacent 
data to each precipitation event) in Table 1, we estimated the “first order” impact of wet deposition – i.e., 
estimating the amount of scavenged aerosol particle mass, Msv (µg m-3), during each precipitation event. In the 
first step of this estimation, we converted our PM data into three size-segregated bins with different median 
diameters (MDs), including PM1-PM0 (MD = 0.5 µm), PM2.5-PM1 (MD = 1.75 µm), and PM10-PM2.5 (MD = 6.25 µm). 130 
This conversion was implemented to incorporate with the fact that aerosol particle scavenging efficiencies vary 
for different aerosol particle sizes. The resulting size-segregated data were used as the ground level aerosol 
particle mass, Mgl (µg m-3), in this analysis. Subsequently, we estimated the mass concentration of aerosol 
particles below cloud, Mbc (µg m-3), by the pressure scaling method (Eqns. 11-30 of Ch. 11 in Pruppacher and Klett, 
2010), assuming a well-mixed boundary layer around West Texas, which is part of Southern Great Plains (SGP) 135 
(Delle Monache et al., 2004; Schmid and Niyogi, 2012; Zhu et al., 2001). It is important to note that Delle Monache 
et al. (2004) found that aerosol measurements made at the surface are representative of those within the 
atmospheric boundary layer at SGP. Since Dong et al. (2008) previously showed a typical cloud base height in the 
range of 0.5 – 3.0 km above ground level (AGL) for the SGP region, we estimated Mbc at 0.5 km (Mbc,0.5km) and 3.0 
km (Mbc,3.0km) to cover a reasonable range of Mbc. On average, the relative difference between Mbc,0.5km and Mbc,3.0km) 140 
is ≈14%, which is smaller than our PM sensor error (±27%). Further, a lapse rate of -7.1 °C km-1, which is 
representative for the SGP region according to Dong et al. (2008), was used as part of our Mbc calculation, 
assuming this number holds true for the entire SGP region including West Texas region. We also estimated the 
column-integrated mean mass concentration, Mcm (µg m-3), of the surface - 3.0 km AGL. We examined 
precipitation scavenging of particles using both Mbc and Mcm as an original aerosol particle mass parameter, M0, 145 
to estimate Msv. The summary of our size-segregated M0 is provided in Table S5. 

Third, we computed the scavenging coefficient (Λ, s-1) for each precipitation event as a function of aerosol 
particle size (d, µm), for which we used our PM MDs, and precipitation intensity (R, mm/h). In particular, to obtain 
our Λ values, we used the parameterization method described in Wang et al. (2014). Briefly, the scavenging rate, 
Λ, is governed by Eqn. 4 of Wang et al. (2014); 150 
 

𝑙𝑜𝑔10(𝛬(𝑑, 𝑅)) = 𝑙𝑜𝑔10(𝐴(𝑑)) + 𝐵(𝑑)(𝑙𝑜𝑔10𝑅),      [Eqn. S1] 

 
where A is the hydrometeor-specific effective cross section area coefficient (s-1), B is the coefficient governing 
the regression slope between R and Λ, in which both A and B are as a function of d. We note that our 155 
parameterization was performed for snow and non-snow precipitation (i.e., rain) separately. In short, Eqns. 6 and 
8 in Wang et al. (2014) were applied to derive the A values of rain and snow, respectively. Likewise, the regression 
slope coefficient, B, was derived using Eqns. 7 and 9 in Wang et al. (2014) for rain and snow individually. The 
resulting Λ values and all coefficients are summarized in Table S6. It is noteworthy that Wang et al. (2014) reports 



10 
 

 

up to ±50% uncertainty in their parameterization, especially for snow and aerosol particle size between 1 and 4 160 
µm in diameter. 

Fourth, following the Seinfeld and Pandis textbook chapter (1996, Ch. 20.3: precipitation scavenging of 
particles), we estimated Msv (assuming a constant Λ over precipitation) as follows, 
 
𝑀𝑠𝑣 = 𝑀0 − 𝑀𝑡 = 𝑀0 − 𝑀0𝑒−𝛬𝑡,        [Eqn. S2] 165 
 
in which, Mt is the amount of aerosol particle mass per unit volume of air after t seconds of precipitation. Thus, 
the amount of aerosol particle mass concentration removed by scavenging is estimated as M0 - Mt. The summary 
of size-resolved and summed Msv is provided in Table S7. We note that the estimated scavenging efficiencies of 
snow are relatively high compared to those of rain as expected (IDs #19 and #21 in Table S6 – almost all 170 
scavenged). However, the Msv values of these IDs are not substantially higher compared to those of other rain 
samples in part due to low M0 (Table S5). As we found in M0, the relative difference between Mbc_0.5km and Mbc_0.5km 
is on average < 15%. 

Finally, we assessed the impact of Msv on INP by estimating the INP concentration of scavenged aerosol 
particles as a function of T, nINP,sv(T), using the modified version of Eqn. 1equation presented in Hiranuma et al. 175 
(2020);  
 

𝑛𝐼𝑁𝑃,𝑠𝑣(𝑇)(𝐿−1) = 𝑛𝑠,𝑔𝑒𝑜(𝑇)(𝑚−2) × 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑆𝑆𝐴 (
𝑚2

𝑔
)  × 𝑀𝑠𝑣  (

𝑔

𝐿
),   [Eqn. S3] 

 
where ngeo(T) is ice nucleation active surface site density derived using the ns,geo(T) parameterization given in Table 180 
5 (Eqn. Field_Min) of Hiranuma et al. (2020; Eqn. Field_Min), geometric SSA value is approximately 0.4 m2g-1 as 
described in Hiranuma et al. (2020), Msv is based on our Mgl, Mbc_0.5km, Mbc_3.0km, and Mcm. Though other ngeo(T) 
parameterizations may also be applicable, using this particular parameterization might be fair for the following 
three reasons; (1) this parameterization is derived from PM10 mass concenrtration data in somewhat similar 
manner, (2) organic dominant agricultural dust is a predominant local PM10 source in West Texas throughout the 185 
year (411.6 ± 3.0 µg m-3 Hiranuma et al., 2020) and, thus, may largely contribute to Msv, (3) we observed that the 
INP propensity measured during our recent field campaign, called the TxTEST campaign held in West Texas in 
2019, exhibits very similar features to what is seen in the Field_Min parameterization as well as Fig. 3 of Hiranuma 
et al. (2020) (not shown but the data are available upon request, Hiranuma et al., in prep.).   

Table S8 shows the average nINP,sv(T) at four different Ts based on scavenged mass (Msv,M0) simulated with 190 
four different M0 values, including PM10 measured at ground level, gl, estimated PM10 for below cloud at 0.5 km 
AGL, bc_0.5km, as well as 3.0 km AGL, bc_3.0km, and column-integrated mean PM10, cm. We also show the 
average INP concentrations of our precipitation samples, nINP,pcpt(T) [L-1], for comparison. It should be noted that 
the total uncertainty of our nINP,pcpt(T) derived from errors in our PM measurement, scavenging coefficient 
calculation, and immersion freezing method is estimated to be ±61.5%. Figure S3 shows the estimated nINP,SV for 195 
individual samples at four different Ts based on Msv,cm in comparison to individual nINP,pcpt(T) time series. As seen 
in these table and figure, our estimated nINP,sv(T) values are constantly more than an order magnitude lower at 
the least as compared to nINP,pcpt(T). This trend is true across all ranges of examined Ts regardless of the choice of 
Msv,M0. The overall deviation between nINP,sv (Mbc_0.5km) and nINP,sv (Mbc_3.0km) is 14.6% for -25 °C ≤ T ≤ -10 °C. Due to 
many assumptions we made for this analysis, our results of nINP,sv(T) being much lower than nINP,pcpt(T) may not be 200 
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conclusive and indeed requires further detailed study. Nevertheless, our estimates suggest the presence of 
nINP,sv(T) in our precipitation samples, but may be negligible for this study.   
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Table S5. Summary of our size-segregated M0. 

  

  
ID# 

  

  
Sample# 

            M0 [µg m-3]           

    Mgl      Mbc_0.5km    Mbc_3.0km      Mcm   

  
PM1-
PM0 

PM2.5-
PM1 

PM10-
PM2.5 

  
PM1-
PM0 

PM2.5-
PM1 

PM10-
PM2.5 

  
PM1-
PM0 

PM2.5-
PM1 

PM10-
PM2.5 

  
PM1-
PM0 

PM2.5-
PM1 

PM10-
PM2.5 

1 PCPT_NSB_1   1.97 2.12 2.10   1.91 2.06 2.04   1.64 1.77 1.75   1.81 1.94 1.92 
2 PCPT_NSB_2   0.01 1.80 0.30   0.01 1.75 0.29   0.01 1.50 0.25   0.01 1.65 0.28 
3 PCPT_NSB_5   4.67 1.07 5.06   4.53 1.04 4.91   3.89 0.89 4.22   4.28 0.98 4.64 
4 PCPT_NSB_6   3.76 2.20 2.91   3.65 2.14 2.83   3.14 1.84 2.43   3.45 2.02 2.67 
5 PCPT_NSB_7   0 0.56 0.17   0 0.54 0.16   0 0.46 0.14   0 0.51 0.15 
8 PCPT_NSB_10   7.48 2.42 4.88   7.26 2.35 4.74   6.24 2.01 4.07   6.86 2.21 4.47 
9 PCPT_NSB_11   5.76 2.41 4.61   5.59 2.34 4.47   4.81 2.01 3.84   5.28 2.21 4.22 

10 PCPT_NSB_15   14.29 1.79 14.72   13.88 1.74 14.29   11.93 1.49 12.28   13.11 1.64 13.50 
11 PCPT_NSB_16   4.91 0.51 5.11   4.77 0.49 4.96   4.08 0.42 4.25   4.50 0.47 4.68 
12 PCPT_NSB_17   4.55 1.86 4.22   4.42 1.81 4.10   3.79 1.55 3.51   4.17 1.71 3.87 
13 PCPT_NSB_19   0.05 1.23 5.02   0.05 1.20 4.87   0.04 1.03 4.18   0.04 1.13 4.60 
14 PCPT_NSB_20   1.78 2.53 1.58   1.73 2.46 1.53   1.48 2.11 1.31   1.63 2.32 1.45 
15 PCPT_NSB_23   3.87 1.87 3.81   3.75 1.82 3.70   3.21 1.55 3.16   3.54 1.71 3.49 
16 PCPT_NSB_24   1.59 3.39 0.80   1.54 3.29 0.78   1.31 2.79 0.66   1.45 3.09 0.73 
18 PCPT_NSB_26   0.66 2.17 0.36   0.64 2.11 0.35   0.54 1.79 0.30   0.60 1.98 0.33 
19 PCPT_NSB_27   0 0.01 0.07   0 0.01 0.07   0 0.01 0.06   0 0.01 0.06 
21 PCPT_NSB_30   0.76 1.87 0.55   0.74 1.81 0.54   0.62 1.53 0.45   0.69 1.70 0.50 
25 PCPT_NSB_46   1.46 3.06 0.92   1.41 2.97 0.89   1.20 2.51 0.76   1.33 2.79 0.84 
27 PCPT_NSB_48   0 0.43 0   0 0.41 0   0 0.35 0   0 0.39 0 
34 PCPT_NSB_57   29.65 0 29.30   28.76 0 28.42   24.58 0 24.29   27.12 0 26.79 
35 PCPT_NSB_58   12.45 0.80 11.15   12.08 0.77 10.81   10.32 0.66 9.24   11.39 0.73 10.19 
36 PCPT_NSB_59   10.52 1.00 9.68   10.20 0.97 9.39   8.74 0.83 8.04   9.63 0.92 8.86 
37 PCPT_NSB_60   9.74 0.92 8.09   9.45 0.89 7.85   8.09 0.76 6.72   8.91 0.84 7.40 
38 PCPT_NSB_61   4.40 1.52 4.16   4.27 1.47 4.04   3.66 1.26 3.46   4.03 1.39 3.81 
39 PCPT_NSB_62   0.04 1.52 0.25   0.04 1.47 0.24   0.03 1.26 0.21   0.04 1.39 0.23 
40 PCPT_NSB_63   2.22 2.13 2.19   2.15 2.07 2.12   1.84 1.77 1.81   2.03 1.95 2.00 
41 PCPT_NSB_65   1.69 2.30 1.31   1.64 2.23 1.27   1.41 1.91 1.09   1.55 2.11 1.20 
42 PCPT_NSB_66   1.75 1.13 2.89   1.70 1.10 2.80   1.45 0.94 2.40   1.60 1.03 2.64 
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Table S6. Summary of scavenging efficiencies, Λ, and other coefficients for estimating Λ. 
        R 

[mm 

hr-1] 

 A(d) [s-1]  B(d)  Λ(d,R) [s-1] 

ID# Sample# 
Precipitation 

type 
  

MD = 0.5 

µm  

MD = 

1.75 µm  

MD = 

6.25 µm  
  

MD = 0.5 

µm  

MD = 

1.75 µm  

MD = 

6.25 µm  
  

MD = 0.5 

µm  

MD = 1.75 

µm  

MD = 

6.25 µm  

1 PCPT_NSB_1 Hail/Thunderstorm 11.08   4.06E-07 9.08E-07 2.93E-04   7.14E-01 7.30E-01 8.49E-01   2.26E-06 5.26E-06 2.26E-03 

2 PCPT_NSB_2 Hail/Thunderstorm 5.97   4.06E-07 9.08E-07 2.93E-04   7.14E-01 7.30E-01 8.49E-01   1.46E-06 3.35E-06 1.34E-03 

3 PCPT_NSB_5 Long-Lasted Rain 3.72   4.06E-07 9.08E-07 2.93E-04   7.14E-01 7.30E-01 8.49E-01   1.04E-06 2.37E-06 8.95E-04 

4 PCPT_NSB_6 Long-Lasted Rain 10.51   4.06E-07 9.08E-07 2.93E-04   7.14E-01 7.30E-01 8.49E-01   2.18E-06 5.06E-06 2.16E-03 

5 PCPT_NSB_7 Hail/Thunderstorm 3.95  4.06E-07 9.08E-07 2.93E-04   7.14E-01 7.30E-01 8.49E-01  1.08E-06 2.48E-06 9.42E-04 

8 PCPT_NSB_10 Long-Lasted Rain 3.06   4.06E-07 9.08E-07 2.93E-04   7.14E-01 7.30E-01 8.49E-01   9.04E-07 2.06E-06 7.59E-04 

9 PCPT_NSB_11 Weak Rain 2.12   4.06E-07 9.08E-07 2.93E-04   7.14E-01 7.30E-01 8.49E-01   6.95E-07 1.57E-06 5.55E-04 

10 PCPT_NSB_15 Hail/Thunderstorm 3.69   4.06E-07 9.08E-07 2.93E-04   7.14E-01 7.30E-01 8.49E-01   1.03E-06 2.36E-06 8.89E-04 

11 PCPT_NSB_16 Hail/Thunderstorm 5.52   4.06E-07 9.08E-07 2.93E-04   7.14E-01 7.30E-01 8.49E-01   1.38E-06 3.16E-06 1.25E-03 

12 PCPT_NSB_17 Long-Lasted Rain 7.85   4.06E-07 9.08E-07 2.93E-04   7.14E-01 7.30E-01 8.49E-01   1.77E-06 4.09E-06 1.69E-03 

13 PCPT_NSB_19 Weak Rain 1.05   4.06E-07 9.08E-07 2.93E-04   7.14E-01 7.30E-01 8.49E-01   4.21E-07 9.42E-07 3.06E-04 

14 PCPT_NSB_20 Long-Lasted Rain 0.96   4.06E-07 9.08E-07 2.93E-04   7.14E-01 7.30E-01 8.49E-01   3.95E-07 8.82E-07 2.84E-04 

15 PCPT_NSB_23 Hail/Thunderstorm 11.63   4.06E-07 9.08E-07 2.93E-04   7.14E-01 7.30E-01 8.49E-01   2.34E-06 5.45E-06 2.35E-03 

16 PCPT_NSB_24 Hail/Thunderstorm 2.88   4.06E-07 9.08E-07 2.93E-04   7.14E-01 7.30E-01 8.49E-01   8.64E-07 1.96E-06 7.20E-04 

18 PCPT_NSB_26 Long-Lasted Rain 0.89   4.06E-07 9.08E-07 2.93E-04   7.14E-01 7.30E-01 8.49E-01   3.73E-07 8.31E-07 2.65E-04 

19 PCPT_NSB_27 Snow Sample 2.96   1.32E-05 9.32E-05 1.93E-03   5.60E-01 5.63E-01 7.08E-01   2.43E-05 1.72E-04 4.17E-03 

21 PCPT_NSB_30 Snow Sample 1.16   1.32E-05 9.32E-05 1.93E-03   5.60E-01 5.63E-01 7.08E-01   1.43E-05 1.01E-04 2.15E-03 

25 PCPT_NSB_46 Weak Rain 2.17   4.06E-07 9.08E-07 2.93E-04   7.14E-01 7.30E-01 8.49E-01   7.06E-07 1.60E-06 5.66E-04 

27 PCPT_NSB_48 Hail/Thunderstorm 2.67   4.06E-07 9.08E-07 2.93E-04   7.14E-01 7.30E-01 8.49E-01   8.19E-07 1.86E-06 6.75E-04 

34 PCPT_NSB_57 Hail/Thunderstorm 3.33   4.06E-07 9.08E-07 2.93E-04   7.14E-01 7.30E-01 8.49E-01   9.60E-07 2.19E-06 8.15E-04 

35 PCPT_NSB_58 Hail/Thunderstorm 6.56   4.06E-07 9.08E-07 2.93E-04   7.14E-01 7.30E-01 8.49E-01   1.56E-06 3.59E-06 1.45E-03 

36 PCPT_NSB_59 Long-Lasted Rain 3.35   4.06E-07 9.08E-07 2.93E-04   7.14E-01 7.30E-01 8.49E-01   9.64E-07 2.20E-06 8.19E-04 

37 PCPT_NSB_60 Hail/Thunderstorm 5.69   4.06E-07 9.08E-07 2.93E-04   7.14E-01 7.30E-01 8.49E-01   1.41E-06 3.23E-06 1.28E-03 

38 PCPT_NSB_61 Long-Lasted Rain 2.83   4.06E-07 9.08E-07 2.93E-04   7.14E-01 7.30E-01 8.49E-01   8.54E-07 1.94E-06 7.10E-04 

39 PCPT_NSB_62 Hail/Thunderstorm 1.33   4.06E-07 9.08E-07 2.93E-04   7.14E-01 7.30E-01 8.49E-01   4.99E-07 1.12E-06 3.75E-04 

40 PCPT_NSB_63 Hail/Thunderstorm 6.93   4.06E-07 9.08E-07 2.93E-04   7.14E-01 7.30E-01 8.49E-01   1.62E-06 3.73E-06 1.52E-03 

41 PCPT_NSB_65 Hail/Thunderstorm 3.34   4.06E-07 9.08E-07 2.93E-04   7.14E-01 7.30E-01 8.49E-01   9.62E-07 2.19E-06 8.17E-04 

42 PCPT_NSB_66 Hail/Thunderstorm 7.00   4.06E-07 9.08E-07 2.93E-04   7.14E-01 7.30E-01 8.49E-01   1.63E-06 3.76E-06 1.53E-03 

  
 
 210 
 
 

 



14 
 

 

Table S7. Summary of our size-segregated and total merged Msv. 
                        Msv [µg m-3]               

      Mgl   Mbc_0.5km   Mbc_3.0km   Mcm 

ID 
# 

Sample 
#  

PM1-
PM0 

PM2.5-
PM1 

PM10-
PM2.5 Total  

PM1-
PM0 

PM2.5-
PM1 

PM10-
PM2.5 Total  

PM1-
PM0 

PM2.5-
PM1 

PM10-
PM2.5 Total  

PM1-
PM0 

PM2.5-
PM1 

PM10-
PM2.5 Total 

1 PCPT_NSB_1 0.46 0.99 2.10 3.55  0.45 0.96 2.04 3.44  0.39 0.82 1.75 2.96  0.43 0.90 1.92 3.25 
2 PCPT_NSB_2 0.004 1.26 0.30 1.56  0.004 1.22 0.29 1.51  0.003 1.05 0.25 1.30  0.004 1.15 0.28 1.43 
3 PCPT_NSB_5 1.06 0.47 5.06 6.59  1.03 0.46 4.91 6.40  0.88 0.40 4.22 5.50  0.97 0.44 4.64 6.04 
4 PCPT_NSB_6 1.78 1.71 2.91 6.40  1.73 1.66 2.83 6.22  1.49 1.43 2.43 5.35  1.63 1.57 2.67 5.87 
5 PCPT_NSB_7 0 0.07 0.17 0.24  0 0.07 0.16 0.23  0 0.06 0.14 0.20  0 0.07 0.15 0.22 
8 PCPT_NSB_10 0.79 0.54 4.88 6.21  0.77 0.53 4.74 6.03  0.66 0.45 4.07 5.18  0.72 0.50 4.47 5.69 
9 PCPT_NSB_11 1.16 0.96 4.61 6.73  1.13 0.93 4.47 6.53  0.97 0.80 3.84 5.61  1.07 0.88 4.22 6.17 

10 PCPT_NSB_15 2.79 0.70 14.72 18.20  2.71 0.68 14.29 17.68  2.32 0.58 12.28 15.19  2.56 0.64 13.50 16.69 
11 PCPT_NSB_16 0.32 0.07 5.11 5.50  0.31 0.07 4.96 5.34  0.26 0.06 4.25 4.57  0.29 0.07 4.68 5.04 
12 PCPT_NSB_17 1.66 1.21 4.22 7.10  1.62 1.18 4.10 6.89  1.39 1.01 3.51 5.91  1.53 1.11 3.87 6.50 
13 PCPT_NSB_19 0.01 0.27 5.02 5.29  0.00 0.26 4.87 5.14  0.00 0.22 4.18 4.40  0.00 0.24 4.60 4.85 
14 PCPT_NSB_20 0.56 1.45 1.58 3.60  0.55 1.41 1.53 3.49  0.47 1.21 1.31 2.99  0.52 1.33 1.45 3.29 
15 PCPT_NSB_23 0.95 0.90 3.81 5.66  0.92 0.88 3.70 5.50  0.79 0.75 3.16 4.70  0.87 0.83 3.49 5.18 
16 PCPT_NSB_24 0.72 2.52 0.80 4.04  0.69 2.44 0.78 3.92  0.59 2.08 0.66 3.33  0.65 2.30 0.73 3.68 
18 PCPT_NSB_26 0.13 0.87 0.36 1.37  0.13 0.84 0.35 1.33  0.11 0.72 0.30 1.13  0.12 0.79 0.33 1.25 
19 PCPT_NSB_27 0 0.01 0.07 0.08  0 0.01 0.07 0.08  0 0.01 0.06 0.07  0 0.01 0.06 0.07 
21 PCPT_NSB_30 0.62 1.87 0.55 3.04  0.60 1.81 0.54 2.94  0.51 1.53 0.45 2.49  0.57 1.70 0.50 2.76 
25 PCPT_NSB_46 0.06 0.27 0.92 1.25  0.06 0.26 0.89 1.21  0.05 0.22 0.76 1.02  0.05 0.24 0.84 1.13 
27 PCPT_NSB_48 0 0.04 0 0.04  0 0.04 0 0.04  0 0.03 0 0.03  0 0.04 0 0.04 
34 PCPT_NSB_57 6.97 0 29.30 36.26  6.76 0 28.42 35.18  5.77 0 24.29 30.07  6.37 0 26.79 33.16 
35 PCPT_NSB_58 1.40 0.19 11.15 12.73  1.36 0.19 10.81 12.35  1.16 0.16 9.24 10.56  1.28 0.17 10.19 11.64 
36 PCPT_NSB_59 3.60 0.62 9.68 13.89  3.49 0.60 9.39 13.48  2.99 0.51 8.04 11.54  3.30 0.56 8.86 12.72 
37 PCPT_NSB_60 1.10 0.22 8.09 9.41  1.07 0.22 7.85 9.14  0.92 0.18 6.72 7.82  1.01 0.20 7.40 8.62 
38 PCPT_NSB_61 0.60 0.43 4.16 5.18  0.58 0.42 4.04 5.03  0.50 0.36 3.46 4.31  0.55 0.39 3.81 4.75 
39 PCPT_NSB_62 0.01 0.49 0.25 0.74  0.01 0.47 0.24 0.72  0.01 0.40 0.21 0.62  0.01 0.44 0.23 0.68 
40 PCPT_NSB_63 1.26 1.82 2.19 5.27  1.22 1.77 2.12 5.11  1.05 1.51 1.81 4.37  1.15 1.67 2.00 4.82 
41 PCPT_NSB_65 0.38 1.00 1.31 2.69  0.37 0.97 1.27 2.61  0.31 0.83 1.09 2.24  0.34 0.92 1.20 2.46 
42 PCPT_NSB_66 0.19 0.27 2.89 3.35  0.19 0.26 2.80 3.25  0.16 0.22 2.40 2.78  0.18 0.24 2.64 3.06 

 215 

Table S8. Summary of cumulative nINP,sv(T) compared to cumulative nINP,pcpt(T) at four different Ts.  
      Average nINP,sv(T) [L-1]      Average nINP,pcpt(T)       ± Std. 

Error [L-1] T   Msv,gl Msv,bc_0.5km Msv,bc_3.0km Msv,cm    

-10 °C   1.05 x 10-3 1.02 x 10-3 0.87 x 10-3 0.96 x 10-3    0.17 ± 0.05 
-15 °C   3.93 x 10-3 3.81 x 10-3 3.26 x 10-3 3.60 x 10-3    0.48 ± 0.10 
-20 °C   7.05 x 10-2 6.84 x 10-2 5.86 x 10-2 6.45 x 10-2    3.46 ± 0.66 
-25 °C   2.06 2.00 1.71 1.89    74.74 ± 28.28 
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Figure S3. (a) Time series of cumulative nINP (L-1 air) in each precipitation sample (ID# shown on the x-axis) at different 
temperatures. (b) Estimated nINP,SV for a total of 28 samples analyzed based on Msv,cm. All data above our nINP detection limit 
of > 0.006 L-1 are shown. The average nINP values at -25 °C (74.7 L-1) and -20 °C (3.5 L-1) in all precipitation samples are shown 225 
to guide the reader’s eye. 
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S5. nINP(T) distribution histogram 
 
We analyzed the nINP(T) distribution histogram, categorized based on the season, precipitation type, and 
precipitation intensity, at -10, -15, -20, and -25 °C. The results are presented in Figs. S4-6. Briefly, we first binned 240 
our nINP values at each temperature (i.e., -10, -15, -20, and -25 °C) into five equally sized bins by dividing the nINP 
range (i.e., max - min) at that temperature by the number six. Subsequently, we visualized the frequency 
distribution of nINP across different bins on a log scale based on the meteorological season in the U.S. (Fig. S4), 
precipitation type (Fig. S5), and maximum precipitation intensity (Fig. S6). From these results combined with 
other findings within this study, we found the followings:  245 

 While no clear seasonal variations of nINP values were apparent in part due to the limited number of 
samples, the analysis of yearlong ground level precipitation observation as well as INPs in the 
precipitation samples showed that the highest nINP at -25 °C of 1,130 INP L-1 coincided with a hail-involved 
severe thunderstorm event in the summer,  

 The lowest cumulative INP at the same temperature, 3.0 INP L-1, was also found in one of our 250 
hail/thunderstorm samples collected during the summer, but the second lowest (3.0 INP L-1) was found 
from a snow sample collected in the winter, and 

 Cumulative nINP in our precipitation samples below -20 °C couldcloud be high in the samples collected 
while observing > 10 mm hr-1 precipitation with notably large hydrometeor sizes (i.e., the size in ID# 1 = 
Sample# 1 > ID #37 = Sample# 60; see Fig. 2b).  255 
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Figure S4. The nINP(T) distribution histogram over different Ts. The histogram frequency is color-categorized for different 
meteorological seasons (see Table S1). The vertical dashed lines and solid line represent 95% confidence intervals and 
mean nINP(T) value, respectively. 260 
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Figure S5. The nINP(T) distribution over different Ts. The histogram frequency is color-categorized for different types of 
precipitation, including snow, hail/thunderstorm rain, long-lasted ran, and weak rain, observed at the ground level (see Table 
S2). 265 
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Figure S6. The nINP(T) distribution histogram color-categorized based on three maximum precipitation intensity categories, < 270 
10 mm hr-1, 10-50 mm hr-1, and > 50 mm hr-1 (see Table S2).  
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Table S9. Abundance of major bacterial orders in precipitation samples. Numbers indicate percentage of the OTUs/ASVs for 
each order in the total bacterial microbiome. ‘Bkgr’ represents the 24-hour dry deposition blank sample (Sample# 34). Our 275 
cattle feedyardfeedlot samples were are collected locally on March 28, 2019 (1), July 22, 2018 (2), July 23, 2018 (3), and 

July 24, 2018 (4) – see Hiranuma et al. (2020). PCPT 1-4 corresponds to our Sample# 1, 2, 50, and 7, respectively.   

Sample Type 
 PCPT 

1 

 PCPT 

2 

 PCPT 

3 

 PCPT 

4 

Feedyard 

Feedlot     

2 

Feedlot 

Feedyard 

1 

Feedlot 

Feedyard 

3 

Feedlot 

Feedyard 

4 

24-hour 

dry-

depositio

n blank 

Taxonomy      
 

   

Bacteria; Unclassified 2.6% 0.0% 0.0% 0.0% 0.5% 0.0% 1.3% 0.0% 2.8% 

Bacteria; Unclassified 0.0% 0.0% 0.8% 1.6% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Acidobacteria; Solibacteres; Solibacterales; Bryobacteraceae 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 3.9% 0.0% 0.0% 

Bacteria; Actinobacteria; Actinobacteria; Actinomycetales 0.0% 0.0% 0.0% 0.0% 0.0% 2.4% 0.0% 0.0% 0.0% 

Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; Actinosynnemataceae 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 13.4% 

Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; Geodermatophilaceae; Blastococcus 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 6.4% 

Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; Microbacteriaceae; Labedella 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 5.0% 

Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; Microbacteriaceae; Leifsonia 0.2% 0.0% 0.5% 0.0% 0.0% 0.0% 0.0% 0.0% 4.1% 

Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; Micrococcaceae; Arthrobacter 0.0% 0.0% 0.0% 1.6% 0.0% 3.0% 0.0% 0.0% 0.0% 

Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; Nocardiaceae 0.0% 0.0% 0.0% 4.6% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; Nocardiaceae; Rhodococcus 0.0% 0.0% 0.0% 0.0% 2.1% 1.4% 0.0% 0.0% 0.0% 

Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; Nocardioidaceae; Marmoricola 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 8.0% 

Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; Nocardioidaceae; Nocardioides 0.0% 0.0% 0.0% 1.1% 3.5% 0.0% 0.1% 0.0% 0.0% 

Bacteria; Actinobacteria; Thermoleophilia; Solirubrobacterales; Patulibacteraceae 0.0% 1.5% 0.0% 1.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Actinobacteria; Thermoleophilia; Solirubrobacterales; Patulibacteraceae; Patulibacter 0.6% 0.0% 0.0% 1.2% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Armatimonadetes 0.0% 0.0% 0.0% 3.2% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Armatimonadetes; Armatimonadia; Armatimonadales; Armatimonadaceae 0.0% 6.5% 0.0% 3.9% 0.0% 0.0% 0.0% 6.0% 0.0% 

Bacteria; Armatimonadetes; Armatimonadia; Armatimonadales; Armatimonadaceae 0.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Armatimonadetes; Fimbriimonadia; Fimbriimonadales; Fimbriimonadaceae; Fimbriimonas 0.0% 0.0% 0.0% 0.9% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Bacteroidetes 0.0% 0.0% 0.0% 3.2% 1.0% 0.0% 13.7% 0.0% 0.0% 

Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.1% 9.5% 0.0% 

Bacteria; Bacteroidetes; Cytophagia; Cytophagales 0.0% 0.8% 0.0% 5.6% 0.0% 0.0% 0.0% 4.0% 0.0% 

Bacteria; Bacteroidetes; Cytophagia; Cytophagales; Cyclobacteriaceae 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.7% 0.0% 0.0% 

Bacteria; Bacteroidetes; Cytophagia; Cytophagales; Cytophagaceae; Hymenobacter 0.0% 0.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Bacteroidetes; Cytophagia; Cytophagales; Cytophagaceae; Rhodocytophaga 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 4.2% 

Bacteria; Bacteroidetes; Cytophagia; Cytophagales; Cytophagaceae; Rudanella 0.0% 1.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Bacteroidetes; Cytophagia; Cytophagales; Cytophagaceae; Spirosoma 2.3% 6.8% 0.0% 3.8% 0.0% 0.0% 0.0% 0.0% 5.6% 

Bacteria; Bacteroidetes; Cytophagia; Cytophagales; Cytophagaceae; Sporocytophaga 0.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.7% 0.0% 0.0% 

Bacteria; Bacteroidetes; Cytophagia; Cytophagales; Flammeovirgaceae 0.0% 0.0% 0.0% 0.0% 0.0% 2.0% 0.0% 0.0% 0.0% 

Bacteria; Bacteroidetes; Cytophagia; Cytophagales; Flammeovirgaceae; Marinoscillum 8.7% 3.2% 17.3% 8.5% 8.4% 3.0% 6.2% 5.5% 0.0% 

Bacteria; Bacteroidetes; Flavobacteriia; Flavobacteriales; Flavobacteriaceae 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 5.5% 0.0% 0.0% 

Bacteria; Bacteroidetes; Flavobacteriia; Flavobacteriales; Flavobacteriaceae; Flavobacterium 0.0% 0.0% 4.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Bacteroidetes; Flavobacteriia; Flavobacteriales; Flavobacteriaceae; Persicivirga 0.0% 0.0% 0.0% 0.0% 6.8% 0.0% 2.1% 0.0% 0.0% 

Bacteria; Bacteroidetes; Flavobacteriia; Flavobacteriales; Weeksellaceae 0.0% 0.0% 0.0% 0.0% 0.0% 2.2% 0.0% 0.0% 0.0% 

Bacteria; Bacteroidetes; Flavobacteriia; Flavobacteriales; Weeksellaceae; Elizabethkingia 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 4.1% 0.0% 0.0% 

Bacteria; Bacteroidetes; Sphingobacteriia; Sphingobacteriales; Sphingobacteriaceae; Mucilaginibacter 0.0% 0.0% 5.8% 0.0% 0.0% 0.0% 3.6% 0.0% 0.0% 

Bacteria; Bacteroidetes; Sphingobacteriia; Sphingobacteriales; Sphingobacteriaceae; Pedobacter 3.2% 0.0% 1.8% 5.3% 1.0% 0.0% 6.6% 0.0% 0.0% 

Bacteria; Bacteroidetes; Saprospirae; Saprospirales; Chitinophagaceae 0.0% 0.0% 0.0% 1.6% 0.0% 0.0% 1.1% 9.7% 1.1% 

Bacteria; Bacteroidetes; Saprospirae; Saprospirales; Chitinophagaceae; Ferruginibacter 0.0% 0.0% 0.0% 0.0% 5.3% 0.0% 0.0% 0.0% 0.0% 
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 280 
Table S9. Abundance of major bacterial orders in precipitation samples. Numbers indicate percentage of the OTUs/ASVs 
for each order in the total bacterial microbiome – continued. 

Sample Type PCPT 1 PCPT 2 PCPT 3 PCPT 4 

Feedyard 

Feedlot     

2 

Feedyard 

Feedlot 1 

Feedyard 

Feedlot 3 

Feedyard 

Feedlot 4 

24-hour 

dry-

deposition 

blank 

Taxonomy          

Bacteria; Bacteroidetes; Saprospirae; Saprospirales; Chitinophagaceae; Filimonas 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.5% 0.0% 0.0% 

Bacteria; Bacteroidetes; Saprospirae; Saprospirales; Chitinophagaceae; Parasegitibacter 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.8% 0.0% 0.0% 

Bacteria; Bacteroidetes; Saprospirae; Saprospirales; Chitinophagaceae; Trachelomonas 3.9% 0.0% 0.0% 9.5% 0.0% 0.0% 0.0% 0.0% 8.2% 

Bacteria; Chlorobi 2.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Cyanobacteria 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.6% 

Bacteria; FBP 0.0% 0.0% 0.0% 1.7% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Firmicutes; Bacilli; Bacillales 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 4.0% 0.0% 0.0% 

Bacteria; Firmicutes; Bacilli; Bacillales; Bacillaceae 0.0% 0.0% 0.0% 0.0% 0.0% 2.1% 1.1% 0.0% 0.0% 

Bacteria; Firmicutes; Bacilli; Bacillales; Bacillaceae; Bacillus 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 4.8% 0.0% 0.0% 

Bacteria; Firmicutes; Bacilli; Bacillales; Planococcaceae 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.2% 0.0% 0.0% 

Bacteria; Firmicutes; Bacilli; Lactobacillales; Aerococcaceae; Lacticigenium 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.8% 0.0% 0.0% 

Bacteria; Firmicutes; Clostridia; Clostridiales; Clostridiaceae; Clostridium 0.0% 0.0% 0.0% 0.0% 0.0% 1.4% 0.7% 0.0% 0.0% 

Bacteria; Gemmatimonadetes; Gemm-3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.4% 0.0% 0.0% 

Bacteria; Gemmatimonadetes; Gemmatimonadetes; Gemmatimonadales 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.8% 

Bacteria; Gemmatimonadetes; Gemmatimonadetes; Gemmatimonadales; Ellin5301 0.0% 0.0% 0.0% 2.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Gemmatimonadetes; Gemmatimonadetes; Gemmatimonadales; Gemmatimonadaceae; 

Gemmatimonas 

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 

Bacteria; Planctomycetes; Phycisphaerae 3.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Planctomycetes; Planctomycetia; Gemmatales; Isosphaeraceae 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Planctomycetes; Planctomycetia; Gemmatales; Isosphaeraceae; Nostocoida 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.8% 

Bacteria; Proteobacteria 8.3% 8.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Proteobacteria; Alphaproteobacteria 0.0% 0.0% 0.0% 0.0% 1.5% 0.0% 3.1% 17.7% 0.0% 

Bacteria; Proteobacteria; Alphaproteobacteria; Caulobacterales; Caulobacteraceae 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 4.6% 

Bacteria; Proteobacteria; Alphaproteobacteria; Caulobacterales; Caulobacteraceae; Arthrospira 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.4% 0.0% 0.0% 

Bacteria; Proteobacteria; Alphaproteobacteria; Caulobacterales; Caulobacteraceae; Brevundimonas 6.2% 15.0% 0.0% 0.0% 1.2% 0.0% 4.5% 19.7% 2.8% 

Bacteria; Proteobacteria; Alphaproteobacteria; Caulobacterales; Caulobacteraceae; Caulobacter 2.5% 2.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales 2.8% 0.0% 0.0% 5.3% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales; Aurantimonadaceae; Aurantimonas 0.0% 0.8% 0.0% 1.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales; Beijerinckiaceae 0.0% 0.0% 0.0% 3.5% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales; Bradyrhizobiaceae 1.8% 2.4% 0.0% 3.5% 0.0% 0.0% 0.0% 0.0% 0.3% 

Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales; Phyllobacteriaceae 0.0% 1.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales; Rhizobiaceae; Rhizobium 3.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales; Xanthobacteraceae 0.0% 1.6% 0.0% 1.6% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales; Xanthobacteraceae; Ancylobacter 0.0% 0.0% 1.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Proteobacteria; Alphaproteobacteria; Rhodobacterales; Rhodobacteraceae 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Proteobacteria; Alphaproteobacteria; Rhodospirillales; Acetobacteraceae 1.8% 0.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.9% 

Bacteria; Proteobacteria; Alphaproteobacteria; Rhodospirillales; Acetobacteraceae; Roseomonas 0.0% 0.0% 0.0% 0.8% 0.0% 0.0% 0.1% 0.0% 0.0% 

Bacteria; Proteobacteria; Alphaproteobacteria; Sphingomonadales 3.5% 5.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
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Table S9. Abundance of major bacterial orders in precipitation samples. Numbers indicate percentage of the OTUs/ASVs 
for each order in the total bacterial microbiome – continued. 

Sample Type  PCPT 1  PCPT 2  PCPT 3  PCPT 4 

Feedyard 

Feedlot     

2 

Feedyard 

Feedlot 1 

Feedyard 

Feedlot 3 

Feedyard 

Feedlot 4 

24-hour 

dry-

depositio

n blank 

Taxonomy 
     

 

   

Bacteria; Proteobacteria; Alphaproteobacteria; Sphingomonadales; Erythrobacteraceae 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 7.7% 

Bacteria; Proteobacteria; Alphaproteobacteria; Sphingomonadales; Erythrobacteraceae; Porphyrobacter 0.0% 0.0% 0.0% 0.0% 0.5% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Proteobacteria; Alphaproteobacteria; Sphingomonadales; Sphingomonadaceae 0.0% 4.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 4.5% 

Bacteria; Proteobacteria; Alphaproteobacteria; Sphingomonadales; Sphingomonadaceae; 

Novosphingobium 

4.2% 0.0% 5.1% 0.0% 0.0% 0.0% 0.5% 8.3% 0.0% 

Bacteria; Proteobacteria; Alphaproteobacteria; Sphingomonadales; Sphingomonadaceae; Sphingomonas 0.7% 14.1% 7.4% 0.7% 0.0% 1.4% 0.0% 0.0% 2.1% 

Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae 8.8% 0.0% 5.9% 4.3% 0.0% 0.0% 0.3% 0.0% 5.9% 

Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae; Acidovorax 0.0% 0.0% 3.9% 0.0% 0.0% 0.0% 1.0% 0.0% 0.0% 

Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae; Pseudorhodoferax 0.0% 3.7% 0.0% 0.0% 7.4% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Oxalobacteraceae 4.1% 6.1% 19.4% 0.0% 6.7% 14.6% 0.0% 5.2% 0.0% 

Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Oxalobacteraceae; Herminiimonas 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.4% 0.0% 0.0% 

Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Oxalobacteraceae; Massilia 13.9% 10.6% 8.4% 11.3% 53.9% 65.4% 6.5% 10.6% 0.9% 

Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Oxalobacteraceae; Naxibacter 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.6% 0.0% 0.0% 

Bacteria; Proteobacteria; Deltaproteobacteria; Myxococcales 0.0% 0.0% 0.0% 2.3% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Proteobacteria; Deltaproteobacteria; Myxococcales; OM27 5.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Proteobacteria; Deltaproteobacteria; Myxococcales; Polyangiaceae 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 

Bacteria; Proteobacteria; Gammaproteobacteria; Alteromonadales; Alteromonadaceae; Gilvimarinus 0.0% 0.0% 11.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Proteobacteria; Gammaproteobacteria; Alteromonadales; OM60; Haliea 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.5% 0.0% 0.0% 

Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales; Enterobacteriaceae; Pseudomonas 0.0% 0.0% 6.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Proteobacteria; Gammaproteobacteria; Legionellales 1.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales; Moraxellaceae; Acinetobacter 0.0% 0.0% 0.0% 0.0% 0.0% 1.1% 0.4% 0.0% 0.0% 

Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales; Pseudomonadaceae; Pseudomonas 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.4% 0.0% 0.0% 

Bacteria; Proteobacteria; Gammaproteobacteria; Xanthomonadales; Xanthomonadaceae; Achromobacter 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 

Bacteria; Proteobacteria; Gammaproteobacteria; Xanthomonadales; Xanthomonadaceae; Lysobacter 0.0% 1.8% 0.0% 0.6% 0.0% 0.0% 0.0% 3.8% 0.0% 

Bacteria; Thermi; Deinococci; Deinococcales; Deinococcaceae; Deinococcus 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 5.0% 

Bacteria; Verrucomicrobia; Opitutae; Opitutales; Opitutaceae; Opitutus 0.0% 0.0% 0.0% 0.9% 0.0% 0.0% 3.7% 0.0% 0.0% 

Bacteria; Verrucomicrobia; Pedosphaerae; Pedosphaerales; Pedosphaeraceae 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.5% 0.0% 0.0% 

Bacteria; Verrucomicrobia; Spartobacteria; Chthoniobacterales; Chthoniobacteraceae 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.9% 0.0% 0.0% 

Bacteria; Verrucomicrobia; Spartobacteria; Chthoniobacterales; Chthoniobacteraceae; Chthoniobacter 1.7% 0.0% 0.0% 3.8% 0.0% 0.0% 0.0% 0.0% 0.0% 
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Data Availability 

Original data created for the study are or will be available in a persistent repository (pangaea.de) upon 
publication.Original data created for the study will be available in a persistent repository upon publication within 
www.wtamu.edu.  
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