1 Supplementary information for manuscript:

2 Technical Note: Emission factors, chemical composition and 3 morphology of particles emitted from Euro 5 diesel and gasoline light 4 duty vehicles during transient cycles

Evangelia Kostenidou¹, Alvaro Martinez-Valiente², Badr R'Mili¹, Baptiste Marques¹, Brice Temime-Roussel¹, Michel André³, Yao Liu³, Cédric Louis³, Boris Vansevenant³, Daniel Ferry⁴, Carine Laffon⁴, Philippe Parent⁴ and Barbara D'Anna¹ ¹Aix-Marseille Université, UMR 7673 CNRS, LCE, Marseille, France ² IRCELYON, UMR 5256 CNRS, Université de Lyon, Villeurbanne, France ³ AME-EASE, Univ Gustave Eiffel, IFSTTAR, Univ Lyon, F-69675 Lyon, France ⁴ Aix-Marseille Université, CNRS, CINaM, Marseille, France

32	Table S1. EF	F of regulated	gas phase	species: C	CO2 in g km ⁻¹ ,	CO, THC an	d NO _x in mg
----	--------------	----------------	-----------	------------	-----------------------------	------------	-------------------------

33 km⁻¹.

			Artemis		W	LTC
		Cold Urban	Hot Urban	Motorway	Cold Start	Hot Start
GDI1	CO_2	221±11	197±5	151±5		
	CO	104±47	$5{\pm}0.5$	326±207		
	NO _x	110±44	102±6	30±23		
	THC	45±20	0.8±0.3	2.1±0.9		
GDI3	CO_2				150±31	129±17
	CO				694±821	308±329
	NO _x				1217±498	1387±526
	THC				112.5±116	73±112.3
GDI5	CO_2	191±5	173±7	130±2		
	CO	714±228	557±561	586±206		
	NO _x	153±60	30±12	9±3		
	THC	219±0.4	25±14	8±2		
PFI4	CO_2	155±2		112±2		
	CO	106±16		112±2		
	NO _x	69±13		7±1		
	THC	5.5±0.4		2.0±0.3		
D1	CO_2	168±18	147±7	144 ± 14		
	CO	453±208	95±44	3±1.6		
	NO _x	697±120	741±112	890±233		
	THC	57±20	30±3	1.7±2		
D3	CO_2				120±1.5	116±1.8
	CO				54±11	27±7.5
	NO _x				240±25	232±32
	THC				14.7±3	12.4±2.5
D4	CO_2	210±4		142 ± 0.1		
	CO	601±45		9±0.2		
	NO _x	396±8		510±160		
	THC	91±28		10±1		

Table S2: PAHS identified in diesel and gasoline Euro 5 vehicles emissions. They have 40

been classified as unsubstituted PAHs (UnSubPAHs), methylated PAHs (MPAHs), 41

oxygenated PAHs (OPAHs), nitro-substituted derivatives (NPAHs) and amino PAHs 42 (APAHs).

Group	Compound	Molecular m/z	
		formula	
UnSubPAH	Naphthalene	C10H8	128
	Acenaphthylene	C12H8	152
	Acenaphthene	C12H10	154
	Fluorene	C13H10	166
	Paracyclene	$C_{14}H_8$	176
	Anthracene/	C14H10	178
	Phenanthrene		
	Benzo[def]fluorene	C15H10	190
	Pyrene/	C16H10	202
	Fluoranthene/		
	Acephenanthrylene		
	Benzofluorene	C17H12	216
	Benz[a]anthracene/	C18H12	228
	Triphenylene/		
	Chrysene		
	Corannulene/	C20H10	250
	Dicyclopenta[cd,mn]pyrene		
	Benzo[b]fluoranthene/	C20H12	252
	Benzo[j]fluoranthene/		
	Benzo[k]fluoranthene/		
	Benzo[a]pyrene/		
	Benzo[e]pyrene		
	Indio[1,2,3-cd]pyrene/	C22H12	276
	Benzo[gh1]perylene	C U	270
	Dibenzanthracene/	$C_{22}H_{14}$	278
	Pentacene	C II	200
	H-	C23H12	288
MDAII	Mathyl nonthalana	Cullis	142
МГАП	Dimethyl naphthalene	CITHIO	142
	Mathyl accepththene		150
	Methyl-acenaphthene		108
	Methyl-Iluorene	$C_{14}H_{12}$	180
	Methyl-phenanthrene	C15H12	192
	Dimethyl-fluorene	$C_{15}H_{14}$	194
	Ethyl-phenanthrene	$C_{16}H_{14}$	206
	Trimethyl-phenanthrene	C17H16	220
	Retene/	C18H18	234
	Tetramethyl phenanthrene		
	Methylbenzo[ghi]fluoranthene	$C_{19}H_{12}$	240
	Methylbenz[a]anthracene/	C19H14	242
	methyl chrysene	~	
	Di-methylbenz(a)anthracene	$C_{20}H_{16}$	256
	Methyl cholanthrene	C21H16	268
OPAH	Indanone	C9H8O	132
	Benzocycloheptenone	$C_{11}H_8O$	156
	Naphthoquinone	$C_{10}H_6O_2$	158
	Dibenzofuran	C12H8O	168
	Fluorenone	C13H8O	180
	Dibenzopyran	C13H10O	182
	Hydroxydibenzofuran	C12H8O2	184

Table S2: PAHS identified in diesel and gasoline Euro 5 vehicles emissions. They have
 been classified as unsubstituted PAHs (UnSubPAHs), methylated PAHs (MPAHs),

46 oxygenated PAHs (OPAHs), nitrogen-substituted derivatives (NPAHs) and amino

47 PAHs (APAHs) (continued).

formula DPAH Anthrone Ci4HaO 194 Xanthone Ci3HsO 196 Cyclcopenta-phenanthrene-one Ci3HsO 204 Accanthraquinone Ci4HaO 232 Benzo[cd]pyrenone Ci9HinO 254 RPAH Nitro-anthracene/ Ci4HaNO: 223 Nitro-phenanthrene Dinitrofluorene Ci3HaN2O4 256 XPAH Aminopyrene/ Ci4HiN 217 Carbazole Carbazole Carbazole 259 Aminobenzanthrone Ci8Hi3NO 259 Dibenzocarbazole CaHi3N 267 Amino benzopyrene CidHi3N 267	Family	Compound	Molecular	m/z
DPAH Anthrone CiaHo0 194 Xanthone CiaHo2 196 Cyclcopenta-phenanthrene-one CiaHo2 232 Benzo[cd]pyrenone CiaHo2 232 WPAH Nitro-anthracenc/ CiaHoN02 223 Nitro-phenanthrene 204 Dinitrofluorene CiaHoN02 223 Nitro-phenanthrene 204 Dinitrofluorene CiaHiNO4 256 XPAH Aminopyrene/ CiaHiNO 259 Dibenzocarbazole CaoHiNO 267 Amino benzopyrene			formula	
Xanthone CısHsOz 196 Cyclcopenta-phenanthrene-one CısHsO 204 Accanthraquinone CısHsO 232 Benzo[cd]pyrenone CısHsOz 233 Nitro-anthracene/ CısHsNOz 223 Nitro-phenanthrene Dinitrofluorene CısHsN2O4 256 APAH Aminopyrene/ CısHı3NO 259 Dibenzocarbazole CısHı3NO 259 Dibenzocarbazole CısHı3N 267 Amino benzopyrene	OPAH	Anthrone	$C_{14}H_{10}O$	194
Cyclcopenta-phenanthrene-one Cı:HsO 204 Accanthraquinone Cı:dHsO2 232 Benzo[cd]pyrenone Cı:dHsNO2 223 Nitro-phenanthrene Dinitrofluorene Cı:dHsN2O4 256 Aminobyrene/ Cı:dHı:NN 217 Carbazole Cı:dHı:NN 259 Dibenzocarbazole Cı:dHı:NN 267 Amino benzopyrene		Xanthone	C13H8O2	196
Accanthraquinone CısHsO2 232 Benzo[cd]pyrenone CısHsO2 233 Nitro-anthracene/ CısHsNO2 233 Nitro-phenanthrene Dinitrofluorene CısHsN2O4 256 Aminobenzanthrone CısHı3NO 259 Dibenzocarbazole C20Hi3N 267 Amino benzopyrene		Cyclcopenta-phenanthrene-one	C15H8O	204
Benzo[cd]pyrenone C19H1eO 254 NTro-anthracene/ C14J9NO2 223 Dinitrofluorene C13H3N2O4 256 Aminopyrene/ C16H11N 217 Carbazole Aminobenzanthrone C18H13NO 259 Dibenzocarbazole C20H13N 267 Amino benzopyrene		Aceanthraquinone	$C_{16}H_8O_2$	232
NPAH Nitro-anthracene/ C14HoNO2 223 Nitro-phenanthrene Dinitrofluorene C14HoNO4 256 APAH Aminopyrene/ C16H10N 217 Carbazole Aminobenzanthrone C18H10NO 259 Dibenzocarbazole C20H10N 267 Amino benzopyrene		Benzo[cd]pyrenone	C19H10O	254
APAH Aminopyrene/ CısHaN2O4 256 Aminobenzanthrone CısHısNO 259 Dibenzocarbazole CısHısNO 267 Amino benzopyrene	NPAH	Nitro-anthracene/	C14H9NO2	223
APAH Dinitrofluorene CiaHaN2O4 256 Aminopyrene/ CiaHaN2O 259 Dibenzocarbazole C20HaN 267 Amino benzopyrene		Nitro-phenanthrene		
APAH Aminopyrene/ CisHiiN 217 Carbazole Aminobenzanthrone CisHiiNO 259 Dibenzocarbazole C20HiiN 267 Amino benzopyrene		Dinitrofluorene	$C_{13}H_8N_2O_4$	256
Aminobenzanthrone CısHıзNO 259 Dibenzocarbazole CzoHıзN 267 Amino benzopyrene	АРАН	Aminopyrene/	C16H11N	217
Aminobenzantirone CISHIBNO 259 Dibenzocarbazole C20HIBN 267 Amino benzopyrene		Carbazole		250
Amino benzopyrene		Aminobenzanthrone	C18H13NO	259
		Dibenzocarbazole	C20H13N	267
		Amino benzopyrene		

Table S3: Fraction (%) of major PAHs emitted from the GDI5, PFI4 and D4 cars during Artemis driving cycles: Cold Urban (CU) and Motorway (MW).

Compound	GDI5		PFI4		D4	
•	CU	MW	CU	MW	CU	MW
<u>UnsPAHs</u>						
Naphthalene	10.3	9.6	14.3	13.6	16.9	19.1
Acenaphthylene	4.3	7.8	4.5	5.4	8.3	9.7
Acenaphthene	2.4	3.6	2.0	2.6	4.2	5.2
Fluorene	1.9	2.5	2.2	3.2	5.0	4.3
Anthracene/Phenanthrene	5.3	15.9	4.1	8.9	6.9	8.2
Pyrene/Fluoranthene/Acephenanthrylene	5.9	13.7	3.3	5.8	2.1	1.9
Benz[a]anthracene/Triphenylene/Chrysene	2.2	1.6	1.7	1.0	1.3	0.7
Paracylene	1.7	3.5	1.0	1.2	2.1	2.8
Benzo[def]fluorene	1.4	1.5	1.1	1.9	3.4	2.1
Benzo[a, e]pyrene/Benzo[b,j,k]fluoranthene	2.3	1.1	3.8	0.6	0.7	0.4
Cyclopenta[cd]pyrene/Benzo[ghi]fluoranthene	3.3	2.0	2.5	1.2	1.6	1.0
Dibenzoanthracene/Pentacene	0.5	0.2	1.5	0.8	0.2	0.1
Indio[1,2,3-cd]pyrene/Benzo[ghi]perylene	3.0	0.6	6.6	0.7	0.4	0.3
Coronene	1.9	0.3	5.3	0.6	0.1	0.1
MPAHs						
Methyl-naphthalene	3.4	2.9	4.6	4.4	7.6	8.2
Dimethyl-naphthalene	1.9	1.9	2.6	2.9	5.4	5.5
Methyl-acenaphthene	1.3	1.7	1.3	2.4	3.3	3.3
Methyl-fluorene	1.1	2.1	1.0	2.1	3.4	2.9
Methyl-phenanthrene	0.7	2.3	1.1	1.7	4.7	3.1
Fthyl-phenanthrene	13	13	1.1	2.2	3.8	23
	110	110	110		010	2.0
<u>OPAHs</u>						
Indanone	2.4	1.8	0.9	1.2	0.4	0.9
Anthraquinone	2.2	0.9	3.9	8.7	2.6	3.9
Dibenzofuran	1.0	1.0	0.7	1.3	0.5	1.6
Fluorenone	1.6	2.7	1.1	2.0	0.3	3.1
Dibenzopyran	1.5	1.1	1.3	2.4	0.3	0.4
Benzo[cd]pyrenone	1.4	0.6	0.8	0.5	0.1	0.1
NPAHs						
Nitro-fluorene	0.9	0.1	0.8	0.4	0.5	0.2
Nitro-anthracene/Nitro-phenanthrene	8.1	8.6	0.9	1.2	0.1	0.1
Nitro-pyrene	0.5	0.1	0.8	0.2	0.1	0.03
Nitrochrysene	0.4	0.03	0.7	0.2	0.06	0.04
<u>APAHs</u>						
Aminopyrene/Carbazole	0.8	0.6	0.5	0.6	1.5	0.5
Dibenzocarbazole/Amino benzopyrene	5.3	0.4	2.4	3.5	0.3	0.2
Dibenz[a,i]acridine	0.1	0.03	1.1	1.2	0.2	0.2

Table S4. Major inorganic species found in fresh and used lubricant oil, TAE diesel

and gasoline fuels (analysis by ICP-MS). Other elements such as Cr, Ni, Al and Mg
were found in concentration below 3 ppm.

		Fresh lubricant oil	Old lubricant oil (Diesel)	Old lubricant oil (Gasoline)	Gasoline TAE 85 Fuel	Gasoline Fuel
Sulfur		0.14wt %	0.14wt%	0.12wt%	9 ppm	34 ppm
Calcium	(ppm)	1630	1441	1829	<u>≤</u> 3	≤ 5
Phosphor	(ppm)	638	614	709	<u>≤</u> 3	≤ 5
Zinc	(ppm)	849	728	857	<u>≤</u> 3	≤ 5
Iron	(ppm)	≤ 3	66	75	≤2	≤ 5
Silicon	(ppm)	5	15	11	31	138
Molybdenum	(ppm)	≤ 3	94	≤ 5	≤ 3	≤ 5
Copper	(ppm)	≤ 3	16	7	≤ 3	≤ 5

Table S5: EF for all gasoline and diesel vehicles and for all tested conditions. All values
 are expressed in µg km⁻¹. BDL stands for Below Detection Limit.

Vehicle	Species		Artemis		WL	LTC
		Cold Urban	Hot Urban	Motorway	Cold Start	Hot Start
GDI5	BC	3180± 1 37	200±160	767±330		
	Organics	66.3±64.8	5.34 ± 4.42	25.3±13.5		
	PAHs	1.54 ± 0.81	0.13 ± 0.01	1.10 ± 0.73		
	Sulfate	0.34 ± 0.07	0.06 ± 0.03	0.06 ± 0.04		
	Ammonium	0.28 ± 0.04	0.02 ± 0.01	0.09 ± 0.08		
	Nitrate	1.31 ± 0.41	0.12±0.09	0.48±0.43		
PFI4	Organics	8.40 ± 3.70	NA	1.00 ± 0.26		
	PAHs	0.43 ± 0.16	NA	$0.04{\pm}0.05$		
	Sulfate	0.28 ± 0.11	NA	$0.04{\pm}0.03$		
	Ammonium	0.24 ± 0.14	NA	0.03 ± 0.01		
	Nitrate	0.88 ± 0.45	NA	0.03±0.01		
GDI1	BC	7140 ± 500	960±190	1990±810		
GDI3	BC				5700±800	230±60
	Organics				103.5 ± 52.23	41.23±8.38
	Sulfate				BDL	BDL
	Ammonium				BDL	BDL
	Nitrate				7.12±3.98	5.08 ± 2.96
D4	Organics	61.0±38.2	NA	65.7±36.4		
	PAHs	2.04 ± 0.19	NA	1.73±0.95		
	Sulfate	0.18 ± 0.06	NA	0.22 ± 0.13		
	Ammonium	0.15 ± 0.01	NA	0.15±0.06		
	Nitrate	0.25 ± 0.05	NA	0.82±0.53		
D1	BC	76.0 ± 55.0	$8.0{\pm}4.0$	9.0±3.9		
	Organics	11.0 ± 0.81	0.15 ± 0.05	1.91 ± 1.32		
	Sulfate	NA	NA	1.34 ± 1.26		
	Ammonium	NA	NA	0.38±0.21		
	Nitrate	0.28 ± 0.02	0.18 ± 0.06	0.18±0.09		
D3	BC				$8.0{\pm}4.0$	$3.0{\pm}1.0$
	Organics				0.74 ± 0.25	0.28 ± 0.01
	Sulfate				4.19±3.20	0.28 ± 0.05
	Ammonium				0.68 ± 0.53	0.06 ± 0.02
	Nitmoto				0.14 ± 0.09	0.03 ± 0.01

Vehicle	Fuel C	Fuel density	
GDI5	Cold Urban	Motorway	0.733
	0.085	0.077	
PFI4	Cold Urban	Motorway	0.733
	0.068	0.048	
GDI3	Cold start WLTC	Hot start WLTC	0.733
	0.064	0.059	
GDI1	Cold Urban	Motorway	0.733
	0.096	0.063	
D4	Cold Urban	Motorway	0.840
	0.077	0.051	
D3	Cold start WLTC	Hot start WLTC	0.840
	0.044	0.047	
D1	Cold Urban	Motorway	0.840
	0.063	0.051	

Table S6: Fuel consumption (l km⁻¹) and fuel densities (kg l⁻¹).

Figure S1. Examples of HR-AMS fitting for (a) naphthalene ($C_{10}H_8$) at m/z 128, (b) methyl-naphthalene ($C_{11}H_{10}$) at m/z 142, (c) anthracene/phenanthrene ($C_{14}H_{10}$) at m/z178 and (d) Nitro-anthracene ($C_{14}H_9NO_2$) at m/z 223.

Figure S2. Time series of organics, nitrate and BC for WLTC cycle cold start (upper
plot) and hot start (lower plot) for the GDI3 vehicle.

Figure S3. Time series of organics, sulfate, nitrate and ammonium for Artemis cold
urban (upper) and motorway cycles (lower) for the PFI4 vehicle. BC measurements are
not available for this car.

Figure S4: Time series of organics, sulfate and ammonium for WLTC cold start (upper)
and hot start (lower) for the D3 vehicle.

181 Figure S5: Time series of organics, sulfate, nitrate and ammonium for Artemis cold
182 urban cycle (upper) and a motorway (lower) for the D4 car.

197 Figure S6. AMS HR spectra speciation for organic fragments for the PFI4 vehicle
198 (ARTEMIS cycle).
199

- .

230 **Figure S8:** UMR mass spectrum for taken at the beginning of a motorway cycle (2 first minutes) for the D1 vehicle.

Figure S9: TEM images of samples collected during hot cycles: (a-c) GDI1 sampling the first 120 sec of the motorway cycle, dilution ratio 40; (d-f) GDI3 sampling the last 120 sec of a WLTC cycle, dilution ratio 46; (g-i) D4 sampling the first 45 sec of the motorway cycle, dilution ratio 2; (j-l) D1 vehicle sampling first 300 sec of the motorway cycle, dilution ratio 40.

238

Figure S10. XPS spectra of particles collected from the PFI4 vehicle: (a) survey
spectrum and elemental composition (table in insert); (b) deconvolution of the C1s
spectrum; (c) deconvolution of the O1s spectrum.