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Abstract. This article presents for the first time a large dataset of rainfall isotopic measurements (
18

Op and 
2
Hp) sampled 

every day or every two days from seven sites in a west-to-east transect across northern Spain for 2010-2017. The main aim 

of this study is to: (1) characterize rainfall isotopic variability in northern Spain at daily and monthly time scales, and (2) 

assess the principal influencing factors determining rainfall isotopic variability. This comprehensive spatio-temporal 30 

approach allows exploring the role of air mass source in determining the isotopic composition of rainfall in northern Iberia 
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by using back-trajectories; Atlantic fronts are found to be the dominant source of northern Iberia rain events studied. The 

relative role of air temperature and rainfall amount in determining the stable isotope composition of precipitation changes 

along the west-to-east transect. Air temperature appears to be the most significant influence on 
18

Op at daily and monthly 

time scales with the highest air temperature-
18

Op dependency found for the Pyrenean station while a few sites in the transect 35 

show a significant negative correlation with precipitation amount. Distance from the coast, site elevation, and moisture 

source region (Atlantic versus Mediterranean) also significantly modulate the 
18

Op values and ranges but the type of 

precipitation (convective vs frontal rainfall) plays a key control, with convective rainfall associated with higher 
18

Op values. 

This dataset of the rainfall isotopic composition represents another step forward towards developing a more detailed, 

mechanistic framework for interpreting stable isotopes in rainfall as a palaeoclimate and hydrological tracer.  40 

1 Introduction 

The oxygen isotopic composition of rainfall (
18

Op) is often considered as the dominant influence on the isotopic 

composition of terrestrial archives (ice cores, speleothems or authigenic lacustrine carbonates) used to reconstruct past 

climate (e.g., Leng, 2006). However, few palaeoclimate reconstructions are supported by an in-depth understanding of the 

regional climatic controls on modern precipitation 
18

O (
18

Op) (e.g. Treble et al., 2005),. As a consequence, paleoclimate 45 

proxies are often interpreted without a clear knowledge of the processes involved in modulating 
18

Op at a particular region 

(López-Blanco et al., 2016; Moreno et al., 2017). It has long been established that 
18

Op is an integrated product of air masses 

history , modulated by specific prevailing meteorological conditions (air temperature and amount of precipitation for 

example) (Craig, 1961; Dansgaard, 1964). This results in different dominant factors controlling 
18

Op variability depending 

on the site location, i.e., latitude, continentality, elevation, seasonal distribution, local air temperature and amount and source 50 

of precipitation (Rozanski et al., 1993). A detailed study of current 
18

Op values and their variability in a given region is 

mandatory if one wishes to reconstruct past climate changes using 
18

O in regional climate archives (Lachniet, 2009). 

Long rainfall isotopic time series allow for comparison of the 
18

Op signal with meteorological variables and calibration of 

proxy records. Unfortunately such long-term observational studies are scarce, and thus, only a few, although outstanding, 

examples of studies examining factors controlling 
18

Op are available for continental Europe (Field, 2010; Genty et al., 2014; 55 

Tyler et al., 2016). The application of results obtained in other European regions mostly under the influence of rainfall with 

Atlantic origin (e.g., Baldini et al., 2010) are not valid for the Iberian Peninsula (IP) where three major precipitation regimes 

coexist (Millán et al., 2005) and where a potential for paleoclimate reconstructions exists through speleothems analyses. 

Previous studies have shown that the spatial distribution of 
18

Op and 
2
Hp at a monthly time scale in Spain can be explained 

by a simple multiple regression model, based on two geographic factors: latitude and elevation (Díaz-Tejeiro et al., 2013, 60 

2007). However, these models do not reproduce the observed stable isotope composition of precipitation with a detailed 

spatial resolution.  The well-known complex topography and varied weather regimes of Spain (AEMET and Instituto de 
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Meteorologia de Portugal, 2011; Martin-Vide and Olcina-Cantos, 2001) require further detailed and highly spatially-resolved 

studies. 

A major advance in understanding the controls on 
18

Op has been the proliferation of studies using daily-scale monitoring to 65 

address the mechanisms behind isotopic signatures at daily timescales (Baldini et al., 2010; Fischer and Baldini, 2011), 

incorporating the complexity associated to the type of rainfall, for example (Aggarwal et al., 2016)Regrettably, the scarcity of 

Global Network of Isotopes in Precipitation (hereafter GNIP) sites in Iberia, particularly those recovering data at a daily 

scale, prevents a broader regional study of climate controls on 
18

Op values. In the IP, only one study has analysed 
18

Op 

variability at a daily basis covering a short 3-year period (2000-2002) (Araguás-Araguás and Diaz Teijeiro, 2005) and, more 70 

recently, a 3-year monitoring survey focused on the Iberian Range (Molinos, Teruel, NE Spain) (Moreno et al., 2014). That 

study revealed the importance of the source effect on 
18

Op values, due to the alternating influence of two air masses 

trajectories with different isotopic ranges; basically, Atlantic fronts with more negative 
18

Op values (from the west) and 

Mediterranean convective storms with more positive values (from the east) air trajectories (Moreno et al., 2014). 

Additionally, another recent study based on back trajectories emphasized the role of recycled moisture uptake within the IP 75 

in the final values of 
18

Op in Central Spain (Eagle Cave) (Krklec and Domínguez-Villar, 2014). In addition, to date, the 

majority of empirical studies of the meteorological controls over δ
18

OP rely upon event scale, daily, or monthly time series 

from individual locations (Smith et al., 2016), which raises concerns about the spatial representativeness of the resulting 

statistical models and the mechanisms behind those relationships.  

In this paper, we propose an alternative approach by analysing daily and monthly patterns of δ
18

OP from multiple stations 80 

across northern IP, and the Balearic Islands, following a west-to-east transect (850-km in straight line) that extends from an 

area dominated by a typical Atlantic climate to fully Mediterranean sites. The overall aim is to characterize and quantify the 

dominant factors modulating 
18

Op variations in time (daily and monthly) and space, to determine the causes of precipitation 

isotopic variations regionally. Additionally, this study will serve to improve the interpretation of oxygen isotope paleo-

records from the region that depend on 
18

Op (Bartolomé et al., 2015; Domínguez-Villar et al., 2017; López-Blanco et al., 85 

2016; Pérez-Mejías et al., 2019; Sancho et al., 2018, 2015). 

 

2 Prevailing climate regime and site description  

 

Our study compares for the first time rainfall isotopic values and meteorological variables (temperature, precipitation, 90 

moisture sources and type of rainfall) at seven sites in northern Iberia and Balearic Islands, covering an 850-km long west-

to-east transect from an area under typical Atlantic (Oviedo and El Pindal) to fully Mediterranean (Mallorca Island and 

Barcelona) climate. The west-to-east transect is completed with three additional sites in a transitional zone: two from the 

Iberian Range (Molinos and Ortigosa de Cameros) and one from the Pyrenees (Borrastre) (Figure 1a). At those seven 

locations rainfall was sampled daily covering different time periods except at El Pindal where rain was collected every 48h 95 
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(Table 1). Borrastre record is, to our knowledge, the most comprehensive dataset of daily 
18

Op for Spain in terms of both 

the time span covered (2011-2016) and number of samples (380 days) (Table S1).  

In north-western and north-central Iberia, precipitation is mainly controlled by the presence of westerly winds and the 

passage of Atlantic fronts, mainly during November-April (Martín-Vide and Olcina Cantos, 2001). During the rest of the 

year, the subtropical Azores high-pressure system shifts northward, favouring stable conditions by blocking the westerly 100 

circulation and moisture inflow (Archer and Caldeira, 2008), thus reducing precipitation. This wet winter/dry summer regime 

is quite different from that in the north-eastern Mediterranean region, where winters are generally dry (foehn effect) whereas 

warm season precipitation (from late spring to early autumn) is dominated by convective storms and also easterly advections 

over the Mediterranean Sea (backdoor cold fronts) (Millán et al., 2005). These local to mesoscale storms are primarily 

associated with frequent and persistent sea breezes (Azorin-Molina et al., 2011) which bring warm and moist air masses from 105 

the Mediterranean sea inland (Azorin-Molina et al., 2009). During the summer season, this is typically the only source of 

precipitation in the north-eastern area, bringing an average of 100-125 mm yearly (Millán et al., 2005). Backdoor cold fronts 

from the Mediterranean Sea are sporadic events occurring in autumn (secondarily in winter-spring), but they cause heavy 

precipitation and flooding (Llasat et al., 2007). Figure 1B summarizes these three major precipitation regimes defined by 

Millán et al. (2005): (i) Atlantic frontal systems (westerly winds), (ii) convective–orographic storms, and (iii) Backdoor cold 110 

fronts from the Mediterranean Sea (easterly winds). 

Winter precipitation in large parts of the IP is strongly influenced by the North Atlantic Oscillation (NAO) at annual and 

interannual scales: higher precipitation occurs when the NAO index (NAOI) is negative and the storm tracks are shifted 

southwards, more directly influencing the IP (Trigo et al., 2002). Lower correlation values (r =-0.1-0.4) between the NAOI 

and winter rainfall, however, are observed in our region of interest, the northern IP (Goodess and Jones, 2002), which 115 

encompasses both the wet western regions and the dry Mediterranean in the northeast. For the latter region, a significant 

relationship with the Western Mediterranean Oscillation (WeMO) in spring and autumn is attributed to fluctuations of warm 

moist inflow air from the east and its influence on Mediterranean cyclogenesis (Martin-Vide and Lopez-Bustins, 2006). 

The rainfall influencing the seven stations included in the studied transect originates in two dominant source regions: the 

tropical-subtropical North Atlantic and the Western Mediterranean (Gimeno et al., 2010). Below, the four regions across 120 

which the seven stations are distributed are described in terms of their climatology. Regional meteorological data are 

provided in Figure 4A.  

The Cantabrian coast. The site of El Pindal in the Cantabrian coast (Figure 1A) is characterized by a typical oceanic climate 

with mild summers and winters (Cfb, following Köppen and Geiger – KGC- classification) due to the proximity to the coast. 

Rainfall mainly occurs in late autumn and early winter with a minimum in summer (Figure 4A), and are associated with 125 

Atlantic frontal systems (westerly winds). Additionally, rainfall samples from Oviedo (climate characteristics similar to 

those at El Pindal) were collected and are also included in this study.  
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The Iberian Range. Ortigosa de Cameros is located in the Encinedo Mountain area in the westernmost sector of the Cameros 

Range (Iberian Range, Figure 1A) and is dominated by a continental Mediterranean climate (Dsb, following KGC 

classification). Rainfall mostly occurs in autumn and spring, with some convective-orographic storms in summer 130 

(climograph in Figure 4A). Also located in the Iberian Range and at similar elevation but further east, in the Maestrazgo 

basin, the Molinos site is characterized by similar climate (Dsb in KGC classification), with a highly pronounced seasonality 

and precipitation occurring mainly in spring and in autumn (Figure 4A). 

The Pyrenees. Borrastre village is located in the Central Pyrenees (Figure 1A) and is influenced by a transitional climate 

Mediterranean-Oceanic (Csb in KGC classification), with precipitation occurring mainly in spring and, to a lesser extent, in 135 

autumn (Figure 4A), exhibiting a mix of the three Atlantic, Mediterranean and convective precipitation regimes.  

The Mediterranean. The typical Mediterranean climate (Csa in KGC classification) is represented by the Manacor and Porto 

Cristo localities in the Mallorca island and by Barcelona (Figure 1A). Precipitation is mostly distributed from October to 

April (Figure 4A) mostly associated with backdoor cold fronts from the Mediterranean Sea (easterly winds) as the influence 

of Atlantic precipitation is weakened over this area.  140 

 

3 Analytical and statistical methods 

 

3.1 Sampling  

 145 

Rainwater was collected using a similar procedure to that recommended by the International Atomic Energy Agency (IAEA) 

for daily sampling (http://www-naweb.iaea.org/napc/ih/IHS_resources_gnip.html) for six of the seven stations (Oviedo, 

Ortigosa de Cameros, Molinos, Borrastre, Mallorca and Barcelona). Thus, precipitation events greater or equal to 1 mm were 

sampled from a rain gauge which allows measuring the amount of rain fallen and sample it manually taking out the water 

from the rain gauge with a syringe. The collected water was then homogenized and filtered at the time of sampling, later a 150 

5ml aliquot was stored in polypropylene tubes sealed with screwcup without air inside and kept cold in a refrigerator until 

isotopic analysis. Rainfall samples were collected at the end of each precipitation event, immediately afterwards 

whenever possible or after a few hours, with the total event precipitation homogenized. At El Pindal site the procedure was 

different: rainfall was collected every 48h for several months (November 2006 to April 2009) using an automated sampler 

(Table 1) located on the roof of the San Emeterio lighthouse located <10 m from the modern sea cliff and 200 m from the 155 

cave. Thus, since the samples were automatically collected and remained in the lighthouse for several days, a film of paraffin 

oil was used to prevent evaporation.  

The observation staff in charge of each location collected a sample directly following every rainfall event, except in El 

Pindal that the system was automatic and in Mallorca, where several events were missed during the first two years of the 

collection period, preventing the calculation of monthly averages for some intervals (monthly and annual averages and 160 

standard deviations in Table 2). In addition, seven rainfall events were collected at two different localities in Mallorca 
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(Manacor and Porto Cristo) obtaining similar 
18

Op results. For those events, a weighted-average value using the two 

localities was calculated (see Table S1). Thus, 47 rainfall samples were collected from Oviedo manually in 2015. In Ortigosa 

de Cameros, rainfall was manually collected daily between September 2010 and December 2014 by the staff (guides) of the 

La Viña and La Paz show caves, with an interruption from December 2012 – January 2014. In Molinos, rainfall was 165 

manually collected by the staff of the Grutas de Cristal cave every day for just over five years (March 2010-May 2015). The 

first 2.5 years rainfall data from that survey was previously published (Moreno et al., 2014; Pérez-Mejías et al., 2018). In 

Borrastre, rainfall was manually collected daily using a Hellman rain gauge daily from April 2011 to May 2016 (380 events). 

In Barcelona, rainfall samples were obtained from the weather station on the roof of the School of Physics of the University 

of Barcelona using a standard rain gauge.  170 

3.2 Analytical methods 

The isotopic composition of oxygen and hydrogen in rainfall samples, expressed as 
18

O and 
2
H, reported in ‰ relative to 

Vienna Standard Mean Ocean Water (VSMOW). Molinos, Borrastre and most of Ortigosa de Cameros samples (143 

samples) were analysed using a Finningan Delta Plus XL mass spectrometer at the IACT-CSIC in Granada. Water samples 

were equilibrated with CO2 for the analysis of 
18

O values (Epstein and Mayeda, 1953), while the hydrogen isotopic ratios 175 

were measured on H2 produced by the reaction of 10 μL of water with metallic zinc at 500°C, following the analytical 

method of Coleman et al. (1982). The analytical error for 
18

O and 
2
H was ±0.1 and ±1 ‰, respectively. The Mallorca and 

Barcelona samples and the remaining samples from Ortigosa de Cameros (50 samples) were analysed at the Scientific and 

Technological Centre from the University of Barcelona, 
2
H via TCEA pyrolysis coupled to Thermo Delta Plus XP mass 

spectrometer and 
18

O with a MAT 253 Thermofisher spectrometer coupled with a gas bench. The analytical error for 
18

O 180 

and 
2
H was ±0.2 and ±1.5 ‰. El Pindal samples were measured at three different laboratories (see Stoll et al., 2015, for 

more details). Rainfall collected from November 2006 through the end of February 2007 was analysed at the University of 

Barcelona using the procedure described above. Rainfall collected from June 2007 to May 2008 was analysed in the Marine 

Biological Laboratories of the University of Oviedo, using equilibration with CO2 on GV Multiflow-Bio unit coupled to a 

GV ISOPRIME CF mass spectrometer. Rainfall collected from June 2008 to April 2009 and samples from 2015 were 185 

analysed using equilibration with CO2 on Gas Prep unit coupled to a Nu Instruments Horizon mass spectrometer at the 

University of Oviedo. Uncertainties are ±0.1‰ (1s) for 
18

O and ±1 %.for 
2
H, based on replicate analyses. Unfortunately, 

no comparison was made between the different involved laboratories and thus the study does not account for possible offsets 

between them. 

Additionally, 18 samples of potentially evaporated water with abnormally high values in 
18

Op - and that occurred in summer 190 

months when maximum daily air temperatures exceed 30°C - were classified as outliers and removed from the database. 

These 18 samples (Table S1) were from Ortigosa de Cameros (4 samples), Borrastre (6 samples) and Molinos (8 samples). 

Partial evaporation of falling rain-droplets is an alternative interpretation of the high 
18

Op values of these samples.  
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3.3 Meteorological data 195 

 

Meteorological data to investigate the statistical relationship between isotopic values (at daily and monthly time scales) and 

main climate variables (air temperature and precipitation) were obtained from the closest meteorological stations over the 

sampling periods as indicated in Table 1. For Oviedo, meteorological data are obtained from Oviedo AEMET station and for 

El Pindal (120 km from Oviedo; 70 km from Santander) since there was not good data from nearby stations, we decided to 200 

use ERA-Interim re-analysis of the European Center for Medium-range Weather Forecasts (ECMWF) that provides gridded 

weather data (Berrisford et al., 2009). For Ortigosa site, meteorological data are obtained from Villoslada de Cameros 

meteorological station (http://www.larioja.org/ emergencias-112/es/meteorologia), at 6.5 km from the rainfall collection site. 

The Borrastre sampling site has its own meteorological station (http://borrastre.dyndns.org/MeteoBorrastre) (Table 1), 

except for the first 22 events that were derived from ERA-Interim since the station was not yet operative. Finally, for 205 

Mallorca we used data from Sant Llorenç station (8 km) while Barcelona meteorological data are obtained from Zona 

Universitaria station (www.meteo4u.com).  

 

3.4 Statistical analyses 

 210 

Prior to conducting correlation analysis at daily scale, we removed the seasonal component of the variables by subtracting 

their monthly averages to avoid sympathetic seasonal correlations (e.g. (Kawale et al., 2011; Rozanski et al., 1993) (Table 

3A). To establish correlations at monthly scale with meteorological variables (Table 3B), 
18

Op monthly averages weighted 

by the amount of precipitation were calculated using the following formula (Figure 4B): 


18

Omonthly = ((Q1 x 
18

O1) + (Q2 x 
18

O2) ... (Qi x 
18

Oi)) / (Q1+Q2 + ... Qi) [1] 215 

with Q = rainfall quantities for the day i (in mm). Daily values were not averaged since there was only one rainfall sample 

per day resulting from the homogenization of all the event samples of that day. Spearman’s rank correlation analysis, a non-

parametric alternative to Pearson correlation analysis was preferred to account for non-linear relation, with r as the 

correlation coefficient (PAST software, Hammer et al, 2001) (Table 3).The analyses were conducted at daily (Table 3A) and 

monthly (Table 3B) time scales. Bonferroni test was applied to prevent data from incorrectly appearing to be statistically 220 

significant by making an adjustment during comparison testing. Additionally, to integrate the temperature effect and the 

amount effect, a multiple regression model for 
18

O was carried out using PAST software for every studied site (Table 3C). 

Backward-trajectory analysis was performed using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) 

Model (Version 4.8) (Draxler and Rolph, 2010) and following a similar methodology to Baldini et al. (2010) over a 120 hours 

lifetime (Figure 5) (24 hours trajectories were also calculated, Fig. S1). All points produced by the HYSPLIT model every 225 

hour (120 points) were used to generate a vector representing the origin and mean trajectory of the rainfall collected. Once 
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all the 120 vectors were produced, they were averaged, and one unique vector was assigned to each rainfall event. After that, 

all the averaged vectors associated with each different location studied, are presented in a compass rose using 10° intervals, 

together with 
18

O values and rainfall amount of each event (mm) provided by the closest weather stations to each analyzed 

location (Figure 5).  230 

Lastly, to better explore the role of the type of precipitation in controlling the isotopic composition of rainfall across northern 

Iberia, we applied a disaggregation procedure of precipitation series following the same methodology described in Millan et 

al. (2005). This novel method classifies each precipitation event on the basis of its characteristics, distinguishing between 

three categories (Figure 1B, Table 4): (i) frontal systems associated with passing cold fronts from the west, (ii) convective-

orographic storms driven by differential heating, sea breezes and local winds (Azorin-Molina et al., 2009) and (iii) easterly 235 

advection from the Mediterranean Sea (backdoor cold fronts). The Kruskal-Wallis H test (sometimes also called the "one-

way ANOVA on ranks") is a rank-based nonparametric test (Hammer et al., 2001) that was applied to the three rainfall 

categories to determine if there were statistically significant differences on their 
18

Op distributions (Table 5).  

 

4 Results  240 

 

4.1 Daily scale rainfall isotopic variability in northern Iberia 

 

The rainfall samples for the studied stations at a daily scale, define local meteoric water lines (LMWL) that are roughly 

parallel for all sites with similar offset from the Global Meteoric Water Line (GMWL, δ
2
H = 8*δ18

O + 10) (Figure 2). All 245 

the slopes and the intercepts are lower than the GMWL, with slopes ranging from 6.9 to 7.2 and intercepts from 1.05 to 6.4 

(Figure 2).  

Despite the fact that the data were not collected for the same period of time at each station, the different daily series of 
18

Op 

at all stations are presented together versus time (Figure 3). From 2010 to 2017, daily 
18

Op clearly show lower values in 

winter and higher (sometimes positive) values in summer at all stations (Figure 3). Yet some summer rainy episodes (e.g., 250 

the 25 June 2014 event in Borrastre or the 18 June 2016 one in Barcelona) exhibit values typical of winter after raining 

several days or after an intense rainfall event (41.6 mm in Borrastre or 18 mm in Barcelona).  

Also evident in Figure 3 is the synchronicity among stations for specific events. A good example is the episode of 16-18
th
 

November 2013 (inset in Figure 3) when very negative values were reached at Molinos (black line), Borrastre (green line) 

and Mallorca (red line). This period was characterized by intense widespread rain – eg. 43 mm in Mallorca and 36 mm in 255 

Molinos (Table S1). At the three sites, this period was among the rainiest of our record with some of the lowest 
18

Op values 

recorded.  

 

4.2 Monthly scale rainfall isotopic variability in northern Iberia 
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 260 

Seasonality in 
18

Op in northern Iberia is further explored in Figure 4B (data in Table 2, Table S2). Al stations exhibit a clear 

seasonal pattern in temperature with a peak in July/August and minimum values in December/January. The seasonal signal 

in 
18

Op roughly follows this pattern with peak 
18

Op values in summer and minimum 
18

Op in winter. It is worth noting that 

precipitation exhibits a bi-modal pattern which is not reflected in 
18

Op. The average seasonal differences between July-

August and minimum 
18

Op in January-February are quite large: 5.8‰ at Borrastre, 4.6‰ at Ortigosa de Cameros, 6.2‰ at 265 

Molinos and about 4‰ at Mallorca-Barcelona. Interestingly, the Oviedo-El Pindal samples reveal a very different pattern, 

with a marked reduction in seasonality compared to the other sites (2 ‰ 
18

Op difference between winter and summer) 

(Figure 4B).  

 

5 Discussion  270 

 

This discussion section is focused on analysing the main factors controlling 
18

Op in the studied transect in northern Spain at 

daily and monthly time scales. Sect. 5.1 is dedicated to the influence of geographical parameters, such as distance to coast or 

elevation of the studied sites. Sect. 5.2 deals with the role of meteorological parameters, in particular, local air temperature 

and precipitation amount. Sect. 5.3 investigates the role of moisture origin on 
18

Op variability while Sect. 5.4 explores the 275 

role of rainfall type (convective, frontal) in determining 
18

Op.  

 

5.1 Geographical controls on rainfall isotopic variability 

 

The combination of the various isotope effects results in consistent and spatially coherent variation in 
18

Op values that are 280 

primarily related to latitude, elevation, moisture source and air masses history (Rozanski et al., 1993; Bowen, 2008). The 

LMWLs determined with daily data for each of the studied sites reveal a broadly similar regional signal and are consistent 

with previous studies using GNIP data from southern France (Genty et al., 2014), even considering that study is made with 

monthly 
18

Op data. The slopes obtained are slightly lower in our study compared to a previous analysis from the IP 

(Araguás-Araguás and Diaz Teijeiro, 2005) where the sampling period only covered the rainy season (October to March). 285 

The comparison of monthly averaged 
18

Op values in the studied stations allows an assessment of the relative importance of 

geographical factors in the observed patterns (Table 2, Figure 4B). Ortigosa de Cameros, Molinos and Borrastre stations 

show monthly 
18

Op values quite similar and, normally, more negative than Oviedo, El Pindal, Barcelona and Mallorca sites. 

This pattern is particularly clear for autumn values (see monthly averaged 
18

Op values from September to December in 

Table2 along the west-to-east transect). The similarity found among the sites located at opposite ends of the transect (Oviedo 290 

and El Pindal compared to Barcelona and Mallorca) and, presumably, influenced by different air masses with different 

isotopic composition in the initial water vapor (i.e., Atlantic vs Mediterranean) as previously described by LeGrande and 
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Schmidt (2006) in their global study of oxygen isotopic composition in seawater, is not what we expected. This pattern may 

be explained by two processes.  

First, the fact that Oviedo and El Pindal rainfall samples show enriched 
18

Op values (Table 2, Figure 4B) is consistent with 295 

their location in the Cantabrian coast, very close to the Atlantic Ocean, with oceanic climatological conditions characterized 

by high mean temperatures (Table 1). Thus, Oviedo (and El Pindal) are the stations that receive the first precipitation 

produced by Atlantic air masses; therefore they are the stations in the transect least affected by the “continental effect”: when 

clouds move inland from the Atlantic Ocean and become gradually isotopically depleted due to progressive rainout 

(Dansgaard, 1964). Thus, as we follow the typical movement of an Atlantic front, from west to east, we find progressively 300 

more negative winter 
18

Op values (considering an average of January-February-March, Table 2) going from El Pindal (-

6.0‰) to Ortigosa de Cameros (-8.1‰), to Borrastre (-9.8‰) and, finally, to Molinos (-10.0‰). This pattern is not so 

evident in other seasons where the entrance of Atlantic fronts is not the only synoptic pattern that generates rainfall in the 

transect. However, the large observed differences cannot be explained only by this effect that accounts for a very small 

variation (about 0.002‰ per km in Europe as described in Rozanski et al., 1993). 305 

A second factor to explain why Mallorca and Barcelona rainfall samples display the least negative 
18

Op values in the 

transect, is the influence of air masses derived from the Mediterranean Sea. Initial water vapour 
18

O values in the 

Mediterranean Sea are typically more positive (0.5 – 1 ‰) than Atlantic Ocean water vapour due to enhanced evaporation in 

within the semi-enclosed Mediterranean basin (LeGrande and Schmidt, 2006). An additional effect, probably more important 

than 0.5 - 1 ‰ of difference, is the higher annual mean air temperature at those stations (Mallorca and Barcelona together 310 

with Oviedo and El Pindal) compare to the other ones (Table 1). The effect of temperature to produce the less negative 
18

Op 

values recorded will be explained below (Sect. 5.2).  

In addition, the three stations with more negative monthly 
18

Op values (Ortigosa de Cameros, Borrastre and Molinos) are at 

higher elevation than the other stations that are all located close to sea-level. Therefore, the “elevation effect” (Siegenthaler 

and Oeschger, 1980) likely also plays a role in explaining the more negative 
18

Op values at those stations. Considering the 315 


18

Op annual averages (Table 2) there is a difference of 2.3‰ between Molinos (1040 m asl) and Mallorca (90 m asl). Based 

on the difference of elevation, the vertical isotopic gradient observed is -0.24‰ per 100 m of elevation. This result is 

consistent with previous studies in other mountain ranges such as the Alps, where an altitudinal gradient of -0.2 to - 0.3‰ 

per 100 m of elevation was observed (Ambach et al., 1968; Siegenthaler and Oeschger, 1980). However, in spite the 

difference in elevation, we need to consider that the sites are very distant and separated by the Mediterranean Sea. Therefore, 320 

the altitude cannot be the only parameter controlling the differences between the studied sites. 

Finally, the geographical factors reviewed in this section (distance to the coast or continental effect, elevation effect, and 


18

O composition of the sea waters) exert a small direct influence on the observed spatial distribution of rainfall 
18

Op at the 

studied sites but contribute to the effects of other, controlling factors: air temperature, rainfall amount, air mass trajectory 

and rainfall type, which will be described in following Sect. 5.2, 5.3 and 5.4. 325 
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5.2 The influence of air temperature and rain amount on the spatial distribution of rainfall 
18

Op values at daily and 

monthly time scales 

 

Spearman’s rank correlation analysis (Table 3) reveals that 
18

Op does not correlate with air temperature or amount of 330 

precipitation in a similar way at each station, neither at daily or monthly scales, thus reinforcing the need for conducting such 

studies on a local basis particularly when conducting paleoclimate reconstructions (Leng, 2006). Air temperature appears as 

the most robust influence across the west-to-east transect, with low but statistically significant correlations (daily scale) with 


18

Op at all sites (red numbers in Table 3A) except Oviedo and Barcelona, most likely due to the low number of daily 

samples (n=39 and n=53, respectively). The coefficient of correlation among 
18

Op daily values and air temperature is highly 335 

variably from west to east: El Pindal (rs = 0.34; p = 0.0012), Ortigosa de Cameros (rs = 0.25; p = 0.001), Molinos (rs = 0.42; 

p = 2.00E-11), Borrastre (rs = 0.29; p = 6.33E-08) and Mallorca (rs = 0.35; p = 0.0013) (Table 3A). Regarding monthly 

values, air temperature is significantly correlated with 
18

Op values at eastern stations, with the highest coefficients 

associated with higher altitude sites (e.g., in Molinos with rs = 0.76 and p=3.36E-10 or in Borrastre with rs = 0.61 and 

p=1.44E-05) (Table 3B).  340 

The dependence of 
18

Op on air temperature has been extensively studied, yielding an average slope for mid-latitude 

continental stations of 0.58‰/°C (Rozanski et al., 1993). However, that value is highly variable in time and space. The 

strongest air temperature-
18

Op relationship based on daily data is found at the Pyrenean station, Borrastre site with 0.4‰/°C 

and the weakest at Oviedo+El Pindal (0.2‰/°C). The other three stations, Ortigosa de Cameros (0.3‰/°C), Molinos 

(0.4‰/°C) and Mallorca+Barcelona (0.3‰/°C), show similar intermediate values. Compared to other areas, such as the Alps 345 

with temperature-
18

Op gradients of 0.5 to 0.7 ‰ per °C, the results presented above indicate that, although important, air 

temperature only explains between 20 and 40 % of the observed 
18

Op variability and is, therefore, not the only control. 

The amount effect is dominant in tropical regions where deep vertical convection is common although it may also occur in 

the extratropics (Bar-Matthews et al., 2003; Treble et al., 2005b). In the studied transect, at the daily scale, the strongest 

correlation with amount of precipitation is observed in Barcelona (rs = -0.35; p=0.029) (Table 3A). Besides, there is a 350 

significant correlation at the two sites of the Iberian Range (rs = -0.32; p=1.05E-05 in Ortigosa and rs = -0.19; p=0.005 in 

Molinos). Interestingly, the westernmost stations (El Pindal and Oviedo) do not show a significant 
18

Op–precipitation 

correlation at the daily or monthly scale. This lack of correlation in the Atlantic sites (El Pindal and Oviedo) contrasts with a 

previous study carried out in northern Spain and also characterized by an Atlantic climate (Matienzo depression) where there 

is found a significant 
18

Op–precipitation monthly correlation (r = -0.51; p < 0.01) (Smith et al., 2016). In our study, the 355 


18

Op–precipitation correlation at monthly scale is only significant in Molinos, in the Iberian Range (rs = - 0.4; p=0.018) 

while no correlation is observed in the other sites (Table 3B).  
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To further assess the relative role of temperature and amount effects, a multiple regression model for 
18

Op was carried out 

for the seven studied sites in which the temperature effect exerted a clear dominant control (Table 3C. Still, both influences 

together account for less than 20 % of the variability of 
18

Op in the study transect. Since the origin of rainfall and type of 360 

rainfall (i.e., convective vs. frontal) is also spatially dependent in northern Iberia, these variables and their influence on the 

observed 
18

Op variability are investigated in Sect. 5.3 and 5.4 below. 

 

5.3 The role of the source effect in modulating northern Iberian Peninsula 
18

Op  

 365 

The source effect describes how air masses derived from different moisture sources have distinct 
18

Op values (e.g., 

Friedman, 2002). The source effect results from varying air mass histories, different conditions of the moisture source 

(temperature, relative humidity and wind speed) and regional differences in the 
18

O of the surface ocean (LeGrande and 

Schmidt, 2006). In the case of northern IP, it is necessary to consider the effect of both the Atlantic Ocean and Mediterranean 

Sea as important sources of atmospheric moisture (Gimeno et al., 2010) whose relative influence on regional IP 
18

Op could 370 

be very different because of the complex regional topography of the area. General 
18

O values of seawater reconstructions 

(LeGrande and Schmidt, 2006) indicate different values for the Atlantic Ocean and the Mediterranean Sea due to 

temperature and salinity differences. Source 
18

O values range from 1 to 1.5‰ in the subtropical Atlantic to 2‰ in the 

Mediterranean (Schmidt et al., 1999). Although these differences (about 0.5 - 1 ‰) are small, since they are further 

modulated by the air mass history, we expect to see a change in the relative influence of moisture source on 
18

Op along the 375 

west-to-east transect.  

Evaluation of monthly 
18

Op patterns represented in Figure 4B reveals more muted seasonality (2‰) at Oviedo-El Pindal 

sites compared to other stations in the transect (> 4‰). The seasonal difference from winter to summer in Oviedo is similar 

to the values published by Genty et al., (2014) for stations in southern France (e. g., 2.1 ‰ in Villars with only Atlantic 

influence and 3.6 ‰ in Orgnac with Atlantic and Mediterranean influence). The explanation for the weak seasonality in the 380 

Oviedo 
18

Op signal and the similarity with Villars station could be related to the precipitation type (Sect. 5.4) and the 

geographic origin. Oviedo and Villars stations are characterized by a relatively constant source of precipitation through the 

year derived from Atlantic fronts and no dry season (Figure 4A). This is in clear contrast to the other stations which are 

characterized by a more hybrid Atlantic/Mediterranean climate (e.g., Orgnac, Genty et al., 2014). Particularly, in Barcelona 

and Mallorca the seasonal difference in 
18

Op monthly values is high (6‰) (Figure 4B). At these two stations, the influence 385 

of different rainfall sources (Atlantic and Mediterranean) with distinct isotopic values as demonstrated by a global study of 


18

O values in surface oceans (LeGrande and Schmidt, 2006) and different air masses histories may be important to explain 

the high variability. These influences are further evaluated using back trajectory analysis.  
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To evaluate the role of moisture source in determining 
18

Op values at a daily scale in northern Iberia and Balearic islands, 

back trajectories were calculated for all the rainy days and subsequently averaged into wind rose diagrams, following 390 

representation applied in previous studies (Smith et al., 2016), for three stations along our northern Iberia transect: Oviedo 

and Mallorca, the two extreme locations of the studied transect, and Borrastre, situated at an intermediate location, 

representing a total number of 519 events (Figure 5). To facilitate statistical comparison of the mean trajectory paths and 

moisture uptake regions with the oxygen isotope signature of sampled rain events, the vector angle between every site 

(Oviedo-Borrastre-Mallorca) and each hourly position along 120-h back trajectories (at 700 and 850 hPa) for each event was 395 

estimated, following the methodology presented in Baldini et al. (2010) (Figure 5). Once all the vectors were produced for 

each sampled event, they were averaged, and presented in a compass rose using 10° intervals, together with 
18

Op values and 

rainfall amount of each daily sample (mm) provided by weather stations closed to each location analyzed (Figure 5).  

This analysis reveals the dominance of western trajectories in the three studied sites, with very few episodes associated with 

other directions (Figure 5). Only some episodes from SW (e.g., Borrastre) or SE (e.g., Mallorca) trajectories are found and, 400 

interestingly, they have distinct 
18

Op value (see below). This low, almost negligible, presence of trajectories associated with 

Mediterranean air mass advections, does not inhibit the possibility of a moisture uptake over the Mediterranean or moisture 

recycling with altitude in the mountain region surrounding Borrastre since meteorological processes connected to convection 

(e.g., orographic, dynamic, thermal) can produce moisture uptake in less than 6h (Romero et al., 2000, 1997; Tudurí and 

Ramis, 1997) and may not be well-captured in the back trajectory analyses, which are computed for the previous 120 hours 405 

(see Methods). Therefore, convection processes, that may be associated with easterly trajectories, are under-represented in 

this methodology (see 24 hours analyses in Figure S1 where more trajectories with different origin appear more frequently). 

Therefore, it is important to note here that this method provides information on the air mass origin (source effect) but not in 

the moisture uptake regions. In that way, it is clear the dominant WNW trajectory for the three studied stations. 

Despite the three sites sharing a common dominant WNW trajectory, they behave quite differently in terms of the associated 410 

amount of rainfall and 
18

Op values. Oviedo (with a temperate oceanic climate - Cfb, Table 1) presents a narrower range of 

rainfall amounts and 
18

Op values than at the other two sites, as shown in Figure 5A by the negligible frequency of rainfall 

amounts above 32 mm (orange) or below 2 mm (purple), while “extreme” events are much more common in Borrastre or 

Mallorca sites. Similarly, in figure 5B, where the isotopic values for the different trajectories are plotted, Oviedo appears as 

the station with more stable 
18

Op values (
18

Op values among -10 and -2‰) compared to the other two. Thus, in Borrastre 415 

and Mallorca, 
18

Op values between -8 and -12‰ (red – green – yellow - dark blue) are only present in northwestern 

trajectories, while less negative values (- 6 to 2‰) appear in events with SW and SE directions. These results confirm the 

homogeneity of Atlantic sites (Oviedo, El Pindal) compared to the intermediate (Ortigosa de Cameros, Molinos and 

Borrastre) stations already described by monthly data in Figure 4.  

These results highlight the importance of moisture source in generating the observed 
18

Op differences along the west-to-east 420 

transect in this study. At Borrastre (our mid-transect site) two mean trajectories are distinguished in terms of 
18

Op values: 
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northwesterly trajectory associated with more negative 
18

Op values and southwesterly trajectory associated with less 

negative values (Figure 5B). Borrastre station is chosen to further evaluate back trajectories for all rainfall events over one 

whole year (2014, n=126 rainfall events) since the presence of rainfall events where moisture comes from the SW, with 

usually less negative 
18

Op values, is significant compared to, for example, Oviedo station. Thus, one example from every 425 

trajectory is presented in Figure 6.  

Above 80% of winter trajectories recorded in Borrastre rainfall events originate in the North Atlantic, Artic or inland USA or 

Canada. They cross the Atlantic Ocean north of Madeira Island and usually enter the IP by the west, next to the Galicia and 

Portugal border. Those trajectories arriving from the N-NW reach Borrastre site at the Pyrenees almost without crossing the 

IP, thus providing the more negative 
18

Op values (e.g., 7
th

 February, Figure 6A, with 
18

Op =-6.5‰). On the contrary, those 430 

arriving from the W-SW enter via Lisbon and cross central IP providing less negative 
18

Op values (e.g., 16
th

 January, Figure 

6B, with 
18

Op =-1.2‰). If the trajectory of the air mass travels larger distances over the continent, the contribution of re-

evaporated land moisture to the water vapour travelling inland may be significant and thus 
18

Op values may appear higher, 

as it has been shown to occur in other regions (Krklec and Domínguez-Villar, 2014). In that case, the progressive rainout 

effect may be compensated by the moisture uptake of evaporated (high 
18

O) surface water.  435 

During spring, the typical situation of air masses entering from the W alternates with those arriving from the SW, entering at 

the latitude of the Cape San Vicente and crossing the IP from south to north (e.g., 20
th

 April, Figure 6C; with 
18

Op =-2.1‰). 

Some spring trajectories are subject to Mediterranean influence (eg. 20
th

 May; Figure 6D) and are characterized by higher 


18

Op values (
18

Op =-1.3‰). In general, the penetration of subtropical Atlantic air masses, which becomes a very common 

situation in summer, results in higher 
18

Op values (e.g., 6
th

 July, Figure 6E, with 
18

Op =-2.2‰). Therefore, the less negative 440 


18

Op values usually associated with SW trajectories in Borrastre can be explained by (1) the origin in the subtropical 

Atlantic Ocean with higher 
18

Op values (1.5 ‰) compared to North Atlantic (0.5 ‰) (LeGrande and Schmidt, 2006) and, (2) 

the recycling of surface moisture over land incorporating enriched 
18

Op values from surface waters that have been subject to 

evaporation over time (Krklec and Domínguez-Villar, 2014).  

 445 

5.4 The influence of rainfall type on isotopes. 

 

The influence of rainfall type on the 
18

Op is well documented globally, with different 
18

Op observed depending the type of 

precipitation (convective showers, frontal, continuous stratiform precipitation, etc.) (Aggarwal et al., 2012). This relationship 

is observed in previous studies both at daily or monthly timescales (Aggarwal et al., 2016), with few examples in the 450 

Equatorial Indian Ocean (Gat, 1996) and California, USA (Coplen et al., 2015), both indicating that 
18

Op values were lower 

when precipitation was dominantly stratiform and higher when it was mostly convective. The main reason to explain this 

difference lies on the processes of condensation and riming associated with boundary layer moisture which produced higher 
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isotope ratios in convective rain (Aggarwal et al., 2016). Some studies in the Mediterranean region (Celle‐Jeanton et al., 

2001) also directly link the isotopic signature of the precipitation to the prevailing weather conditions during the rainfall 455 

event. 

Here we explore how the specific synoptic situation, i.e., rainfall types or rainfall components, influence 
18

Op values across 

the studied transect. Table 4 shows the percentage of rain events associated with each type of precipitation, that were 

previously defined following (Millán et al., 2005) and represented in Figure 1B: (i) Atlantic frontal systems (westerly winds), 

(ii) convective–orographic storms, and (iii) backdoor cold fronts from the Mediterranean Sea (easterly winds). Backdoor 460 

cold fronts from the Mediterranean Sea are sporadic events occurring in autumn (secondarily in winter-spring), but they 

cause heavy precipitation and flooding (Llasat et al., 2007).  

The prominence of rainfall associated with Atlantic fronts is evident (above 40% in the seven studied stations). This 

percentage decreases eastward, from 68.09/71.29 % in Oviedo/El Pindal to 58.49/40.82 % in Barcelona/Mallorca. A 

previous study at a north Iberian site (Matienzo, Cantabria) indicates that approximately 80% of air masses originate in the 465 

North Atlantic, and their movement is associated with westerly frontal systems (Smith et al., 2016). This situation appears to 

be true along the studied transect, however for the Mediterranean and Iberian Range sites, Atlantic and Mediterranean 

sources are balanced (including backdoor cold fronts as Mediterranean) (Table 4). Distance to the Mediterranean and 

elevation are important factors in determining the frequency of rainfall associated with backdoor cold fronts. Thus, backdoor 

cold fronts are associated with 38.78% of Mallorca rain events and are still frequent situations at the two sites from the 470 

Iberian Range (20.6% in Ortigosa de Cameros and 23.9% in Molinos). The frequency of convective precipitation is higher at 

the three mountain sites (20.6% in Ortigosa de Cameros, 24.3% in Molinos and 23% in Borrastre), compared to those sites at 

lower elevation (17% in Oviedo; 11.9% in El Pindal, 17% in Barcelona and 20.4% in Mallorca).  

The Kruskal-Wallis test was applied to investigate if there were significant differences in the 
18

Op values of the three 

rainfall types analysed (Atlantic, backdoor frontal precipitation, and convective) in the studied stations at the daily scale. 475 

Test values shown in Table 5 (p values < 0.05) indicate the 
18

Op values of at least two of the three rainfall types are 

significantly different (this does not apply for Oviedo and Barcelona since the degrees of freedom are too low to yield a 

significant result). Thus, this means that the type of rainfall (frontal versus convective) is an important factor controlling 


18

Op values in the studied transect at daily scale. This result is also evident where the three rainfall types are represented 

according to their 
18

Op composition (Figure 7). Thus, regarding 
18

Op composition, convective precipitation (in green in 480 

Figure 7) is associated with the highest 
18

Op values, while events related to Atlantic and backdoor cold fronts display more 

negative 
18

Op values (albeit with a large spread), consistent with previous studies (Aggarwal et al., 2016). The highest 
18

Op 

values associated with convective precipitation may relate to the critical role played by the re-evaporation of droplets, a 

circumstance that usually takes place during convective rainfall (Bony et al., 2008). In any case, what is relevant here, is the 

similarity among 
18

Op values of the two types of frontal rains (Atlantic fronts and Mediterranean backdoor cold fronts) 485 

while there is a difference considering the type of precipitation.  
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Besides 
18

Op values associated with the three rainfall types, variations of air temperature and precipitation have an effect in 

separating the three rainfall types (Figure 7). Regarding air temperature, backdoor cold front events are the ones occurring 

with colder temperatures while convective rains are more associated with the warm season. Thus, air temperature (and its 

variation along a vertical profile) is another variable clearly associated with the type of rainfall, with higher temperature 490 

during convective rains and lower for the Atlantic and backdoor types. This is a clear reflection of the seasonal pattern of 

convective rains, which are more abundant in summer months (Table S1) thus preventing an isolation of the effect of the 

type of rainfall which appears mixed with the temperature effect. In contrast, the high number of outliers in the box plots of 

the amount of precipitation when organized by rainfall type (Figure 7) indicates that this parameter is determined more by 

local factors (e.g.. topography) than by the specific synoptic situation.  495 

 

5 Conclusion 

 

The major findings in this study are summarized as follows:  

 The analysis of 
18

Op and 
2
Hp at seven stations along a west-to-east transect in northern Iberia and Balearic Islands 500 

yields similar LMWLs but all with lower slope and intercept values than the GMWL.  

 Oviedo/El Pindal and Mallorca/Barcelona rainfall samples display the least negative 
18

Op and 
2
Hp values in the 

transect. Our results suggest that this similarity in the two opposite stations (the westernmost ones and the 

easternmost ones) are due to, in the first case, the initial condensate of water vapour generated over the North 

Atlantic and, in the second case, the influence of air masses originating in the Mediterranean Sea together with 505 

much warmer temperatures than in the other sites. Besides those effects, the “elevation effect” must be taken into 

account to explain the more negative average values at the three mid-transect stations (Ortigosa de Cameros, 

Borrastre and Molinos).  

 The seasonal variability is larger at Ortigosa de Cameros, Borrastre and Molinos while in Oviedo-El Pindal is 

reduced due to the single origin of rainfall in that area. 510 

 Air temperature appears to be the most significant influence on 
18

Op at daily and monthly scales with the highest 

air temperature-
18

Op dependency found for the Pyrenean station (slope of 0.38‰/°C), while only few sites in the 

transect show a significant negative correlation (monthly in Molinos; daily in Ortigosa de Cameros, Molinos, 

Barcelona and Mallorca) with precipitation amount.  

 The dominance of rainfall with an Atlantic origin is clear in the study of rainfall back trajectories associated with 515 

each event analysed. Additionally, the distance travelled inland in a quite dry region also conditions the recycling of 

re-evaporated moisture providing final enriched 
18

Op values.  

 Convective rainfall yields higher 
18

Op values, while rainfall events related to Atlantic and backdoor fronts display 

more negative 
18

Op values.  
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In conclusion, the northern Iberian region, is under the influence of two climatic regimes (Atlantic and Mediterranean) and 520 

affected by different moisture sources. Therefore, synoptic-scale atmospheric circulation is playing a key role in determining 

the ranges, values and seasonal distribution of 
18

Op variability. Future detailed studies focusing on particular events that can 

be traced along the whole west-to east transect will be conducted to further understand the air masses trajectories over 

northern Spain and their influence on 
18

Op variability.  

 525 
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Figure 1. (A) Location of the studied stations in northern Spain where rainfall was collected. Map source: Average annual 

precipitation (mm) for 1980-2005 provided by the Spanish Ministry of Agriculture and Fisheries, Food and Environment 

(MAPAMA); (B) weather maps showing the three precipitation regimes of the IP defined by Millán et al. (2005):  (i) Atlantic 710 

frontal systems, (ii) convective–orographic storms, and (iii) Backdoor cold fronts from the Mediterranean Sea. In the maps, the sea 

level pressure and the 500 hPa geopotential height (gpdam in German) are indicated by the different colors; the scale represents 

the height- from 4600 to 6000 m - where the pressure of 500hPa is reached. White lines are the isobars (bodendruck in German). 

Source: CFS Reanalysis (CFSR) and Wetterzentrale. 
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Figure 2. Scatter plots of 2Hp versus 18Op in precipitation and Local Meteoric Water Lines (LMWL), including equations, for El 

Pindal, Ortigosa de Cameros, Borrastre, Molinos and Mallorca with Barcelona stations. Note that El Pindal plot includes only 36 

samples since 2H was not measured in the remaining ones. The difference in the other graphs in sample number (n) respect to 

those indicated in Table S1 is due to the removal of some  samples that have been subject to evaporation effects (see text for more 720 

information). Global Meteoric Water Line (GMWL) and Western Mediterranean Meteoric Water Line (WMMWL) are plotted in 

black and gray, respectively, in every graph. 
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Figure 3. Event 18Op time series for the studied stations presented versus time (2010-2017). Note that El Pindal samples are not 725 

represented since they do not overlap with the other stations (2006-2009). See text for more explanation. 
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Figure 4. (A) Climographs showing monthly mean temperature (line with dots) and monthly mean rainfall (bars) obtained for the 730 

longest AEMET meteorological stations available next to the study sites (Oviedo, Logroño, Teruel, Huesca, Barcelona and Palma 

de Mallorca). Note that these stations are not at the same elevation or microclimate as the ones where rainfall was collected. For 

this reason, the climographs are indicated here to account for broad regional climates while the correlations (Table3) with 

meteorological data were performed using more proximal (although shorter in the recorded time interval) stations. (B) Variability 

of monthly weighted 18Op at the studied sites. Dots represent monthly precipitation-amount weighted averages and lines are the 735 

mean of these monthly precipitation-amount weighted averages (see also Table 2 and Table S2).  
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Figure 5. Wind roses showing the averaged back trajectories directions whose air masses produced precipitation in three stations 

in northern Iberia: Oviedo (northern Spain), Borrastre (central Pyrenees) and Mallorca (Balearic Islands). (A) Amount of 740 

precipitation (measured at the nearest meteorological station) during the intervals of sample collection and (B) 18Op indicated by 

colors (see legends). Source regions of each air mass, generated by averaging the direction of each point of the back trajectory (20 

points), are broken into 10º sectors. The percentages of back trajectories, whose averaged directions are associated with each 10º 

sector, are shown as dashed circles (from 0 to 12%). 
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Figure 6. Air mass history for selected days with precipitation at Borrastre site. The inserted maps indicate with more detail the 

trajectory over Iberia in every case. The three lines represent the air masses at different elevation (red: 850 hPa, blue: 700 hPa and 

green: 500hPa) (see text for more explanation). 
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Figure 7. Box plots of 18Op, air temperature and precipitation amount for the three identified rainfall types in northern Iberia: 

Atlantic fronts (in dark blue), backdoor cold fronts (light blue) and convective precipitation (in green) for the studied stations. The 

central rectangle spans the first quartile to the third quartile (the likely range of variation, the IQR). A segment inside the rectangle 

shows the median and "whiskers" above and below the box show the locations of the minimum and maximum. The Kruskal-755 

Wallis test indicates that at least two of the three rainfall types are significantly different in terms of their 18Op values.  
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Table captions 

 

Table 1. Data collection details for the seven studied stations. KGC: Köppen and Geiger climate classification; AEMET: Agencia 760 

Española de Meteorología; SAIH: Automatic Hydrologic Information System. See Table S1 for all the isotopic and meteorological 

data. The AEMET stations with long series represented in Figure 4A are indicated. 

 

  

Rainfall collection site Meteorological data 

Location Coordinates and altitude KGC Data description Station Annual 

mean 

Temp 

(°C) 

Annual 

rainfall 

(mm) 

AEMET 

long series 

(with data 

from 1981-

2010) 

Lat  Long Altitude  

m asl 

Collection 

period 

Nº 

samples 

Laboratory Name Type 

C
a
n
ta

b
ri

a
n
 c

o
a
st

 

Oviedo 43°21N 5°51W 245 Cfb Feb 2015- 

Jan 2016 

47 Universities. 

of Oviedo 

and 

Barcelona 

(UB) 

Oviedo (120 

km from El 

Pindal) 

AEMET 13.3 960 Oviedo 

El Pindal 43°23N 4°31W 24 Cfb Nov 2006-

Feb 2007 

July 2007-

May 2008 

Jan 2009-

April2009 

101 Data from 

reanalysis 

(ECWMF 

ERA interim 

data) 

Ib
er

ia
n
 R

a
n
g
e
 

Ortigosa 

de 

Cameros 

42°10N 2°42W 1060 Dsb Sep 2010–

Dec 2014 

189 IACT-CSIC 

and UB 

Villoslada de 

Cameros (6.5 

km) 

La Rioja 

govern 

9.6 650 Logroño 

Molinos 40°47N 0°26W 1040 Dsb March 

2010-May 

2015 

254 IACT-CSIC Gallipuén (7 

km) 

SAIH 

Ebro 

12  500 Teruel 

P
yr

en
ee

s 

Borrastre 42°29N 0°06W 770 Csb Since 

April 

2011 

374 Borrastre (in 

situ) 

Meteo-

climatic 

13.5 900 Huesca 

M
ed

it
er

re
a
n
ea

n
 

Barcelona 41°21N 2°06E 20 Csa Since Oct 

2015 

53 UB Barcelona-

Zona 

Universitaria 

(in situ) 

meteocat 17.2 430 Barcelona 

Mallorca 

(Manacor 

and Porto 

Cristo) 

39°33N 3°12E 90 Csa Since May 

2013 

98 Sant Llorenç 

(8 km) 

AEMET 18.8 590 Palma de 

Mallorca 
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 765 

Table 2. Mean values of 18Op data for the seven sites in the study transect at a monthly and annual scale. Only months and years 

with all events collected are averaged. Note that the number of months or years averaged (n, in the table) are not the same for all 

the stations, neither the time period considered (check Table 1 for the sampling period in every station). For the complete monthly 

dataset with all the monthly values indicated, please refer to Table S2. 
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
18Op (‰) Cantabrian coast Iberian Range Pyrenees Mediterranean 

Oviedo El Pindal Ortigosa de  
Cameros 

Molinos Borrastre Barcelona Mallorca 

January n=0  n=3 -7.46 n=2 -12.29 n=4 -10.12 n=4 -8.64 n=1 -5.15 n=4 -8.91 

February n=0  n=2 -5.49 n=3 -7.28 n=5 -9.71 n=4 -11.25 n=2 -6.71 n=4 -4.57 

March n=1 -6.29 n=2 -5.19 n=3 -7.74 n=6 -10.25 n=4 -9.49 n=2 -8.00 n=3 -7.15 

April n=1 -5.12 n=2 -4.27 n=4 -6.25 n=6 -7.68 n=4 -6.35 n=2 -7.38 n=3 -4.86 

May n=0  n=1 -5.25 n=3 -3.66 n=5 -6.13 n=6 -5.19 n=2 -2.21 n=3 -3.36 

June n=1 -3.73 n=0  n=4 -5.21 n=4 -5.12 n=5 -4.32 n=1 -8.01 n=2 -3.06 

July n=1 -7.50 n=1 -2.04 n=4 -6.39 n=4 -2.22 n=5 -4.44 n=1 -1.64 n=1 -1.13 

August n=1 -4.80 n=1 -3.94 n=4 -3.64 n=4 -5.00 n=5 -4.65 n=0  n=3 -3.15 

September n=1 -5.83 n=1 -3.17 n=3 -7.09 n=3 -5.93 n=5 -5.83 n=1 -6.13 n=5 -4.14 

October n=1 -5.47 n=1 -4.12 n=4 -6.17 n=3 -7.18 n=5 -6.46 n=1 -5.53 n=4 -6.38 

November n=1 -5.87 n=1 -4.31 n=4 -9.40 n=4 -11.26 n=5 -7.24 n=2 -6.95 n=4 -6.34 

December n=1 -7.16 n=2 -5.23 n=3 -7.91 n=3 -10.41 n=4 -8.00 n=1 -7.27 n=4 -5.28 

Annual n=0  n=0  n=1 -7.09 n=2 -7.18 n=3 -6.37 n=0  n=0  
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Table 3. Spearman´s rank correlation coefficients between 18Op and air temperature and precipitation amount for every sampling 

station at daily scale (A) and monthly scale (B) using deseasonalised data (removing the seasonal component by subtracting their 775 

monthly averages). Significant correlations with p value < 0.05 after application of Bonferroni test are in red. Note that the 

relatively small size of Oviedo and Barcelona rain events likely precludes statistically significant correlations. (C) Multiple 

regression coefficient (r) and p-value for every site is included, indicating the coefficient and the standard error for the constant, 

the precipitation and the temperature variables. As an example, the equation for Molinos should be read as follows: 18Op=– 

0.05(±0.019) A +0.40(±0.05) T + 0.43, with A as the amount of precipitation, T as air temperature and 0.43 as a constant value. 780 

 

 

 

  

 Oviedo El Pindal Ortigosa de 
Cameros 

Molinos Borrastre Barcelona Mallorca 

(A) Daily correlations n = 39 n = 109 n=189 n=248 n=352 n=53 n=98 


18Op - temperature rs 0.23 0.34 0.25 0.41 0.31 0.24 0.35 

p value 0.328 0.0012 0.001 2.00E-11 1.17E-09 0.21 0.0013 


18Op - precipitation amount  rs -0.22 -0.06 -0.32 -0.19 -0.11 -0.35 -0.28 

p value 0.368 1 1.05E-05 0.005 0.119 0.029 0.013 

(B) Monthly correlations n = 9 n = 17 n=41 n=51 n=49 n=16 n=40 


18Op - temperature rs 0.3 0.33 0.46 0.76 0.61 0.39 0.41 

p value 1 1 0.013 3.36E-10 1.44E-05 0.804 0.05 


18Op - precipitation amount rs 0.066 -0.44 -0.34 -0.4 -0.11 -0.30 -0.12 

p value 0.843 0.4 0.176 0.018 1 1 0.436 

(C) Multiple regression 
(with daily data) 

r 0.30 0.40 0.40 0.43 0.30 0.32 0.41 

p value 0.118 0.0001 3.36E-08 4.68E-13 8.13E-09 0.004 0.008 

Constant Coeff 0.14 0.32 -1.6 0.43 -2.83E-11 -0.49 0.23 
Std err 0.43 0.24 0.22 0.18 0.16 0.38 0.26 

Precipitation Coeff -0.015 -0.013 -0.11 -0.05 -0.018 -0.05 -0.02 
Std err 0.05 0.04 0.02 0.019 0.014 0.02 0.017 

Temperature Coeff 0.21 0.25 0.25 0.40 0.40 0.37 0.31 
Std err 0.11 0.05 0.06 0.05 0.06 0.19 0.11 
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Table 4. Relative frequency (in %) of the three rainfall types in every studied station. 785 

 

 

 

Tabla 5. Kruskal-Wallis test performed on 18Op data to discriminate if the three synoptic patterns are statistically different in 

terms of their isotopic composition. High values of the test (Kruskal-Wallis H) and low p-values indicate that at least two of the 790 

three synoptic patterns are statistically different in terms of 18Op data. 

 

 

 

  795 

  Cantabrian coast Iberian Range Pyrenees Mediterranean 

Oviedo El 
Pindal 

Ortigosa 
de 

Cameros 

Molinos Borrastre Barcelona Mallorca 

Atlantic 
fronts 

68.09 71.29 58.7 51.8 65.2 58.49 40.82 

Backdoor 
cold fronts 

14.89 16.83 20.6 23.9 11.8 24.53 38.78 

Convective 17.02 11.88 20.6 24.3 23.0 16.98 20.41 

 

 Cantabrian coast Iberian Range Pyrenees Mediterranean 

Oviedo El 
Pindal 

Ortigosa 
de 

Cameros 

Molinos Borrastre Barcelona Mallorca 

Kruskal-
Wallis H 

3.017 10.86 23.3 48.38 47.84 4.109 22.23 

p value 0.221 0.004  8.7E-06 3.12E-11 4.09E-11 0.1282 1.49E-05 
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Supplementary 

 

Figure S1. Wind roses represent the averaged back trajectories of air masses that produced precipitation at three stations in 

northern Iberia: Oviedo (northern Spain), Borrastre (central Pyrenees) and Mallorca (Balearic Islands). Trajectories shown were 

computed for only 24 hours.  800 

As supplementary 

 

Table S1. Event 18Op and 2Hp data for the stations considered in this study. Meteorological data from nearby stations (Table 1) 

are also included.  

As supplementary 805 

 

Table S2. Monthly 18Op data for the stations considered in this study 

As supplementary 
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